天然气轻烃回收工艺流程

合集下载

轻烃回收工艺流程的优化

轻烃回收工艺流程的优化

轻烃回收工艺流程的优化摘要:天然气中的轻烃是优质的燃料,现在通常采用浅冷方法回收轻烃,浅冷装置操作主要问题是能耗高而轻烃的回收率低,现在开展轻烃回收装置优化研究,优化结果,回收率提高了,能耗降低了,获得可观的经济效益。

关键词:轻烃回收装置优化中图分类号:tf526 文献标识码:a 文章编号:轻烃回收的原理和现状1、工艺方法:目前国产化装置采用的主要工艺方法有冷剂循环制冷、膨胀制冷和混合制冷。

(1)冷剂制冷有氨、氟利昂、丙烷循环制冷。

氨和氟利昂已被逐渐淘汰,丙烷冷剂压缩循环制冷属于新开发的制冷工艺,制冷温度为-35至-30度,制冷系数较大,丙烷冷剂可由轻烃回收装置自行生产,无刺激性气味,该工艺将在国内广泛应用。

(2)采用膨胀制冷法的工艺装置,国内有膨胀机制冷和热分离机制冷两种方法。

大多数装置采用中低压小膨胀比的单机膨胀机制冷技术,膨胀比小,制冷温度一般为-50度,装置运行平稳,工艺技术成熟,膨胀机制冷工艺得到了广泛的应用。

目前国产化装置以回收lpg为主,c3平均回收率不足60%,深冷装置少,膨胀制冷工艺流程单一,国产装置大多采用iss膨胀制冷工艺。

国内开发应用的热机分离机制冷技术,由于热分离效率低,适应性差,技术性能差,质量不过关等原因,我国仍处于工业试验阶段。

(3)国外浅冷装置广泛采用丙烷制冷工艺,在美国和加拿大多用于处理c3含量较多的伴生气,国外深冷装置采用制冷工艺有复叠式制冷法、膨胀制冷法和膨胀制冷与冷剂制冷相结合的混合制冷法。

原料气脱水技术目前国产轻烃回收装置大多数采用分子筛脱水方法,在中深冷装置中全部用分子筛脱水方法。

国外常用的脱水方法主要有三甘醇脱水法、分子筛脱水法和喷注甲醇或乙二醇防冻脱水法。

深冷装置多采用分子筛脱水法或分子筛脱水与其它脱水方式相结合的方法。

冷换技术板翅式换热器作为主要冷换设备,在国产装置中已得到广泛应用。

板翅式换热器具有占地面积小、绝热材料少、安装费用低的优点,具有较小的换热温差,传热效率高,可做大限度地进行能量回收利用,以降低能耗,简化流程。

轻烃回收工艺技术及其进展

轻烃回收工艺技术及其进展

轻烃回收工艺技术及其进展轻烃是指碳数在1至4之间的烃类化合物,包括甲烷、乙烷、丙烷和丁烷等,是石油和天然气中的重要组成部分。

随着全球能源需求的增长,轻烃的开采和利用越来越受到人们的关注。

由于轻烃的挥发性和易燃性,它在生产、储运和利用过程中容易造成能源的浪费和环境污染。

轻烃的回收工艺技术及其进展成为当前研究的热点之一。

轻烃的回收工艺技术涉及到轻烃的分离、提纯和再利用等方面。

目前,主要的轻烃回收工艺技术包括吸附分离、膜分离、压缩液工艺、结晶分离和化学吸收等。

这些工艺技术在轻烃回收中发挥着重要作用,不仅可以有效提高轻烃的回收率,减少能源浪费,还可以减少对环境的污染。

吸附分离是一种通过吸附材料选择性吸附轻烃分子的工艺技术。

常用的吸附剂包括活性炭、分子筛和硅胶等。

通过合理选择吸附剂和优化操作条件,可以实现对轻烃的高效分离和回收。

膜分离则是利用特定的膜材料,通过膜的选择性透过性,将轻烃与其他组分分离开来。

与传统的蒸馏分离相比,膜分离工艺具有能耗低、设备小、操作简便等优点,因此在轻烃回收中得到了广泛的应用。

压缩液工艺利用了轻烃在高压情况下溶解度的变化,通过变化温度和压力来实现轻烃的回收。

结晶分离则是通过控制温度和添加适当的添加剂,使轻烃在溶剂中结晶析出,实现轻烃的分离和回收。

化学吸收则是利用化学反应将轻烃与其他组分转化为更容易分离的化合物,然后再对其进行分离和回收。

随着科技的进步和工艺的不断改进,轻烃回收工艺技术也在不断地发展和完善。

膜分离技术是目前发展最为迅速的轻烃回收技术之一。

传统的多孔膜已经不能满足对轻烃的高效分离要求,因此近年来,研究者们将目光转向了纳米孔膜。

纳米孔膜具有孔径小、分离效果好、通量大等优点,可以实现对轻烃的高效分离和回收。

化学吸收技术也在不断地得到改进和应用。

传统的化学吸收工艺中使用的吸收剂对环境和人体健康都存在一定的污染和危害,因此研究者们将目光转向了新型环保型吸收剂。

这些新型吸收剂具有高效、低毒、易生物降解等特点,可以实现对轻烃的高效吸收和回收,同时减少对环境的污染。

天然气处理工艺和轻烃回收技术

天然气处理工艺和轻烃回收技术

甲醛
MTBE
醋酸
氯甲烷
甲胺
MMA
DMT
醋酸乙烯
甲醇蛋白
乙烯
10
天然气加工工程
天然气处理工艺技术
天然气轻烃回收工艺技术
硫化氢腐蚀原理与防护技术
天然气计量自动化
11
天然气处理工艺技术
一、天然气脱水的主要原因
1、天然气会与其中所带的液体或水形成固体化合物,造成堵塞
阀门,设备甚至是整个管线。
2、造成腐蚀,特别是在CO2和H2S存在的情况下。
2、气体膨胀制冷(内冷)
20
天然气轻烃回收工艺技术
一、天然气处理站轻烃回收实验方法研究目的
为提高油气综合利用水平,进行天然气处理站轻烃回收实验方
法研究有十分重要的现实意义。凝析天然气和伴生气中含有大量的丙
烷及丙烷以上重烃组分,从中回收和合理利用这部分烃类资源,将提
高油气田开发的经济效益。
轻烃回收工艺目前广泛采用的是低温分离法或低温分离法与其
再根据天然气处理站的原料气处理量和液化气、轻质油的产量数据
,基于质量平衡计算得到了液烃回收率。
C3+回收率的计算公式如下:
Eij=mij
×n
ij/a
式中:Eij———— 一定条件下的C3+回收率,质量%;
mij———— 一定条件下的质量液化率,%;
nij———— 一定条件下冷凝出的液烃中的C3+含量,质量%;
伴随原油共生并与原油同时被采出的天然气。在地层中为油、气两
相。油田气中除甲、乙、丙、丁烷外,还含有戊、已烷,甚至C9、
C10组分。
2、按天然气烃类组成分类
(1)C5界定法——干、湿气的划分
①干气(dry gas):指1Sm3(CHN)井口流出物中,C5以上烃液含量低于

天然气处理与轻烃回收

天然气处理与轻烃回收
天然气净化与轻烃回收
天然气净化 轻烃回收
第一节 天然气处理
1、天然气来源与分类
按矿藏特点的不同可将天然气分为气井气 ( gas well gas ) 、 凝 析 井 气 ( condensate gas)和油田气(oil field gas)。前两者合 称非伴生气(unassociated gas),后者也称 为油田伴生气(associated gas)。
烃露点(hydrocarbon point)
在一定压力下从天然气中开始凝结出 第一滴液烃时的温度,它与天然气的压力 和组成有关。
为防止天然气在输配管线中有液烃凝 结并在管道低洼处积液,影响正常输气甚 至堵塞管线,目前许多国家都对商品天然 气规定了脱油除尘的要求,规定了一定压 力条件下天然气的最高允许烃露点。
吸湿液主要是甘醇(三甘醇、二甘醇), 使用较多的为三甘醇。
三甘醇优点:再生效果好;分解温度高, 蒸发损耗小;再生设备简单;操作费用和 投资低于二甘醇。
(3)固体吸收法
采用内部孔隙很多、内部比面积很大的固体 物质与含水天然气接触.气中的水被吸附于 固体物质的空隙中。被水饱和了的固体物质 经加热再生后重复使用。
商品天然气技术指标
水露点(water dew point)与水蒸气含量
在地层温度和压力条件下,水在天然 气中通常以饱和水蒸气的形式存在,水蒸 气的存在往往给天然气的集输和加工带来 一系列的危害,因此,规定天然气的水蒸 气含量是十分重要的。
天然气的含水量以单位体积天然气中 所含水蒸气量的多少来表示,有时也用天 然气的水露点来表示。
常用固体吸附物有:硅胶、分子筛、活 性铁矾土、活性氧化铝等。
6、天然气脱水工艺
(1)甘醇脱水
(2)硅胶脱水

油田伴生气的回收工艺方案

油田伴生气的回收工艺方案

油田伴生气的回收工艺方案概述从油田伴生气中回收轻烃的工艺通常都是将伴生气经净化、压缩、冷凝、分馏等工艺过程来实现的;从制冷深度上划分,气体处理可以分为浅冷和深冷工艺,从制冷设备上划分,又有节流制冷、外加冷源制冷、膨胀机制冷和气波制冷等工艺。

天然气处理工艺的选择,应视原料气规模、组成、产品构成和价格、进出装置的温压条件等来确定。

轻烃回收操作条件的确定(1)主要工艺方案的确定天然气的冷凝分离需要冷量,工业上获得冷量的方法有许多,但从原理上讲基本可以分为冷剂制冷和气体膨胀制冷两大类。

膨胀制冷需要消耗原料气的压力能;辅助冷剂制冷是利用冷剂气化吸热制冷,要消耗冷剂压缩能量。

膨胀制冷可采用J-T阀,也可采用膨胀机,两种方法的主要区别是,节流膨胀是等焓过程,能量都消耗在节流阀(J-T阀)上,不能回收功;膨胀机膨胀是等熵过程,可以通过匹配同轴增压机回收一部分功,相同条件下的制冷效率高,但投资比节流膨胀要高,操作维护也比节流膨胀复杂。

无论什么方案,都希望在天然气中回收尽可能多的产品,这就需要在制冷工艺部分具有足够大的冷凝压力和足够低的冷凝温度,以便产生尽可能多的凝液。

但这并不说明,压力越高、温度越低、产生的凝液越多就越好,它必要在经济合理的前提条件下,因此,为升高压力或降低温度所付出的能耗要与所得的凝液量成比例,并且凝液的增加要与产品产量的增加相一致,因为通常在一定的冷凝温度和冷凝压力范围内,凝液的产量与产品的产量是一致的,但当凝液中乙烷量增多而丙丁烷冷凝量增加很少时,将会使得分馏部分的脱乙烷塔负荷增加,而塔顶气相中与乙烷平衡带走的丙、丁烷数量也会上升,这时的产品产量不会随凝液量增加而增加。

因此,气体处理装置都有最佳的冷凝压力和冷凝温度。

应从获得的伴生气组分数据进行分析,采用PROII软件分别对膨胀制冷工艺和外加辅助冷源膨胀制冷工艺进行了计算。

对于较富的伴生气而言,单纯采用膨胀制冷工艺,采取提高天然气压力,利用膨胀机膨胀制冷、分离。

天然气轻烃回收工艺流程

天然气轻烃回收工艺流程

轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。

当前主要采用冷凝分离法实现轻烃回收。

1、吸附法利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸附容量不同,而,将吸附床上的烃类脱附,经冷凝分离出所需的产品。

吸使天然气各组分得以分离的方法。

该法一般用于重烃含量不高的天然气和伴生气的加工办法,然后停止吸附,而通过少量的热气流附法具有工艺流程简单、投资少的优点,但它不能连续操作,而运行成本高,产品范围局限性大,因此应用不广泛。

2、油吸收法油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。

根据操作温度的不同,油吸收法可分为常温吸收和低温吸收。

常温吸收多用于中小型装置,而低温吸收是在较高压力下,用通过外部冷冻装置冷却的吸收油与原料气直接接触,将天然气中的轻烃洗涤下来,然后在较低压力下将轻烃解吸出来,解吸后的贫油可循环使用,该法常用于大型天然气加工厂。

采用低温油吸收法C3收率可达到(85~90%),C2收率可达到(20~60%)。

油吸收法广泛应用于上世纪60年代中期,但由于其工艺流程复杂,投资和操作成本都较高,上世纪70年代后,己逐步被更合理的冷凝分离法所取代。

上世纪80年代以后,我国新建的轻烃回收装置己较少采用油吸收法。

3、冷凝分离法(1)外加冷源法天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。

系统所提供冷量的大小与被分离的原料气无直接关系,故又可称为直接冷凝法。

根据被分离气体的压力、组分及分离的要求,选择不同的冷冻介质。

制冷循环可以是单级也可以是多级串联。

常用的制冷介质有氨、氟里昂、丙烷或乙烷等。

在我国,丙烷制冷工艺应用于轻烃回收装置还不到10年时间,但山于其制冷系数较大,制冷温度为(-35~-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无刺激性气味,因此近儿年来,该项技术迅速推广,我国新建的外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺,一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工艺。

轻烃回收

轻烃回收

剖面图
膨胀制冷与节流制冷的比较
节流过程用节流阀,结构比较简单,便于调节; 等熵膨胀过程用膨胀机,结构复杂;
在膨胀机中实际上不可能实现等熵膨胀过程,因 而所得的温度效应和制冷量比理论值小;
节流阀可以在气液两相区内工作,即节流阀出口 可以带很大带液量,而膨胀机带液量有限。
膨胀机的计算框图
相平衡方程:
净化
脱除气态水分和C02等,防止在冷凝操作时,由于 温度过低而在管道或设备中出现冰堵。 脱水设施应设置在气体可能产生水合物的部位之 前。当需要脱除原料气中的酸性组分时,一般是 先脱酸性组分再脱水。
多级冷凝与分离
净化后的原料气,在某一压力下经过一系列 的冷却与冷冻设备不断降温,其中的重组分 冷凝出来。通常每降低0.1Ma,可使气温下降0.5℃~1℃。
透平膨胀机
利用气体作外功进行绝热膨胀 来获得低温的核心设备。
优点:体积小、重量轻、结构
较简单、气体处理量大、冷损 少、不污染气体、不需润滑、 运行效率高、调节性能好、操 作维护方便、安全可靠和使用 寿命长。
透平膨胀机工作原理
高压天然气流过透平式膨胀机的喷嘴和工作轮 时,气体膨胀产生的高速气流,冲击透平膨胀 机的工作叶轮,叶轮产生高速旋转。高速旋转 的叶轮可产生一定的动力,能对外做功。与此 同时,膨胀后的气体温度和压力下降。
节流阀是压力气体通过节流膨胀, 从而降压、降温。降压后,使其变成 了温度更低的冷流。
节流效应
气体节流时温度的变化与压力的降低 成比例。气体节流后压力总是降低,比容 增大,内位能增大。而内动能大小与气体 温度有关,因而对实际气体,随着节流后 气体内动能的减少、增大或不变,就会出 现气体节流后温度降低、升高或不变。
概述 轻烃回收基本方法及原理 浅冷与深冷工艺

天然气工程-天然气预处理及轻烃回收

天然气工程-天然气预处理及轻烃回收
2天然气计量77三级计量采用涡轮流量计由于孔板流量计存在节流效应而不适宜湿气三级计量采用涡轮流量计由于孔板流量计存在节流效应而不适宜湿气2计量仪表88lpgc2c3c4外输天然气天然气油残渣排污排污及硫磺回收液原料气2地面简要流程99在现场上常根据不同的要求进行安装外输天然气天然气油残渣排污排污回收液原料气1010外输天然气天然气油残渣排污排污及硫磺回收液原料气1111外输天然气天然气油残渣排污排污及硫磺回收液原料气12123脱杂质和排污目前在第一级的脱杂质分离阶段主要采用立式分离器主要是解决高速流动时卧式分离的长度问题目前在第一级的脱杂质分离阶段主要采用立式分离器主要是解决高速流动时卧式分离的长度问题13134天然气净化外输天然气天然气油残渣排污排污及硫磺回收液原料气14141脱水的原因气质标准要求15151防止在低温设备中发生冻堵主要原因是天然气中的小分子组分如甲烷乙烷以至于丙丁烷等与水在一定的温度和压力条件下形成水合物
6.5 6.4
液化率(%)
6.3 6.2 6.1 6 5.9 1 2 3 分离压力(MPa) 4 5

规律

第一种方法,存在一最佳回收分离压 力 第二种方法,回收量与上游温度成正 比
39
(g)稳定塔计算
原理

恒压、恒温条件下的相平衡
模拟计算方法
17
固体吸附法脱水基本流程
各种固体干燥剂的吸附和再生过程基本上是一样的,设备和工
艺流程也相同;
天然气工业中主要采用固定床吸附塔,一般采用 2~4个吸附塔,
切换使用;
分脱水、再生和冷却3个过程 典型的双塔流程(p365) 属于深度脱水
18
2) 液体吸收法
天然气脱水常用的液体吸收剂有乙二醇、二甘醇、三甘醇和四甘醇等。如 果要求脱水后气体露点降到-20到-40℃时,选用三甘醇脱水为好,四川气 田几十年的生产实践证明,使用乙二醇和二甘醇时损失较大,而三甘醇以

天然气轻烃回收工艺介绍

天然气轻烃回收工艺介绍

天然气轻烃回收工艺一.轻烃回收工艺从天然气中回收轻烃凝液经常采用的工艺包括油吸收法,吸附法,冷凝法。

国内外近20多年已建成的轻烃回收装置大多采用冷凝法。

冷凝法回收轻烃工艺就是利用天然气中各烃类组分冷凝温度的不同,在逐步降温过程中依次将沸点较高的烃类冷凝分离出来的方法。

该法的基点是在于:需要提供较低温位的冷量使原料气降温。

按制冷温度不同,又可分为浅冷分离和深冷分离工艺。

浅冷是以回收丙烷为主要目的,制冷温度一般在-15~-25℃左右,深冷则以回收乙烷为目的或要求丙烷收率大于90%。

制冷温度一般在-90~-100℃左右。

常用的制冷工艺主要有三种:①冷剂循环制冷工艺;②膨胀制冷工艺;③冷剂制冷与膨胀制冷的联合制冷工艺。

常用的原料气脱水工艺主要采用分子筛(3A或4A)脱水法和甘醇脱水法。

二.轻烃回收工艺选择1.选择依据含量及自身可利用的压力降大小等多方面因素来选择合适根据油气田中C2的制冷工艺。

根据原料气预冷温度要求的脱水深度及天然气组成等多方面因素来选择合适的天然气脱水工艺。

2.制冷工艺的选择① 冷剂制冷工艺冷剂制冷是利用某些物质(制冷工质)在低温下冷凝分离(如融化、汽化、升华)时的吸热效应产生的冷量。

在NGL(Natural Gas Liquids天然气凝液)回收中常用乙烷、丙烷、氨、氟里昂等由液体汽化吸热冷。

这就需要耗功,用压缩机将气体压缩升压,冷凝液化、蒸发吸热、产生冷量必须消耗热能。

冷剂制冷工艺流程比较复杂,投资较高,但稳定性比较好。

② 膨胀机制冷工艺膨胀机制冷是非常接近于等熵膨胀的过程,气体经过膨胀降压之后温度降低(可能有凝液产生)。

这部分气体与原料气换冷或通过别的途径放出冷量。

膨胀机制冷可以回收一部分功,一般匹配同轴压缩机。

膨胀机制冷工艺中的单级膨胀制冷理论上可达到深冷工艺要求的制冷温度,但对天然气轻烃回收量较大的装置,制冷量需求较大。

如采用单级膨胀制冷工艺,则天然气的压缩功会太大,能耗较高,并由于较高的原料气压力使操作稳定性降低。

轻烃回收(寇杰)

轻烃回收(寇杰)
当前,国内外已开发成功的轻烃回收新技术有:直接换热 (DHX)技术、膜分离、轻油回流、涡流管、变压吸附技术(PSA) 等。这些新技术最主要的优势还是表现在节能降耗和提高轻烃 收率两方面,它们代表了轻烃回收技术的发展方向。
轻烃回收新技术
1.直接换热(DHX)吸收法
在单级膨胀机制冷工艺(ISS)中和低温分离器后接入DHX吸 收塔,将脱乙烷塔回流罐的液经过换冷、节流降温后,进入DHX 塔顶。用以吸收低温分离器进塔气体的C3+组分,从而提高C3+ 回收率。实践证明,在ISS装置改造成DHX后,C3+的回收率可 由72%提高到 95%,而改造投资极小。
2) 膨胀制冷法
轻烃回收
膨胀制冷法应用的前提条件是原料气与外输干气是否有一个较高
的压力差可以利用,其核心是通过膨胀机将气体的压力能转化为机械
能并产生冷量。膨胀机的膨胀过程热力学上近似于等熵膨胀过程。 膨胀制冷法的特点是流程简单、设备数量少、维护费用低、占用
地少、适合于原料气很贫的气体。 我国采用单纯的膨胀制冷工艺(ISS)轻烃回收装置,规模一般较小,
2. 油吸收法
轻烃回收
油吸收法是利用天然气中各种组分在吸收油(如石脑油、煤油或
柴油)中的溶解度不同,而使不同烃类得以分离的方法。 该法在20世纪50~60年代得到了广泛的应用,至今仍有装置在运
行,特别是对于石油炼制工业中的石油裂解气的分离具有优势。 吸收油一般采用石脑油、煤油或柴油。吸收油相对分子质量越小
轻烃回收
油吸收法的主要设备有吸收塔、富油稳定塔和富油蒸馏塔。若为低温 油吸收法,还需增加制冷系统。在吸收塔内,吸收油与天然气逆流接 触,将气体中大部分丙烷、丁烷及戊烷以上烃类吸收下来。从吸收塔 底部流出的富吸收油(简称富油)进入富油稳定塔中脱出不需要回收的 轻组分如甲烷等,然后在富油蒸馏塔中将富油中所吸收的乙烷、丙烷 、丁烷以及戊烷以上烃类从塔顶蒸出。从富油蒸馏塔底流出的贫吸收 油(简称贫油)经冷却后去吸收塔循环使用如为低温油吸收法,则还需 要将原料气与贫油分别冷冻后再进入吸收塔中。

天然气粗加工及轻烃回收简介

天然气粗加工及轻烃回收简介

等熵膨胀单元
在T1,P1条件下入口气体 , 条件下入口气体
输出轴 出口气体 有用功 在T2,P2下 , 下
等熵膨胀数学模型
fiL(P,T,x1 , … , xn )-fiV(P ,T, y1 , … , yn )=0 Zi-xiL-yiV=0 ∑xi - ∑yi =0
L+V-1=0
Ni Si -(NL SL + NG SG) =0
常温分离器分类
立式油气分离器(杂质含量高、 立式油气分离器(杂质含量高、空间小 气液流量变化大、 、气液流量变化大、高GOR) ) 卧式分离器(油水分离好、 卧式分离器(油水分离好、分离起泡原 流量稳定、方便移动、 油、流量稳定、方便移动、高GOR) ) 球形分离器(在处理装置的下游, 球形分离器(在处理装置的下游,回收 昂贵的处理剂,小型方便) 昂贵的处理剂,小型方便)
化工原料在天然气中占的比例不大, 化工原料在天然气中占的比例不大,但在原料 气中,生产氨和甲醇产量分别1.1亿吨和 亿吨和2200 气中,生产氨和甲醇产量分别 亿吨和 万吨左右,占原料天然气中95%; 万吨左右,占原料天然气中 ; 天然气预处理过程所得硫磺占世界总产量的 1/3;以天然气作为原料的一次产品 亿吨 亿吨/a ;以天然气作为原料的一次产品1.4亿吨 合成氨占80%;作为 种基本有机化工原料 ,合成氨占 ;作为8种基本有机化工原料 之一的甲醇, 之一的甲醇,80%是以天然气作为原料进行生 是以天然气作为原料进行生 产的;有机物合成之母的乙炔、石化基石乙烯 产的;有机物合成之母的乙炔、 液化汽等均和天然气有直接相关。 、液化汽等均和天然气有直接相关。
E j,i ( x j,i , Tj ) = y j,i − Kj,i x j,i = 0

第十章 天然气预处理及轻烃回收讲解

第十章  天然气预处理及轻烃回收讲解
二、天然气脱水(复习:天然气含水量的各种定义和名词解释) 天然气必须进行脱水处理,使之达到规定的含水汽量指标。 定义:从天然气中脱出水汽以降低露点的工艺。
CQUST
第二节 天然气净化技术
脱水工艺技术指标:露点降。 露点降:在同一压力下,被水汽饱和是天然气露点温度与经过脱水装置后天然 气露点温度之差。 天然气的饱和含水蒸汽量取决于天然气的温度、压力和气体组成等条件。 天然气脱水方法:溶剂吸收法、固体吸附法、直接冷却法和化学反应法。 在实际操作过程中,应根据具体的工况,对各种方法进行技术经济评价,选取 最优的天然气脱水工艺。常用的是溶剂吸收法和固体吸附法两种脱水方法。 (一)溶剂吸收法(甘醇脱水法) 1.基本原理 利用溶剂对天然气、烃类的溶解度低,对水的溶解度高和水汽吸收能力强的特 点,使天然气中的水汽及液态水被溶解和吸收,然后再将含水溶剂与天然气分离, 达到脱水目的(降低露点)。含水溶剂经再生除去水分后,可返回系统中循环使 用。
CQUST
第二节 天然气净化技术
造成雾沫夹带量增加的原因:操作波动,处理量突增,造成吸收超负荷,吸收塔 顶雾沫夹带量增大,增加了甘醇携带损失。
吸收塔操作温度过低,三甘醇溶液粘度过大,不仅降低塔板效率,也可能增加塔 顶雾沫夹带。
因此,吸收塔操作温度不应低于10℃,一般在20℃~50℃范围内。 为避免三甘醇溶液的污染,再生后的贫三甘醇溶液需经过滤器除去杂质及再生时 的变质产物。 ④其它操作事故,设备破损,如溢罐、甘醇液冷却管穿孔等也可致成甘醇溶液的漏 损。 2)三甘醇脱水装置的设备腐蚀 纯甘醇溶液对碳钢并无腐蚀性,造成三甘醇脱水装置设备腐蚀的介质是: ①甘醇氧化生成有机过氧化物,并进一步生成甲醛和甲酸。变质反应随氧分压及温 度的增加而增加,酸性物的存在又加剧了反应的进行。 ②甘醇溶液吸收天然气中的H2S、CO2等酸性气体,溶液PH值降至6.0以下。此时, 甘醇与硫化物反应生成具有强腐蚀性的“污泥状”聚合物。 ③随气体带入的氯化钠水解产物。

轻烃回收讲稿

轻烃回收讲稿
首先是减少水化物定期检查膨胀端入口过滤器防止2主要单元过程原理膨胀4脱硫脱碳1脱水2压缩3换热5塔6酸气处理基本方法干法?氧化铁脱硫?活性炭脱硫?分子筛脱硫脱碳?氧化锌精脱硫?膜分离法脱硫脱碳湿法?化学溶剂法醇胺法?物理溶剂化学物理溶剂法砜胺法?氧化还原法蒽醌法砷碱法脱硫脱碳1干法脱硫工艺采用多塔串并联操作确保净化气质量
2
主要单元过程原理
2
脱水
分子筛脱水装置有两塔流程和三塔流程两种。
辅助制冷
脱水后的天然气可以去辅助制冷,主要利用制冷 剂的汽化潜热,汽化时带走大量热量从而达到使天然 气降低温度的目的。
通常的制冷剂:氨、氟利昂、丙烷等,汽化潜热 比较大;与冰箱实际上是一个原理。天然气经过辅助 制冷后的温度一般可已达到-35度左右。
膨胀制冷
LO-CAT 工艺
净化气 放空
酸气
溶液泵
空气
硫磺浆去 过滤或离 心分离
尾气处理工艺
尾气处理的工艺大体上分为三类: 低温克劳斯
是在低于硫露点的温度下继续进行克劳斯反应,使中硫 回收率接近99%。 还原类 将尾气中的各种形式的硫加氢还原为H2S,然后通适当 的途径把这部分H2S氧化为单质硫; 总硫收率可达99.5%以上。 氧化类 把尾气中的各种形式的硫全部氧化为SO2,再加以回收 处理; 总硫回收率可达99.55~99.8%
一般来讲:有脱乙烷塔和液化气塔两塔,如果需要回收丙
烷的话中间再加一个脱丙烷塔。
5.重要技术和操作注意事项
一、C3+收率控制――对轻烃回收装置最核心的问题是C3+收率。 一般来讲,影响C3+收率最关键的因素是膨胀机制冷量大小,其次 是分馏系统的控制,操作人员的水平等。 二、 分子筛的吸附A和dd再Y生our Text

轻烃回收工艺流程

轻烃回收工艺流程

轻烃回收工艺流程轻烃回收工艺流程是指对工业生产过程中产生的废气中所含的轻烃进行回收利用的一种处理方法。

轻烃是指碳数较低的烷烃类化合物,如甲烷、乙烷、丙烷等。

这些轻烃通常是石油、天然气等燃料的组成成分,具有较高的能量价值。

因此,对于将这些轻烃回收利用,不仅可以减少能源浪费,还可以减少对环境的污染。

轻烃回收工艺流程主要包括以下几个步骤:废气收集、净化、液化、分离和利用。

首先,废气收集是指将产生轻烃废气的工业生产设备的排放口通过管道连接到废气处理设备上。

废气处理设备可以是一个集中的废气处理装置,也可以是直接连接到产生废气的生产设备上的小型处理装置。

然后,废气净化是指将废气中的杂质、颗粒物等进行过滤和清除,以保证后续处理过程的正常进行。

废气净化可以采用物理方法,如过滤、吸附等,也可以采用化学方法,如催化氧化等。

接下来,废气液化是将经过净化的废气进行冷却和压缩,使其转变为液态,方便后续步骤中的分离和利用。

废气液化通常采用冷凝器和压缩机进行,通过降低废气的温度和增加废气的压力,使其转变为液态的轻烃。

然后,分离过程是将液态的轻烃通过蒸馏等方法,将其中碳数不同的烷烃分开。

这是因为不同碳数的烷烃在沸点上存在差异,通过控制温度和压力,可以将其分离开来,并分别进行后续的利用。

最后,利用过程是将分离出的各种轻烃利用起来。

这可能包括将其作为燃料进行燃烧,或作为原料进行化学反应,制备其他有用的化学品。

轻烃的利用方式多种多样,根据不同的需求和实际情况进行选择。

综上所述,轻烃回收工艺流程是一种将工业生产过程中产生的废气中的轻烃进行回收利用的处理方法。

通过废气收集、净化、液化、分离和利用等步骤,可以将废气中的轻烃转化为有用的能源或化学品,达到减少能源浪费和环境污染的目的。

这一工艺流程在现代工业生产中具有重要的意义,可以提高资源利用效率,促进可持续发展。

第十一章 天然气预处理及轻烃回收

第十一章 天然气预处理及轻烃回收
④其它操作事故,设备破损,如溢罐、甘醇液冷却管穿孔等也可造成甘醇 溶液的漏损。
若装置能正常操作,三甘醇损失量一般不应大于16kg/106m3天 然 气 ,( 通 常 可达8 kg/106m3天然气。
(2)三甘醇脱水装置的设备腐蚀 纯甘醇溶液对碳钢并无腐蚀性,造成设备腐蚀的介质是: ① 甘醇氧化生成有机过氧化物,并进一步生成甲醛和甲酸。变质反应随氧 分压及温度的增加而增加,酸性物的存在又加剧了反应的进行。 ②甘醇溶液吸收天然气中的 H2S、CO2等酸性气体,溶液 值降至6.0以 下 。 此时,甘醇与硫化物反应生成具有强腐蚀性的“污泥状”聚合物。 ③ 随气体带入氯化钠水解产物。 因此,甘醇脱水装置的腐蚀主要是由于甘醇溶液 值降低,溶液呈酸性所引 起的。在有冷凝液凝析或积聚的部位腐蚀最严重。防止甘醇脱水装置腐蚀的途

有废液问题

三甘醇脱水的基本过程是:含水天然气进入吸收塔,在塔的操作压力与温 度下与三甘醇接触,水被脱除,达到规定的干燥天然气气质要求离开吸收塔, 富水三甘醇则进入再生塔再生,再生后的贫水三甘醇经冷却后循环使用。蒸出 的水蒸汽在塔顶部分冷凝作为回流,部分排出装置。图11-1、2为三甘醇脱水流 程图例。
图11–1三甘醇脱水装置图
图11–2三甘醇脱水装置实例流程 结构图
吸收塔内一般采用泡帽塔板,以保证三甘醇流量很低时仍保持板上有足够 的液封。进入塔的贫三甘醇溶液以18℃~50℃为宜,高于入口天然气温度,防 止轻烃凝析和随之的醇发泡。
2) 三甘醇脱水操作中存在的主要问题 经常发生的问题是三甘醇损失量过大和设备腐蚀。 (1)三甘醇损失的原因及减少损失的措施 由于操作不当、设备故障导致脱水及再生过程中三甘醇有如下方面的损失: ①原料气和贫甘醇溶液进吸收塔温度过高,增加了吸收塔顶三甘醇的蒸发 损失。一般原料气温不应高于50℃,进塔贫甘醇液温度不应高于55℃。 ②重沸器再生4℃。 ③吸收塔、再生塔顶大量雾沫夹带造成的携带损失。原因是:操作波动, 处理量突增,造成吸收超负荷,增加了甘醇携带损失。吸收塔操作温度过低, 溶液粘度过大,降低塔板效率,增加塔顶雾沫夹带。 因此,吸收塔操作温度不应低于10℃,一般在20℃~50℃范围内。

采气工程天然气预处理及轻烃回收

采气工程天然气预处理及轻烃回收
随着技术的发展和市场的需求,采气工程也在不断进步和创新,以提高天然气的开 采量和质量。
02
天然气预处理
天然气预处理的必要性
提高天然气的品质
通过预处理,去除天然气中的水 分、酸性气体、重烃等杂质,提
高天然气的热值和燃烧效率。
保障管道运输安全
预处理可以降低天然气的水露点, 防止在管道运输过程中出现冰堵现 象,同时减少酸性气体和重烃对管 道的腐蚀。
VS
详细描述
目前,轻烃回收技术仍存在一些技术瓶颈 ,如难以实现高纯度分离、回收率不高等 问题。此外,一些关键设备也依赖进口, 自主研发能力不足。因此,加强技术研发 和创新,提高轻烃回收技术水平和设备国 产化率是解决技术问题的关键。
环境问题
总结词
环境问题是轻烃回收过程中不可忽视的挑战,涉及到排放控制、环保监管和可持 续发展等多个方面。
处理工艺
该项目采用冷凝分离法, 通过低温冷凝将天然气中 的轻烃分离出来。
效益分析
项目实施后,轻烃回收率 提高,增加了天然气的附 加值,同时也提高了油田 的整体效益。
某采气厂天然气预处理项目
概述
某采气厂天然气预处理项目是为了去除天然气中的杂质和水分, 确保天然气的质量和安全。
处理工艺
该项目采用脱水、脱硫和脱碳等工艺,确保天然气符合输送和燃烧 标准。
详细描述
轻烃回收过程中会产生一定的废气、废水和固废等污染物,对环境造成一定影响 。同时,环保监管日益严格,对污染物排放控制提出了更高要求。因此,加强环 保监管、推动可持续发展是解决环境问题的关键。
06
案例分析
某油田轻烃回收项目
概述
某油田轻烃回收项目是为 了从油田采出的天然气中 回收轻烃,提高天然气的 经济价值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。


前主要采用冷凝分离法实现轻烃回收。

1、吸附法
利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸
附容量不同,而,将吸附床上的烃类脱附,经冷凝分离出
所需的产品。

吸使天然气各组分得以分离的方法。

该法一
般用于重烃含量不高的天然气和伴生气的加工办法,然后
停止吸附,而通过少量的热气流附法具有工艺流程简单、
投资少的优点,但它不能连续操作,而运行成本高,产品
范围局限性大,因此应用不广泛。

2、油吸收法
油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。

根据操作温度的不同,
油吸收法可分为常温吸收和低温吸收。

常温吸收多用于中
小型装置,而低温吸收是在较高压力下,用通过外部冷冻
装置冷却的吸收油与原料气直接接触,将天然气中的轻烃
洗涤下来,然后在较低压力下将轻烃解吸出来,解吸后的
贫油可循环使用,该法常用于大型天然气加工厂。

采用低
温油吸收法C3 收率可达到( 85~90%),C2 收率可达到
(20~60%)。

油吸收法广泛应用于上世纪 60 年代中期,但由于其工艺流
程复杂,投资和操作成本都较高,上世纪 70 年代后,己
逐步被更合理的冷凝分离法所取代。

上世纪80 年代以后,我国新建的轻烃回收装置己较少采用油吸收法。

3、冷凝分离法
(1)外加冷源法
天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。

系统所提供冷量的大小与被分离的原料气无直接关系,故又
可称为直接冷凝法。

根据被分离气体的压力、组分及分离的
要求,选择不同的冷冻介质。

制冷循环可以是单级也可以是
多级串联。

常用的制冷介质有氨、氟里昂、丙烷或乙烷等。

在我国,丙烷制冷工艺应用于轻烃回收装置还不
到 10 年时间,但山于其制冷系数较大,制冷温度为(-35~
-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无刺激
性气味,因此近儿年来,该项技术迅速推广,我国新建的
外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺,
一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工
艺。

(2)自制冷法①节
流制冷法
节流制冷法主要是根据焦耳 -汤姆逊效应,较高压力的原料
气通过节流阀降压膨胀,使原料气冷却并部分液化,以达到
分离原料气的目的。

该方法具有流程简单、设备少、投资少
的特点,但此过程效率低,只能使少量的重烃液化,
故只有在气体有压力能可利用,处理量小,气体重烃含量
少和收率要求不高时才选用此方法。

②透平膨胀机制冷法
采用透平膨胀机制冷法的前提条件是有自由压力能供利用
的场合。

当具有一定压力的天然气通过透平膨胀机时,其
膨胀过程近似于等嫡膨胀过程,获得膨胀功的同时,气流
的温度将急剧下降。

因此,气流中的烃组分将被冷凝下来。

膨胀机制冷法的特点是流程简单,设备数量少,维护费用低,公用工程消耗低,占地面积小,因此近年来采用的较多。

但是当处理量过小时不宜采用,因为此时膨胀机效率
较低,可考虑采用热分离机。

③热分离机制冷法
热分离机装置的流程与透平膨胀机装置类似,主要
差别是主冷设备不同,它是利用高能动力气体由转动(或静止 )的喷嘴分配进入末端封闭的容器,形成压缩、膨胀,
由动能转变为热能的多变过程。

压缩时放出的热量由周围
环境吸收掉,而膨胀时则相似于等嫡过程使气体降温而达
到制冷的目的。

热分离机具有结构简单,维修方便,省人省电,允许带液工作的特点,适用于小气量、带液量大和气源压力较高的场所。

但是国内开发应用的热分离机制冷技术,由于热分离效率低、适应性差、技术性能差、质量不过关等原因,
在我国仍处于工业试验阶段。

(3)混合制冷法
为了最大限度地从天然气中回收轻烃,要求的温度更低,单一的制冷法一般难以达到,即便有时膨胀机制冷能
达到温度,但由于出口带液问题,对富气仍是不适用的,
这时往往采用混合制冷法,即冷冻循环的多级化和混合冷
剂制冷以及膨胀机加外冷的方式来实现。

目前,轻烃回收
工艺上应用最多的是外加冷剂循环制冷作为辅助冷源,膨
胀制冷作为主冷源,并采取逐级冷冻和逐级分离出凝液的
工艺措施来降低冷量消耗和提高冷冻深度,以达到较高的
冷凝率,回收原料气中绝大部分丙烷组份,达到回收目的。

这种方法具有许多优点:1)有两个冷源,因此运转适应性
较大,即使外加制冷系统发生故障,装置也能在保持较低
收率情况下继续运行。

2)混合制冷法中的外加制冷系统比
外加冷源法要简单、容量小 ;外加冷源解决高沸点较重烃类
冷凝问题,膨胀制取的冷量用在较低温度位。

3)此种流程
组合即可提高乙烷、丙烷收率,又可大大减少装置的能耗。

轻烃回收新工艺
1.3.
2.1 气体过冷工艺 (GSP)和液体过冷工艺 (LSP)
此工艺是对工业标准单级膨胀制冷工艺(ISS)和多级膨胀制冷工艺 (MTP)的改进。

采用GSP 工艺可在保持较高
C2 烃类收率的情况下,使原料气中C2 的容许含量高于膨
胀制冷工艺的容许含量,而且功耗较低。

1.3.
2.2 直接换热工艺 (DHX)
DHX 工艺是埃索资源公司首先提出并在JudyCreek 工厂实
践,叮收率由原来的72%增加到 95%。

实践证明,在不回
收乙烷的情况下,利用 DHX工艺可很容易地对现有的膨胀
制冷流程加以改造,多数情况下所用投资较少。

1.3.
2.3 混合冷剂制冷工艺
与传统的单组分冷剂或阶式制冷法相比,混合冷剂制冷
(MRC)法采用的冷剂可根据冷冻温度的高低配制冷剂的组
分与组成一般是以乙烷、丙烷为主。

当压力一定时,混合
冷剂在一个温度范围内随着温度逐渐升高而逐步汽化,因
而在换热器中与待冷冻的天然气的传热温差很小,故其用
效率很高。

当原料气与外输干气压差甚小,或在原料气较
富的情况下,采用混合冷剂制冷法的工艺更为有利。

1.3.3 国内外轻烃回收技术的发展趋势
国内外轻烃回收技术将以低温分离法为主,向投资少、
深分离、高效率、低能耗、橇装化、自动化的方向发展。

目前通用的工艺流程
1、加拿大改良油吸收法轻烃回收新工艺
2、冷剂制冷与膨胀机制冷相结合的混合制冷
3、 DHX 换热工艺。

相关文档
最新文档