污泥龄计算公式

合集下载

污水处理中泥龄的计算

污水处理中泥龄的计算

泥龄指曝气池中工作着的活性污泥总量与每日的剩余污泥数量的比值,单位:。

由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。

污泥龄-概述污泥龄污泥龄是指活性污泥在整个系统内的平均停留时间一般用SRT表示也是指微生物在活性污泥系统内的停留时间。

控制污泥龄是选择活性污泥系统中种类的方法。

某种微生物的期比活性污泥系统长,则该类微生物在繁殖出下一代微生物之前,就被以剩余活性污泥的方式排走,该类微生物就不会在系统内起来。

反之如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此该种微生物就能在活性污泥系统内存活下来,并得以繁殖,用于污水。

SRT直接决定着活性污泥系统中微生物的大小,一般年轻的活性污泥,分解代谢有机污染物的能力强,但凝聚沉降性差,年长的活性污泥分解能力差,但凝聚性较好。

用SRT排泥,被认为是一种最可靠,最准确的排泥方法,选择合适的泥龄(SRT)作为控制排泥的目标。

一般处理效率要求高,出水水质要求高SRT应控制大一些,温度较高时,SRT可小一些。

分解有机的决大多数微生物的世代期都小于3天。

将NH3-N硝化成NO3—-N的的世代期为5天。

污泥龄-A131的应用①进水的COD/BOD5≈2,TKN/BOD5≤;②出水达到废水VwV的规定。

对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于:①希望达到的脱氮效果;②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值;③曝气池进水中易降解BOD5占的比例;④泥龄ts;⑤曝气池中的浓度X;⑥污水温度。

由氮平衡计算NDN/BOD5:NDN=TKNi-Noe-Nme-NsA131应用式中TKNi——进水总凯氏氮,mg/LNoe——出水中有机氮,一般取1~2mg/LNme——出水中无机氮之和,包括氨氮、和,是排放控制值。

污泥-各项指标

污泥-各项指标

污泥回流比return sludge ratio 曝气池中回流污泥的流量与进水流量的比值。

一般用百分数表示,符号为R。

污泥量回流量的大小一般为20%~50%,有时也高达150%,其直接影响曝气池污泥的浓度和二次沉淀池的沉降状况。

计算公式:R·Q·Xr = (R·Q + Q)·X式中:Xr——回流污泥的悬浮固体浓度,mg/L。

R——污泥回流比。

X——混合液污泥浓度,mg/L。

Q——流量污泥负荷污泥负荷定义sludge loading 曝气池内每公斤活性污泥单位时间负担的五日生化需氧量公斤数。

其计量单位通常以kg/(kg·d)表示。

污泥负荷(Ns)是指单位质量的活性污泥在单位时间内所去除的污染物的量。

污泥负荷在微生物代谢方面的含义就是F/M比值,单位kgCOD(BOD)/(kg污泥.d) 在污泥增长的不同阶段,污泥负荷各不相同,净化效果也不一样,因此污泥负荷是活性污泥法设计和运行的主要参数之一。

一般来说,污泥负荷在0.3~0.5kg/(kg.d)范围内时,BOD5去除率可达90%以上,SVI为80-150,污泥的吸附性能和沉淀性能都较好。

污泥负荷的计算方法Ns=F/M=QS/(VX)式中 Ns ——污泥负荷,kgCOD(BOD)/(kg污泥.d);Q ——每天进水量,m3/d;S ——COD(BOD)浓度,mg/L;V ——曝气池有效容积,m3;X ——污泥浓度,mg/L。

BOD—污泥去除负荷定义BOD-污泥去除负荷Nrs 表示:曝气池内,单位重量(kg)活性污泥(MLVSS),单位时间内(1d),通过活性污泥微生物作用,污水中被降解、去除的有机物量BOD。

计算公式Nrs=[Q(Sa-Se)]/(XvV) 单位:kgBOD/[kgMLVSS·d]式中 Q——污水流量m3/d;Sa——经预处理技术后,进入曝气池污水含有的有机污染物(BOD)量,kg/d; Se——经活性污泥处理系统处理后,处理水中残留的有机污染物(BOD)量,kg/d; Xv——MLVSSV——曝气池有效容积,m3污泥龄污泥龄是指在反应系统内,微生物从其生成到排出系统的平均停留时间,也就是反应系统内的微生物全部更新一次所需的时间。

剩余污泥排放量的计算技巧!

剩余污泥排放量的计算技巧!

剩余污泥排放量的计算技巧!剩余污泥的排放是活性污泥工艺掌握中很重要的一项操作,通常有MLSS、F/M、SRT、SV等方法掌握排泥量。

1、污泥浓度(MLSS)法用MLSS掌握排泥是指在维持曝气池混合液污泥浓度恒定的状况下,确定排泥量。

首先依据实际工艺状况确定一个合适的MLSS浓度值。

常规活性污泥工艺的MLSS一般在1500~3000mg/L之间。

当实际MLSS 比要掌握的MLSS值高时,应通过排解剩余污泥降低MLSS值。

排泥量可用下式计算:式中VW——此时应排污泥量;MLSS——实测值,mg/L;MLSSo——依据实际工艺确定的浓度值,mg/L;V——曝气池容积,m³(立方米,下同);RSS——回流污泥浓度,mg/L。

【例题】某厂依据阅历将污泥浓度MLSS掌握在2000mg/L。

曝气池容积为5000m³。

某日实测曝气池污泥浓度MLSS为3000mg/L,回流污泥浓度RSS为4000mg/L,试计算此时应排放的污泥量。

解:将上述数据代入公式上例仅是说明计算过程,实际上不行能一次排放1250m3污泥。

一般来说,活性污泥工艺是一个渐进的过程,在掌握总排泥量的前提下,应连续多排几次。

用MLSS法掌握排泥量尽量连续排放,或平均排放,该法适合进水水质变化不大的状况。

2、食微比(F/M)法F/M中的F是进水中的有机污染物负荷,无法人为掌握进水中有机污染物负荷波动,而只能掌握M,即曝气池中的微生物量。

假如不转变曝气池投运数量,则问题就变成掌握曝气池中的污泥浓度,但这种方法不是单纯将污泥浓度保持恒定,而是通过转变污泥浓度,使F/M基本保持恒定。

排泥量可由下式计算:式中VW——要排放的剩余污泥体积,m³;MLVSS——曝气池内的污泥浓度,mg/L;Va——曝气池容积,m³;BODi——进曝气池污水的BOD5,mg/L;Q——进水污水量,m³/d;F/M——要掌握的有机负荷,kgBOD/(kgMLVSS·d);RSS——回流污泥浓度,mg/L。

评价活性污泥的几个指标

评价活性污泥的几个指标

评价活性污泥的几个指标评价活性污泥的几个指标(1)、MLSS(Mixed Liquid Suspanded Solid)指1L曝气池混合液中所含悬浮固体干重,它是衡量反应器中活性污泥数量多少的指标。

它包括微生物菌体(Ma)、微生物自生氧化产物(Me)、吸附在污泥絮体上不能被微生物所降解的有机物(Mi)和无机物(Mii)。

由于MLSS在测定上比较方便,所以工程上往往以它作为估量活性污泥中微生物数量的指标。

在进行工程设计时,希望维持较高的MLSS,以缩小曝气池容积,节省占地和投资,但MLSS浓度也不能过高,否则会导致氧气供应不足。

一般反应器中污泥浓度控制在2000~6000mg/L。

(2)、MLVSS(Mixed Liquid V olatile Suspanded Solid)指1L曝气池混合液中所含挥发性悬浮固体含量,它只包括微生物菌体(Ma)、微生物自生氧化产物(Me)、吸附在污泥絮体上不能被微生物所降解的有机物(Mi),不包括无机物(Mii)。

所以MLVSS能比较确切地反映反应器中微生物的数量。

一般情况下处理生活污水的活性污泥的MLVSS/MLSS比值在0.75左右,对于工业污水,则因水质不同而异,MLVSS/MLSS 比值差异较大。

(3)、SV%污泥沉降比,曝气池混合液在量筒中静止30min后,污泥所占体积与原混合液体积的比值。

正常的活性污泥沉降30min后,可接近其最大的密度,故在正常运行时,SV%大致反映了反应器中的污泥量,可用于控制污泥排放。

一般曝气池中SV%正常值为20%~30%。

SV%的变化还可以及时反映污泥膨胀等异常情况。

所以SV%是控制活性污泥法运行的重要指标。

(4)、SVI污泥体积指数,指曝气池混合液经30min静止沉降后1g干污泥所占的体积,单位为ml/g。

SVI=混合液30min沉降后污泥容积/污泥干重=(SV%×100)/MLSSSVI反映了污泥的松散程度和凝聚性能,SVI过低,说明污泥颗粒细小紧密,无机物多,微生物数量少,此时污泥缺乏活性和吸附能力。

快速理解污泥龄、污泥回流比,这下做运维心里有底了!

快速理解污泥龄、污泥回流比,这下做运维心里有底了!

快速理解污泥龄、污泥回流比,这下做运维心里有底了!分别以三个问题来讲:1、为什么要有这个参数?2、参数的意思是啥?3、如何计算?如何使用?/污泥龄/1、为什么要有这个参数?活性污泥上的微生物在曝气池中吃掉污染物(BOD),是一个永不停歇、前赴后继的过程,这跟一家公司的运转一样,是一个时刻发生着“换血”的过程。

一个公司的生产力要想保持长久、良性的状态,很重要的一个措施就是“换血”,要不断的剔除掉多余的、懒散的、老旧的员工,并且吸收新的员工进来,如果不换血公司就可能会变得效率低下,而曝气池中微生物种群也有着同样的道理。

曝气池运行过程中,微生物的繁殖速度很快,为了使曝气池中的污泥量保持恒定,就要定期地从池子中排出多余的泥量。

而同一套活性污泥工艺在不同的运行状态下,污泥增长率是不同的,这就要用到运行活性污泥工艺的一个很重要的措施——“换血”,这在运行过程中非常重要,因此我们就要找到相应的参数,进而对污泥进行科学准确地“换血”,这个参数就是污泥龄(SRT)。

2、参数的意思是啥?污泥龄是指曝气池内的微生物全部更新一次所需的时间,而在工程上等同于曝气池内活性污泥总量与每日增长的污泥量的比值。

说简单一点,就是整个曝气池中的污泥完成一次更换所需要的时间,而且我们默认为每天排出去的泥都是老旧的(实际情况是不可能的)。

打个比方,一个曝气池可以类比成一个公司,比如公司有200个员工,每个月淘汰5人,并补充新的员工进来以达到“换血”的目的,那么整个公司完成一次“换血”的时间就是40个月,对应过来,这40个月就相当于污泥龄的概念,延伸一下,我们可以将公司换血一次的时间定义成“员工龄”,哎,40个月好像就是职场中一个人在一个企业呆的时间,道理是相通的。

那么,污泥龄就相当于微生物在一个曝气池里面呆的时间。

3、如何计算?如何使用?搞清楚了来龙去脉,计算就容易理解了:其中:从两个公式可以看出,计算污泥龄需要的数据都是我们全面的讲到的基本参数,在此不作赘述。

如何确定污水系统的污泥龄?

如何确定污水系统的污泥龄?

如何确定污水系统的污泥龄?环保工程师污泥龄(Sludge Retention Time)是指在反应系统内,微生物从其生成到排出系统的平均停留时间,也就是反应系统内的微生物全部更新一次所需的时间。

污泥龄是活性污泥法处理系统设计和运行的重要参数,能说明活性污泥微生物的状况,世代时间长于污泥龄的微生物在曝气池内不可能繁衍成优势种属。

泥龄的长短与污水处理效果有两方面的关系:一方面是泥龄越长,微生物在曝气池中停留时间越长,微生物降解有机污染物的时间越长,对有机污染物降解越彻底,处理效果越好;另一方面是泥龄长短对微生物种群有选择性,因为不同种群的微生物有不同的世代周期,如果泥龄小于某种微生物的世代周期,这种微生物还来不及繁殖就排出池外,不可能在池中生存,为了培养繁殖所需要的某种微生物,选定的泥龄必须大于该种微生物的世代周期。

最明显的例子是硝化菌,它是产生硝化作用的微生物,它的世代周期较长,并要求好氧环境,所以在污水进行硝化时须有较长的好氧泥龄。

当污水反硝化时,是反硝化菌在工作,反硝化菌需要缺氧环境,为了进行反硝化,就必须有缺氧段(区段或时段),随着反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥龄要加长。

泥龄是根据理论同时又参照经验的累积确定的,按照处理要求和处理厂规模的不同而采用不同的泥龄,德国ATV标准中单级活性污泥工艺污水处理厂的最小泥龄数值见《德国标准中活性污泥工艺的最小泥龄表》。

《德国标准中活性污泥工艺的最小泥龄表》《德国标准中活性污泥工艺的最小泥龄表》中对规模小的污水厂取大值,是考虑到小厂的进水水质变化幅度大,运行工况变化幅度大,因而选用较大的安全系数。

无硝化污水处理厂的最小泥龄选择4~5 d,是针对生活污水的水质并使处理出水达到BOD=30 mg/L和SS=30 mg/L确定的,这是多年实践经验的积累,就像污泥负荷的取值一样。

有硝化的污水处理厂,泥龄必须大于硝化菌的世代周期,设计通常采用一个安全系数,以确保硝化作用的进行,其计算式为:θc=F(1/μo)——(1)式中θc——满足硝化要求的设计泥龄,dF——安全系数,取值范围2.0~3.0,通常取2.31/μo——硝化菌世代周期,dμo——硝化菌比生长速率,d-1μo=0.47×1.103(T-15)——(2)式中T——设计污水温度,北方地区通常取10 ℃,南方地区可取11~12 ℃代入式(2)得:μo=0.47×1.103(10-15)=0.288/d再代入式(1)得:θc=2.3×1/0.288=7.99 d计算所得数值与《德国标准中活性污泥工艺的最小泥龄表》中的数值相符,它的理论依据和经验积累具有普遍意义,并不随水质变化而改变,因此可以在我国设计中应用。

污水处理中泥龄的计算

污水处理中泥龄的计算

泥龄指曝气池中工作着的活性污泥总量与每日排放的剩余污泥数量的比值,单位:日。

由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。

污泥龄-概述污泥龄污泥龄是指活性污泥在整个系统内的平均停留时间一般用SRT表示也是指微生物在活性污泥系统内的停留时间。

控制污泥龄是选择活性污泥系统中微生物种类的一种方法。

如果某种微生物的世代期比活性污泥系统长,则该类微生物在繁殖出下一代微生物之前,就被以剩余活性污泥的方式排走,该类微生物就永远不会在系统内繁殖起来。

反之如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此该种微生物就能在活性污泥系统内存活下来,并得以繁殖,用于处理污水。

SRT直接决定着活性污泥系统中微生物的年龄大小,一般年轻的活性污泥,分解代谢有机污染物的能力强,但凝聚沉降性差,年长的活性污泥分解代谢能力差,但凝聚性较好。

用SRT控制排泥,被认为是一种最可靠,最准确的排泥方法,选择合适的泥龄(SRT)作为控制排泥的目标。

一般处理效率要求高,出水水质要求高SRT应控制大一些,温度较高时,SRT可小一些。

分解有机污染物的决大多数微生物的世代期都小于3天。

将NH3-N硝化成NO3—-N的硝化杆菌的世代期为5天。

污泥龄-A131的应用①进水的COD/BOD5≈2,TKN/BOD5≤0.25;②出水达到废水规范VwV的规定。

对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于:①希望达到的脱氮效果;②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值;③曝气池进水中易降解BOD5占的比例;④泥龄ts;⑤曝气池中的悬浮固体浓度X;⑥污水温度。

由氮平衡计算NDN/BOD5:NDN=TKNi-Noe-Nme-NsA131应用式中TKNi——进水总凯氏氮,mg/LNoe——出水中有机氮,一般取1~2mg/LNme——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。

计算剩余污泥量的四种公式

计算剩余污泥量的四种公式

计算剩余污泥量的四种公式一、不考虑悬浮物的公式《水处理工程师手册》P329。

1、活性污泥泥龄和剩余污泥量准确地应按下式计算:(2)、活性污泥泥龄(SRT ):活性污泥系统内的总活性污泥量/每天从系统内排除的活性污泥量 SRT =(Ma+Mc+MR )/(Mw+Me )Ma ——为曝气池内的活性污泥量;Mc ——为二沉池内污泥量;MR ——为回流系统的污泥量;Mw ——为每天排放的剩余污泥量(kgss/d);Me ——为二沉池出水每天带走的污泥量。

上式为最准确的计算公式,在实际运行管理中,常根据不同的情况,采用不同的近似计算公式。

当不考虑回流系统和二沉池时,上述公式可简化为:SRT =Ma/Mw2、(2)、剩余污泥量(Mw ) Mw= Ma/SRT=SRTXa V • V-曝气池有效容积(m 3);Xa-曝气池悬浮固体浓度(mg/L);2、行业标准:中国工程建设标准化协会标准(CECS149:2003《城市污水生物脱氮除磷处理设计规范》W=Si Xi ft bh cft Yh bh Yh f Se Si Q ψθ+•+••-〈-19.01000)(> 其中:W ——剩余污泥量(kg/d )Q ——进水流量(m 3/d )Si\Se ——反应池进、出水BOD 5浓度(mg/l);f ——污泥产率修正系数,由试验确定;无试验条件时,取0.8~0.9. ft ——温度修正系数,取1.072(t-15) ;t ——温度(℃);k de ——反硝化速率,kgNO3-N/(kgMLSS ·d);通过试验确定,无试验条件,20℃时k de 值可采用0.03~0.06 kgNO3-N/(kgMLSS ·d);并用4.0.4-3进行温度校正。

即k de(t)=k de(20)1.8t-20;ψ——反应池进水悬浮固体中不可水解/降解的悬浮固体比例,无测定条件时,取0.6;b h ——异氧菌内源衰减系数(d -1),取0.08;Y——异氧菌产率系数(kgSS/kgBOD5),取0.6;hθd——反应设计污泥龄值(d);Xi——反应池进水中悬浮固体浓度(mg/L);3、《污水处理新技术》W=W1-W2+W3=aQLr-bVNw+(C0-Ce)Q×50%=aQ(Lj-Lch) -bVNw+( C0-Ce)Q×50%曝气池的水力停留时间污水在曝气池内的水力停留时间一般用Ta表示。

常用公式

常用公式

曝气池容积、污泥龄、加P、N计算一、曝气池容积(m3)曝气池容积V=L×Q÷(1000×SLR×N)L:曝气池进水BOD浓度(mg/L)Q:流量(m3/d)SLR:污泥负荷(kgBOD/kgmLss.d)N:曝气池混合液悬浮固体平均浓度例:BOD去处率为70%L=1500×30%=450 mgBOD/LQ=24000 m3/dSLR=0.1 kgBOD/kgmLss.dN=3.5 g/L得出:(450×24000) ÷(1000×0.1×3.5)=30857 m3二、污泥龄(mLss×曝气池有效容积)÷(24小时×每小时排泥流量×回流mLss)三、加N、P计算(100:5:1)加N=总水量×进水BOD×5÷(100×1000×0.46)式中0.46:尿素氮含量46%加P计算方式只需将式中5换为1,0.46换为P含量即可(P 含量一般为26%,P中含N约12%)四、污泥负荷(NS)污泥负荷是指单位质量的活性污泥在单位时间内所去处的污染物的量,污泥负荷在微生物代谢方面的含义就是F/M 比值。

在污泥增加的不同阶段,污泥负荷各不相同,净化效果也不一样,因此污泥负荷是活性污泥法设计和运行的主要叁数之一,一般来说,污泥负荷在0.3-0.5kgBOD/kg mLss.d 范围时,BOD去处率可达90%以上,SVI为80-150,污泥的吸附性能和沉降性能都较好。

NS=F/M=QS/VXQ=每天进水量m3/d S=BOD浓度mg/LV=曝气池有效容积m3 X=污泥浓度mg/L例:一段A/O池進水CODcr按1700mg/l計,出水按600mg/l 計,MLSS按2400 mg/l計,每班嚗氣8小時。

24000(水量)×( 1700-600 ) ×0.5(B/C比)Ns =22000(A/O池容積) ×2400(MLSS)Ns =0.25Kg BOD /( KgMLSS.d )五、污泥体积指数(SVI)指曝气池混合液经30分钟沉淀后1g干污泥所占湿污泥体积(ml/g),(SVI一般为50-150比较正常)SVI=(混合液30分钟沉降比%×10)÷混合液污泥浓度(g/l)六、流速计算流速(U)=V÷A V:流量 A:管道截面积七:预酸化度计算预酸化度按以下公式计算:注:VFA(挥发性脂肪酸)主要由约90%乙酸和10%的丙酸组成,而1 meq 乙酸相当于64mg COD,1 meq 丙酸相当于112mg COD,则1meqVFA相当于69mg的COD 。

水污染控制工程水处理计算公式大全

水污染控制工程水处理计算公式大全

水污染控制工程水处理计算公式大全生物法处理基本公式一反应速度计算: 公式:P z X y S •+•→ ⎪⎭⎫⎝⎛-=dt dS y dt dX dSdXy =式中:S ——底物;X ——合成细胞; P ——最终产物;y ——又称产率系数,mg (生物量)/mg (降解的底物); S ——底物浓度,同ρS ;X ——合成细胞浓度或微生物浓度,同ρX ; 反应级数:n kS dtdSv ==k S n v lg lg lg +=式中:k ——反应速度常数,随温度而异; n ——反应级数; 零级反应:k v =,k dtdS=,kt S S -=0 一级反应:kS v =,kS dtdS=, t kS S 3.2lg lg 0-=零级反应:2kS v =,2kS dtdS=, kt S S +=011 式中:v ——反应速度; t ——反应时间;k ——反应速度常数,随温度而异;米氏方程(表示酶促反应速度与底物浓度的关系): 公式:SK Sv v m +=maxmaxmax 111v S v K v m +⋅= 式中:v ——酶反应速度,例如dtdXv X =; v max ——最大酶反应速度; ρs ——底物浓度; K m ——米氏常数;莫诺特方程(表示微生物比增长速度与底物浓度的关系): 公式:SK Ss +=maxμμqv v dS dX y S X μ===式中:μ——微生物比增长速度,Xv X=μ; μmax ——μ的最大值,即底物浓度很大,不影响微生物增长速度时的μ值; S ——底物浓度; K s ——饱和常数;生物处理基本公式二劳伦斯迈卡蒂公式(有机物比降解速度与底物浓度的关系): 公式:q Y ⋅=μ max max q Y ⋅=μS K S q q s +=max又有dtX dSv q S ⋅-==X①ρs ≯K S 时,max q q = 1max K X q X dtdS⋅=⋅=- ②K S ≯ρs 时,SK S q q max= 2max K S X K Sq X dt dS S⋅⋅=⋅=- 式中:q ——底物比降解速度; K1——反应常数; K2——反应常数;劳伦斯迈卡蒂第一方程: 公式:由:SK Sq dt X dS q s +=⋅-=max 得到:SK S X q dt dS s +⋅=-max 劳伦斯迈卡蒂第二方程:公式:X K dt dS Y dt dX d ug⋅-⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛d ug K Xdt dS Y X dt dX -⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛ d K q Y -⋅='μ cg V X V dt dX θμ1=⋅⋅⎪⎭⎫ ⎝⎛='故得到:d cK q Y -⋅=θ1式中:gdt dX ⎪⎭⎫ ⎝⎛——微生物净增长速度; uS dt d ⎪⎭⎫ ⎝⎛ρ——底物利用(或降解)速度; Y ——产率系数,同y ;K d ——内源呼吸(或衰减)系数; ρX ——反应器中微生物浓度;也可简化为: 公式:u obs g dt dS Y dt dX ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛q Y obs ⋅='μ式中:Y obs ——实际工程中,产率系数Y 常以实际测得的观测产率系数Y obs 替代活性污泥法基本计算公式项目公式说明处理率()%100%10000⨯=⨯-=ere S S S S S η S 0——进水BOD 5浓度,mg/LS e ——出水BOD 5浓度,mg/LS r ——进出水BOD 5浓度差,mg/L 污泥负荷()V X S S Q V X S Q L e S ⋅-⋅=⋅⋅=00 ()VX S S Q V X S Q L V e V S ⋅-⋅=⋅⋅='00Q ——设计流量,m 3/dL S ——污泥负荷,kg (BOD 5)/[kg(MLSS)•d] L S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d]V ——曝气池容积,m 3X ——曝气池污泥浓度(MLSS),mg/LX V ——挥发性曝气池污泥浓度(MLVSS),mg/L容积负荷()'⋅=-⋅=⋅=S V e V L X VS S Q V S Q L 00L V ——容积负荷,g (BOD 5)/(m 3•d ) 注:污泥负荷和容积负荷从定义来说用S 0正确,但规范中用去除量,考试中用去除量来计算 污泥容积指数()610%⨯=XSV SVIX ——曝气池污泥浓度(MLSS),mg/L SV ——污泥沉降比,mL/L (如28%,即代0.28) 混合液污泥浓度r SVI X r ⋅=610r X RRX +=1 SVI ——污泥容积指数,mL/g ,取值范围约100左右 r ——二沉池中污泥综合系数,一般为1.2左右污泥浓度()R SVI f r R X V +⋅⋅⋅⨯=1106()R SVI r R f X X V +⋅⋅⨯==1106X ——曝气池污泥浓度(MLSS),mg/LX V ——挥发性曝气池污泥浓度(MLVSS),mg/L R ——污泥回流比 f ——X V /X ,(MLVSS/MLSS )挥发性污泥浓度/污泥浓度r ——二沉池中污泥综合系数,一般为1.2左右 曝气池容积()se s L X S S Q L X S Q V ⋅-⋅=⋅⋅=00()'⋅-⋅='⋅⋅=sV e sV L X S S Q L X S Q V 00 ()Ve V L S S Q L S Q V -⋅=⋅=00 ()()C d V e C K X S S Q Y V θθ⋅+⋅-⋅⋅⋅=10()XX Q Q X Q V ew r w C ⋅-+⋅⋅=θθC ——污泥龄即污泥停留时间,dY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1X ——曝气池污泥浓度(MLSS),mg/L X r ——剩余污泥/回流污泥浓度,mg/L X e ——二沉池出水污泥浓度,mg/L Q ——设计流量,m 3/dQ w ——每日排出污泥量,m 3/dX V ——挥发性曝气池污泥浓度(MLVSS),mg/L L S ——污泥负荷,kg (BOD 5)/[kg(MLSS)•d] L S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d] L V ——容积负荷,g (BOD 5)/(m 3•d )水力停留时间QV =θ()QR Vs ⋅+=1θθ——水力停留时间(名义),d θS ——水力停留时间(实际),d污泥龄XVX c ∆⋅=θ d cK Yq -=θ1θC ——污泥龄即污泥停留时间,dΔX ——每日排出污泥量即污泥产量,g/d Y ——污泥理论产率,kg(MLVSS)/kg(BOD 5) q ——有机物比降解速率,d -1,有些手册上q=L S ′(即kgBOD 5/kgMLVSS ·d ) 稳态条件下的完全混合式曝气池e S K q ⋅=2 K 2——动力学参数(参见上面公式,Se 单位为mg/L )K d ——污泥内源呼吸率,d -1污泥产量CXV X θ⋅=∆V d r V X V K S Q Y X ⋅⋅-⋅⋅=∆ΔX ——每日排出污泥量即污泥产量(MLSS ),gMLSS/dΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dY obs ——实际工程中,产率系数Y 常以实际测得的观测产率系数Y obs 替代f ——X V /X ,挥发性污泥浓度/污泥浓度Cd rr obs K S Q Y S Q Y θ⋅+⋅⋅=⋅⋅=1Cd obs K YY θ⋅+=1f X X V∆=∆ rW X XQ ∆=()e w r w X Q Q X Q X ⋅-+⋅=∆'⋅=⋅=Sdd L K Y q K Y x d S K L Y y -'⋅=Q w ——每日排出污泥量,m 3/d ,即剩余污泥湿量 X r ——剩余污泥/回流污泥浓度,mg/L X e ——二沉池出水污泥浓度,mg/L Y ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1θC ——污泥龄即污泥停留时间,d x ——去除每kgBOD 5产泥量,(kgVSS/kgBOD 5·d ) y ——每kg 活性污泥日产泥量,(kgVSS/kgVSS ·d )负荷法①设定污泥负荷L s ,取值SVI 、R 、r 、f②设定曝气池数量n 、池深H ③设定曝气池宽度B④取值a ′、b ′,及根据总系数K Z ⑤取值α、β、ρ、C st 、C s20、C ⑥设定E A⑦设定二沉池表面负荷q 此表参见三废手册例题P527→求得污泥浓度X/X V (注意统一用MLSS 或者MLVSS )→求得曝气池体积→求得单座曝气池体积,及表面积→求得单座曝气池长度,并验算宽深比、长宽比 →曝气时间→求得需氧量,及最大时需氧量 →求得标态需氧量 →求得标态空气量 →求得二沉池表面积 →得出二沉池直径需氧量计算公式除碳需氧量V r VX b QS a O '+'=⨯21000()V e X COD COD b Q O ∆--⋅⋅=⨯42.1100002 V r X S Q O ∆-⋅=⨯42.147.110002b L a O S a '+'⋅'=∆O 2——需氧量,kg/da ′——氧化每kgBOD 5所需氧量,取值:生活污水0.42~0.53,有机工业废水0.35~0.75b ′——污泥自身氧化需氧率,d -1,取值:生活污水0.09~0.11,有机工业废水0.06~0.341.47——碳的氧当量,当含碳物质以BOD 5计时,取1.47,符号为aS r ——进出水BOD 5浓度差,mg/L''+'=∆Sb L b a O ΔX v ——每日排出挥发性活性污泥量(微生物),g (MLVSS )/d1.42(c )——细胞的氧当量,(gO 2/gMLVSS ),取1.42,符号为cΔO a ——每kg 污泥日需氧量,kgO 2/kgMLVSS ·d ΔO b ——去除每kgBOD 5需氧量,kgO 2/kgBOD 5·d L S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d]除碳和硝化反硝化需氧量()[]100012.057.442.147.12V ke k V r X N N Q X S Q O ∆--⋅+∆-⋅=()[]100012.057.442.147.12V ke k V r X N N Q X S Q O ∆--⋅+∆-⋅=()[]100012.086.2V oe ke t X N N N Q ∆---⋅- 4.57——氧化每g 氨氮所需氧量,(gO 2/gN ),取4.57,符号b2.86——反硝化系数N k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮(TKN ),mg/L N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/L 0.12ΔX v ——排出生物处理系统的微生物含氮量,g/d供氧量计算公式曝气池供氧量计算供氧量时单位折算成kg/h ,注意除24 O 2——计算需氧量,kgO 2/h O S ——标态需氧量,kgO 2/h基本原理()C C K dtdCS La -⋅= dC/dt ——单位体积清水中氧的转移速率,kgO 2/m 3•hK La ——清水中氧的总转移系数,1/h C S ——清水中饱和氧浓度(对应某一温度),kgO 2/m 3 C ——清水中氧的实际浓度,kgO 2/m 3()C C V K OTR S La -⋅⋅=OTR ——体积为V 的液体中氧的转移速率,kgO 2/h V ——曝气系统液体体积,m 3温度因素()()()2020-⋅=T La T La K K θT ——设计的工艺温度,20为标准状态的温度,℃ K La (T )——温度为T ℃时氧的总转移系数,1/h K La (20)——温度为20℃时氧的总转移系数,1/h θ——温度系数,取值范围1.008~1.047,一般取值为1.024污水因素La LaK K '=α α——氧转移折算系数,其值小于1取值范围0.2~1.0 K La ——清水中氧的总转移系数,1/h K La ′——污水中氧的总转移系数,1/h其他组分对饱和溶解度的影SS C C '=β β——氧溶解度折算系数,其值小于1取值范围0.8~1.0C S ——清水中氧的溶解度,kgO 2/m 3响C S ′——污水中氧的溶解度,kgO 2/m 3 压力的影响 SP P =ρ ρ——压力修正系数P S ——标准大气压,1.013×105Pa P ——当地大气压,Pa标态需氧量()()V C K R O S La S ⋅⋅==20200()()()()V C C K R O T S T La ⋅-⋅⋅==-βρθα20202()()()()FC C C O O T T S S S ⋅⋅-⋅⋅=-20202θβρα鼓风曝气和表面曝气不同,应按给排水手册计算O S /R 0——标态下转移到曝气池中的总氧量,kgO 2/h O 2/R ——实际状态下转移到曝气池中的总氧量,kgO 2/hF ——安全系数,不要求时取1 θ——温度系数,取值范围1.008~1.047,一般取值为1.024C ——T ℃时工艺系统中污水的溶解氧浓度,mg/L ,多数情况为2C S (T )——T ℃时曝气池混合液的平均饱和溶解氧浓度,mg/L ,如未告知取值,则查三废P501C S (20)——20℃时清水中氧的溶解度,9.17mg/L 空气量ASA S S E O E O G ⨯=⨯⨯=28.033.121.0G S ——供气量,m 3/h ,注意单位换算 O S ——供气量,kg/h ,注意单位换算 0.21——氧在空气中的百分数 1.33——20℃时氧的密度,kg/m 3 E A ——曝气器的氧利用率二沉池计算公式表面负荷法vQ q Q A 6.32424maxmax ⨯=⨯=t q AtQ H ⋅=⋅=max Q K K Q K Q d h z ⋅⋅=⋅=maxA ——二沉池面积,m 2Q max ——废水最大时流量,m 3/d q ——水力表面负荷,m 3/(m 2·h ) H ——澄清区水深,/mt ——二沉池水力停留时间,一般为1.5~2.5h Q ——设计流量,m 3/d K z ——总变化系数 K h ——时变化系数 K d ——日变化系数固体通量法 tG XQ A ⨯⋅=1000maxX ——曝气池污泥浓度(MLSS),mg/L G t ——固体表面负荷值,kg/m 2·d Q max ——废水最大时流量,m 3/d回流污泥浓度V r X fR RX R R X ⋅+=+=11 r SVIX r ⋅=-610()610%⨯=XSV SVI SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L X ——曝气池污泥浓度(MLSS),mg/L f ——X V /X ,挥发性污泥浓度/污泥浓度X V ——挥发性曝气池污泥浓度(MLVSS),mg/L SV ——污泥沉降比,mL/L (如28%,即代0.28) r ——二沉池中污泥综合系数,一般为1.2左右污泥斗容积计算()()()()RRQRXXXQRVrS2124142414+⨯⋅⋅+⨯=+⨯⋅⋅+⨯=此公式规定泥斗的储泥时间为2hX r——剩余污泥/回流污泥浓度,mg/LX——曝气池污泥浓度(MLSS),mg/LR——污泥回流比Q——设计流量,m3/d污泥回流量RQQr⋅=Q——设计流量,m3/dQ r——回流污泥流量,m3/dR——污泥回流比,此时按最大回流比100%算污泥产量及剩余污泥排放量曝气池容积、污泥产量及泥龄的计算见前面曝气池部分污泥由曝气池排放时CVWθ=当污泥从二沉池排放时()CRRVWθ⋅+⋅=1W——剩余污泥排放量,m3/dR——污泥回流比θC——污泥龄即污泥停留时间,dV——曝气池容积,m3SBR计算公式曝气时间内BOD负荷法nttF=XLSmtSR⋅⋅⋅=024XLVtStQXLVtStQVSRFVSRF⋅⋅⋅⋅⋅⋅=⋅'⋅⋅⋅⋅⋅=02424nXLVttSQVSR⋅⋅⋅⋅⋅⋅⋅=024一个周期所需时间:bdSRttttt+++=——有疑问周期数:tN24=反应池容积另一公式:mnNQV⋅⋅⨯=24Q——设计的流量,m3/hV——SBR池总容积,m3S0——进水有机物浓度,mg/Ln——每个系列反应池个数L S——污泥负荷,kg(BOD5)/[kg(MLSS)•d]X——污泥浓度(MLSS),mg/Lm——充水比(一次进入反应槽内的污水量与充水结束时混合液容积的比值,同排出比)t——一个运行周期所需要的时间,ht F——一个周期的进水时间,ht R——一个周期的反应时间,ht S——一个周期的沉淀时间,ht d——一个周期的排水时间,ht b——一个周期的闲置时间,hN——周期数氧化沟活性污泥法计算公式硝化菌生长速率()()[]pH DO K DO N N e O T ke keT n --⋅⎥⎦⎤⎢⎣⎡+⋅⎥⎦⎤⎢⎣⎡+⋅⨯=--2.7833.011047.02158.1051.015098.0μ 泥龄算法一nCm μθ1=Cm C SF θθ⋅=μn ——硝化菌的生长率,d -1N ke ——出水总凯氏氮或氨氮(TKN ),mg/L T ——计算温度,℃DO ——溶解氧的浓度,mg/L ,一般按2mg/L 计 K O2——氧的半速常数,mg/L ,0.45~2.0mg/L,15℃时为2θCm ——最小污泥龄,dSF ——安全系数,通常取2.0~3.0θC ——污泥龄,d ,此值也可按经验取值 S r ——进出水BOD 5浓度差,mg/LY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1f b ——可生物降解VSS 占VSS 的比例(与f 不同) 泥龄算法二bd r V C f K S Y X ⋅=⋅=77.0θ存疑问 θC ——污泥龄,d ,此值也可按经验取值 S r ——进出水BOD 5浓度差,mg/LY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1f b ——可生物降解VSS 占VSS 的比例(与f 不同) 好氧区容积()()C d V e C K X S S Q Y V θθ⋅+⋅-⋅⋅⋅=101 ()'⋅-⋅=SV e L X S S Q V 01V 1——好氧区有效容积,m 3 Q ——废水流量,m 3/dX V ——挥发性污泥浓度(MLVSS),mg/L Y ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1 S 0——进水BOD 5浓度,mg/L S e ——出水BOD 5浓度,mg/LL S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d] 注意此处为MLVSS ,如为MLSS 需对应X 反硝化速率()()O D r r T DN DN '-⨯⨯='-109.120T ——计算温度,℃r DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d r DN ——反硝化速率,gNO 3-N/gVSS ·d ,温度15~27℃时城市污水取值0.03~0.11,20℃可取0.07DO ′——反硝化时的溶解氧浓度,可取0.2mg/L 生物污泥产量Cd r V K YS Q X θ⋅+⋅⋅=∆1算法参见活性污泥法ΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dS r ——进出水BOD 5浓度差,mg/L Q ——废水流量,m 3/dK d ——污泥内源呼吸率,d -1Y ——污泥理论产率,kg(VSS)/kg(BOD 5) 除氮量核算()V oe ke k NO X N N N Q ∆---⋅=∆12.030.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d 缺氧区容积(脱氮) V DN NO X r V ⋅'∆=32 V 2——缺氧区有效容积,m 3X V ——挥发性污泥浓度(MLVSS),mg/Lr DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d ΔNO3——所需去除氮量,g/d 厌氧区容积(除磷) 2413θ⋅=Q V V 3——厌氧区有效容积,m 3 θ1——厌氧区水力停留时间,h ,一般根据试验确定,可取2h氧化沟总容积 321V V V V ++=V ——氧化沟总容积,m 3 水力停留时间 QVHRT ⨯=24HRT ——水力停留时间,h碱度的校核剩余碱度=进水碱度+3.57×反硝化NO 3-N 的量+0.1×去除BOD 5的量-7.14×氧化沟氧化总氮的量 其中:反硝化NO3-N 的量:QX N N N Voe ke k ∆---12.0 去除BOD 的量:e S S -0 氧化总氮的量:QX N N Vke k ∆--12.0 ⎪⎪⎭⎫ ⎝⎛⋅+⋅⨯=∆C d r V K YS Q X θ112.012.0 剩余碱度——通常系统中应保证有大于100mg/L 的剩余碱度(即保持pH ≧7.2),以保证反硝化所需环境,所有碱度均以CaCO 3计3.57——反硝化NO 3-N 产生的碱度 0.1——去除BOD 5产生的碱度 7.14——氧化NH 4-N 消耗的碱度0.12ΔX V ——生物合成所需的氮,gMLVSS/d Q ——流量,m 3/dS r ——去除BOD 5的量,mg/L N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d回流污泥量计算r SVIX r ⋅=-610参见活性污泥法计算 ()()X Q Q Q X Q TSS r r r ⋅+=⋅+⋅r ——二沉池中污泥综合系数,一般为1.2左右 SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L Q r ——回流污泥量,m 3/d X ——污泥浓度(MLSS),mg/L R ——污泥回流比,%Q Q R r =()Q X Q X K f YS Q W e C d r ⋅-⋅+⋅+⋅⋅⋅=11θW ——总的剩余污泥量,g/dX 1——污泥中的惰性物质,mg/L ,为进水总悬浮物浓度(mg/L )与挥发性悬浮物浓度之差 X e ——随出水流出的污泥量,mg/L污水脱氮除磷计算公式硝化菌生长速率()()[]pH DO K DO N N e O T ke keT n --⋅⎥⎦⎤⎢⎣⎡+⋅⎥⎦⎤⎢⎣⎡+⋅⨯=--2.7833.011047.02158.1051.015098.0μ 一、 好氧区计算泥龄算法一nCm μθ1= Cm C SF θθ⋅=μn ——硝化菌的生长率,d -1N ke ——出水总凯氏氮或氨氮(TKN ),mg/L T ——计算温度,℃DO ——溶解氧的浓度,mg/L ,一般按2mg/L 计 K O2——氧的半速常数,mg/L ,0.45~2.0mg/L,15℃时为2θCm ——最小污泥龄,dSF ——安全系数,通常取2.0~3.0θC ——污泥龄,d ,此值也可按经验取值 S r ——进出水BOD 5浓度差,mg/LY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1f b ——可生物降解VSS 占VSS 的比例(与f 不同) 泥龄算法二 VVC X X V X X V ∆⋅=∆⋅=θ 计算参见活性污泥法公式此处ΔX V =0.5~0.7×Q ×S r ,即1kgBOD 产生0.5~0.7kgVSS负荷法V S X V S Q L ⋅⋅='10XV S Q L S ⋅⋅=10S0适当的情况下可以用SrV 1——好氧区有效容积,m 3 Q ——废水设计流量,m 3/dL S ′——有机负荷,kgCOD/(kgMLVSS ·d ) L S ——有机负荷,kgCOD/(kgMLSS ·d ) X ——污泥浓度(MLSS),mg/L X V ——污泥浓度(MLVSS),mg/LS 0——进水有机物浓度COD (或者BOD ),mg/L 好氧区容积()()C d V e C K X S S Q Y V θθ⋅+⋅-⋅⋅⋅=101 ()()X L S S Q L X S S Q V S e SV e ⨯-⋅='⋅-⋅=001 V 1——好氧区有效容积,m 3 Q ——废水流量,m 3/dX V ——挥发性污泥浓度(MLVSS),mg/L Y ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1 S 0——进水BOD 5浓度,mg/L S e ——出水BOD 5浓度,mg/LL S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d]VVC X X V ∆⋅=θ1注意此处为MLVSS ,如为MLSS 需对应X二缺氧区计算甲醇投加量计算01087.053.147.2D N N C m +⨯+⨯=注意:此公式未考虑氨氮的变化N 0——起始硝酸盐浓度,mg/L N 1——起始亚硝酸盐浓度,mg/L D 0——起始溶解氧DO 浓度,mg/L C m ——所需甲醇浓度,mg/L 反硝化速率()()O D r r T DN DN '-⨯⨯='-109.120T ——计算温度,℃r DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d r DN ——反硝化速率,gNO 3-N/gVSS ·d ,温度15~27℃时城市污水取值0.03~0.11,20℃可取0.07DO ′——反硝化时的溶解氧浓度,可取0.2mg/L 生物污泥产量Cd r V K YS Q X θ⋅+⋅⋅=∆1算法参见活性污泥法ΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dS r ——进出水BOD 5浓度差,mg/L Q ——废水流量,m 3/dK d ——污泥内源呼吸率,d -1Y ——污泥理论产率,kg(VSS)/kg(BOD 5) 除氮量核算()V oe ke k NO X N N N Q ∆---⋅=∆12.030.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d 缺氧区容积(脱氮) VDN NO X r V ⋅'∆=32 V 2——缺氧区有效容积,m 3X V ——挥发性污泥浓度(MLVSS),mg/Lr DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d ΔNO3——所需去除氮量,g/d 三 厌氧区计算厌氧区容积(除磷) 2413θ⋅=Q V V 3——厌氧区有效容积,m 3 θ1——厌氧区水力停留时间,h ,一般根据试验确定,可取2h氧化沟总容积 321V V V V ++=V ——总容积,m 3 水力停留时间 QVHRT ⨯=24HRT ——水力停留时间,h碱度的校核剩余碱度=进水碱度+3.57×反硝化NO 3-N 的量+0.1×去除BOD 5的量-7.14×氧化沟氧化总氮的量 其中:剩余碱度——通常系统中应保证有大于100mg/L 的剩余碱度(即保持pH ≧7.2),以保证反硝化所需环境,所有碱度均以CaCO 3计3.57——反硝化NO 3-N 产生的碱度反硝化NO3-N 的量:QX N N N Voe ke k ∆---12.0 去除BOD 的量:e S S -0 氧化总氮的量:QX N N Vke k ∆--12.0 0.1——去除BOD 5产生的碱度 7.14——氧化NH 4-N 消耗的碱度0.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d回流污泥量计算r SVIX r ⋅=-610 参见活性污泥法计算()()X Q Q Q X Q TSS r r r ⋅+=⋅+⋅QQ R r=()Q X Q X K f YS Q W e C d r ⋅-⋅+⋅+⋅⋅⋅=11θr ——二沉池中污泥综合系数,一般为1.2左右 SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L Q r ——回流污泥量,m 3/d X ——污泥浓度(MLSS),mg/L R ——污泥回流比,%W ——总的剩余污泥量,g/dX 1——污泥中的惰性物质,mg/L ,为进水总悬浮物浓度(mg/L )与挥发性悬浮物浓度之差 X e ——随出水流出的污泥量,mg/L 混合液回流计算10--='oekek N N N RN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L R ′——混合液回流比,%A/O 法脱氮计算公式-负荷法生化反应池总容积 XL S Q L X S Q V S SV ⨯⋅='⋅⋅=00 S0适当的情况下可以用SrV ——生化池总有效容积,m 3Q ——废水流量,m 3/dX V ——挥发性污泥浓度(MLVSS),mg/L S 0——进水BOD 5浓度,mg/L S e ——出水BOD 5浓度,mg/LL S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d] 注意此处为MLVSS ,如为MLSS 需对应X 生化反应池容积比 21V V V += 4~221=V V V 1——好氧区有效容积,m 3 V 2——好氧区有效容积,m 3 水力停留时间甲醇投加量计算01087.053.147.2D N N C m +⨯+⨯=注意:此公式未考虑氨氮的变化N 0——起始硝酸盐浓度,mg/L N 1——起始亚硝酸盐浓度,mg/L D 0——起始溶解氧DO 浓度,mg/L C m ——所需甲醇浓度,mg/L反硝化速率()()O D r r T DN DN '-⨯⨯='-109.120T ——计算温度,℃r DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d r DN ——反硝化速率,gNO 3-N/gVSS ·d ,温度15~27℃时城市污水取值0.03~0.11,20℃可取0.07DO ′——反硝化时的溶解氧浓度,可取0.2mg/L 生物污泥产量Cd r V K YS Q X θ⋅+⋅⋅=∆1算法参见活性污泥法ΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dS r ——进出水BOD 5浓度差,mg/L Q ——废水流量,m 3/dK d ——污泥内源呼吸率,d -1Y ——污泥理论产率,kg(VSS)/kg(BOD 5) 除氮量核算()V oe ke k NO X N N N Q ∆---⋅=∆12.030.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d 缺氧区容积(脱氮) VDN NO X r V ⋅'∆=32 V 2——缺氧区有效容积,m 3X V ——挥发性污泥浓度(MLVSS),mg/Lr DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d ΔNO3——所需去除氮量,g/d 三 厌氧区计算厌氧区容积(除磷) 2413θ⋅=Q V V 3——厌氧区有效容积,m 3 θ1——厌氧区水力停留时间,h ,一般根据试验确定,可取2h氧化沟总容积 321V V V V ++=V ——总容积,m 3 水力停留时间 QVHRT ⨯=24HRT ——水力停留时间,h碱度的校核剩余碱度=进水碱度+3.57×反硝化NO 3-N 的量+0.1×去除BOD 5的量-7.14×氧化沟氧化总氮的量 其中:反硝化NO3-N 的量:QX N N N Voe ke k ∆---12.0 去除BOD 的量:e S S -0剩余碱度——通常系统中应保证有大于100mg/L 的剩余碱度(即保持pH ≧7.2),以保证反硝化所需环境,所有碱度均以CaCO 3计3.57——反硝化NO 3-N 产生的碱度 0.1——去除BOD 5产生的碱度 7.14——氧化NH 4-N 消耗的碱度0.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L氧化总氮的量:QX N N Vke k ∆--12.0ΔNO3——所需去除氮量,g/d回流污泥量计算r SVIX r ⋅=-610参见活性污泥法计算 ()()X Q Q Q X Q TSS r r r ⋅+=⋅+⋅QQ R r=()Q X Q X K f YS Q W e C d r ⋅-⋅+⋅+⋅⋅⋅=11θr ——二沉池中污泥综合系数,一般为1.2左右 SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L Q r ——回流污泥量,m 3/d X ——污泥浓度(MLSS),mg/L R ——污泥回流比,%W ——总的剩余污泥量,g/dX 1——污泥中的惰性物质,mg/L ,为进水总悬浮物浓度(mg/L )与挥发性悬浮物浓度之差 X e ——随出水流出的污泥量,mg/L 混合液回流计算10--='oekek N N N RN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L R ′——混合液回流比,%厌氧计算公式负荷法VS Q L V ⨯⋅=10000V S X V S Q L ⋅⋅='0XV S Q L S ⋅⋅=0XL S Q X L S Q L S Q V S VS V ⨯⋅=⨯'⋅=⨯⋅=001000 QV HRT ⨯==24θ H A V ⋅=24D A ⋅=πθθH A V A Q v =⋅=⨯=241V ——反应器有效容积,m 3 Q ——废水设计流量,m 3/dL V ——容积负荷,kgCOD/(m 3·d )L S ′——有机负荷,kgCOD/(kgMLVSS ·d ) L S ——有机负荷,kgCOD/(kgMLSS ·d ) X ——污泥浓度(MLSS),mg/L X V ——污泥浓度(MLVSS),mg/LS 0——进水有机物浓度COD (或者BOD ),mg/L θ即HRT ——水力停留时间,h H ——反应器高度,m A ——反应器截面积,m 2 D ——反应器直径,mv 1——反应器内液体上升流速,m/h注:污泥负荷和容积负荷从定义来说用S 0正确,但规范中用去除量,考试中用去除量来计算 投配率法 100⨯=PVV nV n ——每日需要处理的污泥或废液体积,m 3/d P ——设计投配率,%/d ,通常采用5~12%/d 动力学公式法适用于厌氧生物滤池t ——水力停留时间,d K ——反应动力学常数,d -1S 0——进水有机物浓度COD ,mg/L⎪⎪⎭⎫ ⎝⎛⨯=e S S K t 0ln 1Q t V ⋅=S e ——进水有机物浓度COD ,mg/LQ ——废水设计流量,m 3/d污泥处理计算公式含水率12122121100100C C P P W W V V =--== P 1、V 1、W 1、C 1——含水率为P 1的污泥体积、重量、固体物浓度P 2、V 2、W 2、C 2——含水率为P 2的污泥体积、重量、固体物浓度适用于含水率大于65%的污泥 可消化程度 %10012112⨯⎪⎪⎭⎫ ⎝⎛⋅⋅-=S V S V d P P P P RR d ——可消化程度P S1、P S2——生污泥及消化污泥无机物含量,% P V1、P V2——生污泥及消化污泥有机物含量,% 湿、干污泥比重P P S S-+⋅=100100γγγVS P ⨯+=5.1100250γγ——湿污泥比重,g/L P ——湿污泥含水率,% γS ——干污泥比重,g/LP V ——干固体物质中,有机物所占百分比,%初沉污泥产量可根据人口数,或者悬浮固体去除率计算二沉污泥产量V d r V X V K S Q Y X ⋅⋅-⋅⋅=∆Cd rr obs K S Q Y S Q Y θ⋅+⋅⋅=⋅⋅=1见活性污泥法计算公式污泥重力浓缩计算MWM C Q A =⋅= ()1000100100⨯-⨯=⋅=P Q C Q Wn A A =1()21100100P P Q Q --⋅='24/Q HA t ⋅=A ——浓缩池总面积,m 2 Q ——污泥体积流量,m 3/dM ——浓缩池污泥固体通量,kg/m 2·d W ——污泥质量流量,kg/d C ——污泥固体浓度,g/L A 1——单个浓缩池总面积,m 2 n ——浓缩池数量,个Q ′——浓缩后污泥体积流量,m 3/d P 、P 1、P 2——均为含水率,% t ——停留时间,hH ——有效水深,常数可取4m ,m1000——P 含水率时的污泥密度,1000kg/m 3 气浮浓缩计算污泥厌氧消化计算100⨯=PVV n 投配率法'=⋅=SSC L W Q V θ泥龄及负荷法 ()100100bS f P Q W ⋅⋅-⨯=γ此处γ为干泥密度,kg/m3,fb 为VSS 所占比例,用前面VSS 比例和含水率求Ws V n ——每日需要处理的污泥或废液体积,m 3/d P ——设计投配率,%/d ,通常采用5~12%/d V ——消化池有效容积,m 3W S ——挥发性干固体重量,kgVSS/d L S ′——挥发性固体负荷,kgVSS/m 3·d Q ——污泥体积流量,m 3/dθC ——污泥龄即污泥停留时间,d沼气产量 0.35m3(标准)/kgCOD城市污水中COD/有机物=1.6~1.8两级厌氧消化 '=S S L WV 总 321总V V ⨯= 312总V V ⨯=V1和V2为2:1的时候板框污泥脱水计算vQ P A ⨯⨯⎪⎭⎫ ⎝⎛-⨯=2410011000 A ——板框压滤机过滤面积,m 2P ——压滤污泥含水率,% Q ——污泥体积流量,m 3/d v ——过滤速度,kg/m 2·h 带机污泥脱水计算Tv Q P B 110011000⨯⨯⎪⎭⎫ ⎝⎛-⨯=B ——带机滤带宽度,m P ——湿污泥含水率,% Q ——污泥体积流量,m 3/d v ——污泥脱水负荷,kg/m ·h T ——每天工作时间,h/d气浮计算公式名称公式说明0.1Mpa 下所需释放的空气量()10001PS Q P f C A ⋅-⋅⋅⋅=γ (kg/d )C S 单位为mg/L 时,不需要空气密度γ——空气密度,g/L ,20℃时为1.164 C S ——20℃时空气溶解度,18.7ml/Lf ——实际空气溶解度与理论空气溶解度之比,一般为0.5~0.8,多取0.5P ——溶气压力(绝对大气压,0.1Mpa ),如0.5Mpa 时P=0.5/0.1=5气浮的污泥干重a S Q S ⋅= (kg/d )S a ——污泥浓度,kg/m 3 加压溶气水量Q R Q P ⋅= (m 3/d )()11000-⋅⋅⋅⨯⎪⎭⎫⎝⎛⋅⋅=P f C S A S Q Q S a P γ (m 3/d ) Q ——气浮池设计水量,m3/d R ——溶气压力下的回流比,%SA——气固比,一般在0.01~0.04之间,常取0.03 标态空气供应量ηγ⋅'='A A (m 3/d )A ——所需空气量,kg/dγ′——0℃时,0.1Mpa 下空气密度,kg/m3,取值1.252η——溶气效率,可采用0.5接触室平面面积 1186400v Q Q A P⨯+=(m 2)v 1——接触室水流平均上升速度,m/s气浮池容积()t Q Q V P ⋅+=分离室平面面积 2286400v Q Q A P⨯+= (m 2)v 2——分离室水流平均下降速度,m/s气浮浓缩池表面积MSF =(m 2) M ——气浮浓缩池固体负荷,kg/m 2·d。

活性污泥章节 -计算公式

活性污泥章节 -计算公式

活性污泥计算公式微生物代谢1分解代谢(工作)C x H y O z+(X+y4−z2)O2酶→X CO2+y2H2O+∆H2合成代谢(繁殖)nC x H y O z+nNH3+n(X+y4−z2−5)酶→(C5H7NO2)n+n(X−5)CO2+n2(y−4)H2O+∆H3内源呼吸(老死)(C5H7NO2)n+5nO2酶→5CO2+2nH2O+nNH3+∆H混合液悬浮固体浓度(公式1)MLSS=Ma+Me+Mi+Mii混合液挥发性悬浮固体浓度MLVSS=Ma+Me+MiMa—具有代谢功能的微生物群体Me—微生物(主要是细菌)内源代谢,自身氧化的残留物,主要是多糖,脂蛋白组成的细胞壁的某些组分和壁外的粘液层Mi—由污水带入的难被细菌降解的惰性有机物Mii—无机物,由污水带入污泥沉降比SV混合液在量筒内静置30min后形成的沉淀污泥容积占原混合液容积的百分数污泥容积指数—污泥指数SVI(公式2)曝气池出口处混合液,经过30min静置后每克干污泥形成沉淀污泥所占有的容积,以mL计SVI=混合液(1L)30min静沉形成的活性污泥容积(mL)混合液(1L)中悬浮固体干重(g)=SV(%)×10(mL/L)MLSS(g/L)污泥龄(公式3)θc=VX∆X=VXQ W X r+(Q−Q W)X e≈VXQ W X r=VXQ W1000SVI rθc—污泥龄(生物固体平均停留时间),dV —生物反应器容积,m³X —混合液悬浮固体浓度(MLSS)kg/m³X r—剩余污泥浓度,kg/m³X e—出水悬浮物固体浓度,kg/m³∆X—每日排出系统外的污泥量(即新增污泥量),kg/dQ W—作为剩余污泥排放的污泥量,kg/dQ —污泥流量,kg/dSVI—污泥容积指数r—修正系数,一般取值1.2BOD污泥负荷(公式4)1施加BOD—污泥负荷:生物反应池内单位质量污泥(干重。

污水处理中泥龄的计算

污水处理中泥龄的计算

泥龄指曝气池中工作着的活性污泥总量与每日排放的剩余污泥数量的比值,单位:日。

由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。

污泥龄-概述污泥龄污泥龄是指活性污泥在整个系统内的平均停留时间一般用SRT表示也是指微生物在活性污泥系统内的停留时间。

控制污泥龄是选择活性污泥系统中微生物种类的一种方法。

如果某种微生物的世代期比活性污泥系统长,则该类微生物在繁殖出下一代微生物之前,就被以剩余活性污泥的方式排走,该类微生物就永远不会在系统内繁殖起来。

反之如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此该种微生物就能在活性污泥系统内存活下来,并得以繁殖,用于处理污水。

SRT直接决定着活性污泥系统中微生物的年龄大小,一般年轻的活性污泥,分解代谢有机污染物的能力强,但凝聚沉降性差,年长的活性污泥分解代谢能力差,但凝聚性较好。

用SRT控制排泥,被认为是一种最可靠,最准确的排泥方法,选择合适的泥龄(SRT)作为控制排泥的目标。

一般处理效率要求高,出水水质要求高SRT应控制大一些,温度较高时,SRT可小一些。

分解有机污染物的决大多数微生物的世代期都小于3天。

将NH3-N硝化成NO3—-N的硝化杆菌的世代期为5天。

污泥龄-A131的应用①进水的COD/BOD5≈2,TKN/BOD5≤0.25;②出水达到废水规范VwV的规定。

对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于:①希望达到的脱氮效果;②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值;③曝气池进水中易降解BOD5占的比例;④泥龄ts;⑤曝气池中的悬浮固体浓度X;⑥污水温度。

由氮平衡计算NDN/BOD5:NDN=TKNi-Noe-Nme-NsA131应用式中 TKNi ——进水总凯氏氮,mg/LNoe ——出水中有机氮,一般取1~2mg/LNme ——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。

[技术▕污水处理技术答疑第2问

[技术▕污水处理技术答疑第2问

小化03-15原文2问:”污泥泥龄“是怎么确定的?如何来控制?究竟是用排泥量确定它,还是用其他排泥量?答:泥龄、F/M等与其说是运行的控制参数,不如说是设计方面的参数,在工艺控制中的知识参考参数。

实际运行中排泥量通常是根据MLSS值加上经验来控制的,在SVI相对稳定的情况下,也可用SV30来参考。

概念解释:1、F/M有机负荷率(F/M),也叫污泥负荷,"F"指有机物量;“M”指微生物量指的是单位重量的活性污泥在单位时间内所承受的有机物的数量,单位kgBOD5/(kgMLSS·d)。

两者比值用来反映污泥负荷,生物处理主要要掌握好泥龄的概念,以及BOD有机负荷,一切都跟这个有关。

计算公式:F/M=Q*BOD5(每天进入系统中的食料量)/(MLSS*Va)(曝气过程中的微生物量)式中:Q为进水流量(m3/d);BOD5为进水的BOD5值(mg/L);Va为曝气池的有效容积(m3);MLSS为曝气池内活性污泥浓度(mg/L)。

2、SVI指曝气池混合液经30min沉淀后, 相应的1g干污泥所占的容积(以mL计), 单位mL/g 。

即: SVI=混合液30min沉淀后污泥容积(mL)/污泥干重(g) ,即SVI=(1L混合液30min静置沉淀形成的活性污泥体积(ml))/(1L混合液中悬浮固体干重)=SV30/MLSS。

SVI值能较好地反映出活性污泥的松散程度和凝聚沉降性能。

良好的活性污泥SVI常在50~120之间,SVI值过低,说明污泥活性不够,可能是水体中营养元素缺失导致。

SVI过高的污泥,,说明可能发生污泥膨胀,可通过停止曝气,让污泥沉降缺氧厌氧硝化能起到很好的作用。

如因丝状菌过度繁殖所致,则应投加相应的消毒剂,必要时要抽干好氧池重新培养好氧污泥。

阅读全文。

污水处理常见词汇汇编

污水处理常见词汇汇编

污水处理常见词汇汇编1、污泥负荷kg(BOD5)/kg(MLSS) · d)活性污泥负荷的方法,在原理上是基于对活性污泥中微生物生长曲线的理解,认为微生物所处的生长阶段决定于基质的量(F)与微生物总量(M)的比例(即污泥负荷)。

活性污泥负荷主要决定了活性污泥法系统中活性污泥的凝聚、沉降性能和系统的处理效率。

对于一定进水浓度的污水(So),只有合理地选择混合液污泥浓度(X)和恰当的活性污泥负荷(F/M),才能达到一定的处理效率。

计算公式:Ns=F/M=QS/(VX)式中Ns ——污泥负荷,kgCOD(BOD)/(kg污泥.d);Q ——每天进水量,m3/d;S ——COD(BOD)浓度,mg/L;V ——曝气池有效容积,m3;X ——污泥浓度,mg/L。

2、污泥浓度mg/L即活性污泥法中曝气区单位体积悬浮混合的干污泥净重的毫克数。

3、容积负荷kgBOD5/(m³·d)容积负荷是指单位容积曝气池在单位时间内所能接纳的BOD5量计算公式:Nv=Q S0/V容积负荷与污泥负荷之间关系式Nv=Ns*X式中:Q—每天的污水流量,m3/d;S0—曝气池进水的BOD5浓度,mg/L;V—曝气池容积,m3;Ns—污泥负荷,kg(BOD5) / (kgMLSS·d);X—曝气池混合液悬浮固体(MLSS)浓度,mg/L。

4、表面负荷单位时间内通过沉淀池单位表面积的流量,称为表面负荷或溢流率,常用q表示,q=Q/A(即流量与表面积的比值)。

表面负荷qmax可以用下式表示:式中:qmax——允许最大二沉池表面负荷,m/hfq——结合我国具有情况的修正系数,fq=0.8Qsv——允许的最大污泥体积进流量,L/(㎡•h)SVI——污泥指数(mL/g)SVI是反映沉降性能的重要参数,SVI高,沉降性能不好,悬浮固体沉速低,表面负荷必须降低,反之,SVI低,表面负荷可以提高,两者呈反比关系。

污泥管理说明

污泥管理说明
剩余污泥排放量=(曝气池内混合液污泥量-进水 BOD、量Байду номын сангаас污泥负荷)/回流污泥浓度
(4)污泥沉降比控制,当测得污泥沉降比 SV 增大后,可能是污泥浓度增加所致。 也可能是污泥的沉降性能变差所致,不管那种情况都应该及时排出剩余污泥。保证 SV 的相对稳定。
剩余污泥排放对活性污泥系统的功能及处理效果影响很大,伯这种影响很慢。 比如通过调节剩余污泥排放量控制活性污泥中的丝状菌过量繁殖,其效果通常要经过 2-3 倍的泥龄之后才能看出来。也就是说,当泥龄为 5d时。要经过 10~15d 之后才能观察到调节排泥量所带来的控制效果。因此,无法通过排泥操作来控制或适应进水术质水量的日变化,即使排泥奏效。 发生变化的那股污水早已流出系统,所以排泥量一般也都保持恒定。但需要每天统计记录剩余污泥排放量,并每天进行核算,总结出规律性。
(1)泥龄控制∶ 如果曝气池进水量和有机物浓度波动较小,可以只用曝气池混合液污泥量来计算剩余污泥排放量。即∶
剩余污泥排放量=曝气池混合液污泥量/(泥龄× 回流污泥浓度)-二沉池出水污泥量
当进水量有波动时,因为污泥在曝气池和二沉池中动态分布,计算剩余污泥排放量时应以系统的总污泥量计,即将二沉池的泥量也计算在内。
2.剩余污泥
剩余污泥是活性污泥微生物在分解氯化污水中有机物的同时,自身得到繁殖和增殖的结果。为维持生物处理系统的稳定运行,需要保持微生物数量的稳定, 即需要及时将新增长的污泥量当做剩余污泥从系统中排放出去。每日排放的剩余污泥量应大致等于污泥每日的增长量,排放量过大或过小都会导致曝气池内 MLSS 值的波动。具体排放量控制方法有∶
污泥回流比是污泥回流量与骤气池进水量的比值。当曝气池进水水质水量变化时。最好能随时调整回流比。但污水在活性污流中般要停留 4h 以上。以回流比进行某种调节后。其效果往往不能立即显现,需要在几小时之后才能反应出来。因此,通过调节回流比,无法适应污水水质水量的随时变化,一般保持回流比恒定。但在污水处理厂的运行管理中,通过调整回流比作为应付突发情况是一种有效的应急手段。例如当发现二沉池泥水界面突然升至很高时。可迅速增大问流比。将污批界面降下去。保证不造成污泥流失。然后再分析出引起污泥界面升高的真正原因,寻找到解决问题的手段并使之恢复正常后,再将回流比调回原值。虽然原则上回流比一般长期保持恒定,但必须每天检查回流比, 如果有必要,就应该随时调整。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污泥龄计算公式
污泥龄是衡量城市污水处理厂污泥处理状况的一个重要参数。

它反映污泥在池中停留的时间,可用来衡量和预测污泥处理工艺的运行情况。

污泥龄的计算公式如下:
污泥龄=池内污泥淤聚厚度(厘米) / 碱性消化量(每千吨/日)
其中,池内污泥淤聚厚度是指污泥在池内累积的厚度,而碱性消化量是指污水处理过程中消化池传质量(m3/s)与污水处理能力(t/d)的比值。

两个参数的具体测定方法可依据现行行业规范或国家标准。

简而言之,污泥龄是衡量工业污水处理厂污泥处理状况的重要指标,其计算公式反映了污泥淤聚累积厚度与消化量2个参数的比值,并可作为该厂污泥处理效率的重要衡量依据。

由此可以看出,污泥龄的计算公式对于城市污水处理厂的监测和管理至关重要。

相关文档
最新文档