结构化软件设计全解
软件工程第9章 结构化设计
9.5 数据设计
数据设计就是将需求分析阶段定义的数据对象(E-R图、 数据字典)转换为设计阶段的数据结构和数据库,包括两个 方面。
1) 程序级的数据结构设计:采用(伪)代码的方式定义 数据结构(数据的组成、类型、缺省值等信息); 2) 应用级的数据库设计:采用物理级的E-R图表示。
9.5 数据设计
9.4 接口设计
接口设计一般包括3个方面:
(1)用户接口--用来说明将向用户提供的命令和它们的语法结构以及软 件回答信息 (2)外部接口--用来说明本系统同外界的所有接口的安排包括软件与硬 件之间的接口、本系统与各支持软件之间的接口关系 (3)内部接口--用来说明本系统之内的各个系统元素之间的接口的安排。
9.4 接口设计
• 9.4.2界面设计
界面设计是接口设计中的重要组成部分。用户界面的设计要求在研 究技术问题的同时对人加以研究。Theo Mandel在其关于界面设计的著 作中提出了3条“黄金原则”。
1)置用户于控制之下 2)减少用户的记忆负担 3)保持界面一致
这些黄金原则实际上构成了指导用户界面设计活动的基本原则。
9.3 体系结构设计
• 9.3.2 面向数据流的设计方法
面向数据流的设计方法是常用的结构化设计方法,多在概要设计阶段使用。 它主要是指依据一定的映射规则,将需求分析阶段得到的数据描述从系统的输入 端到输出端所经历的一系列变换或处理的数据流图转换为目标系统的结构描述。 在数据流图中,数据流分为变换型数据流和事务型数据流两种。
9.3 体系结构设计
• 9.3.3 面向数据结构的设计方法
顾名思义,面向数据结构的设计方法就是根据数据结构设计程序处 理过程的方法,具体地说,面向数据结构的设计方法按输入、输出以及 计算机内部存储信息的数据结构进行软件结构设计,从而把对数据结构 的描述转换为对软件结构的描述。使用面向数据结构的设计方法时,分 析目标系统的数据结构是关键。
软件工程结构化分析与设计
软件工程结构化分析与设计在当今数字化的时代,软件几乎无处不在,从我们日常使用的手机应用程序,到企业内部复杂的业务系统,软件已经成为推动社会发展和提高生活质量的重要力量。
而软件工程中的结构化分析与设计,作为软件开发过程中的关键环节,对于确保软件的质量、可维护性和可扩展性具有至关重要的意义。
首先,让我们来理解一下什么是软件工程结构化分析。
简单来说,结构化分析就是对软件系统进行详细的调查和研究,以确定系统的需求和功能。
这就好比在盖房子之前,我们需要清楚地知道要盖什么样的房子,有多少房间,每个房间的用途是什么等等。
在软件领域,结构化分析的主要任务包括收集用户需求、理解业务流程、识别系统的输入和输出、定义数据结构等。
在收集用户需求时,开发人员需要与用户进行充分的沟通和交流。
用户可能来自不同的背景和领域,他们对软件的期望和需求也各不相同。
因此,开发人员需要具备良好的沟通技巧和理解能力,能够将用户模糊的、不明确的需求转化为清晰、具体的软件功能描述。
比如,用户可能说“我希望这个软件能够快速处理大量数据”,开发人员就需要进一步询问“快速”的具体标准是什么,“大量数据”大概是多少,以及数据的类型和格式等。
理解业务流程也是结构化分析的重要部分。
不同的行业和组织都有其独特的业务流程,软件系统需要能够与之相适应和支持。
例如,在一个电子商务系统中,订单处理、库存管理、支付流程等都是关键的业务环节,开发人员需要深入了解这些流程的细节,以便设计出符合业务需求的软件。
接下来,我们谈谈软件工程结构化设计。
结构化设计是在结构化分析的基础上,将系统的需求转化为软件的架构和模块设计。
这就像是根据房子的设计图纸,确定房子的框架结构、房间布局以及各个部分使用的材料等。
在结构化设计中,模块划分是一个关键步骤。
模块是软件系统中的独立组成部分,具有明确的功能和接口。
合理的模块划分可以提高软件的可维护性和可扩展性。
例如,将一个复杂的系统划分为用户界面模块、数据处理模块、业务逻辑模块等,每个模块都专注于完成特定的任务,并且可以独立地进行开发、测试和维护。
软件工程实用案例 第5章 结构化软件设计
5.3 数据设计
5.3.2 数据库设计
5.3.2.1 概念结构设计
数据库的概念结构设计是设计数据库的概念模型, 普遍采用实体-关系图(ER图)的方法。
5.3 数据设计
5.3.2 数据库设计
5.3.2.2 逻辑结构设计
1.实体的映射
一个实体可以映射为一个表或多个表。当映射为多个表 时,可以采用横切和竖切的方法。
HIPO图由H图和IPO图两部分组成。 H图描述软件总的模块层次结构; IPO图描述每个模块输入/输出数据、处理功能及
模块调用的详细情况。
5.1 软件设计的相关概念
5.1.3 结构化设计图形工具
5.1.3.2 HIPO图1.H图(层次图)5.1 软件设计的相关概念
5.1.3 结构化设计图形工具
5.1.2.2 模块独立性
模块的独立性可以从两个方面来度量:
耦合:衡量不同模块彼此间互相依赖(连接)的紧密 程度。
内聚:衡量一个模块内部各个元素彼此结合的紧密 程度。
良好的模块设计追求低耦合和高内聚。
5.1 软件设计的相关概念
5.1.2 软件设计的原则
5.1.2.2 模块独立性
1.耦合
(1) 非直接耦合
图5-38 事务型DFD的一级分解结构图
图5-39 银行储蓄系统一级分解结构图
5.2 体系结构的设计
5.2.3 事务流的映射方法
3.进行二级分解
5.2 体系结构的设计
5.2.3 事务流的映射方法
4.初始结构图的改进
图5-41 银行储蓄系统结构图的第一次改进
图5-42 银行储蓄系统结构图的第二次改进
如果两个模块之间没有直接关 系,即它们之间的联系完全是 通过主模块的控制和调用来实 现的,就是非直接耦合。这种 耦合的模块独立性最强。
软件工程结构化分析与设计范文精简版
软件工程结构化分析与设计软件工程结构化分析与设计简介软件工程结构化分析与设计是软件工程领域中重要的一环,它涉及到软件系统的分析和设计阶段。
在软件工程领域,结构化分析与设计是指通过建立准确的抽象层次,将软件系统划分为各个模块,并规定各个模块之间的关系和功能,以实现系统的需求。
什么是结构化分析与设计结构化分析与设计是一种系统性的方法,它利用模块化和层次化的原则,对软件系统进行分析、设计和实现。
结构化分析关注的是系统需求,它通过分解需求,将系统划分为不同的模块,并定义它们之间的关系。
结构化设计则负责将分析得到的模块进行详细设计,并确定模块的功能和接口。
结构化分析与设计的目标是提高软件系统的可理解性、可维护性和可扩展性。
结构化分析与设计的流程结构化分析与设计通常包含以下几个步骤:1. 确定系统需求:定义软件系统的功能和性能要求。
2. 确定模块划分:将系统划分为不同的模块,并定义它们之间的功能和接口。
3. 定义模块内部逻辑:对每个模块进行详细设计,包括设计数据结构和算法等。
4. 确定模块间的通信方式:确定模块之间的数据交换和通信方式。
5. 验证和评估设计:对设计进行评估和验证,确保满足系统需求。
6. 实施和编码:根据设计编写代码,完成软件系统的实施。
7. 和调试:对软件系统进行和调试,确保其功能和性能的正确性。
结构化分析与设计的优势结构化分析与设计具有以下优势:1. 提高可理解性:通过模块化的设计原则,使系统的结构和功能更易于理解和掌握。
2. 提高可维护性:分解模块可以使系统的维护更加简单和方便,减少对其他模块的影响。
3. 提高可扩展性:模块化的设计可以使系统更易于扩展和修改,方便适应需求变化。
4. 提高开发效率:结构化分析与设计明确了各个模块的功能和接口,可以并行开发,提高开发效率。
5. 降低系统复杂性:通过模块化的设计,将大型系统划分为多个小模块,降低了系统的复杂性。
结构化分析与设计的工具和技术在软件工程中,有许多工具和技术可以用于结构化分析与设计。
软件开发的结构化设计方法,全面指导
软件开发的结构化设计方法,全面指导
软件开发的结构化设计方法是一种系统化、有条理的方法,它能够全面指导软件的设计过程。
以下是一些常用的结构化设计方法:
1. 分而治之(Divide and Conquer):将软件系统分解为较小的、功能独立的模块,然后分别设计和实现这些模块,最后再将它们集成起来。
这种方法可以提高软件系统的可维护性和可扩展性。
2. 自顶向下(Top-Down):从整体的角度出发,首先设计和实现整个系统的高层模块和功能,然后逐步细化和实现低层模块和功能。
这种方法能够确保系统的正确性和一致性,同时也能够提高开发效率。
3. 自底向上(Bottom-Up):从具体的、底层的模块和功能开始,逐步组合和实现更高层的模块和功能。
这种方法可以对具体的细节进行深入研究和设计,同时也能够提高模块的重用性和可测试性。
4. 结构化分析和设计(Structured Analysis and Design):采用数据流图、数据字典和结构图等工具,从数据流程和数据结构的角度出发,对系统进行分析和设计。
这种方法可以清楚地描述系统的功能和结构,同时也能够提高系统的可维护性和可扩展性。
除了以上提到的方法,还有其他一些结构化设计方法,如面向
对象设计、模型驱动开发等。
选择适合的结构化设计方法,可以根据具体的项目需求、开发团队的经验和技术水平等因素进行综合考虑。
什么是结构化设计结构化设计的步骤
什么是结构化设计结构化设计的步骤结构化设计是一种面向数据流的设计方法,目的在于确定软件的结构。
那么你对结构化设计了解多少呢?以下是由店铺整理关于什么是结构化设计的内容,希望大家喜欢!结构化设计的基本原理和相关概念抽象化:常用的抽象化手段有过程抽象、数据抽象和控制抽象● 过程抽象:任何一个完成明确功能的操作都可被使用者当做单位的实体看待,尽管这个操作时机上可能由一系列更低级的操作来完成。
● 数据抽象:与过程抽象一样,允许设计人员在不同层次上描述数据对象的细节。
● 与过程抽象和数据抽象一样,控制抽象可以包含一个程序控制机制而无须规定其内部细节。
自顶向下,逐步细化:将软件的体系结构按自顶向下方式,对各个层次的过程细节和数据细节逐层细化,直到用程序设计语言的语句能够实现为止,从而最后确立整个的体系结构。
模块化:将一个待开发的软件分解成若干个小的简单的部分——模块,每个模块可独立地开发、测试,最后组装成完整的程序。
这是一种复杂问题的“分而治之”的原则。
模块化的目的是使程序结构清晰,容易阅读,容易理解,容易测试,容易修改。
控制层次:表明了程序构件(模块)的组织情况。
控制层次往往用程序的层次结构(树形或网型)来表示。
● 深度:程序结构的层次数,可以反映程序机构的规模和复杂程度。
● 宽度:同一层模块的最大模块个数● 模块的扇出:一个模块调用(或控制)的其他模块数● 模块的扇入:调用(或控制)一个给定模块的模块个数信息屏蔽:将每个程序的成分隐蔽或封装在一个单一的设计模块中,定义每一个模块时尽可能少的显露其内部的处理,可以提高软件的可修改性,可测试性和可移植性。
模块独立:每个模块完成一个相对特定独立的子功能,并且与其他模块之间的联系简单。
衡量度量标准有两个:模块间的耦合和模块的内聚。
模块独立性强必须做到高内聚低耦合。
● 耦合:模块之间联系的紧密程度,耦合度越高模块的独立性越差。
耦合度从低到高的次序为:非直接耦合、数据耦合、标记耦合、控制耦合、外部耦合、公共耦合、内容耦合。
软件开发的结构化设计方法,全面指导
软件开发的结构化设计方法,全面指导软件开发的结构化设计方法在整个软件开发过程中起着至关重要的作用。
通过采用结构化的设计方法,可以使得软件的开发更加系统化、有序化,增加软件的可维护性和可扩展性。
本文将全面介绍软件开发的结构化设计方法,包括需求分析、概要设计、详细设计等各个阶段的内容。
需求分析是软件开发的第一步,也是非常关键的一步。
在这一阶段,开发团队需要与客户进行沟通,了解客户的需求,并将其转化为具体的软件功能。
为了实现这一目标,可以采用多种分析方法,如用户访谈、问卷调查等。
通过与客户进行深入交流,开发团队可以更好地理解客户的需求,并在后续的设计过程中准确地反映出来。
概要设计是在需求分析的基础上进行的。
在这一阶段,开发团队将客户的需求进一步细化,确定软件的整体结构和模块划分。
为了实现这一目标,可以采用多种设计工具,如UML、流程图等。
通过这些工具,开发团队可以清晰地描述软件的各个模块之间的关系和功能。
详细设计是在概要设计的基础上进行的。
在这一阶段,开发团队将每个模块进行详细设计,确定具体的算法和数据结构。
为了实现这一目标,可以采用多种设计方法,如面向对象设计、结构化编程等。
通过这些方法,开发团队可以清晰地定义每个模块的功能和接口,并确定模块之间的数据流动和控制流程。
除了以上三个阶段,还有一些其他的设计工作需要进行,如界面设计、数据库设计等。
这些工作在整个软件开发过程中起着至关重要的作用。
通过合理的界面设计,用户可以更加直观地使用软件;通过合理的数据库设计,可以提升软件的数据存储和检索效率。
在进行软件开发的设计工作时,还需要注意一些设计原则。
首先是高内聚低耦合原则,即将相近的功能放在一起,使得软件的不同模块之间的依赖关系尽可能小;其次是单一职责原则,即每个模块只负责一个功能,使得其内部的代码和数据尽可能简洁;还有开闭原则、里氏替换原则、依赖倒置原则等。
这些原则在设计过程中需要有意识地遵循,以确保软件的可维护性和可扩展性。
第2章 结构化软件设计技术(1)
2013-8-12
22
tdate1::~tdate1( ) 析构函数的定义 { cout<<“destructor called \t”<<day<<endl; } void tdate1 :: print( ) 成员函数 print 的定义 { cout<<year<<“,”<<month<<“,”<<day<<endl; }
2013-8-12
8
类名 tdate
类体内定义了 6 个成员:
3 个公有成员 3 个私有成员 public 中的 3 个函数只是对函数的原形进行说明。 成员函数 setdate 有3个形参,无返回值。
成员函数 isleap( )无形参,有 int 型返回值。
成员函数 print 无参数,也没有返回值。 对三个函数的实现也可以在对三个函数说明时定义: (即将函数体放在类体内)
2013-8-12 16
private : int X, Y; }; // 实现部分 void tpoint: : setpoint(int x, int y) { X=x; Y=y; } void tpoint: :move(int xoffset, int yoffset) { X=X+xoffset; Y=Y+yoffset; }
先创建的对象后释放,后创建的对象先释放。
例:
2013-8-12
20
// 说明部分 #include <iostream.h> class tdate1 { public:
注意构造 函数的特 点和意义
tdate1(int y, int m, int d);
软件工程结构化软件设计(共98张PPT)
➢ 变换模块 :即加工模块。它从上级模块取得数据,进 行处理,转换成其它形式,再传送回上级模块。
➢ 协调模块 :对所有下属模块进行协调和管理的模块。
第五页,共98页。
7.1.1 系统结构图中的模块
在系统结构图中不能再分解的底层模块为原 子模块。
模块 软件包应满足设计约束和可移植性
第二十六页,共98页。
7.5.1 模块功能的完善化
一个完整的功能模块,不仅应能完成指定的 功能,而且还应当能够告诉使用者完成任务 的状态,以及不能完成的原因。
➢ 规定的功能部分。 ➢ 出错处理部分。当模块不能完成规定的功能时
,必须返回出错信息和标志,向它的调用者报 告出现这种例外情况的原因。 ➢ 给调用者返回一个该模块执行是否正确结束的 “标志”。
第十页,共98页。
7.2 变换映射
变换映射是一组设计步骤,将具有变换流特征的数据流图 映射为一个预定义的程序结构模版。
运用变换映射方法建立初始的系统结构图,然后进行多 次改进,得到系统的最终结构图。
➢ (1)复审并评估分析模型; ➢ (2)复审并重画数据流图; ➢ (3)确定数据流图中的变换和事务特征; ➢ (4)区分输入流、输出流和中心变换部分,即标明数据
在具体的应用中一般以变换型为主,事务型 为辅的方式进行软件结构设计。
第二十三页,共98页。
7.4 变换-事务混合型的系统结构图
第二十四页,共98页。
课堂作业
在医院就诊系统中,挂号子系统的数据流图 如下图所示:
挂号请求
科室信息
查询科室 排队信息
科室排队 信息
确 科定 室挂 医号 生挂医号生的信科息室确费定用挂号
软件工程结构化分析与设计
软件工程结构化分析与设计软件工程结构化分析与设计简介软件工程结构化分析与设计(Software Engineering Structured Analysis and Design)是软件工程的重要环节之一,旨在将复杂的软件系统分解为相对简单的模块,从而便于理解、开发和维护。
结构化分析结构化分析是软件工程中的一种需求分析方法,通过对用户需求进行分析,将系统功能划分为不同的模块,以及模块之间的关系和交互。
结构化分析采用基于流程图的图形化表示方法,通常使用数据流图(Data Flow Diagram,简称DFD)来描述系统的功能流程。
结构化设计结构化设计是在结构化分析的基础上,进一步定义每个模块内部的结构和功能。
它将模块细化为更小的子模块,通过设计各个模块之间的接口和通信方式,确保系统能够协调运作。
结构化设计通常使用结构图来表示系统的模块组织结构,其中最常见的就是层次图(Hierarchy Chart)和结构图(Structure Chart)。
优势与挑战结构化分析与设计的主要优势在于可以将复杂系统分解为简单的模块,使得系统的开发和维护更加容易。
结构化分析与设计还能够提高系统的可靠性和可扩展性。
,结构化分析与设计也面临一些挑战。
结构化分析与设计需要面对不断变化的需求,需要具备较好的适应性和灵活性。
结构化分析与设计也需要考虑系统的性能、安全性等方面的需求,以保证系统能够满足用户的要求。
软件工程结构化分析与设计是软件工程中重要的一环,通过将复杂的系统分解为简单的模块,并设计模块之间的关系和接口,实现系统的有效开发和维护。
结构化分析与设计能够提高系统的可靠性、可扩展性和易开发性,但也需要面对需求变化和其他挑战。
希望通过软件工程结构化分析与设计,我们可以开发出更好的软件系统,满足用户的需求。
软件工程结构化分析与设计
软件工程结构化分析与设计1. 简介软件工程结构化分析与设计是软件开发中非常重要的一门课程,通过对软件系统进行结构化分析和设计,可以提高软件的质量、可维护性和可扩展性。
本文将介绍软件工程结构化分析与设计的基本概念和主要内容。
2. 结构化分析结构化分析是软件工程中的一种分析技术,它主要用于对问题域进行分析,确定问题需求和对问题进行建模。
结构化分析主要包括以下几个步骤:确定问题领域和问题域边界;识别问题中的对象和它们之间的关系;划分问题域为子问题,建立问题域模型;确定问题的功能需求和非功能需求。
结构化分析的核心是数据流图,它可以表示问题域中的数据流和处理过程,帮助确定系统功能和数据流向。
3. 结构化设计结构化设计是在结构化分析的基础上进行的,它主要用于确定系统的结构和设计系统的组件。
结构化设计的主要内容包括以下几个方面:系统结构设计:确定系统的模块和模块之间的关系;数据结构设计:设计系统中的数据结构和数据存储组织方式;接口设计:设计系统与其他系统或外部设备之间的接口;过程设计:设计系统中的算法和处理过程。
结构化设计的目标是提高系统的可维护性、可扩展性和可重用性,满足系统的功能需求和非功能需求。
4. 工具与方法在软件工程结构化分析与设计过程中,有一些常用的工具和方法可以帮助完成任务。
其中一些常用的工具包括:UML:统一建模语言,用于描述系统的结构和行为;数据流图:用于表示数据流和处理过程;结构图:用于表示系统的模块和模块之间的关系;状态图:用于描述系统中对象的状态和状态转换。
而一些常用的方法包括:数据字典:记录系统中的数据元素和数据流,帮助理清数据之间的关系;面向对象分析与设计:通过对象的抽象和分类,设计系统的结构和行为;结构化设计方法:采用自顶向下和自底向上的设计方法,将系统划分为模块并确定模块之间的关系。
5.软件工程结构化分析与设计是软件开发中非常重要的一环,它通过对问题域进行分析和设计,帮助构建高质量、可维护和可扩展的软件系统。
简述软件设计的两种分类方法
简述软件设计的两种分类方法软件设计是指根据用户需求和系统要求,对软件进行规划、设计和实现的过程。
软件设计可以分为两种分类方法:结构化设计和面向对象设计。
一、结构化设计结构化设计是一种传统的软件设计方法,它采用模块化的思想来组织程序。
结构化设计的主要特点包括:1. 模块化:将程序分解成若干个相互独立的模块,每个模块只负责完成一个特定的功能。
2. 自顶向下:从整体到局部进行逐步分解,直到最小单元为止。
3. 逐步细化:对每个模块进行进一步细化,直到可以编写代码为止。
4. 结构图:采用流程图或草图等方式表示程序结构。
二、面向对象设计面向对象设计是一种相对较新的软件设计方法,它以对象为中心来组织程序。
面向对象设计的主要特点包括:1. 封装性:将数据和操作封装在一个对象中,保证数据安全性和操作正确性。
2. 继承性:通过继承机制实现代码重用和扩展性。
3. 多态性:同一个操作可以作用于不同类型的对象上,并且具有不同行为表现。
4. 类图:采用类图表示程序结构。
三、软件设计的流程无论是结构化设计还是面向对象设计,软件设计都有一定的流程。
下面是软件设计的一般流程:1. 需求分析:明确用户需求和系统要求,确定软件功能和性能指标。
2. 概要设计:根据需求分析结果,进行概念性的设计,确定程序框架和模块划分。
3. 详细设计:对每个模块进行详细的设计,包括数据结构、算法、接口等。
4. 编码实现:根据详细设计结果编写代码,并进行单元测试和集成测试。
5. 调试测试:对整个程序进行测试和调试,保证程序正确性和可靠性。
6. 维护更新:对程序进行维护和更新,保证程序持续稳定运行。
四、总结软件设计是一个复杂的过程,需要遵循一定的方法和流程。
结构化设计和面向对象设计都有各自的特点和优势,在实际应用中需要根据具体情况选择合适的方法。
同时,在软件开发过程中还需要注意代码质量、可读性、可维护性等方面,以提高软件开发效率和质量。
软件工程结构化分析与设计简版
软件工程结构化分析与设计简版首先,结构化分析与设计是一种以模块化和分层的方式进行系统分析和设计的方法。
它将系统划分为多个模块,并对每个模块进行独立的设计和实现。
这样的设计方式有助于提高系统的可维护性和可扩展性,同时降低了系统开发的复杂性。
结构化分析的过程包括需求分析、系统规划、数据流建模和数据字典等步骤。
其中,需求分析是整个过程的第一步,通过和用户进行沟通和交流,了解用户的需求和期望。
系统规划则是根据需求分析的结果,确定系统的整体架构和功能。
数据流建模是结构化分析中的重要部分,它通过绘制数据流图来表示系统中的数据流动。
数据流图由多个加工、数据存储和数据流组成,通过对数据流图的绘制,可以清晰地了解系统中的数据流动和加工过程,有助于后续的系统设计和实现。
数据字典则是对数据流图中的各个数据流进行定义和描述。
数据字典包括数据流的名称、含义、类型和结构等信息,它提供了一个统一的标准,方便各个模块之间的交互和数据传递。
结构化设计是在结构化分析的基础上进行的,它主要包括模块划分、接口设计和模块实现等步骤。
模块划分是将系统划分为多个独立的功能模块,每个模块负责实现一个或多个功能。
接口设计则是定义各个模块之间的接口和数据传递方式,以确保各个模块之间的协同工作。
模块实现则是根据设计的结果,进行具体的编码和测试。
在模块实现的过程中,需要遵循一定的编码规范和测试标准,以确保编码的质量和系统的稳定性。
总的来说,软件工程结构化分析与设计是软件开发中不可或缺的一环。
通过结构化分析与设计,可以使得系统具备良好的结构和可扩展性,提高软件的质量和可维护性。
在进行结构化分析与设计时,需要遵循一定的分析和设计流程,并注重细节和规范,以保证系统的整体质量和稳定性。
《软件工程实用教程》第4章_结构化软件设计
第4 章 結構化軟體設計
3.虛擬機風格 例:解釋器,通過虛擬機特定模組的解釋步驟 如下: 解釋引擎從被解釋的模組中選擇一條指令; 基於這條指令,引擎更新虛擬機內部的狀 態; 上述過程反復執行。
第4 章 結構化軟體設計
特點: 在虛擬機環境中運行的代碼不必須瞭解虛擬 機的具體細節。 一旦運行環境發生變化,只需要重寫虛擬機 本身,而不是整個系統。 通常虛擬機會限制在其中運行的軟體的行為, 特別是那些以實現跨平臺為目的的虛擬機, 如Java虛擬機和.NET CLR。 能夠使系統的結構更具層次性,使用虛擬機 提供的設施編寫的代碼,可以不考慮虛擬機 以外的實際環境,而在正確地實現了這種虛 擬機的環境中執行。
第4 章結構化軟體設計
本章學習內容: 1.瞭解概要設計的任務與過程 2.掌握結構化設計技術的基本原理與準則 3.掌握面向數據流分析的設計方法 4.瞭解面向數據的設計方法 5.掌握資料庫設計原則和步驟 6.瞭解常用的詳細設計工具 7.瞭解概要設計說明書的基本內容
第4 章 結構化軟體設計
4.1 概要設計的任務與過程 概要設計的目標是概要地說明軟體 應該怎樣實現,即解決軟體系統總 體結構設計的問題,包括軟體系統 的結構、模組劃分、模組功能和模 組間的聯繫等。
第4 章 結構化軟體設計
4.2.1 現代體系結構模型的基本概念
1.模式:是針對特定問題的成功解決方案,是指形成 了一種趨於固定的結構形式。 結構模式表達了軟體系統的基本結構組織形式或結 構方案,包含了一組預定義的子系統,規定了這些 子系統的責任,同時還提供了用於組織和管理這些 子系統的規則和嚮導。 設計模式為軟體系統的子系統、構件或者構件之間 的關係提供一個精練後的解決方案,描述了特定環 境下,用於解決通用軟體設計問題的構件以及這些 構件相互通信時的可重現結構。
第三章软件工程结构化分析
get f1 A
f4 f6
f3 f2
主模块 (C、D、E)
f7
将f3变换成f7和f8
f7
f8
C
D
E
put f7
put f8
f9 f8 f10
F put f9 G put f10
f10
f11
H put f11
主模块 (C、D、E)
get f3
将f3变换成f7和f8
put f7
put f8
get f2 B
随着设计的逐步深入,对软件结构进一步细化,称为详 细设计(或过程设计)。
因此,软件设计分为:概要设计、详细设计两个阶段。
█ 概要设计 通过仔细分析“软件需求规格说明”,适当地对软件
进行功能分解,从而将系统分解为一系列功能模块,并 设计出完成预定功能的模块结构。(层次结构) █ 详细设计
具体针对每个模块,确定完成每个模块功能所需要的 算法和数据结构等。 (实现过程)
每个模块完成一个特定的子功能,所有模块按某种方法组 装成为一个整体,从而实现整个系统所要求的功能。
说明:模块化是软件开发过程中解决复杂问题的重要手段。
开发大而复杂的系统,进行适当的分解,不但可降低系 统复杂性,还可减少开发工作量,总体上降低开发成本, 提高软件生产率。
是否将系统无限分解,最后开发工作量就趋于零?
第4章 结构化设计
学习内容: 1、结构化设计的定义与目标 2、结构化设计与结构化分析的关系 3、结构化设计的分类与任务 4、结构化设计的概念和原理
了解: 结构化设计与结构化分析的关系
掌握: 结构化设计的概念与原理
一、结构化设计的定义与目标
在需求分析基础上,采用结构化方法进行软件系统的设
结构化软件设计
本章学习内容: 本章学习内容: 1.了解概要设计的任务与过程 2.掌握结构化设计技术的基本原理与准则 3.掌握面向数据流分析的设计方法 4.了解面向数据的设计方法 5.掌握数据库设计原则和步骤 6.了解常用的详细设计工具 7.了解概要设计说明书的基本内容
第4 章 结构化软件设计
4.1.1 概要设计的任务
(1)建立目标系统的总体结构 ( 2) 给出每个功能模块的功能描述 , ) 给出每个功能模块的功能描述, 数据接口描述和调用关系, 数据接口描述和调用关系 , 规定设 计限制, 外部文件及全局数据定义。 计限制 , 外部文件及全局数据定义 。 (3)设计数据库及数据结构 (4)编写文档
第4 章 结构化软件设计
4.2.2 常见的软件体系架构风格 1.数据流风格 管道/ 管道/过滤器风格的软件体系结构
第4 章 结构化软件设计
管道/过滤器风格的软件体系架构的优点 管道 过滤器风格的软件体系架构的优点 使得软构件具有良好的隐蔽性和高内聚性、 使得软构件具有良好的隐蔽性和高内聚性、低耦 合度的特点; 合度的特点; 允许设计者将整个系统的输入/输出行为看成是 允许设计者将整个系统的输入 输出行为看成是 多个过滤器的行为的简单合成; 多个过滤器的行为的简单合成; 支持软件复用, 支持软件复用,如果任何两个过滤器达成了在它 们之间交流的数据格式, 们之间交流的数据格式,这两个过滤器就可被连 接起来; 接起来; 维护这种系统和增强系统其功能很简单, 维护这种系统和增强系统其功能很简单,新的过 滤器可以添加到现有系统中来, 滤器可以添加到现有系统中来,旧的过滤器可以 被改进的过滤器替换掉; 被改进的过滤器替换掉;
第4 章 结构化软件设计
3.信息隐蔽 信息隐藏是指在设计和确定模块时, 信息隐藏是指在设计和确定模块时, 应使一个模块内包含的信息( 应使一个模块内包含的信息 ( 过程和 数据) 数据 ) 对于不需要这些信息的模块来 说是不可访问的。 说是不可访问的。 信息局部化是指将一些关系密切的 成份,设计时放得彼此靠近。 成份,设计时放得彼此靠近。
软件工程中的结构化程序设计
软件工程中的结构化程序设计软件工程的基本思想是面对复杂的问题,让软件的开发按照工程的概念、原理、技术和方法模式来实施,有计划地按照要求分阶段实现。
针对大型项目开发,为了保证软件产品质量,提高软件开发效率,在进行详细设计、程序设计之前,必须先确定软件总体结构。
软件总体结构设计的方法主要有结构化设计、面向数据结构的设计和面向对象的设计,其中结构化设计方法是应用最广泛的一种,它是建立良好程序结构的方法,提出了衡量模块质量的标准是“高内聚、低耦合”。
另外,结构化设计(structured design,SD)方法是一种面向过程的设计方法或面向数据流的设计方法,它可以与结构化分析方法、结构化程序设计(structured programming)方法前后呼应,形成了统一、完整的系列化方法。
结构化设计方法以需求分析阶段获得的数据流图为基础,通过一系列映射,把数据流图变换为软件结构图。
结构化程序设计通常使用自上往下的设计模型,开发员将整个程序结构映射到单个小部分。
已定义的函数或相似函数的集合在单个模块或字模块中编码,这意味着,代码能够更有效的载入存储器,模块能在其它程序中再利用。
模块单独测试之后,与其它模块整合起来形成整个程序组织。
程序流程遵循简单的层次化模型,采用“for”、“while”等循环结构。
几乎任何语言都能使用结构化程序设计技术来避免非结构化语言的通常陷阱。
非结构化程序设计必须依赖于开发人员避免结构问题,从而导致程序组织较差。
大多数现代过程式语言都鼓励结构化程序设计。
结构化设计主要有两种图形工具:结构图和层次图。
结构图和层次图基本上是大同小异,都是用来描述软件结构的图形工具,图中设有很多方框,一个方框就代表一个模块,框内注明模块的名字或主要功能;方框之间的箭头(或直线)用来表示模块的调用关系。
二者描述重点不一样。
1.结构图结构图主要描述软件结构中模块之间的调用关系和信息传递问题。
基本成分有模块、调用和数据。
软件架构详解(附图)
软件架构详解(附图)软件架构(software architecture)软件架构(software architecture)是一系列相关的抽象模式,用于指导大型软件系统各个方面的设计。
软件架构是一个系统的草图。
软件架构描述的对象是直接构成系统的抽象组件。
各个组件之间的连接则明确和相对细致地描述组件之间的通讯。
在实现阶段,这些抽象组件被细化为实际的组件,比如具体某个类或者对象。
在面向对象领域中,组件之间的连接通常用接口_(计算机科学)来实现。
软件体系结构是构建计算机软件实践的基础。
与建筑师设定建筑项目的设计原则和目标,作为绘图员画图的基础一样,一个软件架构师或者系统架构师陈述软件构架以作为满足不同客户需求的实际系统设计方案的基础。
从和目的、主题、材料和结构的联系上来说,软件架构可以和建筑物的架构相比拟。
一个软件架构师需要有广泛的软件理论知识和相应的经验来实施和管理软件产品的高级设计。
软件架构师定义和设计软件的模块化,模块之间的交互,用户界面风格,对外接口方法,创新的设计特性,以及高层事物的对象操作、逻辑和流程。
架构是在组件,彼此间和与环境间的关系,引导设计发展原则中体现的系统的基本结构。
软件体系结构是构建计算机软件实践的基础。
与建筑师设定建筑项目的设计原则和目标,作为绘图员画图的基础一样,一个软件架构师或者系统架构师陈述软件构架以作为满足不同客户需求的实际系统设计方案的基础。
软件构架是一个容易理解的概念,多数工程师(尤其是经验不多的工程师)会从直觉上来认识它,但要给出精确的定义很困难。
特别是,很难明确地区分设计和构架:构架属于设计的一方面,它集中于某些具体的特征。
软件架构是指在一定的设计原则基础上,从不同角度对组成系统的各部分进行搭配和安排,形成系统的多个结构而组成架构,它包括该系统的各个组件,组件的外部可见属性及组件之间的相互关系。
组件的外部可见属性是指其他组件对该组件所做的假设。
在“软件构架简介”中,David GArlan和 Mary Shaw认为软件构架是有关如下问题的设计层次:“在计算的算法和数据结构之外,设计并确定系统整体结构成为了新的问题。
软件工程结构化分析与设计
例题
请给出购书申请的数据字典定义:一份
申请对应一个学生,内容包括学生的学 号、姓名、班级和他(她)所领全部教 材的书号、书名和数量。其中学号由阿 拉伯数字组成,姓名可选。
购书申请=学号+(姓名)+{书号+书名+数量}
工资 奖金 ≤1000—8%+500 >1000—8%
≤1000—5%+300 >1000—5%
≤1000—6%+300 >1000—6%
≤1000—4%+200 >1000—4%
例题
一个加工用来完成商店促销活动中的金
额计算,规定:消费不超过100元,享受 8折;消费100-500,享受7折;消费超过 500享受6折。且如果是会员则再减20。
用判定树描述该加工说明
消费额
<100
会员
是 否
优惠
8折-20 8折
优惠策略
100-500
是 否
>500
是 否
7折-20 7折
6折-20 6折
(4)E-R图
备注:若关系没有属性,则可以省略
E-R图向数据表的转换
一对一:两个实体可合并成一个表
0:1
学生
1:1
床铺
学生{学号,姓名,床铺号,上下,……}
(2)数据字典(DD)
对软件中的每个数据规定一个定义条目,
以保持数据在系统中的一致性
数据项:只含一个数据,又称为数据元素 数据流:由多个相关数据项组成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
耦合类型
• 标记耦合
模块间通过参数传递复杂的内部数据结 构,称为标记耦合。此数据结构的变化将使相关的模 块发生变化。 模块间通过参数传递基本类型的数据, 称为数据耦合。
B
• 数据耦合
• 非直接耦合 模块间没有信息传递时,属于非直接耦
合。
内容耦合举例 Entry1 …… Entry1 ……
多入口模块 B
• 一个模块的扇出过大通常意味着该模块比较复 杂,然而扇出太少,可能导致深度的增加
– 一般情况,一个模块的扇出以3~9为宜
B
• 一用(reuse)程度,因此模块的 扇入越大越好
软件设计中的概念
• 模块化 • 抽象信息局部化 • 模块独立性 • 耦合 • 内聚
B
模块独立性 • 模块独立性是软件系统中每个模块只涉
及软件要求的具体子功能,而和软件系 统中其他的模块接口是简单的。 • 模块独立的概念是模块化、抽象、信息 隐蔽和局部化概念的直接结果。 B • 重要概念:耦合、内聚
模块独立性的度量
模块独立性取决于模块的内部和外部特征。 SD方法提出的定性的度量标准: • 模块之间的耦合性 • 模块自身的内聚性
B
耦合
• 耦合是对一个软件结构内各个模块之间互连程 度的度量。 • 耦合强弱取决于模块间接口的复杂程度,调用 模块的方式,以及通过接口的信息。 • 根据模块间耦合程度的强弱的标准,划分耦合 类型,共有七种。
B
图示
紧密耦合-有 很多依赖关系 松散耦合-有 少量依赖关系
B
无耦合-没有依赖关系
耦合类型(高→低)
Sc图
DFD
(问题结构)
映射
软件系统的结构 B
(程序结构)
结构化设计
• 强调模块化、自顶向下逐步求精、信息隐 蔽、高内聚低耦合等设计准则 • 分为概要设计和详细设计两大步骤
– 概要设计是对软件系统的总体设计,采用结构化设 计方法,其任务是:将系统分解成模块,确定每个 模块的功能、接口(模块间传递的数据)及其调用关系, 并用模块及其对模块的调用来构建软件的体系结构 B – 详细设计是对模块实现细节的设计,采用结构化程 序设计(Structured Programming,简称SP)方法
• 数据(data):模块调用时需传递的参数可通过 在调用箭头旁附加一个小箭头和数据名来表 B 示
结构图的几个概念
• 深度:程序结构图中控制的层数,例如图中所示的结构图的 深度是5 • 宽度:程序结构图中同一层次上模块总数的最大值,例如图 中所示的结构图的宽度为7 • 扇出(fan out):该模块直接调用的模块数目。例如,例如图中 模块M的扇出是4,模块A的是2,模块B的扇出是1 • 扇入(fan in):能直接调用该模块的模块数目。例如图中模块 G的扇入是1,模块I的扇入是2,模块R的扇入是4
W B E G I H J 宽度 K 扇出 C L N O R M P 扇入 Q
A 深度 F D
B
相关指标的含义
• 深度和宽度在一定程序上反映了程序的规模和 复杂程度
– 相对而言,如果程序结构图的深度和宽度较大,则说明 程序的规模和复杂程度都较大。 – 模块的扇入扇出会影响结构图的深度和宽度,例如减少 模块的扇出,可能导致宽度变小而深度增加
A
B
A B
模块代码重叠
一模块直接访问 另一模块的内部 信息 (程序代码 或数据)
最不好的耦合形式 !!!
B
现实世界
面 向 OOA 对 象 开 OOD 发 方 法 OOP
结 构 化 开 发 方 法
结构化 分析SA
结构化 设计SD
结构化 编程SP B
计算机世界
软件设计任务
管理观点
概要设计 详细设计
数据设计 系统结构设计
技术观点
B
过程设计
软件设计方法分类
分 类
代 表
结构化设计方法
面向数据流的设计或者 过程驱动的设计 面向数据结构的设计或 者数据驱动设计 面向对象设计
• 内容耦合 当一个模块直接修改或操作另一个模块的数
据,或者直接转入另一个模块时,就发生了内容耦合。 此时,被修改的模块完全依赖于修改它的模块。
• 公共耦合两个以上的模块共同引用一个全局数据项就称
为公共耦合。
B • 控制耦合一个模块在界面上传递一个信号(如开关值、
标志量等)控制另一个模块,接收信号的模块动作根据 信号值进行调整,称为控制耦合。
• SA、SD和SP构成完整的结构化方法体系
结构图(SC)
• 用结构图(Structure Chert)来描述软件系统 的体系结构 • 描述一个软件系统由哪些模块组成,以及 模块之间的调用关系 • 结构图的基本成分有:模块、调用和数据
B
模块
• 模块(module):指具有一定功能的可以用 模块名调用的一组程序语句,如函数、子 程序等 • 它们是组成程序的基本单元 • 一个模块具有其外部特征和内部特征
B
模块化
• 模块是数据说明、可执行语句等程序对象的集
合,模块可以单独被命名,可通过名字访问。 例如,过程、函数、子程序、宏等等都可作为 模块。
• 模块化就是把程序划分为若干个模块,每个
模块具有独立子功能,再把各个模块集成后, B 实现指定功能,满足问题要求。
抽象化
• 抽象就是抽出事务的本质特性而暂不考虑细节 问题,是人类在认识复杂现象中使用的最强有 力工具。 • 软件工程过程的每一步都是对问题的软件解法 抽象层次的一次精化。 • 逐步求精与抽象是紧密相关的
LCP,JSP,DSSD
Coad,Yourdon
结构化设计方法(Structured B Design ,SD)基于模块化、自 顶向下逐层细化、结构化程序 设计等程序设计技术上发展起 来的。
结构化设计
• 结构化设计(Structured Design,简称SD)是一种 将结构化分析得到的数据流图映射成软件体系 结构的设计方法
– 外部特征包括:模块的接口(模块名、输入/输出参数、返 回值等)和模块的功能 B – 内部特征包括:模块的内部数据和完成其功能的程序代码
• 在SD中,我们只关注模块的外部特征,而 忽略其内部特征
调用和数据
• 调用(call):用从一个模块指向另一个模块的 箭头来表示,其含义是前者调用了后者
– 为了方便,有时常用直线替代箭头,此时,表示位于上 方的模块调用位于下方的模块