高中数学教学案例设计汇编中部

合集下载

高中数学教学设计案例(优秀4篇)

高中数学教学设计案例(优秀4篇)

高中数学教学设计案例(优秀4篇)高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。

教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。

二。

学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。

三。

教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。

(1)认真把握“标准”的教学要求。

(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。

(3)关注现代信息技术的运用。

(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。

平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。

这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。

2、以老师的精心备课与充满激情的教学,换取学生学习高效率。

3.将学校和教研组安排的有关工作落到实处。

高中数学教学设计案例篇二以现代教育理论,教学大纲和考纲为指导,以课本和大纲为依据,全面贯彻党的教育方针,积极实施和推进素质教育,提高学生的学习能力。

不仅使学生掌握高中数学基础知识与能力,而且要从全方位培养学生的创新意识,创新精神。

本学期执教班次是高二6班的文科班的数学教学,基础好的学生较少,绝大多数学生数学基础极差。

且成绩参次不齐,针对这种情况,必须要因材施教,充分调动学生学习积极性,提高学生的学习兴趣,力争本学期数学教学上新台阶。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

高中数学教案设计范例优秀3篇

高中数学教案设计范例优秀3篇

高中数学教案设计范例优秀3篇篇一:高中数学教案设计范例篇一一、复习内容平面向量的概念及运算法则二、复习重点向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

三、具体教学过程1、学生准备课前预习回家做作业。

其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。

学生的准备可以从中选择一项,学有余力的同学可以多选。

2、学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。

并以书面的形式给出,可充分利用投影的方式展示给学生。

3、教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。

4、教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。

5、在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。

6、课尾教师进行点评、归纳、小结(由学生自己完成),并评选本课“主讲明星”与“评议”。

四、案例分析及其反思1、让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。

2、由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。

高中数学教案(精选7篇)

高中数学教案(精选7篇)

高中数学教案(精选7篇)高中数学教案篇一一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。

恰当地利用定义解题,许多时候能以简驭繁。

因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。

在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

四、教学目标1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣。

五、教学重点与难点:教学重点1.对圆锥曲线定义的理解2.利用圆锥曲线的定义求“最值”3.“定义法”求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计【设计思路】(一)开门见山,提出问题一上课,我就直截了当地给出——例题1:(1) 已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线【设计意图】定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

高中数学优秀教学案例范文(必备3篇)

高中数学优秀教学案例范文(必备3篇)

高中数学优秀教学案例范文第1篇一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?高中数学优秀教学案例范文第2篇教学目的:掌握圆的标准方程,并能解决与之有关的问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3⒉指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=0⒊判断3x-4y-10=0和x2+y2=4的位置关系⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

高中数学教学案例 (2)

高中数学教学案例 (2)

高中数学教学案例一、案例背景本案例以高中数学教学为背景,旨在探讨如何通过实际案例引导学生在数学学习中发展思维能力和解决问题的能力。

通过充分利用教材资源和创造性地设计教学活动,旨在激发学生的学习兴趣,提高学习效果,促进学生主动探索和积极参与。

二、案例内容1. 图形的平移案例中的学生将通过对图形的平移来理解平移的基本概念和相关性质。

教师可以通过引入实际生活中的例子,如地图上的城市位置变化等,来激发学生的兴趣。

教师可以设计一些具体的问题,让学生通过图形的平移来解决,如:一个三角形经过平移后,其顶点坐标分别为(-3, 2),(-1, 4),(2, -1),请问平移向量是多少?2. 统计与概率在该案例中,学生将通过实际数据分析和统计来研究概率的概念和计算方法。

教师可以提供一些生活中的数据,如学生的身高、体重等,让学生通过计算概率来解决问题。

例如:某班级学生的身高数据如下:165cm,170cm,155cm,175cm,160cm,请问身高超过170cm的概率是多少?3. 函数与方程在这个案例中,学生将通过实际场景来理解函数与方程的关系。

教师可以以购买商品为例,引导学生建立价格与数量之间的数学模型,通过解方程组的方法来找到最优解。

例如:某种商品的售价为x元,已知每件商品的成本为10元,为了获得最大利润,售价应该是多少?4. 三角函数在这个案例中,学生将通过具体的例子来理解三角函数的概念和用途。

教师可以通过实际生活中的角度问题,如日晷的影子长度变化等,来引导学生理解三角函数的概念。

例如:太阳高度角的变化规律是什么?请问,当太阳高度角为30度时,太阳的仰角是多少?三、案例教学设计1. 教学目标•理解数学知识在实际问题中的应用•培养学生的解决问题的能力•提高学生的思维逻辑能力•激发学生学习数学的兴趣2. 教学过程•引入:通过和学生交流,激发他们的学习兴趣,并提出问题引导学生思考。

•主体:根据不同的案例内容,设计不同的教学活动和问题,引导学生思考和解决问题。

高中数学教学案例 高中数学教学设计案例

高中数学教学案例 高中数学教学设计案例

高中数学教学案例高中数学教学设计案例一、前言高中数学的学习不同于初中数学,初中数学重视的是数学方法的教学,而高中数学则更重视数学思维的培养。

高中数学的难度较高,且知识的综合性较大。

缺乏一定逻辑思维和数学思想的学生在学习的时候会感到吃力,面对问题会感到无从下手。

这种现象并不是个别的,而是普遍存在的。

这就要求教师在教学中要有意识地培养学生的数学思想以及逻辑思维能力,化归思想就是其中一个重要而且常用的数学思想。

二、什么是化归思想简单的来说,化归思想就是把未知问题化为已知问题,以转化为核心,化难为易、化繁为简。

具体的来说,化归思想就是在解决数学问题时,结合已有知识以及有效的手段,将有待研究解决的数学问题转化为相对来说比较容易解决的问题。

这种思维方法在数学学习中的作用十分大,且在数学问题的解决中几乎无处不在。

化归思想最基本的功能是将陌生的问题转化为熟悉的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为简单的问题。

通过转换,使得问题便于解决。

想要灵活运用化归思想,首先要善于寻找事物之间的联系,学会用相互制约的观点来看待问题。

只有善于发现事物之间的联系,才能通过联系运用化归思想来进行转化。

这就要求教师在日常授课中有意识地引导学生将所学知识相互联系,寻求他们的共通点。

在解决数学问题时,化归思想具体可以表现为待定系数法、配方法、整体代入法等。

三、化归思想的运用原则化归思想在数学中的作用大且广泛,但并不是任何情况都能使用化归思想。

在使用化归思想解决数学问题时需要掌握以下原则:1.熟悉化原则将未知问题结合已有的知识以及解题经验,加以转化变为已知熟悉的问题,这就是熟悉化原则。

熟悉化原则的例子很多,在解决基本初等函数的问题时,就常常使用代换法来将复杂的函数转化为较简单的函数进行计算。

2.简单化原则3.直观化原则直观化需要运用化归思想,将较为抽象的问题转化为具体的问题,使得问题难度下降。

圆锥曲线中将图形用方程来表示,就是一个从抽象到具体的转化,使得抽象的图形可以通过具体方程的运算来求的相关数据。

高中数学教学案例设计大赛获奖作品汇编27篇

高中数学教学案例设计大赛获奖作品汇编27篇

高中数学教学设计大赛获奖作品汇编目 录1、集合与函数概念实习作业……………………………………2、指数函数的图象及其性质……………………………………3、对数的概念…………………………………………………4、对数函数及其性质(1)……………………………………5、对数函数及其性质(2)……………………………………6、函数图象及其应用……………………………………7、方程的根与函数的零点……………………………………8、用二分法求方程的近似解……………………………………9、用二分法求方程的近似解……………………………………10、直线与平面平行的判定……………………………………11、循环结构 …………………………………………………12、任意角的三角函数(1)…………………………………13、任意角的三角函数(2)……………………………………14、函数sin()y A x ωϕ=+的图象…………………………15、向量的加法及其几何意义………………………………………16、平面向量数量积的物理背景及其含义(1)………………17、平面向量数量积的物理背景及其含义(2)……………………18、正弦定理(1)……………………………………………………19、正弦定理(2)……………………………………………………20、正弦定理(3)……………………………………………………21、余弦定理………………………………………………22、等差数列………………………………………………23、等差数列的前n项和………………………………………24、等比数列的前n项和………………………………………25、简单的线性规划问题………………………………………26、拋物线及其标准方程………………………………………27、圆锥曲线定义的运用………………………………………前言为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。

高中数学教学优秀教案(精选4篇)

高中数学教学优秀教案(精选4篇)

高中数学教学优秀教案(精选4篇)高中数学教案篇一1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2、能根据几何结构特征对空间物体进行分类。

3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

1、情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2、展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?5、典型例题例1:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

高中数学优秀教学设计案例(全)

高中数学优秀教学设计案例(全)

高中数学优秀教学设计案例(全)获奖作品汇编(上部)目录1、集合与函数概念实习作业2、指数函数的图象及其性质3、对数的概念4、对数函数及其性质(1)5、对数函数及其性质(2)6、函数图象及其应用7、方程的根与函数的零点8、用二分法求方程的近似解9、用二分法求方程的近似解10、直线与平面平行的判定11、循环结构12、任意角的三角函数(1)13、任意角的三角函数(2)14、函数yAin(某)的图象15、向量的加法及其几何意义16、平面向量数量积的物理背景及其含义(1)17、平面向量数量积的物理背景及其含义(2)18、正弦定理(1)19、正弦定理(2)20、正弦定理(3)21、余弦定理22、等差数列23、等差数列的前n项和24、等比数列的前n项和25、简单的线性规划问题26、拋物线及其标准方程27、圆锥曲线定义的运用前言在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。

部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。

谢谢你们!1、集合与函数概念实习作业一、教学内容分析二、学生学习情况分析该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。

学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。

特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

高中数学教案教学设计10篇

高中数学教案教学设计10篇

高中数学教案教学设计10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学教案教学设计10篇作为学校的一名老师,经常需要准备一份优秀的教案,借助教案可以让教学工作更科学化。

2023最新-最新高中数学教学设计案例优秀8篇

2023最新-最新高中数学教学设计案例优秀8篇

最新高中数学教学设计案例优秀8篇作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么大家知道正规的教案是怎么写的吗?这次牛牛范文为您整理了8篇最新高中数学教学设计案例,亲的肯定与分享是对我们最大的鼓励。

高中数学教学设计案例篇一( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。

不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

高中数学教学案例设计汇编

高中数学教学案例设计汇编

高中数学教学案例设计汇编(下部)19、正弦定理(2)一、教学内容分析本节内容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。

根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。

学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。

二、学情分析对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。

根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。

三、设计思想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

四、教学目标:1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。

高中数学教案(8篇)

高中数学教案(8篇)

高中数学教案(8篇)高中数学教案篇一1.课题填写课题名称(高中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。

.。

.。

.知识,提高学生解决实际问题的能力;(2)过程与方法:通过。

.。

.。

.(讨论、发现、探究),提高。

.。

.。

.(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4、教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5、教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。

可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。

设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。

)(3)课堂小结教师提问,学生回答本节课的收获。

(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。

6、教学板书2.高中数学教案格式一.课题(说明本课名称)二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)三.课型(说明属新授课,还是复习课)四.课时(说明属第几课时)五.教学重点(说明本课所必须解决的关键性问题)六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)七.教学方法要根据学生实际,注重引导自学,注重启发思维八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)九.作业处理(说明如何布置书面或口头作业)十.板书设计(说明上课时准备写在黑板上的内容)十一.教具(或称教具准备,说明辅助教学手段使用的工具)十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)3.高中数学教案范文【教学目标】1、知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇引言本文将介绍十篇高中数学优秀教学案例,这些案例不仅能够激发学生对数学的兴趣,还能够提高他们的数学理解和解决问题的能力。

案例1:数列与函数的关系这个案例通过数列与函数的关系展示了数学的实际应用。

学生通过分析数列与函数之间的规律,掌握了数学模型的建立和使用方法。

案例2:应用题解决这个案例通过一系列应用题,让学生综合运用所学的知识来解决实际问题。

学生通过解决这些应用题,培养了数学思维和问题解决能力。

案例3:图形的变换这个案例通过图形变换来帮助学生理解几何知识。

学生通过观察图形的变换规律,加深了对几何知识的理解。

案例4:概率统计这个案例将概率与统计应用于实际生活中的问题中。

学生通过统计数据和计算概率,培养了数据分析和推理能力。

案例5:三角函数的应用这个案例通过三角函数的应用,让学生更好地理解三角函数的概念和用途。

学生通过解决实际问题,进一步巩固了三角函数的知识。

案例6:平面向量的运算这个案例通过平面向量的运算,让学生掌握向量的性质和运算规律。

学生通过解决向量运算的问题,提高了数学建模和计算能力。

案例7:解析几何的应用这个案例通过解析几何的应用,让学生熟练运用解析几何的方法解决几何问题。

学生通过解决实际问题,进一步加深了对解析几何的理解。

案例8:数学建模这个案例通过数学建模,让学生在实际问题中运用数学知识进行建模分析。

学生通过解决实际问题,培养了数学建模和分析能力。

案例9:数学思维训练这个案例通过数学思维训练,提供了一系列拓展性的数学问题和思考方法。

学生通过解决这些问题,培养了创新思维和数学思维能力。

案例10:数学竞赛解题这个案例通过数学竞赛解题,让学生在竞争中锻炼和提高自己的数学能力。

学生通过参与数学竞赛,培养了良好的数学竞赛素养。

总结这些高中数学优秀教学案例涵盖了数学的各个知识点和应用领域,能够帮助学生提高数学能力和解决问题的能力。

教师可以根据实际情况选择合适的案例来进行教学,激发学生对数学的兴趣和热爱。

高中数学教学设计案例 高中数学教学设计案例分析(优秀4篇)

高中数学教学设计案例 高中数学教学设计案例分析(优秀4篇)

高中数学教学设计案例高中数学教学设计案例分析(优秀4篇)高中数学教学设计案例高中数学教学设计案例分析篇一1、探究式教学模式的含义。

探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。

它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神【白话文】。

可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。

2、堂探究式教学的实质。

课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。

具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。

在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。

这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。

二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。

这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。

3、探究式教学模式的特征。

(1)问题性。

问题性是探究式教学模式的关键。

能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。

恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。

现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。

高中数学教学设计优秀案例

高中数学教学设计优秀案例

高中数学教学设计优秀案例一、教学任务及对象1、教学任务本教学设计针对的是高中数学课程,以“高中数学教学设计优秀案例”为主题,旨在通过一系列精心设计的课堂教学活动,使学生深入理解数学概念,掌握数学方法,并能在实际问题中灵活运用。

具体任务包括:通过案例解析,让学生掌握数学问题的分析方法;运用数学模型解决实际问题;提高学生的数学思维能力与解题技巧;培养学生合作学习及探究学习的能力。

2、教学对象本次教学设计的对象为高中二年级的学生。

经过之前的学习,他们已经具备了一定的数学基础知识,能进行简单的数学推理和运算。

但学生在面对复杂问题时,可能存在分析能力不足、解题思路不清晰等问题。

因此,在教学过程中,需要针对学生的实际情况,采用适当的教学策略,帮助他们提高数学素养,培养解决问题的能力。

同时,考虑到学生的个体差异,教学中应注重因材施教,激发学生的学习兴趣,使他们在数学学习中找到适合自己的方法。

二、教学目标1、知识与技能(1)理解并掌握高中数学的基本概念、定理和公式,能够熟练运用这些知识解决实际问题。

(2)掌握数学问题的分析方法,具备一定的数学推理和逻辑思维能力。

(3)学会运用数学模型解决实际生活中的问题,提高数学应用能力。

(4)培养良好的数学运算习惯,提高运算速度和准确度。

(5)掌握高中数学的主要解题方法和技巧,形成自己的解题思路。

2、过程与方法(1)通过自主探究、合作学习等方式,让学生在探索中学习,培养他们的自主学习能力。

(2)运用案例分析、问题驱动等教学方法,引导学生从实际问题中发现数学问题,培养他们的观察能力和问题解决能力。

(3)设计不同难度的练习题,使学生在实践中逐步提高,培养他们的数学思维能力。

(4)鼓励学生多角度、多维度地思考问题,培养他们的创新意识和发散性思维。

(5)注重课堂小结,让学生总结所学知识,提高归纳总结能力。

3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,使他们积极主动地参与数学学习。

高中数学教学案例设计汇编中部

高中数学教学案例设计汇编中部

直线与平面平行的判定一、教学内容分析本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系并完成下表:(多媒体幻灯片演示)我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗谈谈你的看法,并指出是否有别的判定途径。

高中数学教学案例设计总汇编中部

高中数学教学案例设计总汇编中部

实用文档直线与平面平行的判定一、教学内容分析本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面 有哪几种位置关系?并完成下表:(多媒体幻灯片演示)我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面平行的判定一、教学容分析本节教材选自人教A版数学必修②第二章第一节课,本节容在立几学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面 有哪几种位置关系?并完成下表:(多媒体幻灯片演示)我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。

](二)判定定理的探求过程1、直观感知提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?生1:例举日光灯与天花板,树立的电线杆与墙面。

生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。

]2、动手实践教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。

又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在心中,学自己身边的数学,领悟空间观念与空间图形性质。

]3、探究思考(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②平面一条直线③这两条直线平行(2)如果平面外的直线a与平面α的一条直线b平行,那么直线a与平面α平行吗?4、归纳确认:(多媒体幻灯片演示)直线和平面平行的判定定理:平面外的一条直线与平面的一条直线平行,则该直线和这个平面平行。

简单概括:(外)线线平行⇒线面平行符号表示:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄温馨提示:作用:判定或证明线面平行。

关键:在平面找(或作)出一条直线与面外的直线平行。

思想:空间问题转化为平面问题(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:(1)判断下列命题的真假?说明理由:①如果一条直线不在平面,则这条直线就与平面平行( )②过直线外一点可以作无数个平面与这条直线平行( )③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )(2)若直线a 与平面α无数条直线平行,则a 与α的位置关系是( )A 、a ||αB 、a ⊂αC 、a ||α或a ⊂αD 、α⊄a[学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。

此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。

]2、作一作:设a 、b 是二异面直线,则过a 、b 外一点p 且与a 、b 都平行的平面存在吗?若存在请画出平面,不存在说明理由?先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。

]3、证一证:例1(见课本60页例1):已知空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点,求证:EF || 平面BCD 。

变式一:空间四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 中点,连结EF、FG、GH、HE、AC、BD请分别找出图中满足线面平行位置关系的所有情况。

(共6组线面平行)变式二:在变式一的图中如作PQ EF,使P点在线段AE上、Q点在线段FC上,连结PH、QG,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH、PQGH分别是怎样的四边形,说明理由。

[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。

]例2:如图,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC与C1D1中点,求证:EF|| 平面BDD1B 1分析:根据判定定理必须在平面BDD1B1找(作)一条线与EF平行,联想到中点问题找中点解决的方法,可以取BD或B1D1中点而证之。

思路一:取BD中点G连D1G、EG,可证D1GEF为平行四边形。

思路二:取D1B1中点H连HB、HF,可证HFEB为平行四边形。

[知识:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。

平行问题找中点解决是个好途径好方法。

这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]4、练一练:练习1:见课本6页练习1、2练习2:将两个全等的正方形ABCD和ABEF拼在一起,设M、N分别为AC、BF中点,求证:MN || 平面BCE。

变式:若将练习2中M、N改为AC、BF分点且AM = FN,试问结论仍成立吗?试证之。

[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。

](四)总结先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):1、线面平行的判定定理:平面外的一条直线与平面的一条直线平行,则该直线与这个平面平行。

2、定理的符号表示:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄简述:(外)线线平行则线面平行3、定理运用的关键是找(作)面的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

七、教学反思本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。

比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。

然后引导学生从中抽象概括出定理。

本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。

本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。

省第一中学叶洪康点评本节课教师利用教室现有实物,如日光灯管、地面、教师个人、门等做教具,让学生认识和理解直线和平面平行的理由和条件。

学生在应用观察、猜想等手段探索研究判定定理时,能获得视觉上的愉悦,增强探求的好奇心。

学生经过思维活动,从中找出一类事物的本质属性,最后通过概括得出新的数学概念。

创设的问题情景有效,能遵循认识规律,从感性到理性,从具体到抽象。

本节课的设计符合新课程立几中“直观感知——操作确认——思辩论证”的教学理念。

整体设计中规中矩,自然流畅。

教师对问题、例题的设计都别具匠心,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固已有知识,又为新知识提供了附着点,充分体现学生的主体地位。

本节课蕴涵着化归思想,设计中注重对学生进行思想方法的训练,通过一题多解、一题多变,渗透了联系与转化的思想,使学生学会思考、掌握方法,有利于培养学生思维的广阔性与深刻性。

相关文档
最新文档