压杆的稳定性

合集下载

压杆稳定性验算公式

压杆稳定性验算公式

压杆稳定性验算公式压杆稳定性是工程结构设计中需要考虑的一个重要问题。

在许多工程应用中,压杆一般用于承受压力作用的结构元素,如柱子、桁架等。

压杆的稳定性验算是为了判断压杆在承受压力时是否会发生屈曲或失稳的现象,需要通过计算并比较压力作用下的抗弯稳定能力和压杆的承载能力。

压杆在弯曲中的稳定性主要受压杆的几何形状、材料特性、边界条件以及压力作用方向等因素的影响。

一般来说,压杆的稳定性验算可以采用欧拉公式、约束系数法和有限元法等方法进行。

欧拉公式是一种经典的压杆稳定性验算方法,其基本原理是根据压杆的截面形状和尺寸来计算压杆的临界压力,然后和实际压力进行比较,从而评估压杆的稳定性。

欧拉公式的基本形式如下:Pcr = (π^2EI)/(kl)^2其中Pcr为压杆的临界压力(也称为临界载荷)E为材料的弹性模量I为压杆的截面惯性矩k为约束系数(取决于边界条件,一般为纵横比的函数)l为压杆的有效长度。

欧拉公式适用于压杆为理想长细杆的情况,即压杆的长度远大于其截面的最小尺寸,并且边界条件是固定或铰支的。

对于实际情况下的压杆验算,可以根据具体条件和要求进行修正或改进。

约束系数法是一种更为精确的压杆稳定性验算方法,它考虑了压杆的几何形状、材料特性以及边界条件等因素的影响。

其基本原理是根据压杆的几何形状以及约束条件,在一系列已知的稳定压力下进行试算,从而得到压力-破坏应力的关系曲线。

然后根据工程要求,找到落在这条曲线上的设计压力,从而评估压杆的稳定性。

约束系数法的计算过程较为复杂,需要进行较多的计算和试算,但可以得到更为准确的结果。

在实际工程中,一般可以借助计算机辅助设计软件进行约束系数法的计算。

有限元法是一种现代化的验算方法,通过将大型结构划分为小型有限元,然后进行数值计算,得到压杆的应力和变形情况,从而评估压杆的稳定性。

有限元法充分考虑了压杆的复杂几何形状、材料非线性以及边界条件的影响,具有较高的精度和适用性。

以上介绍的是压杆稳定性验算的一些基本方法和原理。

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

材料力学第九章 压杆稳定

材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望

提高压杆稳定性的措施

提高压杆稳定性的措施

提高压杆稳定性的措施引言压杆是一种常见的工程结构,在许多领域中都有广泛应用,例如建筑、机械工程等。

然而,由于外界因素的干扰或设计不当,压杆的稳定性可能会受到影响,导致安全隐患和性能下降。

因此,提高压杆稳定性是非常重要的。

本文将介绍一些提高压杆稳定性的措施,涵盖了材料选择、结构设计和应用方法等方面。

1. 材料选择材料的选择对于压杆的稳定性具有重要影响。

以下是一些措施可以提高材料的稳定性:•强度:选择高强度的材料可以提高杆件的抗弯刚度,减少因扭曲和挠度导致的不稳定性。

•塑性:材料的塑性越大,即在超过屈服点后仍能延展,可以提高杆件的能量吸收能力,从而提高稳定性。

•抗腐蚀性:如果压杆在恶劣环境中使用,选择具有抗腐蚀性的材料可以延长压杆的使用寿命,并减少外界因素对稳定性的影响。

2. 结构设计良好的结构设计是确保压杆稳定性的重要条件。

以下是一些结构设计方面的措施:•适当选择剖面形状:选择适当的压杆剖面形状可以提高其抗弯刚度和稳定性,例如矩形、圆形或I型剖面。

•增加支撑点:在压杆的负荷路径上增加适当数量和位置的支撑点可以有效地减少压杆的挠度和变形,提高稳定性。

•增加剪切连接:通过增加剪切连接来加强压杆的稳定性,例如使用焊接、螺栓连接或搭接连接等。

•考虑过载情况:在设计过程中考虑到可能的过载情况,并采取相应的措施以确保压杆在不稳定情况下的安全性。

3. 应用方法合理的应用方法也能提高压杆的稳定性。

以下是一些应用方法方面的措施:•适当的预压:在使用压杆之前,进行适当的预压可以减小压杆受力后的变形,提高后续使用时的稳定性。

•控制温度变化:温度变化会导致压杆结构的膨胀或收缩,进而影响其稳定性。

控制温度变化可以采取隔热、冷却、通风等措施。

•合理的负荷分配:在实际应用中,合理分配负荷是确保压杆稳定性的关键。

通过考虑实际应力和挠度等因素,合理分布和调整负荷,可以提高稳定性。

4. 定期维护进行定期维护可以确保压杆稳定性的长期有效性。

压杆稳定性计算公式例题

压杆稳定性计算公式例题

压杆稳定性计算公式例题在工程结构设计中,压杆是一种常见的结构元素,用于承受压力和稳定结构。

在设计过程中,需要对压杆的稳定性进行计算,以确保结构的安全性和稳定性。

本文将介绍压杆稳定性计算的基本原理和公式,并通过一个例题进行详细说明。

压杆稳定性计算的基本原理。

压杆稳定性是指压杆在受压力作用下不会发生侧向屈曲或失稳的能力。

在进行压杆稳定性计算时,需要考虑压杆的材料、截面形状、长度、支座条件等因素,以确定其稳定性。

一般来说,压杆的稳定性可以通过欧拉公式或约束条件来计算。

欧拉公式是描述压杆稳定性的经典公式,其表达式为:Pcr = (π^2 E I) / (K L)^2。

其中,Pcr表示压杆的临界压力,E表示弹性模量,I表示截面惯性矩,K表示约束系数,L表示压杆的有效长度。

这个公式是基于理想的弹性理论,适用于较长的细杆,但在实际工程中,压杆的稳定性计算可能还需要考虑其他因素。

除了欧拉公式外,压杆稳定性计算还需要考虑约束条件。

约束条件是指压杆在受力时的支座和边界条件,对压杆的稳定性有重要影响。

在实际工程中,约束条件可以通过有限元分析等方法来确定,以获得更精确的稳定性计算结果。

压杆稳定性计算的例题分析。

下面我们通过一个例题来说明压杆稳定性计算的具体步骤和方法。

假设有一根长度为2m的钢质压杆,截面形状为矩形,截面尺寸为100mm ×50mm,弹性模量为2.1 × 10^5 N/mm^2。

现在需要计算在这根压杆上施加的最大压力,使得其不会发生侧向屈曲或失稳。

首先,我们需要计算压杆的有效长度。

对于简支压杆,其有效长度可以通过以下公式计算:Le = K L。

其中,K为约束系数,对于简支压杆,K取1。

所以,这根压杆的有效长度为2m。

接下来,我们可以使用欧拉公式来计算压杆的临界压力。

根据欧拉公式,可以得到:Pcr = (π^2 E I) / L^2。

其中,E为弹性模量,I为截面惯性矩。

根据矩形截面的惯性矩公式,可以计算得到I = (1/12) b h^3 = (1/12) 100mm (50mm)^3 = 5208333.33mm^4。

压杆·稳定性

压杆·稳定性

=
2 ,因为 h>b ,则 I y
=
hb3 12
< bh3 12
=
Iz ,由式(10.3)得
Pcr
=
π 2 EI (μl)2
=
π2
× (200 ×103
MPa) × ( 1 × 40 mm × (20 12
(2 ×1000 mm)2
mm)3 ) ≈13200
N
= 13.2
kN
10.2.2 临界应力
当压杆受临界压力作用而维持其不稳定直线平衡时,横截面上的压应力仍然可按轴向压
10.3.2 临界应力经验公式与临界应力总图
在工程实际中,常见压杆的柔度λ 往往小于 λp ,即 λ<λp ,这样的压杆横截面上的应力 已超过材料的比例极限,属于弹塑性稳定问题。这类压杆的临界应力可通过解析方法求得, 但通常采用经验公式进行计算。常见的经验公式有直线公式与抛物线公式等,这里仅介绍直 线公式。把临界应力 σcr 与柔度λ 表示为下列直线关系称为直线公式。
式中,λ 称为压杆的柔度或长细比,为无量纲量,它综合反映了压杆的长度、约束形式及截 面几何性质对临界应力的影响。于是,式(10.4)中的临界应力可以改写为
·219·
材料力学
σ cr
=
π2E λ2
式(10.6)是欧拉公式(10.3)的另一种表达形式,两者并无实质性差别。
(10.6)
10.3 欧拉公式的适用范围·临界应力总图·直线公式
2
≤σ
p

λ≥π E σp
(10.7)

于是条件式(10.7),可以写成
λP = π
E σp
(10.8)
λ ≥ λp
(10.9)

第十三章压杆的稳定性

第十三章压杆的稳定性

(a)
(b)
7
§ 13-2
细长压杆的临界力
w A sin kx B cos kx (c)
将边界条件x=0,w=0代入式(c)得 B=0。于是根据(c)式并利用边界条件 x=l,w=0得到
A sin kl 0
由于B=0,故上式中的A不可能等于零,则
sin kl 0
w
解得:kl 0,π, 2π,
φ28 800 C
P=30kN
1
μ1l1 0.5 900 75 i1 6 s 1 P
解: 1.根据已知条件求 s ,P cr1 304 1.12 75 220MPa
a - s 304 - 240 s 57.1 b 1.12
3
§ 13-1
压杆稳定性的概念
2. 理想中心杆件 1. 压杆轴线是理想直线即无初弯曲, 2. 压力作用线与轴线完全重合, 3. 材料是绝对均匀的。
二、失稳(屈曲)
压杆丧失其直线平衡而过渡到曲线平衡,
称为丧失稳定性,简称失稳或屈曲。
4
§ 13-1
压杆稳定性的概念
F<Fcr
F=Fcr
F>Fcr
Fcr:临界压力
F 30 103 2 48.72MPa A2 p 282 4
24
§ 13-4
压杆的稳定性计算
作业:P1076; P10916 思考:P11017; P11018
25
§ 13-4
压杆的稳定性计算
答疑通知
地点:工科二号楼A424(力学系)
时间:17周的周二下午两点;
26
§ 13-4
P=30kN
n2

压杆稳定

压杆稳定
11500 173 p 100 30 i 2 3
设 杆CD的抗弯刚度为EI2 ,则
P B
当 EI2∞ μ 0.7
当 EI20 μ 1.0
杆AB: μ=0.7~1.0
C
EI
EI2
A
D
例:已知 圆截面直钢杆,长度l=2m,直径d=20mm,
弹性模量E=200GPa, 屈服极限s =230MPa
求 按强度理论计算的最大许用载荷PS 按稳定理论计算的最大许用载荷Pcr 解:1) 按强度理论
当P<Pcr ,稳定平衡
Mr
当 P>Pcr ,失稳
当 P=Pcr ,临界平衡
P Pcr
干扰力F
稳定平衡
加干扰力,产生变形 撤去干扰力,变形恢 复。
P Pcr
干扰力F
临界平衡
加干扰力,产生变形 撤去干扰力,变形不 能恢复。
P Pcr
不能平衡
加干扰力,变形将持续 增加。
压杆失稳的内在原因 对于可变形压杆,干扰力 F 起到使压杆脱离 原直线平衡位置的作用,而杆的弯曲变形起 到使压杆恢复原直线平衡位置的作用。压杆 随纵向力P的改变,平衡的稳定性会发生改变 ,由稳定平衡转为不稳定平衡的纵向力临界 值称压杆的临界压力或临界载荷Pcr(critical load);它是压杆保持稳定平衡状态压力的最 大值。
工程上用“经验公式”代替“欧拉公式”。
如:可用直线经验公式: σ cr= a - b λ
a、b为材料常数,见表9-2。
A3钢:a=304MPa,b=1.12MPa
小柔度杆
当直线经验公式σ cr= a - b λ σ s(或σ b)时,
压杆的失效由强度控制。

材料力学课件(压杆稳定性)

材料力学课件(压杆稳定性)

2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st

L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等

第11章压杆稳定

第11章压杆稳定

压杆截面如图所示。两端为柱形铰链约束,
若绕 y 轴失稳可视为两端固定,若绕 z 轴失稳可视为 两端铰支。已知,杆长l=1m ,材料的弹性模量
E=200GPa,sp=200MPa。求压杆的临界应力。
解:
iy 1 3 ( 0 . 03 0 . 02 ) Iy 12 0.0058m A 0.03 0.02
3.压杆失稳:
弹性杆件 稳定直线平衡
F Fcr
F Fcr
F Fcr
F Fcr
微小扰动 恢复直线平衡 不稳定直线平衡
F Fcr
弯曲 除去扰动
v
弯曲
微小扰动
新的弯曲平衡 随遇平衡
除去扰动
F Fcr 除直线平衡形式外,无穷小邻域内,可能微弯平衡

压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
一、两端铰支的细长压杆:
x
Fcr
F M(x)=Fw
l m w B m
m
x
m
B y F
x
y
Fcr
压杆任一 x 截面沿 y 方向的位移 w f ( x ) 该截面的弯矩
M ( x ) Fw
杆的挠曲线近似微分方程
EIw '' M ( x ) Fw
2
( a)
m
F 令k 得 w '' k 2 w 0 (b) EI
16
4.压杆的临界压力: 稳 定 平 衡 临界状态
过 渡
临界压力:Fcr
不 即:使压杆保持在微 稳 弯状态下平衡的最小 定 轴向力。 平 衡
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态

提高压杆稳定性的措施

提高压杆稳定性的措施

提高压杆稳定性的措施压杆是在机械工程和结构工程中经常使用的一种构件,用于支撑、固定或调整结构的位置和形状。

在一些特定的应用中,压杆可能面临着稳定性的问题,因此需要采取一些措施来提高其稳定性。

下面将介绍一些可以提高压杆稳定性的措施。

1.增加固定点的刚度:在压杆两端的固定点,可以通过改变支撑构造或增加支撑的数量来提高固定点的刚度。

增加固定点的刚度可以有效地减小压杆的位移或变形,在很大程度上提高了压杆的稳定性。

2.增加压杆的截面积:压杆的截面积越大,其在承受压力时的变形和变位越小。

因此,增大压杆的截面积可以提高其抗压能力,从而提高压杆的稳定性。

这可以通过增加压杆的直径或者采用更厚的材料来实现。

3.增加材料的强度:材料的强度是压杆稳定性的重要因素之一、因此,可以通过选择强度更高的材料来提高压杆的稳定性。

例如,工程师可以使用高强度钢材来制造压杆,以提高其承载能力和稳定性。

4.增加压杆的长度:增加压杆的长度可以有效地提高其稳定性。

根据欧拉公式,压杆的临界压力与长度成反比。

因此,通过增加压杆的长度,可以降低压杆的临界压力,提高其稳定性。

同时,增加压杆的长度还可以增大其受力面积,分散受力,从而减小应力集中。

5.增加压杆的支撑方式:压杆的支撑方式是影响其稳定性的重要因素之一、传统的支撑方式是在两端固定点进行支撑,可以通过改变支撑点的位置或增加支撑点的数量来提高压杆的稳定性。

此外,还可以采用斜支撑或环形支撑等新型支撑方式,以进一步增加压杆的稳定性。

6.加入支撑构件:在压杆的受力部位加入支撑构件是提高其稳定性的有效手段之一、支撑构件可以通过增加结构的稳定性,使压杆受力更加均匀,减小结构的变形。

根据具体情况,可以选择不同形式和位置的支撑构件,以提高压杆的稳定性。

总之,提高压杆的稳定性是设计和工程实践中重要的问题之一、通过采取上述措施,可以有效地提高压杆的稳定性,保证结构的安全性和可靠性。

当然,在实际应用中,还需要根据具体情况进行综合考虑和工程计算,以确保采取的措施能够产生预期的效果。

材料力学第八章压杆的稳定性

材料力学第八章压杆的稳定性
第八章
压杆的稳定性
§8-1 压杆稳定性的概念
工程中存在着很多受压杆件。 受轴向压缩的直杆,其破坏有两种形式: 1)短粗的直杆,其破坏是由于横截面上的正应力达到 材料的极限应力,为强度破坏。 2)细长的直杆,其破坏 是由于杆不能保持原有的直线 平衡形式,为失稳破坏。 对于相对细长的压杆,其 破坏并非由于强度不足,而是 由于荷载(压力)增大到一定 数值后,不能保持原有直线平 衡形式而失效。
z y x 轴销
解:先计算压杆的柔度。 在xz面内,压杆两端可视为铰支,μ=1。查型钢表,得 l 1 2 iy=4.14cm,故 y 48.3 i y 0.0414
在xy面内,压杆两端可视为固支, μ=0.5。查型钢表,得iz=1.52cm, 故 l 0.5 2 z 65.8 iz 0.0152
n2π2EI l2
(n = 0,1,2…)
(Euler公式)
x Fcr
π w =Asin l x (半波正弦曲线) l x= 2 时 w0= A
A是压杆中点的挠度w0。为任意的微小值。
l
w
F与中点挠度w0之间的关系 (1) 若采用近似微分方程,则F 与如折线OAB所示; (2) 若采用精确的挠曲线微 分方程,则可得F与w0之间的 关系如曲线OAB'所示; F B'
例 某钢柱长7m,由两根16b号槽钢组成,材料 为Q235钢,横截面如图所示,截面类型为b类。钢柱 的两端截面上有4个直径为30mm的螺栓孔。钢柱μ=1.3 , 受260kN的轴向压力,材料的[σ]=170MPa。 (1)求两槽钢的间距h。 (2)校核钢柱的稳定性和强度。
解:(1) 确定两槽钢的间距h 钢柱两端约束在各方向均相同, 因此,最合理的设计应使Iy=Iz , 从 而使钢柱在各方向有相同的稳定性。

压杆稳定

压杆稳定
p
cr a b
cr
2E 2
小柔度杆
中柔度杆
大柔度杆
O
s
a
s
b
p
2E p
l
i
例:图示圆截面压杆d=40mm,σs=235MPa。求可以用 经验公式σcr=304-1.12λ (MPa)计算临界应力时的最 小杆长。
F
解: s
a s
b
304 235 61.6
1.12

l
i
s
得:
l
0.04
相同的压杆
P
细长压杆失效原因:杆突然 发生显著弯曲变形而失去承 载能力。
P
P
失稳(也叫屈曲)
一、稳定与失稳
1.压杆稳定性:压杆维持其原有直线平衡状态的能力;
2.压杆失稳:压杆丧失原有直线平衡状态,不能稳定地工作。
3.压杆失稳原因:①杆轴线本身不直(初曲率); ②加载偏心; ③压杆材质不均匀; ④外界干扰力。
b(MPa) 1.12 2.568 3.744 5.296 1.454 2.15 0.19
下面考虑经验公式的适用范围:
对于塑性材料:
cr a b s

as
b

s
a
s
b
则 s p
经验公式的适用范围
对于 λ<λs的杆,不存在失稳问题,应考虑强度问 题
cr s
经验公式中,抛物线公式的表达式为
感谢下 载
cr a1 b12
a 、b 式中
查到。 1
也是与材料性质有关的系数,可在有关的设计手册和规范中
1
三、临界应力总图
1. 细长杆( p ), 用欧拉公式
cr

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。

在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。

压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。

稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。

本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。

压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。

压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。

这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。

为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。

一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。

此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。

2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。

一般来说,杆件所使用的材料应当具有足够的强度和刚度。

强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。

此外,材料应当具有足够的韧性,以防止杆件发生断裂。

3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。

一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。

支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。

4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。

外力可以包括静力荷载、动力荷载和温度荷载等。

在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。

总之,压杆的稳定性是确保结构安全可靠性的重要因素。

在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。

合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。

第十五章 压杆稳定

第十五章 压杆稳定

课题一 压杆稳定的概念
如上图,在自由端沿杆轴线方向施较小压力时,压杆处于直线平 衡状态(图a),此时若施加一微小横向干扰力,使杆处于微弯状 态(图b),然后将干扰力去除,杆经过几次左右摆动后,仍能回 复到原来的直线平衡状态(图c),这说明压杆的直线平衡状态是 稳定的。
但当压力F增大到某一数值时,压杆在微小干扰力作用下,杆即变 弯。当去除干扰力,杆不再回复到原来的直线平衡状态,而是处 于微弯平衡状态,称此时压杆的直线平衡状态不稳定。
(1)计算螺杆的柔度: i
I A
d
4 0
/
64
d0
40 mm 10mm
d
2 0
/
4
4
4
l 2 375 75
i 10
(2)计算临界应力
cr s a2 275 0.00853 压杆稳定校核与提高压杆稳定性的措施
(3)校核螺杆的稳定性。
稳定许用应力为:
[
w
]
cr nw
227 4
MPa
56.8MPa
螺杆的工作应力为: F 70 103 MPa 55.7MPa
A 40 2 / 4
[ w ]
,所以螺杆是稳定的。
二、提高压杆稳定性的措施
提高压杆的稳定性,关键在于提高压杆的临界力或临界应力。
第十五章 压杆稳定 课题三 压杆稳定校核与提高压杆稳定性的措施
对于钢材 cr s a2 对于铸铁 cr b a2
式中是与材料有关的常数,单位为MPa,其值可从表中10-2查得。
第十五章 压杆稳定
课题二 临界力和临界应力
压杆的临界应力是其柔度λ的函数,其函数图象(下图)称为临界 应力总图。
第十五章 压杆稳定

压杆的稳定性问题

压杆的稳定性问题
柔度是影响压杆承载能力的综合指标,
i I A
——惯性半径
Iz Aiz2, Iy Aiy2.
cr 压杆容易失稳
10.3.2 三类不同压杆的区分
压杆的分类 1 大柔度杆
2 中柔度杆 3 小柔度杆
P
Fcr
π2 EI
(l )2
S P
σcrab
S
σcrσs
10.3.3 三类压杆的临界应力公式
l
i
l
d
200
4
P π
E 97
σP
由于 > P,所以前面用欧拉公式进行试算是正确的,
10.6 结论与讨论
10.6.1 稳定性计算的重要性
1 选用优质钢材并不能提高细长压杆的稳定性,
2 可以提高中、小柔度杆的临界力,
10.6.2 影响承载能力的因素Fcr
Fcr
Fcr
0.5l
压杆约束愈强,其 稳定性愈好,
10.3.4 临界应力总图
小柔度杆 短粗压杆 只需进行强度计算,
cr s
FN
A
s(s)
临界应力总图:临界应力与柔度之间的变化关系图,
cr
S
cr a b ——直线型经验公式
P
粗短杆 中柔度杆
o
s
cr
2E 2
大柔度杆
P
细长压杆。 l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 p 中长杆—发生弹塑性屈曲 s < p 粗短杆—不发生屈曲,而发生屈服 < s
l
0.5l
l
0.5l
Fcr a)
Fcr b)
c)
10.6.3、提高压杆承载能力的主要途径

压杆稳定

压杆稳定

压杆稳定一、压杆稳定的概念压杆的稳定性,是指受压杆件保持其原有平衡状态的能力。

压杆不能保持原有平衡状态的现象,称为丧失稳定,简称失稳。

压杆处于稳定平衡和不稳定平衡之间的临界状态时,其轴向压力称为临界力或临界荷载,用表示。

临界力是判别压杆是否会失稳的重要指标。

二、两端铰支细长压杆的临界力两端为铰支的细长压杆,如图所示。

取图示坐标系,并假设压杆在临界荷载作用下,在xy平面内处于微弯平衡状态。

两端铰支细长压杆的临界荷载为称为欧拉公式。

在两端支承各方向相同时,杆的弯曲必然发生在抗弯能力最小的平面内,所以,式(1)中的惯性矩I应为压杆横截面的最小惯性矩;对于杆端各方向支承情况不同时,应分别计算,然后取其最小者作为压杆的临界荷载。

三、各种支承情况下压杆临界力计算公式可以写成统一形式的欧拉公式式中:μ反映了杆端支承对临界力的影响,称为长度系数,μL称为相当长度。

一端自由,一端固定m=2.0;两端固定 m=0.5一端铰支,一端固定 m=0.7;两端铰支m=1.0四、压杆的临界应力(一)、临界应力与柔度将临界荷载除以压杆的横截面面积A,即可求得压杆的临界应力,即将截面对中性轴的惯性半径代入,--临界应力欧拉公式---柔度或长细比。

它是一个无量纲量。

λ值愈大,压杆就愈容易失稳。

(二)、欧拉公式的适用范围于是欧拉公式的适用范围可用柔度表示为是与压杆材料性质有关的量。

对于,钢制成的压杆,E=200GPa,,=100的压杆称为大柔度杆或细长杆,其临界力或临界应力可用欧拉公式来计算。

(三)、超出比例极限时压杆的临界应力1、经验公式式中:a、b是与材料的力学性能有关的两个常数,可以通过试验加以测定,使用时可从有关手册上查取。

2、临界应力总图&如果将临界应力与柔度之间的函数关系绘在~λ直角坐标系内,将得到临界应力随柔度变化的曲线图形,称为临界应力总图。

临界应力均随柔度λ的增大而呈逐渐衰减的变化规律。

也就是说压杆越细越长,就越容易失去稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19
解:由静力平衡条件可解得两杆的压力分别为: N 1 = P cosθ , N 2 = P sin θ
两杆的临界压力分别为: π 2E I π 2E I Pc r 1 = , Pc r 2 = 2 l1 l2 2 要使P最大,只有N 1 、N 2 都达
θ

到临界压力,即 π 2E I P cosθ = 2
5
钢板尺: 钢板尺:一端固定 一端自由
实际上, 钢尺就被压弯。可见, 实际上,当压力不到 40N 时,钢尺就被压弯。可见, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 有关。 而是与 受压时变弯 有关。
6
一、稳定性的概念
稳定性就是系统自身抵抗干扰保持某一平衡状态的能力. 稳定性就是系统自身抵抗干扰保持某一平衡状态的能力.
五、其它失稳问题
受外压的柱体、壳体,工字梁的腹板等受压构件。 受外压的柱体、壳体,工字梁的腹板等受压构件。
10
§10–2 细长压杆的临界压力 10 2
一、两端铰支压杆的临界力
1、确定Pcr Pcr的基本思想 压杆保持微小弯曲平衡时的最小压力即为临界压力。 压杆保持微小弯曲平衡时的最小压力即为临界压力。 因此由微小弯曲状态去分析临界压力
临界力
= 269×10 N = 269kN
3
12
三、欧拉公式的普遍形式
π 2 EI P = cr (µL)2
µ—长度系数(或约束系数)。 长度系数(或约束系数)
四、不同支座条件的长度系数 µ
1.一端固定、 1.一端固定、一端自由µ=2; =2; 一端固定 2.两端铰支 =1; 2.两端铰支µ=1; 3.一端固定、 3.一端固定、一端铰支µ=0.7; =0.7; 一端固定 4.两端固定 4.两端固定µ=0.5 。
3
构件的承载能力 强度、刚度、 强度、刚度、稳定性
4
钢板尺: 钢板尺:一端固定 一端自由
钢板尺长为300mm的,横截面尺寸为 20mm × 1mm 。 的 钢板尺长为 钢的许用应力为[σ 钢的许用应力为 σ]=196MPa。按强度条件计算得钢板尺所能 。按强度条件计算得钢板尺所能 承受的轴向压力为 [P] = A[σ] = 3920 N σ
λ ≥ λp
的压杆叫做 “大柔度压杆” (细长 大柔度压杆”
的杆为中小柔度杆, λ < λP 的杆为中小柔度杆,其临界力不能用欧拉公式求
24
三、经验公式
直线经验公式
σ cr =a−bλ
a −σ s 其中λs = b
直线公式的使用范围: 直线公式的使用范围:
λs ≤ λ ≤ λ P
四.不同柔度压杆的σcr的计算 不同柔度压杆的σ 不同柔度压杆的
µ =1
1 × 1732 λ= = = 108 i 16
A3钢,λp=100, λ>λp,用欧拉公式
µl
π 2E Pcr = 2 × A = 121.54 × 103 N = 121.54kN λ
39
3、根据稳定条件求许可荷载
pcr 由:n= ≥ nst N
pcr 121.54 ∴N ≤ = = 40.5kN nst 3
不稳定平衡
稳定平衡
7
二、压杆的稳定性
压杆保持直线平衡状态的能力。 压杆保持直线平衡状态的能力。
8
三、压杆失稳与临界压力
1、压杆的失稳 压杆丧失直线形的平衡状态而呈曲线形的平衡状态。 压杆丧失直线形的平衡状态而呈曲线形的平衡状态。 压杆失稳后易变形, 压杆失稳后易变形,丧失了承载能力 2、压杆的临界压力(Pcr) 压杆的临界压力( 压杆保持直线平衡状 态时所能承受的最大 压力 稳 定 过 平 衡 临界状态
N AB sin 300 × 1500 − Q × 2000 = 0 3 ∴ Q = N AB 8
A
Q B NAB
38
C
2、计算λ并求临界荷载
π
i= I = A 64 (D 4 − d 4 ) (D 2 − d 2 ) = D2 + d2 = 16 mm 4
π
4
l AB
15 00 = = 1 732 m m 0 cos 3 0
16
解:(a )杆BD受压,其余杆受拉
由静力学知识
P
B D
= P
BD杆的临界压力:
Pcr =
(
π 2E I
2 a
)
2
=
π 2E I
2a 2
杆系失稳时
PBD = Pcr
P=
π EI
2
2a
2
17
(b) 杆 BD 受拉,其余杆受压
由静力学知识四根压杆各自所 受的压力为 2
2 P
四根受压杆的临界压力:
Pcr =
32
解:图 (a ) 中,AD杆受压 2 π EI N AD = 2 P1 = 2 2a
(
)

1 π EI P1 = 2 2 a2
2
图(b)中,AB杆受压
N AB = P2 =
π EI
2
a
2

P2 =
π EI
2
a2
33
练习:图示圆截面压杆 练习:图示圆截面压杆d=40mm,σs=235MPa。 , 。 求可以用经验公式σ 求可以用经验公式 cr=304-1.12λ (MPa)计算临 计算临 界应力时的最小杆长。 界应力时的最小杆长。
σ cr n= σ
nst :稳定性安全系数 (一般高于强度计算安全系数) 一般高于强度计算安全系数)
二、稳定性计算中两个必须注意的问题
36
1.失稳的方向—— 压杆失稳弯曲时横截面绕什么轴转动? 压杆失稳弯曲时横截面绕什么轴转动? 失稳时压杆的横截面绕惯性矩最小的轴转动。 失稳时压杆的横截面绕惯性矩最小的轴转动。 横截面绕惯性矩最小的轴转动 2.柔度问题 (1) 柔度的计算
l1 P sin θ =
(1) (2)
β
90°

π 2E I
l2
2
20
将式 (2) 除以式 (1), 便得
l1 tgθ = l2
2
2
= ctg β
2
由此得
θ = arc tg(ctg β )
θ

βபைடு நூலகம்
90°

21
§10–3
经验公式与临界应力总图
一、 基本概念
1、柔度(长细比) 柔度(长细比)
二.两端铰支细长压杆的欧拉公式
此公式的应用条件: 此公式的应用条件:
Pcr =
π 2 EI
l2
•理想压杆(轴线为直线,压力与轴线重合,材料均匀) 理想压杆(轴线为直线,压力与轴线重合,材料均匀) 理想压杆 •线弹性,小变形 线弹性, 线弹性 •两端为铰支座 两端为铰支座 11
例题10-1 例题 解: 截面惯性矩
1 × 2.30 × 10 × 2 × 3 λz = = = 132.8 iz 60
3
29
µl
例10-5 A3钢制成的矩形截面杆的受力及两端约束状况如图所示,其 中 a 为正视图,b为俯视图。在A、B二处用螺栓夹紧。已知 l = 2 .3m , b = 40 mm , h = 60 mm , E = 205 GPa 求此杆的临界力
Pcr = σ cr A
π 2E = 2 bh λ
=
π 2 × 205 × 40 × 60 × 10 −6
132.8 2
= 275kN
31
练习: 练习:图示两桁架中各杆的材料和截面均 相同, 相同,设P1和P2分别为这两个桁架稳定的最大 载荷, 载荷,则 (A) P1=P2 (B) P1<P2 (C) P1>P2 (D) 不能断定 1和P2的关系 不能断定P
对应的

压力
不 稳 定 平 衡
9
临界压力: 临界压力: Pcr
四、关于临界压力(Pcr)的两点说明 关于临界压力(Pcr)的两点说明 临界压力
1、 Pcr 越大压杆越不易失稳,压杆的稳定性越好 越大压杆越不易失稳, 2、如果直杆仅受轴向压力且处于曲线平衡状态, 如果直杆仅受轴向压力且处于曲线平衡状态, 则此杆必已失稳; 则此杆必已失稳;且此时的压力必等于或大于临 界压力。 界压力。
失稳时
2 2 P= Pcr
2
π EI
2
a
2
P =
2
π EI
a
2
18
例10-4 10-
图示结构, 图示结构,①、②两杆截面和材料相同,为细长压杆。 两杆截面和材料相同,为细长压杆。 截面和材料相同 为最大值时的θ角 π/2)。 确定使载荷 P 为最大值时的 角(设0<θ<π/2)。 π/2
θ

β
90°
λ≥ 大柔度杆,用欧拉公式; 1. λ≥λp 即大柔度杆,用欧拉公式; 中柔度杆,用直线公式: 2. λs≤ λ≤ λp 即中柔度杆,用直线公式:σcr=a –bλ ; 小柔度杆,此时为强度问题: 3. λ≤ λs 即小柔度杆,此时为强度问题: σcr= σs 。
25
五.临界应力总图 σcr
σcr=a -bλ

µ = 0 .5
iz = Iz b = A 2 3
0.5 × 2.30 ×103 × 2 × 3 = 99.6 λy = = iy 40
30
µl
λ z > λ y 压杆将在正视图平面内失稳。对于A3钢, 压杆将在正视图平面内失稳。对于A3 A3钢
属于大柔度杆, λz = 132.8 属于大柔度杆,故可用欧拉公式计算其临界力
π 2 E (i 2 A) π 2E π EI = = = σ cr = 2 2 2 (µl ) A A (µl ) A µl µl i λ = π 2E i :σ cr = λ2
相关文档
最新文档