单片机晶振上的电容的作用

合集下载

晶振不起振分析

晶振不起振分析

晶振不起振分析晶振根据频点、频差、负载、有源无源、封装、尺寸等多项参数的差异,晶振工作时容易发生频率偏移导致不起振现象,造成电子产品无法正常工作。

晶振常见不起振,按项目回板测试情况可分为个别板子不起振和所有板子都不起振。

⚫晶振分类有源晶振(OSC)无源晶振(X’tal)内置晶体谐振器的实时时钟模块(RTC)。

说明:有源晶振(OSC)和实时时钟模块(RTC)由于内置了相应的电路,因而不太容易出现不起振的问题。

在实际使用时不需要考虑相对复杂的频率匹配问题。

不起振的情况主要出现在无源晶振上,尤其是kHz级别的无源晶振(X’tal),而MHz级别的AT晶振则相对少见。

普通无源谐振器(低频KHz/高频Mhz):低频kHz主要以32.768kHz频率的音叉晶体作为代表,应用于移动终端、消费类电子、小型电子产品、钟表、工业自动控制等应用的时钟信号;MHz主要应用于移动终端、安防监控,网络设备、智能家居、智能穿戴、智能医疗、汽车电子、家用电子产品、消费类电子产品等新型应用的基准频率信号。

有源晶振也可称为晶体振荡器:1)普通晶体振荡器(Oscillator):产品性能佳,抖动好,相噪好,主要应用于通信设备、网络设备、移动电视、DVD、蓝光播放机、视频监控、音频设备、数据与图像处理等相关设备。

2)温度补偿晶体振荡器(TCXO):通过附加的温度补偿电路,使由周围温度变化产生的振荡频率变化量削减的一种石英晶振。

主要应用在通信、导航、卫星定位、雷达、仪器仪表、智能手机、平板电脑、可穿戴智能设备、汽车电子、智能家居等众多领域均得到使用3)压控晶体振荡器(VCXO):通过施加外部控制电压使振荡频率可变或是可以调制的石英晶体振荡器。

主要应用军用电子仪器,5G基建,无线通信信号塔,精密仪表,智能监控等,光纤,服务器,接收器等4)恒温晶体振荡器(OCXO):利用恒温槽使晶体振荡器或石英晶体振子的温度保持恒定,将由周围温度变化引起的振荡器输出频率变化量削减到最小的晶体振荡器。

单片机晶振电路电容的作用 -回复

单片机晶振电路电容的作用 -回复

单片机晶振电路电容的作用-回复
单片机晶振电路电容的作用在于:
1.调节晶振频率:晶体振荡器中的电容与晶体之间的谐振频率非常敏感,所以晶振电路中的电容能够影响晶振的频率稳定性,调节晶振频率。

2.提高稳定性:晶振电路中的电容可以提高晶振的稳定性,降低振荡器的噪声,保证晶振的准确性。

3.防止干扰:晶振电路中的电容可以过滤掉外界的噪声和干扰信号,提高振荡器的抗干扰能力。

因此,单片机晶振电路中的电容是非常关键的组成部分,可以保证晶振的稳定性和可靠性。

单片机的晶振电路的作用

单片机的晶振电路的作用

单片机的晶振电路的作用
单片机是指一种集成电路芯片,它集成了计算机的各种功能,能
够执行程序并控制外设的运行。

而晶振电路则是单片机中极为重要的
一部分。

晶振电路的作用是提供时钟信号,控制单片机内部运行的速度。

晶振由晶体振荡器和振荡电路组成,是一种能够稳定振荡的电子器件,可以提供非常准确的时间基准。

晶振的频率也称为晶振频率,一般使
用的晶振频率为4MHz、8MHz、12MHz等,根据不同的芯片型号选择不
同的频率。

单片机内部有计数器,通过计算晶振信号的脉冲数来确定时间的
长度。

晶振电路提供的时钟信号可以让单片机内部的计数器、定时器
等部件能够准确运行。

如果没有晶振电路,单片机将无法准确地完成
指令的操作。

晶振电路还有一个作用是提供稳定的电压。

晶振电路中主要有一
个晶体管和若干个电容器,晶体管会不断地在开关状态中转换,从而
产生一个稳定的电平。

这个电平的稳定性可以保证单片机运行的准确
和稳定。

总之,晶振电路是单片机中不可或缺的一部分,它提供时钟信号
和稳定电压,让单片机内部的各个部件能够协调运行。

不同类型的单
片机需要不同频率的晶振信号,选择适当的晶振电路可以提高单片机
的运行效率和稳定性。

为何在晶振两端并上由两个小的电容串联的呢

为何在晶振两端并上由两个小的电容串联的呢

为何在晶振两端并上由两个小的电容串联的呢?而且在中间往往接地?这样设计对电路有什么作用呢?这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。

它会影响到晶振的谐振频率和输出幅度,也是使振荡频率更稳定。

实际上就是电容三点式电路的分压电容, 接地点就是分压点。

以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的。

当两个电容量相等时, 反馈系数是0.5, 一般是可以满足振荡条件的,但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量。

如下图的连接方式:外接时大约是数pf到数十pf,依频率和石英晶体的特性而定,需要注意的是这两个串联的值是并联在谐振回路上的,会影响振荡频率。

当两个电容量相等时,反馈系数时0.5,一般是可以满足谐振条件的,但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量。

设计考虑事项:1.使晶振,外部电容与IC之间的信号尽可能的保持最短。

当非常低的电流流过IC晶振振荡器时,如果线路太长,会使它对EMC.ESD与串扰产生非常敏感的影响,而且长线路还会给振荡器增加寄生电容。

2.尽可能将其他时钟线路与频繁切换的信号线路布置在远离晶振连接的位置。

3.当心晶振和地的走线4.将晶振外壳接地如果实际的负载电容配置不当,第一会引起线路参考频率的误差,另外如在发射接收电路上会使晶振的震荡幅度下降(不在峰点),影响混频信号的信号强度与信噪。

当波形出现削峰,畸变时,可增加负载电阻调整。

(几十K到几百K),要稳定波形是并联一个1M左右的反馈电阻。

晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。

由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。

单片机实训报告总结

单片机实训报告总结

单片机实训报告总结篇一:51单片机实训报告“51单片机”精简开发板的组装及调试实训报告为期一周的单片机实习已经结束了。

通过此次实训,让我们掌握了单片机基本原理的基础、单片机的编程知识以及初步掌握单片机应用系统开发实用技术,了解“51”单片机精简开发板的焊接方法。

同时培养我们理论与实践相结合的能力,提高分析问题和解决问题的能力,增强学生独立工作能力;培养了我们团结合作、共同探讨、共同前进的精神与严谨的科学作风。

此次实训主要有以下几个方面:一、实训目的1.了解“51”精简开发板的工作原理及其结构。

2.了解复杂电子产品生产制造的全过程。

3.熟练掌握电子元器件的焊接方法及技巧,训练动手能力,培养工程实践概念。

4.能运用51单片机进行简单的单片机应用系统的硬件设计。

5.掌握单片机应用系统的硬件、软件调试方法二、实验原理流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。

它的电气性能指标:输入电压:~6V,典型值为5V。

可用干电池组供电,也可用直流稳压电源供电。

如图所示:本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。

三、硬件组成1、晶振电路部分单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作;假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。

他是由一个晶振和两个瓷片电容组成的,x1和x2分别接单片机的x1和x2,晶振的瓷片电容是没有正负的,注意两个瓷片电容相连的那端一定要接地。

2、复位端、复位电路给单片机一个复位信号(一个一定时间的低电平)使程序从头开始执行;一般有两中复位方式:上电复位,在系统一上电时利用电容两端电压不能突变的原理给系统一个短时的低电平;手动复位,同过按钮接通低电平给系统复位,时如果手按着一直不放,系统将一直复位,不能正常。

晶振和起振电容

晶振和起振电容

关于晶振和起振电容资料 2010-10-21 23:26:49 阅读258 评论0字号:大中小订阅1:如何选择晶振对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功耗)的系统。

这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振。

这一现象在上电复位时并不特别明显,原因是上电时电路有足够的扰动,很容易建立振荡。

在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。

在振荡回路中,晶体既不能过激励(容易振到高次谐波上)也不能欠激励(不容易起振)。

晶体的选择至少必须考虑:谐振频点,负载电容,激励功率,温度特性,长期稳定性。

一般来说某一种单片机或外围芯片都会给出一个或几个典型适用的晶振,常用的像51单片机用12M晶振,ATmega系列单片机可以用8M,16M,7.3728M等。

这里有一个经验可以分享一下,如果所使用的单片机内置有PLL即锁相环,那么所使用的外部晶振都是低频率的,如32.768K的晶振等,因为可以通过PLL倍频而使单片机工作在一个很高的频率下。

2:如何判断晶振是否被过分驱动电阻RS常用来防止晶振被过分驱动。

过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。

可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。

这时就需要用电阻RS 来防止晶振被过分驱动。

判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。

通过此办法就可以找到最接近的电阻RS值。

3:如何选择电容起振电容从原理上讲直接将晶振接到单片机上,单片机就可以工作。

但这样构成的振荡电路中会产生偕波(也就是不希望存在的其他频率的波),这个波对电路的影响不大,但会降低电路的时钟振荡器的稳定性. 为了电路的稳定性起见,建议在晶振的两引脚处接入两个瓷片电容接地来削减偕波对电路的稳定性的影响,所以晶振必须配有起振电容,但电容的具体大小没有什么普遍意义上的计算公式,不同芯片的要求不同。

单片机实习总结

单片机实习总结

单片机实习总结单片机实习总结 3篇单片机实习总结 1这次实习我们使用控制电路的单片机是AT89S51型号的,单片机实习报告总结。

通过它实现对八盏双色灯发光二极管的控制P0和P2口控制四盏灯。

在AT89S51的9引脚接复位电路,对电路实现复位控制。

在电路中接入74S164译码器和共阴极数码管,通过AT89S51的P3口数据的输入对共阴极数码管的控制。

同时也可实现双色发光的二极管与共阴极数码管的共同作用。

在AT89S51的P3.2口接上中断控制电路,P3.5口接入蜂鸣器,使电路实现中断作用,也使电路便于检测。

尽量朝“单片”方向设计硬件系统。

系统器件越多,器件之间相互干扰也越强,功耗也增大,也不可避免地降低了系统的稳定性。

系统中的相关器件要尽可能做到性能匹配。

如选用CMOS芯片单片机构成低功耗系统时,系统中所有芯片都应尽可能选择低功耗产品。

硬件电路设计:1)确保硬件结构和应用软件方案相结合。

硬件结构与软件方案会相互影响,软件能实现的功能尽可能由软件实现,以简化硬件结构。

必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间;2)可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板的合理布线、各元器相互隔离等;3)尽量朝“MCS-51单片”方向设计硬件系统。

系统器件越多,器件之间相互干扰也越强,所消耗功耗也增大,也不可避免地降低了系统的稳定性;4)系统中的相关器件要尽可能做到性能匹配。

如选用CMOS芯片单片机构成低功耗系统时,系统中所有芯片都应尽可能选择低功耗产品。

1.1 单片机型号及特性单片机型号是 AT89S51。

特性是:⑴8031 CPU与MCS-51⑵兼容 4K字节可编程FLASH存储器(寿命:1000写/擦循环) ⑶全静态工作:0Hz-24KHz ⑷三级程序存储器保密锁定⑸128*8位内部RAM ⑹32条可编程I/O线⑺两个16位定时器/计数器⑻6个中断源⑼可编程串行通道⑽低功耗的闲置和掉电模式⑾片内振荡器和时钟电路。

单片机实习报告六篇

单片机实习报告六篇

单片机实习报告六篇单片机实习报告篇1一实习目的1. 通过对单片机小系统的设计、焊接、装配,掌握电路原理图及电子线路的基本焊接装配工艺、规范及注意事项;2. 通过对系统板的测试,了解系统板的工作原理及性能,掌握元器件及系统故障的排除方法;3. 掌握程序编制及调试方法,完成系统初始化、存储器操作、端口操作、键盘显示等程序的编制及调试(汇编语言、C语言均可);4. 通过单片机系统的组装,调试以及程序编制、调试及运行,与理论及实验的有机结合和指导教师的补充介绍,使学生掌握控制系统的工作原理、开发方法和操作方法。

5. 培养学生解决实际问题的能力,提高对理论知识的感性认识。

二实习意义通过本实习不但可以掌握单片机软、硬件的综合调试方法,而且可以熟练掌握电路原理图,激发对单片机智能性的探索精神,提高学生的综合素质,培养学生应用单片机实现对工业控制系统的设计、开发与调试的能力。

在制作学习过程中,不但可以掌握软、硬件的综合调试方法,而且可以使学生对单片机智能性产生强烈的欲望。

达到最大限度地掌握微机应用技术,软件及接口设计和数据采集与处理的技能,培养电综合实践素质的目的。

三系统基本组成及工作原理1 系统基本组成系统以单片机STC89C52作为控制核心,各部分基本组成框图如图1所示。

流水灯部分由单片机、键盘模块等组成;四位数码显示,编程实现30秒倒计时部分由单片机、键盘模块、液晶显示模块等组成;按键功能部分通过按键控制流水灯部分、四位数码显示部分;电子钟部分由单片机、键盘模块、液晶显示模块等组成;使用功能键实现相应的功能组合部分通过流水灯部分、30秒倒计时部分实现;模数转换部分由单片机、ADC0809转换模块、键盘模块、液晶显示模块等组成。

2 系统工作原理本设计采用STC89C52RC单片机作为本系统的控制模块。

单片机可把由ADC0809及单片机中的数据利用软件来进行处理,从而把数据传输到显示模块,实现阻值大小的显示。

晶振的基本原理及特性

晶振的基本原理及特性

晶振的基本原理及特性晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。

其中Co,C1,L1,RR是晶体的等效电路。

分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。

可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。

因而能“压控”的频率范围也越小。

实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。

所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。

这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。

采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。

晶振的指标总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。

说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。

一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。

例如:精密制导雷达。

频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。

一个晶振的输出频率随时间变化的曲线如图2。

图中表现出频率不稳定的三种因素:老化、飘移和短稳。

图2 晶振输出频率随时间变化的示意图曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。

表现了晶振的老化。

频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。

晶振并联电阻的作用

晶振并联电阻的作用

一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M 欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

和晶振串联的电阻常用来预防晶振被过分驱动。

晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。

用来调整drive level和发振余裕度。

Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。

过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。

晶体的Q值非常高, Q值是什么意思呢?晶体的串联等效阻抗是Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。

Q一般达到10^-4量级。

避免信号太强打坏晶体的。

电阻一般比较大,一般是几百K。

串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看IC spec了,有的是用来反馈的,有的是为过EMI的对策可是转化为并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。

晶振的作用

晶振的作用

1.晶振作用:给单片机正常工作提供稳定的时钟信号。

原理:在石英晶体的两个极板上加一个电场,晶片会产生机械变形,对极板施加机械力使其变形,又会在极板上产生相应的电荷,这叫压电效应。

如果在两个极板上加上交变的电压,晶片便会产生机械变形震荡,同时这种机械震荡还会产生交变的电场(比较的微小),但是当外加交变的电压的频率与晶片固有的频率(由其形状和尺寸决定)相等时,机械振动的幅度会加剧,产生交变电场也增大。

叫做压电谐波。

2.即使去掉晶振,电路照样的能振荡,并且如果把那两个电容改成可调电容的话也能得到想要的某个频率,那还要晶振干什么:晶振、陶瓷谐振槽路、RC振荡器以及硅振荡器是适用于微控制器的四种时钟源。

针对具体应用优化时钟源设计依赖于以下因素:成本、精度和环境参数。

RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化;但相对RC振荡器而言,基于晶振与陶瓷谐振槽路的振荡器通常能提供非常高的初始精度和较低的温度系数。

判断方法
(1)用万能表10K档测其两脚间阻值,应为无穷大,说明它首先不漏电;
这个办法对金属封装电阻准确性达百分之九十九,塑封晶振百分之七八十
(2)将晶振装在它的工作电路上,再用频率表或示波器测其工作频率;这个办法绝对精确,
(3)对已知正常电路用代换法将其替代,看能否正常工作,这是个笨办法,但却很有效,你可以参考一下!!。

晶振不良分析

晶振不良分析

晶振作用:给单片机正常工作提供稳定的时钟信号。

原理:在石英晶体的两个极板上加一个电场,晶片会产生机械变形,对极板施加机械力使其变形,又会在极板上产生相应的电荷,这叫压电效应。

如果在两个极板上加上交变的电压,晶片便会产生机械变形震荡,同时这种机械震荡还会产生交变的电场(比较的微小),但是当外加交变的电压的频率与晶片固有的频率(由其形状和尺寸决定)相等时,机械振动的幅度会加剧,产生交变电场也增大。

叫做压电谐波。

即使去掉晶振,电路照样的能振荡,并且如果把那两个电容改成可调电容的话也能得到想要的某个频率,那还要晶振干什么:晶振、陶瓷谐振槽路、RC振荡器以及硅振荡器是适用于微控制器的四种时钟源。

针对具体应用优化时钟源设计依赖于以下因素:成本、精度和环境参数。

RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化;但相对RC振荡器而言,基于晶振与陶瓷谐振槽路的振荡器通常能提供非常高的初始精度和较低的温度系数。

晶振基本参数简介:1.CL:指与晶体元件一起决定负载谐振频率(FL)的有效外接电容,CL是一个测试条件也是一个使用条件,这个值可在用户具体使用时根据情况作适当调整,来微调FL的实际工作频率(也即晶体的制造公差可调整)。

但它有一个合适值,否则会给振荡电路带来恶化,其值通常采用6pF、10pF、15pF 、20pF、30pF、∝等,其中当CL标为∝时表示其应用在串联谐振型电路中,不要再加负载电容,并且工作频率就是晶体的(串联)谐振频率Fr。

用户应当注意,对于某些晶体(包括不封装的振子应用),在某一生产规范既定的负载电容下(特别是小负载电容时),±0.5pF的电路实际电容的偏差就能产生±10×10-6的频率误差。

因此,负载电容是一个非常重要的订货规范指标。

2.F0:指晶体元件规范中所指定的频率,也即用户在电路设计和元件选购时所希望的理想工作频率;Fr:指在规定条件下,晶体元件电气阻抗为电阻性的两个频率中较低的一个频率;FL:指在规定条件下,晶体元件与一负载电容串联或并联,其组合阻抗呈现为电阻性时两个频率中的一个频率。

晶振电路中为什么用22pf或30pf的电容

晶振电路中为什么用22pf或30pf的电容

晶振电路中为什么用22pf或30pf的电容
 单片机的学长告诉我单片机的晶振电路中就是用22pf或30pf的电容就行,听人劝吃饱饭吧,照着焊电路一切ok,从没想过为什幺,知其所以然而不知
其为什幺所以然,真是悲哀,最近状态好像一直不太好,也难以说清楚为什幺,前几天跟着老师去别的实验室听课,其实也就是听一听老师和师傅给别
的实验室的同学讲嵌入式的种种,还有就是那天师傅单独和谈了挺长时间,
我从心底感谢他们,他们让我懂得反思,调整,我对自己持有怎幺的学习态
度和应该如何付诸于行动有了新的理解,这远比单纯的交给我一些知识要好
很多。

 说起这个小知识点本人还有这幺个经历呢也顺便和大家一块儿分享一下吧。

话说我曾经帮一女生做东西,其实超级简单就是个ATMEGAL16单片机的温
度采集系统,我焊工虽然一般但给女生帮忙幺,还是比较用心的应该没问题的,事实却不尽人意焊出来的最小系统竟然不好使,我用万能表把电路查了
几遍也没找出错误,然后就怀疑是不是单片机就锁死了,换了几块单片机也
不好使,自己还一直认为我在同一届的同学中算还学得可以的,真是有点可笑,最后发现,在我原件短缺的情况下我糊里糊涂把两个0.1uf的电容焊在了。

单片机晶振电路原理及作用_单片机晶振电路设计方案

单片机晶振电路原理及作用_单片机晶振电路设计方案

单片机晶振电路原理及作用_单片机晶振电路设计在电子学上,通常将含有晶体管元件的电路称作“有源电路”(如有源音箱、有源滤波器等),而仅由阻容元件组成的电路称作“无源电路”。

电脑中的晶体振荡器也分为无源晶振和有源晶振两种类型。

无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。

无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。

有源晶振有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。

有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。

相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。

有源晶振是右石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。

当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。

压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。

图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC 电路。

在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。

该振荡器供电电压为5V,输出波形为方波。

单片机的内部时钟与外部时钟单片机有内部时钟方式和外部时钟方式两种:(1)单片机的XTAL1和XTAL2内部有一片内振荡器结构,但仍需要在XTAL1和XTAL2两端连接一个晶振和两个电容才能组成时钟电路,这种使用晶振配合产生信号的方法是内部时钟方式;(2)单片机还可以工作在外部时钟方式下,外部时钟方式较为简单,可直接向单片机XTAL1引脚输入时钟信号方波,而XTAL2管脚悬空。

单片机实训报告总结

单片机实训报告总结

单片机实训报告总结篇一:51单片机实训报告“51单片机”精简开发板的组装及调试实训报告为期一周的单片机实习已经结束了。

通过此次实训,让我们掌握了单片机基本原理的基础、单片机的编程知识以及初步掌握单片机应用系统开发实用技术,了解“51”单片机精简开发板的焊接方法。

同时培养我们理论与实践相结合的能力,提高分析问题和解决问题的能力,增强学生独立工作能力;培养了我们团结合作、共同探讨、共同前进的精神与严谨的科学作风。

此次实训主要有以下几个方面:一、实训目的1.了解“51”精简开发板的工作原理及其结构。

2.了解复杂电子产品生产制造的全过程。

3.熟练掌握电子元器件的焊接方法及技巧,训练动手能力,培养工程实践概念。

4.能运用51单片机进行简单的单片机应用系统的硬件设计。

5.掌握单片机应用系统的硬件、软件调试方法二、实验原理流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。

它的电气性能指标:输入电压:~6V,典型值为5V。

可用干电池组供电,也可用直流稳压电源供电。

如图所示:本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。

三、硬件组成1、晶振电路部分单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作;假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。

他是由一个晶振和两个瓷片电容组成的,x1和x2分别接单片机的x1和x2,晶振的瓷片电容是没有正负的,注意两个瓷片电容相连的那端一定要接地。

2、复位端、复位电路给单片机一个复位信号(一个一定时间的低电平)使程序从头开始执行;一般有两中复位方式:上电复位,在系统一上电时利用电容两端电压不能突变的原理给系统一个短时的低电平;手动复位,同过按钮接通低电平给系统复位,时如果手按着一直不放,系统将一直复位,不能正常。

晶振的原理及作用

晶振的原理及作用

晶振的原理及作用晶振是电路中常用用的时钟元件,全称是叫晶体震荡器,在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。

晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。

在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。

高级的精度更高。

有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。

晶振的作用是为系统提供基本的时钟信号。

通常一个系统共用一个晶振,便于各部分保持同步。

有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。

晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。

如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

下面我就具体的介绍一下晶振的作用以及原理,晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。

其中Co,C1,L1,RR是晶体的等效电路。

晶振电路图分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。

可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。

因而能“压控”的频率范围也越小。

实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。

所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。

这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。

晶振电路原理介绍

晶振电路原理介绍

【2 】晶体振荡器,简称晶振.在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端收集,电工学上这个收集有两个谐振点,以频率的高下分个中较低的频率是串联谐振,较高的频率是并联谐振.因为晶体自身的特征致使这两个频率的距离相当的接近,在这个极窄的频率规模内,晶振等效为一个电感,所以只要晶振的两头并联上适合的电容它就会构成并联谐振电路.这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,因为晶振等效为电感的频率规模很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化. 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率. 一般的晶振振荡电路都是在一个反相放大器(留意是放大器不是反相器)的两头接入晶振,再有两个电容分离接到晶振的两头,每个电容的另一端再接到地,这两个电容串联的容量值就应当等于负载电容,请留意一般IC的引脚都有等效输入电容,这个不能疏忽. 一般的晶振的负载电容为15p或12.5p ,假如再斟酌元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择.晶体振荡器也分为无源晶振和有源晶振两种类型.无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器).无源晶振须要借助于时钟电路才能产生振荡旌旗灯号,自身无法振荡起来,所以“无源晶振”这个说法并不精确;有源晶振是一个完全的谐振振荡器. 谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等. 晶振与谐振振荡器有其配合的交集有源晶体谐振振荡器. 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产活力械变形;反之,若在极板间施加机械力,又会在响应的偏向上产生电场,这种现象称为压电效应.如在极板间所加的是交变电压,就会产活力械变形振动,同机会械变形振动又会产生交变电场.一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳固的.但当外加交变电压的频率与晶片的固有频率(决议于晶片的尺寸)相等时,机械振动的幅度将急剧增长,这种现象称为压电谐振,是以石英晶体又称为石英晶体谐振器. 其特色是频率稳固度很高. 石英晶体振荡器与石英晶体谐振器都是供给稳固电路频率的一种电子器件.石英晶体振荡器是运用石英晶体的压电效应来起振,而石英晶体谐振器是运用石英晶体和内置IC来配合感化来工作的.振荡器直策运用于电路中,谐振器工作时一般须要供给3.3V电压来保持工作.振荡器比谐振器多了一个重要技巧参数为:谐振电阻(R R),谐振器没有电阻请求.RR的大小直接影响电路的机能,也是各商家竞争的一个重要参数. 概述微掌握器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振.陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻.电容)振荡器.硅振荡器平日是完全集成的RC 振荡器,为了进步稳固性,包含有时钟源.匹配电阻和电容.温度补偿等.图1给出了两种时钟源.图1给出了两个分立的振荡器电路,个中图1a为皮尔斯振荡器设置装备摆设,用于机械式谐振器件,如晶振和陶瓷谐振槽路.图1b为简略的RC反馈振荡器. 机械式谐振器与RC振荡器的重要差别基于晶振与陶瓷谐振槽路(机械式)的振荡器平日能供给异常高的初始精度和较低的温度系数.相对而言,RC振荡器可以或许快速启动,成本也比较低,但平日在全部温度和工作电源电压规模内精度较差,会在标称输出频率的5%至50%规模内变化.图1所示的电路能产生靠得住的时钟旌旗灯号,但其机能受情形前提和电路元件选择以及振荡器电路布局的影响.需卖力看待振荡器电路的元件选择和线路板布局.在运用时,陶瓷谐振槽路和响应的负载电容必须依据特定的逻辑系列进行优化.具有高Q值的晶振对放大器的选择并不迟钝,但在过驱动时很轻易产生频率漂移(甚至可能破坏).影响振荡器工作的情形身分有:电磁干扰(E MI).机械震撼与冲击.湿度和温度.这些身分会增大输出频率的变化,增长不稳固性,并且在有些情形下,还会造成振荡器停振. 振荡器模块上述大部分问题都可以经由过程运用振荡器模块避免.这些模块自带振荡器.供给低阻方波输出,并且可以或许在必定前提下保证运行.最常用的两种类型是晶振模块和集成硅振荡器.晶振模块供给与分立晶振雷同的精度.硅振荡器的精度要比分立RC振荡器高,多半情形下可以或许供给与陶瓷谐振槽路相当的精度. 功耗选择振荡器时还须要斟酌功耗.分立振荡器的功耗重要由反馈放大器的电源电流以及电路内部的电容值所决议.CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容值.比如,HC04反相器门电路的功率耗散电容值是90pF.在4MHz.5V电源下工作时,相当于1.8mA的电源电流.再加上20pF的晶振负载电容,全部电源电流为2.2mA. 陶瓷谐振槽路一般具有较大的负载电容,响应地也须要更多的电流. 比拟之下,晶振模块一般须要电源电流为10mA至60mA. 硅振荡器的电源电流取决于其类型与功效,规模可以从低频(固定)器件的几个微安到可编程器件的几个毫安.一种低功率的硅振荡器,如MAX737 5,工作在4MHz时只需不到2mA的电流. 结论在特定的微掌握器运用中,选择最佳的时钟源须要分解斟酌以下一些身分:精度.成本.功耗以及情形需求.下表给出了几种常用的振荡器类型,并剖析了各自的优缺陷.晶振电路的感化电容大小没有固定值.一般二三十p.晶振是给单片机供给工作旌旗灯号脉冲的.这个脉冲就是单片机的工作速度.比如12M晶振.单片机工作速度就是每秒12M.和电脑的CPU 概念一样.当然.单片机的工作频率是有规模的.不能太大.一般24M就不上去了.不然不稳固.接地的话数字电路弄的来乱一点也无所谓.看板子上有没有模仿电路.接地方法也是不固定的.一般串联式接地.从小旌旗灯号到大旌旗灯号依次接.然后小旌旗灯号连到接地来削减偕波对电路的稳固性的影响,所以晶振所配的电容在10pf-50pf之间都可以的,没有什么盘算公式.但是主流是接入两个33pf的瓷片电容,所以照样随主流.晶振电路的道理晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端收集,电工学上这个收集有两个谐振点,以频率的高下分个中较低的频率是串联谐振,较高的频率是并联谐振.因为晶体自身的特征致使这两个频率的距离相当的接近,在这个极窄的频率规模内,晶振等效为一个电感,所以只要晶振的两头并联上适合的电容它就会构成并联谐振电路.这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,因为晶振等效为电感的频率规模很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化.晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率.一般的晶振振荡电路都是在一个反相放大器(留意是放大器不是反相器)的两头接入晶振,再有两个电容分离接到晶振的两头,每个电容的另一端再接到地,这两个电容串联的容量值就应当等于负载电容,请留意一般IC的引脚都有等效输入电容,这个不能疏忽.一般的晶振的负载电容为15p或12.5p ,假如再斟酌元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择.晶振电路中常见问题晶振电路中若何选择电容C1,C2?(1):因为每一种晶振都有各自的特征,所以最好按制作厂商所供给的数值选择外部元器件.(2):在允许规模内,C1,C2值越低越好.C值偏大虽有利于振荡器的稳固,但将会增长起振时光.(3):应使C2值大于C1值,如许可使上电时,加速晶振起振.在石英晶体谐振器和陶瓷谐振器的运用中,须要留意负载电容的选择.不同厂家临盆的石英晶体谐振器和陶瓷谐振器的特征和品德都消失较大差异,在选用,要懂得该型号振荡器的症结指标,如等效电阻,厂家建议负载电容,频率误差等.在现实电路中,也可以经由过程示波器不雅察振荡波形来断定振荡器是否工作在最佳状况.示波器在不雅察振荡波形时,不雅察OSC O管脚(Oscillator output),应选择100MHz带宽以上的示波器探头,这种探头的输入阻抗高,容抗小,对振荡波形相对影响小.(因为探头上一般消失10~20pF的电容,所以不雅测时,恰当减小在OSCO管脚的电容可以获得更接近现实的振荡波形).工作优越的振荡波形应当是一个英俊的正弦波,峰峰值应当大于电源电压的70%.若峰峰值小于70%,可恰当减小OSCI及OSCO管脚上的外接负载电容.反之,若峰峰值接近电源电压且振荡波形产生畸变,则可恰当增长负载电容.用示波器检测OSCI(Oscillator input)管脚,轻易导致振荡器停振,原因是:部分的探头阻抗小不可以直接测试,可以用串电容的方法来进行测试.如常用的4MHz 石英晶体谐振器,平日厂家建议的外接负载电容为10~30pF阁下.若取中间值15pF,则C1,C2各取30pF可得到其串联等效电容值15pF.同时斟酌到还别的消失的电路板散布电容,芯片管脚电容,晶体自身寄生电容等都邑影响总电容值,故现实设置装备摆设C1,C2时,可各取20~15pF阁下.并且C1,C2运用瓷片电容为佳.问:若何断定电路中晶振是否被过火驱动?答:电阻RS常用来防止晶振被过火驱动.过火驱动晶振会逐渐损耗削减晶振的接触电镀,这将引起频率的上升.可用一台示波器检测OSC输出脚,假如检测一异常清楚的正弦波,且正弦波的上限值和下限值都相符时钟输入须要,则晶振未被过火驱动;相反,假如正弦波形的波峰,波谷两头被削平,而使波形成为方形,则晶振被过火驱动.这时就须要用电阻RS来防止晶振被过火驱动.断定电阻RS值大小的最简略的方法就是串联一个5k或10k的微调电阻,从0开端慢慢调高,一向到正弦波不再被削平为止.经由过程此方法就可以找到最接近的电阻RS值.。

晶振串联电阻与晶振并联电阻的作用_HOSONIC晶振

晶振串联电阻与晶振并联电阻的作用_HOSONIC晶振

晶振串联电阻与晶振并联电阻的作用之答禄夫天创作一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

晶振输入输出连接的电阻作用是发生负反馈,包管放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

和晶振串联的电阻经常使用来预防晶振被过分驱动。

晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drivelevel调整用。

用来调整drivelevel和发振余裕度。

晶振输入输出连接的电阻作用是发生负反馈,包管放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效依照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变更都不会影响输出频率。

过去,曾试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。

Xin和Xout的内部一般是一个施密特反相器,反相器是不克不及驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?下图所示的一个晶振电路中,电路在其输出端串接了一个2M欧姆的电阻,在其输出端和输入端之间接了一个10M欧姆的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相器就如同一个有很大增益的放大器, 以便于联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁
边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地
点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两
各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器. 晶振引脚的内部通常是一个反相
器, 或者是奇数个反相器串联. 在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻
连接, 对于 CMOS 芯片通常是数 M 到数十 M 欧之间. 很多芯片的引脚内部已经包含了这
个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反
端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了,
一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合
很宽的频率范围. 外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定. 需要
注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量
这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。
它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。
晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对
地的电容,Cic(集成电路内部电容)+△C(pcb上电容)经验值为3至5pf.
相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可
以减小输入端对地电容量, 而增加输出端的值以提高反馈量. 在这里不能画图, 不知道叙
述是否清楚. 一般芯片的 Data sheet 上会有说明
相关文档
最新文档