新人教版八年级数学拔尖测试

合集下载

八年级上册数学测试卷人教版

八年级上册数学测试卷人教版

八年级上册数学测试卷人教版一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形。

B. 五边形。

C. 六边形。

D. 八边形。

3. 等腰三角形的一个角是80°,则它的底角是()A. 50°.B. 80°.C. 50°或80°。

D. 20°或80°。

4. 点M(3, - 4)关于y轴对称的点的坐标是()A. (-3, -4)B. (3, 4)C. (-3, 4)D. (-4, 3)5. 在平面直角坐标系中,点P(-2, 3)到x轴的距离是()A. -2.B. 2.C. 3.D. -3.6. 下列运算正确的是()A. a^2· a^3=a^6B. (a^2)^3=a^5C. (ab)^3=a^3b^3D. a^6÷ a^2=a^37. 把多项式x^2+ax + b分解因式,得(x + 1)(x - 3),则a,b的值分别是()A. a = -2,b=-3B. a = 2,b = 3C. a=-2,b = 3D. a = 2,b=-38. 若分式frac{x^2-1}{x + 1}的值为0,则x的值为()A. 1.B. -1.C. ±1.D. 0.9. 如图,在ABC中,∠ B=∠ C,AD平分∠ BAC,AB = 5,BC = 6,则AD=()A. 3.B. 4.C. 5.D. 6.10. 已知(1)/(x)-(1)/(y)=3,则分式(2x + 3xy - 2y)/(x - 2xy - y)的值为()A. (3)/(5)B. 9.C. 1.D. (5)/(3)二、填空题(每题3分,共18分)11. 计算:(-2x^2)^3=_ 。

12. 分解因式:x^2-9=_ 。

2024年人教版八年级上册数学阶段拔尖专训11 “手拉手”(共顶点)模型的等腰三角形

2024年人教版八年级上册数学阶段拔尖专训11 “手拉手”(共顶点)模型的等腰三角形

1
2
3
4
5
阶段拔尖专训
双等腰三角形构成的手拉手模型
【高分秘籍】
【条件】△ ABC ,△ ADE 均为等腰三角形,且∠ BAC =
∠ DAE .
【结论】△ ABD ≌△ ACE ,∠ BAC =∠ BFC .
1
2
3
4
5
阶段拔尖专训
2. [荣德原创]如图,在△ ABC 和△ AEF 中, AB = AC , AE
∵△ CMN 是等腰直角三角形,
∴∠ CNM =45°.又∵ CF ⊥ CN ,∠ ACB =90°,
∴∠ FCN =90°=∠ CNF ,∠ ACF =∠ BCN ,∴ CF = CN . 又∵ AC =
BC ,∴△ ACF ≌△ BCN (SAS).∴ AF = BN . ∵ CF =
CN , CM ⊥ MN ,∴ MF = MN = CM . ∴ AM = AF
+ FM = BN + CM .
1
2
3
4
5
阶段拔尖专训
②【解】∵ AM =4, BN =1, BN + CM = AM ,
∴ CM = AM - BN =3.又∵ CM = MN ,∴ MN =3.
∴ AN = AM + MN =7.
1
2
3
4
5
阶段拔尖专训
(2)过点 A 作 AH ⊥ BD 于点 H ,求证: BH + CD = HD .
【证明】如图,连接 AD ,过点 A
作 AJ ⊥ DE 于点 J . ∵△ ABF ≌
△ ACE ,∴ S△ ABF = S△ ACE , BF =
CE . ∵ AH ⊥ BF , AJ ⊥ EC ,

2022-2023学年新人教版初中八年级数学下册第二十单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第二十单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第二十单元综合能力提升测试卷时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)蓝青学校乒乓球队员的年龄分布如表所示:对于不同的a,下列关于年龄的统计量不会发生改变的是()A.众数,中位数B.众数,方差C.平均数,中位数D.平均数,方差2.(3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:则这四个人中成绩最稳定的是()A.甲B.乙C.丙D.丁3.(3分)某厂房3月1日至7日的用电量如表:关于这7天的用电量,下列说法不正确的是()A.平均数是50B.中位数是50C.众数是3D.方差是1000 74.(3分)把一组数据中的每个数据都加1后得到一组新数据,新的这组数据与原数据相比()A.平均数不变B.中位数不变C.众数不变D.方差不变5.(3分)中国队在2002年至2022年间的六届冬奥会中获得的金牌数分别是2,2,5,3,1,9枚,则中国队在这六届冬奥会中所获得的金牌数的众数和中位数分别是()A.2,2.5B.2,3C.3,3D.4,26.(3分)已知一样本数据4,4,5,6,m的中位数为4,则数m可能为() A.6B.5C.4.5D.47.(3分)某同学对数据35,31,29,32,4■,44,45进行统计分析,发现两位数“4■”的个位数字模糊不清,则下列统计量不受影响的是()A.平均数B.众数C.中位数D.方差8.(3分)为了参加市中学生篮球赛,某校一支篮球队购买了10双运动鞋,尺码如表:则这10双运动鞋尺码的众数和中位数分别为()A.25.5cm,26cm B.26.5cm,26cmC.26.5cm,25.5cm D.26cm,26cm9.(3分)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是36C︒B.平均数是32C︒C.众数是33C︒D.7天里的最高气温的极差为7 10.(3分)3月14日是国际数学节,为迎接数学节,某学校3月份举办“数学嘉年华之手抄报评比活动”,对甲、乙、丙、丁四组候选作品进行量化评分,具体成绩(百分制)如下表,如果按照创新性占60%,丰富性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁二、填空题(共5小题,满分15分,每小题3分)11.(3分)已知数据1、1、2、3、5、8、13、21、34,这些数据的中位数为.12.(3分)若数据2,1,a,3,0的平均数是2,则这组数据的方差是.13.(3分)2022年冬奥会将在北京市和张家口市联合举行,北京成为奥运史上第一个既举办夏季奥运会又举办冬季奥运会的城市.为了激发同学们对冬奥会的热情,某校开设了冰球选修课,12名同学被分成甲、乙、丙三组进行训练,经过5次测试,若甲、乙、丙三组的平均成绩相同,且方差20.75S=甲,220.50.9S S==乙丙,则应选择组参加全市中学生冰球联谊赛.14.(3分)在一次以“建设美丽济阳”为主题的演讲比赛中,小红的演讲内容、语言表达、演讲技能、形象礼仪的各项得分依次为9.5;9.4;9.2;9.7.若依次按40%,25%,25%,10%的比例确定她的综合得分,则她的综合得分是.15.(3分)每天登录“学习强国” App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数是.三、解答题(共10小题,满分75分)16.(7分)为了解某校七年级450名男生引体向上成绩情况,陈老师对该校随机抽取的30名七年级男生进行了引体向上测试,制成统计表如表:(1)求这30名男生引体向上成绩的平均数、中位数和众数.(2)学校规定:当引体向上测试成绩超过5个时成绩等级评为优秀,请估计该校七年级所有男生引体向上成绩为优秀的人数.17.(7分)我们约定:如果身高在选定标准的2%±范围之内都称为“优身高”.为了解某校九年级男生中具有“优身高”的人数,我们从该校九年级男生中随机选出10名,分别测量出他们的身高(单位:)cm,收集并整理统计如下表:根据以上表格信息,解答如下问题:(1)这10个数据的中位数是 cm ,众数是 cm ;(2)如果以中位数作为选定标准,请通过计算说明,上面挑选的10名男生中具有“优身高”的有几人?(3)请根据第(2)问中的信息,估计本校380名男生中具有“优身高”的人数.18.(7分)学生的心理健康教育一直是学校的重要工作,为了了解学生的心理健康状况,某校进行了心理健康情况调查.现从八、九年级各随机抽取了20名学生的调查结果(满分为100分,分数用x 表示,共分成四组::85A x <,:8590B x <,:9095C x <,:95100)D x 进行整理、描述和分析,当分数不低于85分说明心理健康,下面给出部分信息.八年级随机抽取了20名学生的分数是:72,80,81,82,86,88,90,90,91,a ,92,92,93,93,95,95,96,96,97,99.九年级随机抽取了20名学生的分数中,A 、B 两组数据个数相等,B 、C 两组的数据是:86,88,88,89,91,91,91,92,92,93根据以上信息,回答下列问题:填空:(1)a = ;b = ;m = ;(2)根据以上数据分析,你认为八、九年级哪个年级学生心理健康状况更好?请说明理由(写出一条理由即可).(3)若该校八年级有800名学生,九年级有700名学生,估计这两个年级心理健康的学生一共有多少人?19.(7分)某公司欲招聘一名公关人员,对甲,乙两位应试者进行了面试与笔试,他们的成绩(百分制)如表所示:(1)如果公司认为面试和笔试同等重要,从他们的成绩看,会被录取是;(2)如果公司认为作为公关人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算两人各自的平均成绩,并确定会被录取的人.20.(7分)某篮球训练营在一次投篮训练中,A组的20名运动员均参加训练,训练方式为每人定点投篮10次,以命中次数作为训练成绩.据统计,此次投篮训练的成绩如表:(1)已知这20名运动员此次训练成绩的平均数是6.25、中位数是b、众数是c,直接写出b、c的值;(2)若A组某运动员的训练成绩为7次,统计时被记录员记少了1次,则此次训练成绩的统计数据中不受影响的是.(填“平均数”、“众数”、“中位数” )(3)已知B组的20名运动员在本次训练中的成绩统计如表:你认为哪组运动员本次的训练成绩更好?为什么?21.(8分)在一次体操比赛中,6个裁判员对某一运动员的打分数据(动作完成分)如下:9.6??8.8??8.8??8.9??8.6??8.7对打分数据有以下两种处理方式:方式一:不去掉任何数据,用6个原始数据进行统计;方式二:去掉一个最高分和一个最低分,用剩余的4个数据进行统计;(1)a=,b=,c=;(2)你认为把哪种方式统计出的平均分作为该运动员的最终得分更合理?写出你的判定并说明理由.22.(8分)北京冬奥会的开幕式惊艳了世界,在这背后离不开志愿者们的默默奉献,这些志愿者很多来自高校,在志愿者招募之时,甲、乙两所大学就积极组织了志愿者选拔活动,对报名的志愿者进行现场测试,现从两所大学参加测试的志愿者中分别随机抽取了20名志愿者的测试成绩进行整理和分析(成绩得分用x 表示,满分100分,共分成五组:A .80x <,B .8085x <,C .8590x <,D .9095x <,E .95100)x ,下面给出了部分信息:a .甲校20名志愿者的成绩在D 组的数据是:90,91,91,92.b .乙校20名志愿者的成绩成绩是:82,89,80,85,88,89,87,96,96,99,96,92,91,93,96,97,98,92,94,100.c .d .两校抽取的志愿者成绩的平均数、中位数、众数、方差如下表所示:根据以上信息,解答下列问题:(1)由上表填空:a = ,b = ,α= ︒.(2)你认为哪个学校的志愿者测试成绩较好,请说明理由(写出一条即可). (3)若甲校有200名志愿者,乙校有300名志愿者参加了此次侧试,估计此次参加测试的志愿者中,成绩在90分以上的志愿者有多少?23.(8分)保家卫国尽精英,战绩辉煌留盛名,近几年涌现了很多缅怀中国军人的优秀作品,其中《长津湖》和《长津湖之水门桥》正是其中的优秀代表,为了解学生对这两部作品的评价,某调查小组从该校九年级中随机抽取了20名学生对这两部作品分别进行打分,并进行整理,描述和分析,下面给出了部分信息:《长津湖》得分:7,8,7,10,7,6,9,9,10,10,8,9,8,6,6,10,9,7,9,9.抽取的学生对两部作品分别打分的平均数,众数和中位数如下表.根据以上信息,解答下列问题:(1)上述表格中的b=,c=;(2)根据上述数据,你认为该校九年级学生对哪部作品评价更高?请说明理由(写出一条理由即可);(3)若该校九年级1100名学生都对这两部作品进行打分,请你估计一下这两部作品一共大约可得到多少个满分?24.(8分)北京冬奥会的成功举办掀起了全民“冬奥热”.某校组织全校七、八年级学生举行了“冬奥知识”竞赛,现分别在七、八两个年级中各随机抽取10名学生,统计这部分学生的竞赛成绩,相关数据统计整理如下:[收集数据]七年级10名同学测试成绩统计如下:84,78,85,75,72,91,79,72,69,95八年级10名同学测试成绩统计如下:85,80,76,84,80,72,92,74,75,82【整理数据】两组数据各分数段,如下表所示:x<x<901006070x<8090x<7080152a0451【分析数据】两组数据的平均数、中位数、众数、方差如下表:【问题解决】根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)计算八年级同学测试成绩的方差是:2_S八年级.请你求出七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上为优秀,若该校七年级学生共1200人,八年级学生共1000人,请估计这两个年级竞赛成绩达到优秀学生的人数.(4)根据以上数据,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由(写出一条理由即可).25.(8分)2022年2月8日,中国选手谷爱凌在冬奥会自由式滑需女子大跳台决赛中夺得金牌,国际滑联评价谷爱凌为滑雪史上第一人,已知自由式滑雪大跳台的计分规则如下:①每次滑雪的动作,按照其完成难度的不同对应一个难度系数A;②每次滑雪都有7名裁判进行打分,在7个得分中去掉1个最高分和1个最低分,剩下5个得分的平均值为这次起跳的完成分B;③运动员该次滑雪的最后得分C=难度系数A⨯完成分3B⨯.在某次自由滑雪大跳台比赛中,某运动员的打分(满分10分)表为:(1)7名裁判打分的众数是;中位数是.(2)该运动员的最后得分是多少?(3)已知某运动员在一次滑雪大跳台比赛中完成了难度系数3.2的动作,且所有裁判都打了满分,请你帮她算一下,难度系数3.2的满分成绩应该是多少分?参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.D;5.A;6.D;7.C;8.B;9.A;10.B;二、填空题(共5小题,满分15分,每小题3分)11.5;12.2;13.乙;14.9.42;15.21;三、解答题(共10小题,满分75分)16.(1)这30名男生引体向上成绩的平均为:1(013253644556373) 3.730⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(个),中位数为343.52+=(个),众数为3个;(2)334509030+⨯=(人),答:估计该校七年级所有男生引体向上成绩为优秀的人数为90人.17.(1)这10个数据的中位数是:164166165()2cm+=,众数是164cm,故答案为:165;164;(2)如果以中位数作为选定标准,上面挑选的10名男生中具有“优身高”的有⑦、⑧、⑨、⑩共4人;(3)438015210⨯=(人),答:估计本校380名男生中具有“优身高”的人数为152人.18.(1)1(92)922a+=,解得92a=,九年级测试成绩的中位数1(9191)912b=⨯+=,九年级测试成绩分数不低于90分的人数所占百分比为12100%60% 20⨯=,60m∴=,故答案为:92;91;60;(2)八年级学生心理健康状况更好,理由如下:八年级测试成绩的平均数,中位数和健康率均大于九年级;(3)估计这两个年级的学生疫情防控知识竞赛成绩为优秀(分数不低于90分为优秀)的一共有80080%70060%1060⨯+⨯=(人). 19.(1)甲的平均成绩:859087.52+=(分), 乙的平均成绩:928186.52+=(分), 所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取; 故答案为:甲. (2)甲的平均成绩8569048764⨯+⨯==+(分), 乙的平均成绩92681487.664⨯+⨯==+(分), 因为乙的平均分数较高, 所以乙将被录取.20.(1)这20名运动员此次训练成绩从小到大排列,排在最中间的两个数分别为6、6,故中位数6662b +==, 7出现的次数最多,故众数7c =;(2)若A 组某运动员的训练成绩为7次,统计时被记录员记少了1次,则此次训练成绩的统计数据中不受影响的是中位数; 故答案为:中位数;(3)B 组成绩更好;理由:两组成绩的众数均相同,但B 组的平均数、中位数较大,说明B 组运动员的平均成绩及中等偏上的成绩更好.21.(1)方式一:不去掉任何数据,这组数据的中位数为:8.88.88.82a +==; 方式二:去掉一个最高分和一个最低分, 平均数为1(8.88.88.98.7)8.84b =⨯+++=,方差为:22221[(8.88.8)(8.88.8)(8.98.8)(8.78.8)]0.0054c =⨯-+-+-+-=,故答案为:8.8,8.8,0.005;(3)方式二:去掉一个最高分和一个最低分,用剩余的4个数据进行统计更合理, 理由:这样可以减少极端值对数据的影响.22.(1)甲校D组所占的百分比为:420%20=,甲校C组所占的百分比为:15%5%45%20%25%----=,C组的人数为2025%5⨯=(名),∴甲校的中位数919291.52a+==,乙校的出现次数最涉感是96,因此众数是96,即96b=.360(5%5%25%)126a x=︒++=︒,故答案为:91.5,96,126;(2)乙校志愿者测试成绩较好.理由如下:甲、乙两校的平均数虽然相同,但是乙校的中位数、众数均比甲校的大,甲校的方差为36.6,乙校的方差是31.4,而36.631.4>,∴乙校的成绩较为稳定,∴乙校志愿者测试成绩较好;(3)根据题意得:甲校20名志愿者成绩在90分以上的人数为:20(45%20%)112⨯+-=,20名志愿者成绩在90分以上的人数为13,∴12132003001201953152020⨯+⨯=+=(人),答:成绩在90分以上的志愿者有315人.23.(1)将《长津湖》得分按照从小到大排好顺序处在中间位置的两位数为:898.52+=,根据扇形图可知《长津湖之水门桥》的得分为8分的所占的比例为126100%35% 360⨯=,∴得分为10分的所占的比例为135%20%20%10%15%----=,∴《长津湖之水门桥》的得分的众数为8分,故答案为:8.5,8;(2)该校九年级学生对《长津湖》评价更高,理由是:《长津湖》的平均数、众数、中位数均比《长津湖之水门桥》的高;(3)这两部作品一共大约可得到满分的个数为41100(15%)38520⨯+=(人)答:该校九年级1100名学生都对这两部作品进行打分,这两部作品一共大约可得到满分的个数为385人.24.(1)将七年级抽样成绩重新排列为:69,72,72,75,78,79,84,85,91,95,其中在90100x<范围内的数据有2个,故2a=.中位数787978.52b+==,将八年级样成绩重新排列为:72,74,75,76,80,80,82,84,85,92,其众数80c=,故答案为:2,78.5,80;(2)七年级的方差是2_S七年级,因为2_S七年级,所以八年级学生的竞赛成绩更整齐;(3)21 120010003401010⨯+⨯=(人),答:估计这两个年级竞赛成绩达到优秀学生的人数有340人;(4)可以推断出八年级年级学生知识竞赛成绩更好,理由为两班平均数相同,而八年级的中位数以及众数均高于七年级,说明八年级学生的竞赛成绩更好(答案不唯一).25.(1)9.0出现次数最多,7名裁判打分的众数是9;把这组数据按照从小到大的顺序排列得:9、9、9、9、9.5、9.5、10,根据中位数的定义知,中位数是9.故答案为:9;9;(2)13.0(9.59.09.0)382.53⨯⨯++⨯=(分).故该运动员本次滑雪的得分是82.5分.(3)13.2(101010)3963⨯⨯++⨯=(分),答:难度系数3.2的满分成绩应该是96分.。

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷

人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。

下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。

人教版八年级数学下《正方形》拔高练习

人教版八年级数学下《正方形》拔高练习

人教版八年级数学下《正方形》拔高练习《正方形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个2.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A.B.C.2D.13.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM 的长为()A.2B.2C.4﹣D.8﹣44.(5分)如图,有两个正方形A,B,现将B放置在A的内部得到图甲.将A,B并列放置,以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.13B.14C.15D.165.(5分)已知?ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时?ABCD为矩形B.当AB=AD时?ABCD为正方形C.当∠ABC=90°时?ABCD为菱形D.当AC⊥BD时?ABCD为正方形二、填空题(本大题共5小题,共25.0分)6.(5分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为.7.(5分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为.8.(5分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为.9.(5分)如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)10.(5分)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为°.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F 点.已知FG=2,求线段AE的长度.12.(10分)如图,在正方形ABCD中,E为边BC上一点,F 是AE的中点,过点F垂直于AE的直线与边CD的交点为M,与AD 的延长线的交点为N.若AB=12,BE=5,求DN的长.13.(10分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,请判断AE和BF的关系,并说明理由.14.(10分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠F AE,求证:AF=AD+CF.15.(10分)如图1,P为正方形ABCD内一点,且P A:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设P A=x,PB=2x,PC=3x,设法把P A、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,P A:PB:PC=3:4:5,那么∠APB=度.请写出推理过程.《正方形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD 的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,∴△BCE≌△CDF,(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=CD=AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选:D.【点评】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A.B.C.2D.1【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,再求出AH,MH,MB,然后证明∠BNM=∠BMN,BN =BM=1.【解答】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∵AM=,∴AH=MH=1,∵CM平分∠ACB,∠ACB=45°,∠MBC=90°∴∠ACM=∠BCM=22.5°,BM=MH=1,∵∠BAC=45°,∴∠BMC=45°+22.5°=67.5°,∵∠BNM=∠ONC=90°﹣22.5°=67.5°,∴∠BNM=∠BMN,∴BN=BM=1,故选:D.【点评】本题考查了正方形的性质,角平分线的性质,根据角平分线的性质作辅助线是解决问题的关键.3.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM 的长为()A.2B.2C.4﹣D.8﹣4【分析】过点M作MF⊥AC于点F,根据角平分线的性质可知FM=BM,再由四边形ABCD为正方形,可得出∠F AM=45°,在直角三角形中用∠F AM的正弦值即可求出FM与AM的关系,最后由AM+BM=4列方程求解即可..【解答】解:过点M作M F⊥AC于点F,如图所示.∵MC平分∠ACB,四边形ABCD为正方形,∴∠CAB=45°,FM=BM.在Rt△AFM中,∠AFM=90°,∠F AM=45°,AM=2,∴BM=FM=AM?sin∠F AM=AM.又∵AM+BM=4,∴AM+AM=4,解得:AM=8﹣4.故选:D.【点评】本题考查了正方形的性质以及角平分线的性质,解题的关键是求出FM 的长度与AM的关系.本题属于基础题,难度不大,解决该题型题目时,根据角平分的性质及正方形的特点找出边角关系,再利用解直角三角形的方法即可得以解决.4.(5分)如图,有两个正方形A,B,现将B放置在A的内部得到图甲.将A,B并列放置,以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.13B.14C.15D.16【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故选:A.【点评】本题主要考查了正方形的性质,完全平方公式的几何背景,解题的关键是根据图形得出数量关系.5.(5分)已知?ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时?ABCD为矩形B.当AB=AD时?ABCD为正方形C.当∠ABC=90°时?ABCD为菱形D.当AC⊥BD时?ABCD为正方形【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到?ABCD为矩形,故此选项正确;B、当AB=AD时?ABCD为菱形,故此选项错误;C、当∠ABC=90°时?ABCD为矩形,故此选项错误;D、当AC⊥BD时?ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为9.【分析】过O作OF⊥BC,过A作AM⊥OF,根据正方形的性质得出∠A OB=90°,OA=OB,求出∠BOF=∠OAM,根据AAS证△AOM≌△BOF,推出AM=OF,OM=FB,求出四边形ACFM为矩形,推出AM=CF,AC=MF=3,得出等腰三角形三角形OCF,根据勾股定理求出CF=OF=6,求出BF,即可求出答案.【解答】解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵∠ACB=90°,∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,∴四边形ACFM是矩形,∴AM=CF,AC=MF=3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=6,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点评】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,有一定的难度.7.(5分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为16.【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC =∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2=7+9=16,即S b=16,则b的面积为16,故答案为16【点评】本题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB ≌△DCE.8.(5分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为9.【分析】根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB=∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC,AB=CD.∵正方形①、②的面积分别27cm2和54cm2,∴AE2=27,CD2=54.∴AB2=27.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=27+54=81,∴BE=9.故答案为:9.【点评】本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.9.(5分)如图,有两个正方形夹在AB与CD 中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为70度(正方形的每个内角为90°)【分析】如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.利用四边形内角和36°,求出∠HMF,再根据∠KME=∠MKG+∠MEH,求出∠MKG即可解决问题;【解答】解:如图,延长KH交EF的延长线于M,作MG⊥AB 于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,故答案为70.【点评】本题利用正方形的四个角都是直角,直角的邻补角也是直角,四边形的内角和定理和两直线平行,内错角相等的性质,延长正方形的边构造四边形是解题的关键.10.(5分)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为150°.【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣60°﹣∠2=120°﹣∠2,∠ABC=180°﹣90°﹣∠1=90°﹣∠1,∠ACB=180°﹣60°﹣∠3=120°﹣∠3,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2+∠3=150°.故答案为:150.【点评】本题考查了正方形的性质、等边三角形的性质、三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F 点.已知FG=2,求线段AE的长度.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AB∥CD,可得,即可得AE=2AG=12.【解答】解:∵G为CD边中点,∴CG=DG=CD∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=6.∵AB∥DC∴∴AE=2GE=2(AE﹣AG)∴AE=2AG=12【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键12.(10分)如图,在正方形ABCD中,E为边BC上一点,F 是AE的中点,过点F垂直于AE的直线与边CD的交点为M,与AD 的延长线的交点为N.若AB=12,BE=5,求DN的长.【分析】根据正方形的性质得到AB=AD,∠B=90°,AD∥BC,根据平行线的性质得到∠AEB=∠F AN,根据新的数据线的性质和勾股定理得到AN=16.9,根据线段的和差即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AEB=∠F AN,∵FN⊥AE,∴∠AFN=90°,∴∠B=∠AFN,∴△ABE∽△NF A,∴,在Rt△ABE中.AE===13,∵F是AE的中点,∴AF=AE=6.5,∴=,∴AN=16.9,∵AB=AD=12,∴DN=AN﹣AD=4.9.【点评】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.13.(10分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,请判断AE和BF的关系,并说明理由.【分析】根据正方形的性质得到AD=CD=AB=BC,∠ADE=∠BAF=90°,证明△BAF≌△ADE,根据全等三角形的性质证明.【解答】解:AE=BF,AE⊥BF,理由如下:∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠ADE=∠BAF=90°,∵CE=DF,∴AF=DE,在△BAF和△ADE中,,∴△BAF≌△ADE(SAS),∴AE=BF,∠ABF=∠DAE,∵∠DAE+∠BAE=90°,∴∠ABF+∠BAE=90°,即AE⊥BF.【点评】本题考查的是正方形的性质,全等三角形的判定和性质,掌握正方形的四条边相等,四个角都是90°是解题的关键.14.(10分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠F AE,求证:AF=AD+CF.【分析】过E点作EG⊥AF,垂足为G,根据题干条件首先证明Rt△AEG≌Rt △AED,即可得AG=AD,同理证明出CF=GF,于是结论可以证明AF=AD+CF.【解答】解:过E点作EG⊥AF,垂足为G,∵∠DAE=∠EAF,∠B=∠AGE=90°,即AE为角平分线,ED⊥AD,EG⊥AG,∴DE=EG,在Rt△AEG和Rt△AED中,,∴Rt△AEG≌Rt△AED(HL),∴AG=AD,∵E是CD的中点∴DE=EC=EG同理可知CF=GF,∴AF=AG+FG=AD+CF.【点评】本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质,此题难度不大.15.(10分)如图1,P为正方形ABCD内一点,且P A:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设P A=x,PB=2x,PC=3x,设法把P A、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=135度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,P A:PB:PC=3:4:5,那么∠APB=150度.请写出推理过程.。

人教版八年级上册数学 全册全套试卷测试卷附答案

人教版八年级上册数学 全册全套试卷测试卷附答案

人教版八年级上册数学全册全套试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).【答案】(1)过程见解析;(2)MN= NC﹣BM.【解析】【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵BD CDMBD ECD BM CE,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,在△DMN与△DEN中,∵MD DEMDN EDN DN DN,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵BM CEMBD ECD BD CD,∴△BMD≌△CED(SAS),∴DM= DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN =∠NDE=60°,在△MDN和△EDN中∵ND NDEDN MDN ND ND,∴△MDN≌△EDN(SAS),∴MN =NE=NC﹣CE=NC﹣BM.【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.(1)如图1,在Rt△ABC 中,AB AC,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD 的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC=∠=︒45B ACB∴∠=∠=︒,45ACF,∠=︒90.BCF∴∠=︒设.DE x=,9.DF DE x CD x===- 3.FC BE==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF⊥BD.【详解】解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB⊥CE;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.(2)延长HK于DE交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC ,∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS )∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.5.如图(1),在ABC 中,90A ∠=︒,AB AC =,点D 是斜边BC 的中点,点E ,F 分别在线段AB ,AC 上, 且90EDF ∠=︒.(1)求证:DEF 为等腰直角三角形;(2)若ABC 的面积为7,求四边形AEDF 的面积;(3)如图(2),如果点E 运动到AB 的延长线上时,点F 在射线CA 上且保持90EDF ∠=︒,DEF 还是等腰直角三角形吗.请说明理由.【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.【解析】【分析】(1)由题意连接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形;(2)由题意分析可得S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,以此进行分析计算求出四边形AEDF的面积即可;(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.【详解】解:(1)证明:如图①,连接AD.∵∠BAC=90˚,AB=AC,点D是斜边BC的中点,∴AD⊥BC,AD=BD,∴∠1=∠B=45°,∵∠EDF=90°,∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴ΔDEF为等腰直角三角形.(2)由(1)可知DE=DF,∠C=∠6=45°,又∵∠2+∠3=90°,∠2+∠5=90°,∴∠3=∠5,∴△ADE≌△CDF,∴S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,∴ S∆ABC=2 S四边形AEDF,∴S四边形AEDF=3.5 .(3)是.如图②,连接AD.∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD ,∴∠1=45°,∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,∠DAF=∠DBE,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.【点睛】本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(2)22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,BH=HE=2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH =22(3)CE =2GH理由如下:∵AB =CA ,点G 是BC 的中点,∴BG =GC ,∵BD =DE ,DH ⊥BC ,∴BH =HE ,∵GH =GC ﹣HC =GC ﹣(HE ﹣CE )=12BC ﹣12BE +CE =12CE , ∴CE =2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.7.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=- 解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.8.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,△AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形△AMN?(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【解析】【分析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN =3t ﹣24=6解得t =10; ④当M 、N 都在BC 上,∠AMN =90°时,则N 与B 重合,M 正好处于BC 的中点,如图此时2t =12+6解得t =9;综上所述,点M 、N 运动3秒或127秒或10秒或9秒后,△AMN 为直角三角形. 【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是______;(2)根据(1)中的结论,若5x y +=,94x y ⋅=,则x y -=______; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)(2020)m m --的值.【答案】(1)22()()4a b a b ab +=-+;(2)4,-4:(3)-3【解析】【分析】(1)观察图2,大正方形由4个矩形和一个小正方形组成,根据面积即可得到他们之间的关系.(2)由(1)的结论可得(x-y) ²=16,然后利用平方根的定义求解即可.(3)从已知等式的左边看,左边配成两数和的平方来求解.【详解】解:(1)由题可得,大正方形的面积2()a b =+,大正方形的面积2()4a b ab =-+,∴22()()4a b a b ab +=-+,(2)∵22()()4x y x y xy +=-+, ∴229()()4254164x y x y xy -=+-=-⨯=, ∴4x y -=或-4, (3)∵22(2019)(2020)7m m -+-=,又2(20192020)m m -+-22(2019)(2020)2(2019)(2020)m m m m =-+-+-- ∴172(2019)(2020)m m =+--∴(2019)(2020)3m m --=-故答案为:(1)22()()4a b a b ab +=-+;(2) 4,-4:(3)-3 【点睛】本题通过观察图形发现规律,并运用规律求值,使问题简单化是解题关键.12.先阅读下列材料,然后解后面的问题. 材料:一个三位自然数abc (百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F (abc )=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12. (1)对于“欢喜数abc ”,若满足b 能被9整除,求证:“欢喜数abc ”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.【答案】(1)详见解析;(2)99或297.【解析】【分析】(1)首先由题意可得a +c =b ,将欢喜数展开,因为要证明“欢喜数abc ”能被99整除,所以将展开式中100a 拆成99a +a ,这样展开式中出现了a +c ,将a +c 用b 替代,整理出最终结果即可;(2)首先设出两个欢喜数m 、n ,表示出F (m )、F (n )代入F (m )﹣F (n )=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵abc 为欢喜数,∴a +c =b . ∵abc =100a +10b +c =99a +10b +a +c =99a +11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数abc ”能被99整除;(2)设m =11a bc ,n =22a bc (且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n =100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n =99或m ﹣n =297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.13.观察下列等式:22()()a b a b a b -=-+3322()()a b a b a ab b -=-++443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.14.阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数. 延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【解析】【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为:19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1, 故答案为:1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为:a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15.阅读下列因式分解的过程,解答下列问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x +x (x +1)+x (x +1)2+…+x (x +1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x +x (x +1)+x (x +1)2+…+x (x +1)n (n 为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n +1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3]=(1+x)n (1+x)【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.四、八年级数学分式解答题压轴题(难)16.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距离上班地点27km ,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9km .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的37. (1)小王用自驾车上班平均每小时行驶多少千米?(2)上周五,小王上班时先步行了6km ,然后乘公交车前往,共用43小时到达.求他步行的速度.【答案】(1)小王用自驾车上班平均每小时行驶27km ;(2)小王步行的速度为每小时6km .【解析】【分析】(1))设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.再利用乘公交车的方式平均每小时行驶的路程比他自用驾SS 式平均每小时行驶的路程的2倍还多9千米和乘公交车所用时间是自驾车方式所用时间的37,列方程求解即可;(2)设小王步行的速度为每小时ykm ,然后根据“步行时间+乘公交时间=小时”列方程解答即可.【详解】解(1)设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.根据题意得:27327297x x=⋅+ 解得:27x =经检验,27x =是原方程的解且符合题意.所以小王用自驾车上班平均每小时行驶27km ;(2)由(1)知:小王乘坐公交车上班平均每小时行驶29227963x +=⨯+=(km ); 设小王步行的速度为每小时ykm ,根据题意得:62764633y -+=经检验:6y=是原方程的解且符合题意所以小王步行的速度为每小时6km.【点睛】本题考查了分式方程的应用,解答的关键在于弄清题意、找到等量关系、列出分式方程并解答.17.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天(2)工程预算的施工费用不够用,需追加预算8万元【解析】试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案;(2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得201160()12233x x x++=,解得:x=180.经检验,x=180是原方程的根,∴23x=23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y天,则有11()1120180y+=,解得y=72.需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.18.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.【答案】小红骑自行车的速度是每小时20千米.【解析】【分析】设骑自行车的速度为x千米/时,则驾车的速度为4x千米/时.依据“小王每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答.【详解】解:设小红骑自行车的速度是每小时x千米,则驾车的速度是每小时4x千米.根据题意得:202045460x x=+解得x=20经检验x=20是分式方程的解,并符合实际意义答:小红骑自行车的速度是每小时20千米.【点睛】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.19.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润-售价-进价)?【答案】(1)120元(2)至少打7折.【解析】【分析】(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;(2)设剩余的杨梅每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.【详解】解:(1)设第一批杨梅每件进价是x元,则120025002,5 x x⨯=+解得120.x=经检验,x=120是原方程的解且符合题意.答:第一批杨梅每件进价为120元.(2)设剩余的杨梅每件售价打y折.则2500250015080%150(180%)0.12?500320. 125125y⨯⨯+⨯⨯-⨯-≥解得y≥7.答:剩余的杨梅每件售价至少打7折.【点睛】考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.20.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克;(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【答案】(1)该商店第一次购进水果100千克;(2)每千克水果的标价至少是15元.【解析】【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(1000÷第一次购进水果的重量 +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【详解】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(1000x+2)×2x=2400整理,可得:2000+4x=2400,解得x=100.经检验,x=100是原方程的解.答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350,解得x≥15,∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点睛】。

八年级数学期中模拟卷(全解全析)【测试范围:人教版八年级上册第11章~第13章】(贵州专用)

八年级数学期中模拟卷(全解全析)【测试范围:人教版八年级上册第11章~第13章】(贵州专用)

2024-2025学年八年级数学上学期期中模拟卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八年级上册第11章~第13章。

5.难度系数:0.8。

第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是( )A.B.C.D.【答案】D【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.2.在平面直角坐标系中,将点A(2,1)向右平移3个单位长度得到点B,则与点B关于y轴对称的点B′的坐标为( )A.(﹣5,1)B.(5,﹣1)C.(﹣5,﹣1)D.(5,1)【答案】A【详解】解:将点A(2,1)向右平移3个单位长度得到点B(5,1),∴与点B关于y轴对称的点B′的坐标为(﹣5,1),故选:A.3.根据下列已知条件,能够画出唯一△ABC的是( )A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【答案】C【详解】解:A、已知两边和其中一边的对角,不能画出唯一△ABC,故本选项不符合题意;B、因为5+6<13,不能构成三角形,故本选项不符合题意;C、根据两角和一边,能画出唯一三角形,故本选项符合题意;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项不符合题意;故选:C.4.如图,OP平分∠AOB,PC⊥OA于点C,点D在OB上,若PC=3,OD=6,则△POD的面积为( )A.3B.6C.9D.18【答案】C【详解】解:过P点作PE⊥OB于E点,如图,∵OP平分∠AOB,PC⊥OA,PE⊥OB,∴PE=PC=3,∴S△POD=×6×3=9.故选:C.5.在△ABC中,∠B=50°,∠C=35°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为( )A.60°B.70°C.75°D.85°【答案】A【详解】解:∠BAC=180°﹣∠B﹣∠C=95°,由作图可知,MN是线段AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∴∠BAD=∠BAC﹣∠DAC=35°=60°,故选:A.6.设△ABC的三边长分别为a,b,c,其中a,b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的长度取值范围是( )A.3<c<5B.2<c<4C.4<c<6D.5<c<6【答案】C【详解】解:∵|a+b﹣6|+(a﹣b+4)2=0,∴a+b=6,b﹣a=4,∴第三边的长c的取值范围是4<c<6.故选:C.7.如图,在△ABC中,AB=AC,M为BC边上一点,且AM=AN,则∠BAM与∠NMC的关系一定成立的是( )A.∠BAM=∠NMC B.∠BAM+∠NMC=∠BACC.∠BAM+∠NMC=∠B D.∠BAM=2∠NMC【答案】D【详解】解:∵AB=AC,∴∠B=∠C,∵AM=AN,∴∠AMN=∠ANM,∴∠NMC+∠C=∠ANM,∴∠NMC=∠AMN﹣∠B,∵∠BAM+∠B=∠AMN+∠NMC,∴∠BAM=∠AMN+∠NMC﹣∠B.∴∠BAM=2∠NMC.故选:D.8.如图,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=6,DO=2,平移距离为4,则阴影部分面积为( )A.20B.24C.28D.30【答案】A【详解】解:由平移性质得△ABC≌△DEF,BE=4,DE=AB=6,AB∥DE,∴S△ABC=S△DEF,OE=DE﹣DO=4,∠ABC=∠DEF=90°,∴S=S△DEF﹣S△OEC阴影面积=S△ABC﹣S△OEC=S梯形ABEO==20,故选:A.9.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是( )A.3m B.4m C.4.5m D.5m【答案】B【详解】解:过C作CM⊥AB于M,则CM=h,∠CMB=90°,∵∠ABC=150°,∴∠CBM=30°,∴,故选:B.10.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.4m和1.8m,∠BOC=90°.爸爸在C处接住小丽时,小丽距离地面的高度是( )A.1m B.1.6m C.1.8m D.1.4m【答案】D【详解】解:由题意可知∠CEO=∠BDO=90°,OB=OC,∵∠BOC=90°,∴∠COE+∠BOD=∠BOD+∠OBD=90°.∴∠COE=∠OBD,在△COE和△OBD中,,∴△COE≌△OBD(AAS),∴CE=OD,OE=BD,∵BD、CE分别为1.4m和1.8m∴DE=OD﹣OE=CE﹣BD=1.8﹣1.4=0.4(m),∵AD=1m,∴AE=AD+DE=1.4(m),答:爸爸是在距离地面1.4m的地方接住小丽的.故选:D.11.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC 上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是( )A.45°B.90°C.75°D.135°【答案】B【详解】解:作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',则ME=ME',ND=ND',∴四边形DEMN的周长=DE+ME+MN+ND=DE+ME'+MN+ND'≥DE+D'E',∵DE长固定,∴点M与M'重合,点N与点N'重合时,四边形DEMN的周长最小,此时∠DNM+∠EMN=∠DN'M+∠EM'N,由对称性和三角形外角性质可知:∠DN'M=∠N'DD'+∠N'D'D=2∠N'D'D,∠EM'N=∠M'EE'+∠M'E'E=2∠M'E'E,∴∠DN'M+∠EM'N=2∠N'D'D+2∠M'E'E=2(180°﹣∠D'DE'),设DD'与BC交于点H,∵AB=AC,∠A=90°,∴∠BDH=45°,∴∠D'DE'=180°﹣45°=135°,∴∠DN'M+∠EM'N=2(180°﹣135°)=90°,即当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是90°,故选:B.12.如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,连接FH.给出下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形.其中正确结论的个数是( )A.1B.2C.3D.4【答案】D【详解】解:∵△ABC和△DCE是等边三角形,∴∠BCA=∠DCE=60°,AC=BC,CE=CD,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),故①正确;∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠BFC=∠AFG,∴∠AGB=∠ACB=60°,故②正确;在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH,BF=AH;故③正确;∵CF=CH,∠ACH=60°,∴△CFH是等边三角形;故④正确.故选:D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。

2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。

2022-2023学年新人教版初中八年级数学下册第十七单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第十七单元综合能力提升测试卷(附参考答案)

2022-2023学年新人教版初中八年级数学下册第十七单元综合能力提升测试卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3B.2,3,4C.4,5,6D.1,2 2.(3分)七年级手工小组用彩带给如图所示的图片制作边框,已知AB=5,BC=12,则制作一个边框需要彩带的长度是()A.5B.12C.13D.303.(3分)下列四组数,是勾股数的是()A.0.3,0.4,0.5B.3,4,5C.6,7,8D.32,42,524.(3分)如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.(3分)若一直角三角形的两边长分别是6,8,则第三边长为()A.10B.C.10或D.146.(3分)△ABC各边分别为a,b,c,在下列条件中,不是直角三角形的是()A.两内角互余B.∠A:∠B:∠C=3:4:5C.∠C=∠A﹣∠B D.b2=a2﹣c27.(3分)已知,Rt△ABC中,∠A=90°,AB=4,BC=5,AC边的长为()A.3B C.3D8.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的度数比为1:2:3B.三条边的长度比为1:2:3C.三条边满足关系a2+c2=b2D.三个角满足关系∠B+∠C=∠A9.(3分)如图,在5×5的网格中,每个格点小正方形的边长为1,△ABC的三个顶点A、B、C都在网格格点的位置上,则△ABC的边AB上的高为()A B C D10.(3分)在平面直角坐标系中有一个点A(﹣4,3),则点A到坐标原点O的距离是()A.﹣5B.5C D二.填空题(共5小题,满分15分,每小题3分)11.(3分)若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是cm.12.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B 出发沿射线BA以2cm/s的速度运动.则当运动时间t=s时,△BPC为直角三角形.13.(3分)如图,Rt△ABC中,∠B=90°,AB=3,AC=5,AC的垂直平分线交AC于点E,交BC于点D.则BD的长为.14.(3分)如图,在△ABC中,已知AB=4,AD⊥BC,垂足为D.BD=2CD.若E是AD 的中点,则EC=.15.(3分)如图,Rt△ABC中,∠C=90°,AB=5,BC=3,DE垂直平分AB交AB于点E,交AC于点D,则AD的长是.三.解答题(共8小题,满分75分)16.(9分)如图,在四边形ABCD中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD的面积.17.(9分)如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是多少米?18.(9分)某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.19.(9分)已知线段a,b,c,且线段a,b满足|a48|+(b12)2=0.(1)求a,b的值;(2)若a,b,c是某直角三角形的三条边的长度,求c的值.20.(9分)如图,网格中的△ABC,若小方格边长为1,请你根据所学的知识:(1)判断△ABC是什么形状?并说明理由;(2)求△ABC的面积.21.(10分)如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.22.(10分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB 与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.23.(10分)八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.参考答案1.D;2.D;3.B;4.C;5.C;6.B;7.A;8.B;9.C;10.B;11.512.25或16;13.78;14.2;15.258;16.连接AC,∵∠B=90°,∴△ABC为直角三角形,∵AB=4,BC=3,根据勾股定理得:AC222243AB CB5,又∵AD=13,CD=12,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∴∠ACD=90°,∴S 四边形ABCD=S△ABC+S△ACD 12AB•BC12AC•CD123×41212×5=36.17.如图:∵BC=8米,AC=6米,∵∠C=90°,∴AB2=AC2+BC2,∴AB=10米,∴这棵树在折断之前的高度是18米.18.∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.19.(1)∵|a48|+(b12)2=0,∴a480,b120,解得a4843,b1223,(2)当a,b是某直角三角形的两条直角边的长,c为直角三角形斜边的长时,c2222a b;(48)(12)215当b,c是某直角三角形的两条直角边的长,a为直角三角形斜边的长时,c2222a b.(48)(12)6综上所述,c的值为或6.20.(1)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形;(2)S△ABC=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5,∴△ABC的面积为5.21.(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC =5,∴AC 22259CD AD 4.22.(1)解:设直线AB 的解析式为:y =kx +b , 点A (2,1),B (﹣2,4),则2124k b k b , 解得,3452k b , ∴设直线AB 的解析式为:y34x 52, ∴点C 的坐标为(0,52); (2)证明:∵点A (2,1),B (﹣2,4),∴OA 2=22+12=5,OB 2=22+42=20,AB 2=32+42=25, 则OA 2+OB 2=AB 2,∴△OAB 是直角三角形.23.(1)在Rt △CDB 中,由勾股定理,得2222251520CD CB BD (米). 所以CE =CD +DE =20+1.6=21.6(米);(2)由1122BD DC BC DH 得15201225DH , 在Rt △BHD 中,BH22BD OB 9.。

人教版数学八年级上册 全册全套试卷测试卷附答案

人教版数学八年级上册 全册全套试卷测试卷附答案

人教版数学八年级上册全册全套试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】 本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK =30°, ∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.3.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34tt xt=-⎧⎨=⎩,解得11tx=⎧⎨=⎩,②若△ACP≌△BQP,则AC=BQ,AP=BP,34xtt t=⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.如图1,在长方形ABCD中,AB=CD=5 cm, BC=12 cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v =【解析】【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t = 解得3t =∴3CQ vcm =∵5AB CQ cm == ∴35v =解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.5.已知:4590ABC A ACB ∆∠=∠=,,,点D 是AC 延长线上一点,且22AD =+,,M 是线段CD 上一个动点,连接BM ,延长MB 到H ,使得HB MB =,以点B 为中心,将线段BH 逆时针旋转45,得到线段BQ ,连接AQ .(1)依题意补全图形;(2)求证:ABQ AMB ∠=∠;(3)点N 是射线AC 上一点,且点N 是点M 关于点D 的对称点,连接BN ,如果QA BN =, 求线段AB 的长.【答案】(1)见解析;(2)证明见解析;(3)22AB =【解析】【分析】(1)根据题意可以补全图形;(2)根据三角形外角的性质即可证明;(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,22CD x =,结合已知22AD =,构建方程即可求解. 【详解】(1)补全图形如下图所示:(2)解:∵∠ABH 是ABM 的一个外角,∴ ABH BAM AMB ∠=∠+∠∵ABH HBQ ABQ ∠=∠+∠又∵45HBQ BAM ∠=∠=︒ ∴ ABQ AMB ∠=∠(3)过Q 作QE ⊥AB ,垂足为E ,如下图:∵⊥QE AB∴90QEB BCM ∠=∠=︒, 在QEB 和BCM 中,QEB BCM QBE BMC QB BM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ QEB BCM ≅(AAS)∴EB CM =,QE BC =,在Rt QEA 和Rt BCN 中∵QE BC =,Q A BN = ∴Rt QEA Rt BCN ≅ (HL)∴AE CN CM MD DN ==++∵点N 是点M 关于点D 的对称点,∴MD DN = ∴22AE CM MD EB MD =+=+∴ ()2222AB AE EB EB MD EB MD CD =+=+=+=设AC BC x ==,则2AB x =,22CD x =, 又∵22AD =+,2 2AD AC CD x x =+=+ ∴2222x x +=+ 解得:2x =∴ 22AB =【点睛】本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.二、八年级数学 轴对称解答题压轴题(难)6.(1)已知△ABC 中,∠A =90°,∠B =67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC 与∠C 之间的关系.【答案】(1)图形见解析(2) ∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.7.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110° ,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18° ,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①② -①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.8.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABCDBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.9.如图,在等边△ABC 中,线段AM 为BC 边上的高,D 是AM 上的点,以CD 为一边,在CD 的下方作等边△CDE ,连结BE .(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.10.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).(1)如图(1)作CQ⊥OA于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n, ∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON). 【点睛】 本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ; (2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.12.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.13.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)【答案】(1)a 2-ab+b 2;(2)详见解析;(3)2y 3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b )(a 2-ab+b 2)=a 3+b 3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b )(a 2-ab+b 2)=a 3+b 3;(2)(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3;(3)(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)=x 3+y 3-(x 3-y 3)=2y 3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.14.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd ,badc (a ,b ,c ,d 分别取0,1,2,…,9且a≠0,b≠0),于是得到abcd badc +=1100(a+b )+11(c+d )=1111(a+b ),即可得到结论.(3)设这个“和平数”为abcd ,于是得到d=2a ,a+b=c+d ,b+c=12k ,求得2c+a=12k ,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k ,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd ,badc (a ,b ,c ,d 分别取0,1,2,…,9且a ≠0,b ≠0),则abcd badc +=1100(a+b )+11(c+d )=1111(a+b );即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd ,则d=2a ,a+b=c+d ,b+c=12k ,∴2c+a=12k ,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k ,可知c+1=6k 且a+b=c+d ,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k ,可知c+2=6k 且a+b=c+d ,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.15.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++-=(8)(3)x x ++ 根据以上材料,解答下列问题: (1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程: 老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.【答案】(1)2(4)17x +- ;(2)(5)(8)x x +-;(3)见解析【解析】试题分析:(1)根据配方法,可得答案;(2)根据配方法,可得平方差公式,再根据平方差公式,可得答案;(3)根据交换律、结合率,可得完全平方公式,根据完全平方公式,可得答案. 试题解析:解:(1)281x x +-=2228441x x ++--=2(4)17x +-(2)2340x x --=222333()()40222x x -+-- =23169()24x -- =313313()()2222x x -+--=(5)(8)x x +-(3)证明:222416x y x y +--+=22214411x x y y -++-++=22(1)(2)11x y -+-+∵2(1)x -≥0,2(2)y -≥0,∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数.点睛:本题考查了配方法,利用完全平方公式:a 2±2ab +b 2=(a ±b )2配方是解题关键.四、八年级数学分式解答题压轴题(难)16.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.17.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a b a b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.18.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.【解析】分析:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元,根据“用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A 商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元. 由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B 型商品的进价为120元,则一件A 型商品的进价为150元.(2)因为客商购进A 型商品m 件,销售利润为w 元.m≤100﹣m ,m≤50,由题意:w=m (200﹣150)+(100﹣m )(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w 有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.19.小明用12元买软面笔记本,小丽用21元买硬面笔记本. (1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗;(2)已知每本硬面笔记本比软面笔记本贵a 元,是否存在正整数a ,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.【答案】(1))不能买到;(2)存在,a 的值为3或9.【解析】【分析】【详解】解:(1))设每本软面笔记本x 元,则每本硬面笔记本(x+1.2)元,由题意,得 12211.2x x =+, 解得:x=1.6.此时12211.6 1.2 1.6=+=7.5(不符合题意), 所以,小明和小丽不能买到相同数量的笔记本;。

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•江津区校级月考)下列各组三条线段中,不能构成三角形的是()A.2cm,2cm,3cm B.3cm,8cm,10cmC.三条线段之比为1:2:3D.3a,5a,4a(a>0)2.(2分)(2022秋•望花区月考)在△ABC中,∠C=90°,∠B=2∠A,则∠A=()A.15°B.30°C.45°D.60°3.(2分)(2022秋•越秀区期中)已知一个正n边形的一个外角为40°,则n =()A.10B.9C.8D.74.(2分)(2022秋•天山区校级期中)如图,在△ABC≌△DEF,且AB=3,AE =1,则BD的长为()A.4B.5C.6D.75.(2分)(2022秋•天门期中)如图为轴对称图形的是()A.B.C.D.6.(2分)(2022秋•兴宁区校级期中)如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A'B′C,P为线段A'C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.17.(2分)(2022秋•广安区校级期中)点P(5,﹣2)关于y轴的对称的点的坐标是()A.(﹣5,﹣2)B.(﹣5,2)C.(5,﹣2)D.(5,2)8.(2分)(2022秋•任城区期中)下列从左到右的变形属于因式分解的是()A.a2+a+14=(a+12)2B.6a3b=3a2•2abC.a2﹣b2+1=(a+b)(a﹣b)+1D.(x+3)(x﹣3)=x2﹣99.(2分)(2022秋•朝阳区校级期中)下列运算正确的是()A.a3+a6=a9B.a6•a2=a12C.(a3)2=a5D.a4•a2+(a3)2=2a610.(2分)(2022秋•张店区校级月考)分式2x−6x+8的值是零,则x的值为()A.﹣3B.3C.8D.﹣811.(2分)(2022秋•岳阳楼区月考)根据分式的基本性质,分式a−b−x可变形为()A.−a−bx B.a+bxC.−a−bxD.−a+bx12.(2分)(2022秋•冷水滩区校级月考)若1m +1n=2,则代数式5m−2mn+5n−m−n的值为()A.﹣4B.﹣3C.3D.4二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•海淀区校级期中)如图,D是△ABC的边CA延长线上一点,∠1=°,∠2=°.14.(3分)(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n=.15.(3分)(2022秋•江阴市期中)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BE的长为.16.(3分)(2022秋•大埔县期中)在平面直角坐标系中,A(2022,2023)和B (2022,﹣2023),则A与B关于对称.17.(3分)(2022春•沙坪坝区校级月考)若x+y=3,x2+y2=132,则x﹣y的值为.18.(3分)(2022•秦都区校级开学)关于x的方程x−2x+4=ax+4有增根,则a的值为.三、解答题(共9小题,满分78分)19.(8分)(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.20.(8分)(2022秋•西城区校级月考)计算:(1)(x2y )2⋅xyx2−xy2xy2÷2x;(2)a2b3•(a2b﹣2)﹣2.21.(8分)(2021秋•德江县期末)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘2000毫克所需的银杏树叶的片数与一年滞尘1100毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.22.(9分)(2022秋•谷城县期中)如图,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=80°,∠C=60°,求∠DAE和∠BOA的度数.23.(9分)(2022秋•汕尾校级月考)如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别是∠DAB及∠DCB的平分线.(1)求证:AE∥FC.(2)若∠BCD=56°,求∠DAE.24.(9分)(2022•姑苏区校级二模)已知:如图,AC=BD,AD=BC,AD,BC 相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.25.(9分)(2021秋•鄞州区期末)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.26.(9分)(2019秋•垦利区期中)如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20km,BB1=40km,已知A1B1=80km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.27.(9分)(2021秋•寻乌县期末)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)求证:△BDE是等腰三角形;(2)若∠A=35°,∠C=70°,求∠BDE的度数.参考答案一、选择题(共12小题,满分24分,每小题2分)1.C;2.B;3.B;4.B;5.A;6.A;7.A;8.A;9.D;10.B;11.C;12.A;二、填空题(共6小题,满分18分,每小题3分)13.110;7014.515.316.x17.±218.﹣6;三、解答题(共9小题,满分78分)19.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.20.解:(1)原式=x24y2•xyx2−12y•x2=x4y −x4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.21.解:设一片槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,依题意得:20002x−4=1100x,解得:x=22,经检验,x=22是原方程的解,且符合题意.答:一片槐树叶一年的平均滞尘量为22毫克.22.解:∵AE 平分∠CAB ,∠CAB =80°, ∴∠BAE =∠CAE =12∠CAB =40°, ∵AD 是△ABC 的高, ∴∠ADC =90°,∴∠CAD =90°﹣∠C =90°﹣60°=30°, ∴∠DAE =∠CAE ﹣∠CAD =40°﹣30°=10°, ∵∠CAB =80°,∠C =60°,∴∠ABC =180°﹣(∠CAB +∠C )=180°﹣(80°+60°)=40°, ∵BF 平分∠ABC , ∴∠ABO =12∠ABC =20°,∴∠BOA =180°﹣(∠ABO +∠BAE )=180°﹣(20°+40°)=120°. 23.(1)证明:∵四边形的内角和是360°, ∴∠DAB +∠DCB =360°﹣∠B ﹣∠D =180°, ∵AE ,CF 分别是∠DAB 和∠DCB 的平分线. ∴∠FCB =12∠DCB ,∠BAE =12∠DAB , ∴∠FCB +∠BAE =12(∠DAB +∠DCB )=90°, ∵∠AEB +∠BAE =90°, ∴∠FCB =∠AEB , ∴AE ∥FC ;(2)解:∵CF 是∠DCB 的平分线. ∴∠DCF =12∠DCB =28°, ∴∠DFC =90°﹣∠DCF =62°, ∵AE ∥FC ,∴∠DAE =∠DFC =62°. 24.证明(1)在ABC 和△BAD 中, {AC =BD BC =AD AB =BA,∴△ABC ≌△BAD (SSS );(2)∵△ABC ≌△BAD , ∴∠CBA =∠DAB , ∴OA =OB , ∵OE ⊥AB , ∴AE =BE .25.(1)证明:∵CE ∥AB , ∴∠B =∠DCE , 在△ABC 与△DCE 中, {BC =CE∠ABC =∠DCE BA =CD, ∴△ABC ≌△DCE (SAS );(2)解:∵△ABC ≌△DCE ,∠B =50°,∠D =22°, ∴∠ECD =∠B =50°,∠A =∠D =22°, ∵CE ∥AB ,∴∠ACE =∠A =22°,∵∠CED =180°﹣∠D ﹣∠ECD =180°﹣22°﹣50°=108°, ∴∠AFG =∠DFC =∠CED ﹣∠ACE =108°﹣22°=86°. 26.解:如图,延长AA 1到D 使A 1D =AA 1,连接BD 交MN 于P , 则P A +PB 的最小值=BD , 过D 作DE ⊥BB 1交BB 1于E ,∵AA 1=20km ,BB 1=40km ,A 1B 1=80km , ∴DE =80km ,BE =60km , ∴BD =√602+802=100km , ∴这个最短距离是100km .27.(1)证明:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠DBE=∠DEB,∴DB=DE,∴△BDE是等腰三角形;(2)解:∵∠A=35°,∠C=70°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣35°﹣70°=75°,∵DE∥BC,∴∠BDE+∠DBC=180°,∴∠BDE=180°﹣75°=105°.。

数学八年级上册人教版能力培养与测试

数学八年级上册人教版能力培养与测试

数学八年级上册人教版能力培养与测试数学八年级上册人教版能力培养与测试是一本非常重要的数学教材,它旨在帮助学生提高数学能力,掌握数学知识,培养数学思维和解决问题的能力。

下面我将从几个方面来谈谈这本书的重要性和特点。

首先,这本书注重基础知识的巩固和提高。

在每个章节开头,都会对前面学过的知识进行回顾和总结,帮助学生加深对基础知识的理解。

同时,每个章节的练习题和测试题也是围绕基础知识展开的,让学生通过大量练习来掌握基础知识,打牢数学基础。

其次,这本书注重数学思维的培养。

在每个章节中,都会有一些比较难的题目,需要学生运用数学思维来解决。

这些题目往往有多种解法,需要学生灵活运用数学知识来解决问题。

通过这种训练,学生可以逐渐培养出自己的数学思维,提高解决问题的能力。

此外,这本书还注重实际应用和实践。

在每个章节的最后,都会有一些实际问题和应用场景,让学生通过解决实际问题来加深对数学知识的理解和应用。

这种实际应用和实践的训练,可以让学生更好地将数学知识应用到实际生活中去。

最后,这本书的测试题也非常有特色。

每个章节的测试题都是根据该章节的知识点和难度来设计的,可以全面检测学生对该章节的掌握情况。

同时,测试题的难度也是逐渐递增的,可以让学生逐步提高自己的数学水平。

总之,数学八年级上册人教版能力培养与测试是一本非常重要的数学教材,它注重基础知识的巩固和提高、数学思维的培养、实际应用和实践以及测试题的特色设计。

通过使用这本书,学生可以逐步提高自己的数学水平,为未来的学习和生活打下坚实的基础。

同时,这本书也可以作为教师教学的参考书籍,帮助教师更好地进行数学教学。

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册第十四章整式的乘法与因式分解单元测试卷(2024年秋)一、选择题(每小题3分,共30分)1.计算:8xy3·-1432=()A.2x4y5B.-2x4y5C.2x3yh6D.-2x3y5 2.[母题教材P118例5]多项式x2-4x+4因式分解的结果是() A.x(x-4)+4B.(x+2)(x-2)C.(x-2)2D.(x+2)2 3.[2024西安灞桥区模拟]计算(12x3-18x2-6x)÷(-6x)的结果为()A.-2x2+3x B.-2x2-3xC.-2x2-3x-1D.-2x2+3x+14.要使多项式(x+p)(x-q)不含x的一次项,则p与q的关系是() A.相等B.互为相反数C.互为倒数D.乘积为-15.[母题教材P104习题T1]下列各式计算正确的是() A.a2·a3=a6B.a6÷a3=a2C.(-2ab2)3=-8a3b6D.2a2+3a3=5a5 6.[2024泰安期末]当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.16B.8C.-8D.-16 7.若10a×100b=10000,则a+2b=()A.1B.2C.3D.48.若式子(x+2)(x-1)-(x+2)能因式分解成(x+m)(x+n),则mn的值是()A.2B.-2C.-4D.49.某同学在计算-3x加上一个多项式时错将加法做成了乘法,得到的答案是3x3-3x2+3x,由此可以推断出正确的计算结果是() A.x2+2x-1B.-x2-2x-1C.-x2+4x-1D.x2-4x+110.224-1可以被60和70之间某两个数整除,这两个数是() A.63,64B.63,65C.61,67B.61,65二、填空题(每小题3分,共15分)11.计算:(-1)2=.12.若x2-3mx+36是一个完全平方式,则m的值是.13.一个正方体的棱长是2×103cm,则这个正方体的体积为.14.[2024温州期中]已知(a+3)2=82,则(a+11)(a-5)的值为.15.3(22+1)(24+1)(28+1)…(232+1)+1计算结果的个位数字是.三、解答题(本大题共8个小题,满分75分)16.(8分)[2024盐城期中]因式分解:(1)m2-16n2;(2)xy4-6xy3+9xy2.17.(9分)[母题教材P112习题T4]先化简,再求值:[(2x-y)2-(3x +y)(3x-y)+5x2]÷(-2y),其中x=-12,y=1.18.(9分)若x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,试确定m,n的值.19.(9分)[2024扬州邗江区期中](1)已知a m=2,a n=5,求a2m+n的值;(2)如果2x+2+2x+1=24,求x的值.20.(9分)[情境题生活应用]某种植基地有一块长方形实验田和一块正方形实验田,长方形实验田每排种植(3a-b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a +b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植多少株豌豆幼苗?(2)当a=4,b=3时,长方形实验田比正方形实验田多种植多少株豌豆幼苗?21.(9分)[新视角新定义题]如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)试说明“神秘数”能被4整除;(2)两个连续奇数的平方差是“神秘数”吗?试说明理由.22.(11分)[新考法阅读类比题]先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0.∴(m+n)2+(n-3)2=0.∴m+n=0,n-3=0,解得m=-3,n=3.(1)若x2+2y2-2xy-4y+4=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.23.(11分)知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:由图①可以得到(a+b)2=a2+2ab +b2,基于此,请解答下列问题:直接应用:(1)若xy=5,x+y=7,直接写出x2+y2的值为;类比应用:(2)填空:①若x(4-x)=2,则x2+(x-4)2=;②若(x-3)(x-5)=2,则(x-3)2+(x-5)2=;知识迁移:(3)如图②,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形用地,再以AD,CD为边分别向外扩建正方形ADGH、正方形DCEF两块空地,并在这两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.答案1.B2.C3.D4.A5.C6.D7.D8.C9.B 10.B【点拨】224-1=(212-1)(212+1)=(26-1)(26+1)(212+1)=63×65×(212+1),则这两个数是63与65.二、11.212.±413.8×109cm314.1815.6三、16.【解】(1)m2-16n2=m2-(4n)2=(m+4n)(m-4n).(2)xy4-6xy3+9xy2=xy2(y2-6y+9)=xy2(y-3)2.17.【解】原式=(4x2-4xy+y2-9x2+y2+5x2)÷(-2y)=(2y2-4xy)÷(-2y)=-y+2x.当x=-12,y=1时,原式=-1+2×1-1=-2.18.【解】(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n=x3+(m-1)x2+(n-m)x-n.∵x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,即x3-5x2+10x -6=x3+(m-1)x2+(n-m)x-n恒成立,∴n=6,m-1=-5,解得m=-4.∴m=-4,n=6.19.【解】(1)∵a m=2,a n=5,∴a2m+n=a2m·a n=(a m)2·a n=22×5=20.(2)∵2x+2+2x+1=2x·22+2x·2=4×2x+2×2x=6×2x,∴6×2x=24.∴2x=4=22.∴x=2.20.【解】(1)由题意,得(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-2ab-b2=(8a2-2ab-2b2)(株).答:长方形实验田比正方形实验田多种植(8a2-2ab-2b2)株豌豆幼苗.(2)当a=4,b=3时,8a2-2ab-2b2=8×42-2×4×3-2×32=128-24-18=86.答:长方形实验田比正方形实验田多种植86株豌豆幼苗.21.【解】(1)设两个连续的偶数分别为2k,2k+2(k为整数),则由题意得(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∴“神秘数”能被4整除.(2)两个连续奇数的平方差不是“神秘数”.理由如下:设两个连续的奇数分别为2k-1,2k+1(k为整数),则(2k+1)2-(2k-1)2=8k,而由(1)知“神秘数”是4的奇数倍,不是偶数倍,但8k是4的偶数倍,∴两个连续奇数的平方差不是“神秘数”.22.【解】(1)∵x2+2y2-2xy-4y+4=x2-2xy+y2+y2-4y+4=(x-y)2+(y-2)2=0,∴x-y=0,y-2=0,解得x=2,y=2.∴x y =22=4.(2)∵a2+b2=10a+8b-41,∴a2-10a+25+b2-8b+16=0.∴(a-5)2+(b-4)2=0.∴a-5=0,b-4=0,解得a=5,b=4.∵c 是△ABC中最长的边,∴5≤c<9.23.【解】(1)39(2)①12②8(3)设AB=x m,BC=y m,则2(x+y)=120,∴x+y=60.由题意,得x2+y2=2000,∴xy=(+)2−(2+2)2=3600-20002=800.∴原有长方形用地ABCD的面积为800m2.。

人教版八年级上册数学 全册全套试卷测试卷附答案

人教版八年级上册数学 全册全套试卷测试卷附答案

人教版八年级上册数学全册全套试卷测试卷附答案一、八年级数学三角形填空题(难)1.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.2.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.3.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.4.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.5.如图,AB∥CD,∠ABE=66°,∠D=54°,则∠E=____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵AB∥CD,∴∠BFC=∠ABE=66°.在△EFD中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC=∠E+∠D,∴∠E=∠BFC-∠D=12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.6.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.二、八年级数学三角形选择题(难)7.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.8.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。

人教版八年级数学上册 全册全套试卷测试卷附答案

人教版八年级数学上册 全册全套试卷测试卷附答案

人教版八年级数学上册 全册全套试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可. ()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM∠∠=,22224590 BMD BCM ACM BCA∠∠∠∠∴=+==⨯= BMD∴是等腰直角三角形.()2解:如图2,BDM是等腰直角三角形,理由是:延长ED交AC于F,ADE和ABC△是等腰直角三角形,45BAC EAD∠∠∴==,AD ED⊥,ED DF∴=,M为EC中点,EM MC∴=,12DM FC∴=,//DM FC,45BDN BND BAC∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE ≌MFC ,DM FM ∴=,DE FC =, AD ED FC ∴==,作AN EC ⊥于点N ,由已知90ADE ∠=,90ABC ∠=,可证得DEN DAN ∠∠=,NAB BCM ∠∠=,//CF ED ,DEN FCM ∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,BF BD ∴=,DBA CBF ∠∠=,90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,DBF ∴是等腰直角三角形,点M 是DF 的中点,则BMD 是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.2.如图1,等腰△ABC 中,AC =BC =42, ∠ACB=45˚,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45˚,连结BE .(1) 求证:△ACD ≌△BCE ;(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.(3) 连接OE ,直接写出线段OE 的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS 即可证得ACD BCE ≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE 是等腰三角形,∴AC=BC ,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯==,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-3.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.4.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.5.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC △△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB ≌△CEA , BD=AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE∵BF=AF ,∴△DBF ≌△EAF∴DF=EF ,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF 为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学 轴对称解答题压轴题(难)6.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.7.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.8.再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.详解:(1)如图3中.在Rt △ABC 中,AB =22AC BC +=2212+=5.故答案为5.(2)结论:四边形BADQ 是菱形.理由如下:如图③中,∵四边形ACBF 是矩形,∴BQ ∥AD .∵AB ∥DQ ,∴四边形ABQD 是平行四边形,由翻折可知:AB =AD ,∴四边形ABQD 是菱形.(3)如图④中,黄金矩形有矩形BCDE ,矩形MNDE .∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1.∵BC =2,∴CD BC =51-,∴矩形BCDE 是黄金矩形. ∵MN DN =15+=51-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH 51,宽HE =35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.9.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD交CE于点P.(1)如图1,求证120BPC︒∠=;(2)点M是边BC的中点,连接PA ,PM.①如图2,若点A,P,M三点共线,则AP与PM的数量关系是;②若点A,P,M三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM=;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM=;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP (SAS ),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以60A ACB∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD∠=︒,∴120BPC∠=︒;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=12∠BAC=30°,∴PB=PC,∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM ;②AP =2PM 成立,理由如下:延长BP 至D ,使PD =PC ,连接AD 、CD ,如图4所示:则∠CPD =180°﹣∠BPC =60°, ∴△PCD 是等边三角形,∴CD =PD =PC ,∠PDC =∠PCD =60°,∵△ABC 是等边三角形,∴BC =AC ,∠ACB =60°=∠PCD ,∴∠BCP =∠ACD ,∴△ACD ≌△BCP (SAS ),∴AD =BP ,∠ADC =∠BPC =120°,∴∠ADP =120°﹣60°=60°,延长PM 至N ,使MN =MP ,连接CN ,∵点M 是边BC 的中点,∴CM =BM ,∴△CMN ≌△BMP (SAS ),∴CN =BP =AD ,∠NCM =∠PBM ,∴CN ∥BP ,∴∠NCP +∠BPC =180°,∴∠NCP =60°=∠ADP ,在△ADP 和△NCP 中,∵AD=NC ,∠ADP =∠NCP ,PD=PC ,∴△ADP ≌△NCP (SAS ),∴AP =PN =2CM ;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.10.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1),∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS )∴ BD=CE.② 由△CAE ≌△BAD ,∴ ∠AEC=∠ADB=180°-∠ADE=120°.∴ ∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC 和△ADE 均为等腰直角三角形(如图2),∴ AB=AC ,AD=AE ,∠ADE=∠AED=45°,∵ ∠BAC=∠DAE=90°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS ).∴ BD=CE ,∠AEC=∠ADB=180°-∠ADE=135°.∴ ∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ︒,理由如下, ∵△ABC 和△ADE 均为等腰直角三角形,∴ AB=AC ,AD=AE ,∠ADE=∠AED=n°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS ). ∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-=== ∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.12.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.13.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C ;(2)(x ﹣2)4;(3)(x +1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C ;(2)(x 2﹣4x +1)(x 2﹣4x +7)+9,设x 2﹣4x =y ,则:原式=(y +1)(y +7)+9=y 2+8y +16=(y +4)2=(x 2﹣4x +4)2=(x ﹣2)4.故答案为:(x ﹣2)4;(3)设x 2+2x =y ,原式=y (y +2)+1=y 2+2y +1=(y +1)2=(x 2+2x +1)2=(x +1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.14.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.15.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1;(x 3-1)÷(x -1)=x 2+x +1;(x 4-1)÷(x -1)=x 3+x 2+x +1;(x 5-1)÷(x -1)=x 4+x 3+x 2+x +1;(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(n 为正整数)(2)根据(1)的结果计算:1+2+22+23+24+…+262+263.【答案】(1)12n n x x --++…+1;(2)6421-.【解析】【分析】(1)根据已知的式子可得到的式子是关于x 的一个式子,最高次数是n-1,共有n 项; (2)把2当作x ,即可把所求的式子看成是两个二项式的商的形式,逆用(1)的结果即可求解.【详解】由题意可得:(1)()()1211n n n x x x x ---÷-=++ (1)(2)()()234626364641222222212121+++++⋯++=-÷-=-. 【点睛】 考查了多项式与多项式的除法,观察所给式子,发现运算规律是解题的关键.四、八年级数学分式解答题压轴题(难)16.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.17.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.【解析】分析:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元,根据“用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A 商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元. 由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B 型商品的进价为120元,则一件A 型商品的进价为150元.(2)因为客商购进A 型商品m 件,销售利润为w 元.m≤100﹣m ,m≤50,由题意:w=m (200﹣150)+(100﹣m )(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w 有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.18.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金b n元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金; (2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的。

2023-2024学年八年级上学期人教版数学阶段限时训练卷(第11~13章)(含解析)

2023-2024学年八年级上学期人教版数学阶段限时训练卷(第11~13章)(含解析)

2023-2024学年八年级上学期人教版数学阶段限时训练卷(第11~13章)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列每组数据分别是三根小木棒的长度,用这些木棒能摆成三角形的是()A.5cm,5cm,11cm B.13cm,12cm,20cmC.8cm,7cm,15cm D.3cm,4cm,8cm3.(3分)如图,工人师傅门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()A.三角形的稳定性B.两点确定一条直线C.两点之间,线段最短D.四边形的不稳定性4.(3分)下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.三个外角都相等的三角形C.有两个角相等的等腰三角形D.有一个角是60°的等腰三角形5.(3分)如图,AB∥CD,∠AFE=135°,∠D=80°,则∠E等于()A.55°B.45°C.80°D.50°6.(3分)如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是()A.∠B=∠D B.OA=OCC.OA=OD D.AD=BC7.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM∥CNC.AB=CD D.AM=CN8.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则等腰三角形的底角度数为()A.15°B.30°C.15°或75°D.30°或150°9.(3分)如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是()A.9B.8C.7D.610.(3分)如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC的度数是()A.115°B.110°C.100°D.90°二.填空题(共7小题,满分28分,每小题4分)11.(4分)点P(2,﹣3)关于y轴对称的点的坐标是.12.(4分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠C=.13.(4分)已知a,b是等腰三角形的两边长,且a,b满足(a+b﹣13)2=0,则此等腰三角形的周长为.14.(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD=.15.(4分)如图Rt△ABC中,∠A=30°,AB+BC=12cm,则AB=cm.16.(4分)一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为.17.(4分)如图,等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=6,则EP+CP的最小值为.三.解答题(共8小题,满分62分)18.(6分)如图,AE=CF,AD=CB,DF=BE,求证:△ADF≌△CBE.19.(6分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.20.(6分)如图,已知AC=AE,∠B=∠D,∠1=∠2,求证:AB=AD.21.(8分)如图,△ABC的周长为20,其中AB=8,(1)用直尺和圆规作AB的垂直平分线DE交AC于点E,垂足为D,连接EB;(保留作图痕迹,不要求写画法)(2)在(1)作出AB的垂直平分线DE后,求△CBE的周长.22.(8分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出与△ABC关于y轴对称的△A1B1C1(要求点A与A1,点B与点B1,点C和点C1相对应);写出点A1,B1,C1的坐标(直接写答案):A1;B1;C1;(2)请直接写出△A1B1C1的面积是.23.(8分)如图,在△ABC中,已知AB=AC,BD平分∠ABC,AE为BC边的中线,AE、BD相交于点D,其中∠ADB=125°,求∠BAC的度数.24.(10分)如图,△ABC中,AB=AC,D、E、F分别为AB、BC、AC上的点,且BD=CE,∠DEF=∠B.(1)求证:∠BDE=∠CEF;(2)当∠A=60°时,求证:△DEF为等边三角形.25.(10分)(1)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED的内部点A′的位置,试说明2∠A=∠1+∠2;(2)如图②,若把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,此时∠A与∠1、∠2之间的等量关系是(无需说明理由);(3)如图③,若把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠A、∠D、∠1与∠2之间的数量关系,写出你发现的结论并说明理由.2023-2024学年八年级上学期人教版数学阶段限时训练卷(第11~13章)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项符合题意;故选:D.2.【解答】解:A、5+5<11,不能组成三角形,故此选项错误;B、13+12>20,能组成三角形,故此选项正确;C、8+7=15,不能组成三角形,故此选项错误.D、3+4<8,不能够组成三角形,故此选项错误;故选:B.3.【解答】解:用木条EF固定长方形门框,得到了△AEF,使其不变形,这样做的根据是三角形的稳定性,故选:A.4.【解答】解:A、两个内角为60°,因为三角形的内角和为180°,可知另一个内角也为60°,故该三角形为等边三角形;故本选项不符合题意;B、三个外角相等说明该三角形中三个内角相等,故该三角形为等边三角形;故本选项不符合题意;C、等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.故本选项符合题意;D、有一个角是60°的等腰三角形是等边三角形,故本选项不符合题意;故选:C.5.【解答】解:∵AB∥CD,∠AFE=135°,∴∠DGF=∠AFE=135°,∴∠DGE=180°﹣∠DGF=45°,∵∠D=80°,∴∠E=180°﹣∠D﹣∠DGE=55°,故选:A.6.【解答】解:A、∵AC∥BD,∴∠A=∠D,∠C=∠B,∵∠A=∠C,∴∠B=∠D,正确,故本选项不符合题意;B、∵∠A=∠C,∴OA=OC,正确,故本选项不符合题意;C、根据已知不能推出OA=OD,错误,故本选项符合题意;D、∵∠A=∠C,∠B=∠D,∴OA=OC,OD=OB,∴OA+OD=OC+OB,即AD=BC,正确,故本选项不符合题意;故选:C.7.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.8.【解答】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣46°=30°,∵AB=AC,∴∠ABC=∠ACB(180°﹣30°)=75°;当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣60°=30°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB∠BAD=15°,综上所述,这个等腰三角形底角的度数为75°或15°.故选:C.9.【解答】解:∵BC=16,BD=10∴CD=6由角平分线的性质,得点D到AB的距离等于CD=6.故选:D.10.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE、CF是△ABC的角平分线,∴∠EBC∠ABC,∠FCB∠ACB,∴∠EBC+∠FCB(∠ABC+∠ACB)=65°,∴∠BDC=180°﹣65°=115°,故选:A.二.填空题(共7小题,满分28分,每小题4分)11.【解答】解:点P(2,﹣3)关于y轴对称的点的坐标为:(﹣2,﹣3).故答案为:(﹣2,﹣3).12.【解答】解:∵在△ABC中,∠A=40°,∴∠B+∠C=140°①,∵∠B﹣∠C=40°②,∴①﹣②得,2∠C=100°,解得∠C=50°.故答案为:50°.13.【解答】解:∵(a+b﹣13)2=0,∴a﹣b+3=0,a+b﹣13=0,∴a=5,b=8,∵a,b是等腰三角形的两边长,∴等腰三角形的三边长为5,5,8或5,8,8,∴5+5+8=18或5+8+8=21,∴等腰三角形的周长为18或21,故答案为:18或21.14.【解答】解:设∠ABD=x,∵BC=AD,∴∠A=∠ABD=x,∵BD=BC,∴∠C=∠BDC,根据三角形的外角性质,∠BDC=∠A+∠ABD=2x,∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠=180°,即x+2x+2x=180°,解得x=36°,即∠ABD=36°.故答案为:36°.15.【解答】解:∵Rt△ABC中,∠A=30°,∴BC AB.设BC=xcm,则有AB=2xcm∴x+2x=12,∴x=4,∴AB=8cm.故答案为:8.16.【解答】解:如图∠NPM=180°﹣70°﹣40°=70°,∵向北的方向线是平行的,∴∠M=70°,∴∠NPM=∠M,∴NP=MN=40海里×2=80海里,故答案为:80海里.17.【解答】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=6,即EP+CP的最小值为6,故答案为6.三.解答题(共8小题,满分62分)18.【解答】证明:∵AE=CF,∴AE﹣EF=CF﹣EF,∴AF=CE.在△ADF和△CBE中,∴△ADF≌△CBE(SSS).19.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)•180°=2×360°+180°,解得n=7,答:这个多边形的边数是7.20.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠BAC=∠DAE,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AB=AD.21.【解答】解:(1)如图,BE为所作;(2)∵DE是AB的垂直平分线,∴EA=EB,∴EB+EC=EA+EC=AC,∵△ABC的周长为20,∴AC+BC=20﹣AB=20﹣8=12,∴△CBE的周长=BE+EC+BC=AE+EC+BC=AC+BC=12.22.【解答】解:(1)如图所示,△A1B1C1即为所求;故答案为:(3,2),(4,﹣3),(1,﹣1);(2)如图所示,S△ABC=S梯形BCDE﹣S△ACD﹣S△ABE3×(5+3)2×31×5=12﹣2.5﹣3=6.5.故答案为:6.523.【解答】解:∵AB=AC,AE为BC边的中线,∴AE⊥BC,∴∠AEB=90°,又∵∠ADB=125°,∴∠DBE=∠ADB﹣∠AEB=35°,∵BD平分∠ABC,∴∠ABC=2∠DBE=70°,∵AB=AC,∴∠C=∠ABC=70°,∴∠BAC=180°﹣∠ABC﹣∠C=40°.24.【解答】证明:(1)∵∠DEC是△BDE的一个外角,∴∠B+∠BDE=∠DEF+∠CEF,∵∠DEF=∠B,∴∠BDE=∠CEF;(2)由(1)可知∠BDE=∠CEF,∵AB=AC,∠A=60°∴∠B=∠C=60°,∴∠DEF=60°,在△BDE和△CEF中∴△BDE≌△CEF(ASA),∴DE=EF,∴△DEF为等边三角形.25.【解答】解:(1)如图,根据翻折的性质,∠3(180﹣∠1),∠4(180﹣∠2),∵∠A+∠3+∠4=180°,∴∠A(180﹣∠1)(180﹣∠2)=180°,整理得,2∠A=∠1+∠2;(2)根据翻折的性质,∠3(180﹣∠1),∠4(180+∠2),∵∠A+∠3+∠4=180°,∴∠A(180﹣∠1)(180+∠2)=180°,整理得,2∠A=∠1﹣∠2;(3)根据翻折的性质,∠3(180﹣∠1),∠4(180﹣∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D(180﹣∠1)(180﹣∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末选优拔尖自测卷 (120分,100分钟)一、选择题(每题3分,共24分) 1.下列运算正确的是( ) A .b a ba+=+211 B .a ÷b ×b1=a C .1-=--xy y x D .3131-=-2.若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是( )A .5B .7C .5或7D .63.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如c b a ++就是完全对称式.下列四个代数式:①abc ;②ca bc ab ++;③a c c b b a 222++;④()2b a -.其中是完全对称式的是( ) A .①②④ B .①③ C .②③ D .①②③4.若022=-+x x ,则2012223+-+x x x 的值是( )A .2014B .2013C . 2014-D .2013- 5.若n 为整数,则能使11-+n n 也为整数的n 有( ) A .1个 B .2个 C .3个 D .4个 6.〈湖北仙桃〉如图1,在△ABC 中,AB =AC ,∠A =120°,BC =6 cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4 cmB .3 cmC .2 cmD .1 cm图1 图2 图37.如图2所示,在直角三角形ABC 中,已知∠ACB =90°,点E 是AB 的中点,且DE ⊥AB ,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D =30°,EF =2,则DF 的长是( )A.5B.4C.3D.28.如图3所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①△ACD ≌△BCE ;②AD =BE ;③∠AOB =60°;④△CPQ 是等边三角形.其中正确的是( )A .①②③④B .②③④C .①③④D .①②③ 二、填空题(每题3分,共24分) 9.因式分解:a a a 9623+- =___________.10.计算:()()201411212014--⎪⎭⎫ ⎝⎛+-- =___________.11.按图4所示程序计算:图4请将上面的计算程序用代数式表示出来并化简:_________.12.如图5,将△ABC 纸片沿DE 折叠,图中实 线围成的图形面积与原三角形面积之比为2∶3,若图中实线围成的阴影部分面积为2,则 图5 重叠部分的面积为__________.13.〈辽宁沈阳〉已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是__________.14.在平面直角坐标系中,A (2,0),B (0,3),若△ABC 的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为___________. 15.如图6所示,在平面直角坐标系中,点A (2,2)关于y 轴的对称点为B ,点C ()42--,关于y 轴的对称点为D .把一条长为2 014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.图6 图716.如图7的钢架中,焊上等长的13根钢条来加固钢架.若A P P P P P P P AP 14141332211===== ,则∠A 的度数是________.三、解答题(17、18题每题5分,23、25题每题9分,24题8分,26题12分,其余每题6分,共72分)17.如图8均为2×2的正方形网格,每个小正方形的边长均为1.请分别在两个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.图818.如图9,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD ⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.图919.在解题目:“当a =2 014时,求代数式1211342+-⎪⎭⎫⎝⎛--⋅--a a a a 的值”时,小明认为a 只要任取一个使原式有意义的值代入都有相同的结果,你认为他说的有道理吗?请说明理由.20.已知M =941012422+++-y y xy x ,当式中的x 、y 各取何值时,M 的值最小?求此最小值.21.是否存在实数x ,使分式63104-+x x 的值比分式245--x x 的值大1?若存在,请求出x 的值;若不存在,请说明理由.22.如图10所示,AB ∥DC ,AD ⊥CD ,BE 平分∠ABC ,且点E 是AD 的中点,试探求AB 、CD 与BC 的数量关系,并说明你的理由.图1023.如图11,某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里(1)判断△BCD的形状;.图11(2)求该船从A处航行至D处所用的时间;(3)若该船从A处向东航行6小时到达E处,观测灯塔B,灯塔B 在什么方向上?24.某地为某校师生交通方便,在通往该学校原道路的一段全长为300 m的旧路上进行整修铺设柏油路面.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.(1)求原计划每天铺设路面的长度;(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25 000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.25.如图12所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.图12 (1)如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过3秒后,△BPD 与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.数学课上,老师出示了如下框中的题目,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图13,试确定线段AE与DB的数量关图13系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图14(1),确定线段AE与DB的数量关系,请你直接写出结论:AE______DB(填“>”“<”或“=”).图14 (2)特例启发,解答题目解:题目中,AE与DB的数量关系是:AE______DB(填“>”“<”或“=”),理由如下:如图14(2),过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长.(请你直接写出结果)参考答案及点拨 期末选优拔尖自测卷一、1.C 点拨:因为ab b a ba+=+11,所以A 错误;因为a ÷b ×b1=a ×b 1×b 1=2b a,所以B错误;因为1-=---=--y x y x x y y x ,所以C 正确;因为3131=-,所以D 错误.应选C . 2.B 点拨:分底边长为3和底边长为1两种情况讨论.(1)若底边长为1,则这个等腰三角形的周长为7;(2)若底边长为3,这个等腰三角形不存在.故选B .3.A 点拨:根据完全对称式的定义可知abc 、ca bc ab ++、()2b a -是完全对称式,而a c c b b a 222++不是完全对称式,应选A .解答本题的关键是按照新定义,将四个代数式进行变换,然后对照确定正确选项.4.A 点拨:方法1:由022=-+x x 得22=+x x , 所以原式()222201222012x x x x x x x x =++-+=+-+ 2201222012x x =++=+.2014=方法2:由022=-+x x 得x x -=22,22=+x x ,所以原式()201420122201220122222=+=++=+-+-=x x x x x x . 5.D 点拨:原式()121121-+=-+-=n n n ,要使11-+n n 为整数,则12-n 必须为整数,因此21=-n 或2-或1或1-,解得3=n 或1-或2或0;因此整数n 的值有4个, 应选D .6.C 点拨:如答图1,连接MA 、NA .∵AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,∴BM =AM ,CN =AN ,∴∠MAB =∠B ,∠CAN =∠C ,∵∠BAC =120°,AB =AC ,∴∠B =∠C =30°,∴∠BAM =∠CAN =30°,∴∠AMN =∠ANM = 60°,∴△AMN 是等边三角形,∴AM =AN =MN ,∴BM=MN =NC ,∴MN =31BC =2 cm ,故选C .答图17.B 点拨:在Rt △AED 中,因为∠D =30°,所以∠DAE =60°;在Rt △ABC 中,因为∠ACB =90°,∠BAC =60°,所以∠B =30°;在Rt △BEF 中,因为∠B =30°,EF =2,所以BF =4;连接AF ,因为DE 是AB 的垂直平分线,所以F A =FB =4,∠F AB =∠B =30°;因为∠BAC =60°,所以∠DAF =30°,因为∠D =30°,所以∠DAF =∠D , 所以DF =AF =4.故应选B. 8. A 点拨:由正△ABC 和正△CDE ,可知AC =BC ,∠ACB = ∠DCE =60°,CD =CE ,所以∠ACD =∠BCE ,所以△ACD ≌△BCE ,从而AD =BE ,∠CAD =∠CBE ;在△ACP 和△BPO 中,因为∠APC =∠BPO ,∠CAD =∠CBE ,所以由三角形内角和定理可得∠AOB = ∠ACB =60°;由条件可证△PCD ≌△QCE ,所以PC =QC ,又∠PCQ =60°,所以△CPQ 是等边三角形.应选A .二、9. ()23-a a 点拨:原式()()22396-=+-=a a a a a .因式分解时,首先考虑提取公因式,再考虑运用乘法公式分解,同时注意要分解到不能分解为止.10. 2 点拨:原式2121=-+=.在无括号的实数混合运算中,先计算乘方,再计算乘除,最后进行加减运算.11.()222=-÷+a a a a 点拨:由流程图可得()2222=-+=-÷+a a a a a a . 12. 2 点拨:设重叠部分的面积为x , 则实线围成的图形面积为2+x ,三角形ABC 面积为2+2x .由题意得()x x 22322+=+,解得x =2. 13. 1和7 点拨:点P 可在三角形内和三角形外,需要分情况求解.设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为321h h h 、、,△ABC 的高为h .(1)当点P 在等边三角形ABC 内时:连接P A 、PB 、PC ,利用面积公式可得h h h h =++321,则13=h ,所以点P 到BC 的最小距离是1;(2)当点P 在等边三角形ABC 外时(只考虑P 离BC 最远时的情况):同理可得321h h h h =++,此时73=h .综上可知,点P 到BC 的最小距离和最大距离分别是1和7.14.(0,2-)、(0,6)、(3,0-)、(9,0)点拨:分点C 在x 轴上和点C 在y 轴上两种情况讨论,可得符合条件的点C 的坐标.(1)当点C 在x轴上时,设点C 的坐标为(0,x ),则63221=⨯-x ,解得x =6或2-,因此点C 的坐标为(0,2-)、(0,6);(2)当点C 在y 轴上时,设点C 的坐标为(0,y ),则62321=⨯-y ,解得y =3-或9,因此点C 的坐标为(3,0-)、(9,0);综上得点C 的坐标为(0,2-)、(0,6)、(3,0-)、(9,0). 15.(4,2-) 点拨:因为A (2,2)关于y 轴的对称点为B ,所以点B 的坐标为(2,2-);因为C (4,2--)关于y 轴的对称点为D ,所以点D 的坐标为(4,2-),所以四边形ABCD 的周长为20,因为2 014÷20=100……14,说明细线绕了100圈,回到A 点后又继续绕了14个单位长度,故细线另一端到达点的坐标为(4,2-).本题利用周期的规律求解,因此求得细线绕四边形ABCD 一圈的长度是解题的关键. 16. 12° 点拨:设∠A =x ,∵A P P P P P P P AP 14141332211===== , ∴∠A =∠12P AP =∠1413P AP =x ,∴∠312P P P =∠121413P P P =2x , ∴∠423P P P =∠111312P P P =3x ,…,∠867P P P =∠798P P P =7x , ∴∠87P AP =7x ,∠78P AP =7x ,在△87P AP 中,∠A +∠87P AP +∠78P AP =180°,即x +7x +7x =180°, 解得x =12°,即∠A =12°.三、17. 解:如答图2所示,画出其中任意两个即可.答图2点拨:对称轴可以是过正方形对边中点的直线,也可以是正方形对角线所在的直线.本题可以通过折叠操作找到对称轴,从而确定轴对称图形.18. 解:∵∠A =40°,∠B =76°,∴∠ACB = 647640180=--, ∵CE 平分∠ACB ,∴∠ACE =∠BCE =32°,∴∠CED =∠A +∠ACE =40°+32°=72°,∵DF ⊥CE ,CD ⊥AB ,∴∠CFD =∠CDE =90°, ∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =72°. 19. 解:小明说的有道理.理由:()().3121233221211342=+-+=+---⋅--+=+-⎪⎭⎫⎝⎛--⋅--a a a a a a a a a a a a 所以只要使原式有意义,无论a 取何值,原式的值都相同,为常数3. 20. 解:M ()()5232544912422222+++-=+++++-=y y x y y y xy x , 因为()232y x -≥0,()22+y ≥0,所以当032=-y x 且02=+y ,即3-=x 且2-=y 时,M 的值最小,最小值为5.21. 解:不存在. 理由:若存在,则124563104=----+x x x x . 方程两边同乘()23-x ,得()()23453104-=--+x x x , 解这个方程,得2=x .检验:当2=x 时,()023=-x ,原方程无解. 所以,不存在实数x 使分式63104-+x x 的值比分式245--x x 的值大1. 点拨:先假设存在,得到分式方程,再解分式方程,由分式方程的结果可说明理由. 22. 解:AB +CD =BC .理由:如答图3,过点E 作EF ⊥BC 于点F . 因为AB ∥DC ,AD ⊥CD , 所以AD ⊥AB .因为BE 平分∠ABC ,所以EA=EF .在Rt △ABE 和Rt △FBE 中,因为EA =EF ,BE =BE , 所以Rt △ABE ≌Rt △FBE . 所以AB =BF .因为E 是AD 的中点,所以AE =ED ,所以ED =EF .在Rt△EDC和Rt△EFC中,因为ED=EF,EC=EC,所以Rt△EDC≌Rt△EFC.所以DC=FC.所以AB+DC=BF+CF=BC,即AB+CD=BC.答图323. 解:(1)由题意得:∠BCD=∠BDC=60°,∴∠CBD=60°. ∴△BCD是等边三角形.(2)由题意得:∠BAC=30°,∠ACB=120°,∴∠ABC=∠BAC=30°,∴AC=BC= BD=60海里,∴AD= AC+ CD=60+60=120(海里),∴t=120÷15=8(小时).∴该船从A处航行至D处所用的时间为8小时.(3)若该船从A处向东航行6小时到达E处,连接BE.此时AE=15×6=90(海里),∴CE=90-60=30(海里).∴CE=DE=30海里.∵△BCD是等边三角形,∴BE是CD的垂直平分线.∴灯塔B在该船的正北方向上.24. 解:(1)设原计划每天铺设路面的长度为x m.根据题意得()30201120300120=+-+x x.解之得x =9. 经检验:x =9是原方程的根,且符合题意. 答:原计划每天铺设路面的长度为9 m . (2) 所准备的流动资金够支付工人工资. 理由:共支付工人工资为+⨯6009120()()=+=⨯+⨯⨯+-1300080006003019201120300 21000(元) . 因为21000<25000,所以所准备的流动资金够支付工人工资. 25. 解:(1)①因为t =3秒, 所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点, 所以BD =5厘米.又因为PC =BP BC -,BC =8厘米, 所以PC =538=-(厘米), 所以PC =BD .因为AB =AC ,所以∠B =∠C , 所以△BPD ≌△CQP . ②因为P v ≠Q v ,所以BP ≠CQ ,当△BPD ≌△CPQ 时,因为∠B =∠C ,AB =10厘米,BC =8厘米, 所以BP =PC =4厘米,CQ =BD =5厘米, 所以点P ,点Q 运动的时间为4秒,所以45=Q v 厘米/秒,即当点Q 的运动速度为45厘米/秒时,能够使△BPD 与△CQP 全等.(2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得10245⨯+=x x , 解得80=x .所以点P 共运动了80厘米.因为80=2×28+24,所以点P 、Q 在AB 边上相遇, 所以经过80秒点P 与点Q 第一次在△ABC 的边AB 上相遇. 26. 解:(1)= (2)=;在等边三角形ABC 中,∠ABC =∠ACB =∠BAC =60°,AB =BC =AC , 因为EF ∥BC ,所以∠AEF =∠AFE =60°=∠BAC . 所以△AEF 是等边三角形, 所以AE =AF =EF ,所以AF AC AE AB -=-,即BE =CF . 因为ED =EC , 所以∠EDB =∠ECB ,又因为∠ABC =∠EDB +∠BED =60°, ∠ACB =∠ECB +∠FCE =60°, 所以∠BED =∠FCE , 所以△DBE ≌△EFC , 所以DB =EF , 所以AE =DB .(3)1或3.点拨:(1)利用等边三角形三线合一知,∠ECB=30°,又ED=EC,则∠D=30°,所以∠DEC=120°,则∠DEB=30°=∠D,所以DB=EB=AE;(2)先证△AEF为等边三角形,再证△EFC≌△DBE,可得AE=DB;(3)当E 在射线AB上时,如答图4(1),AB=BC=EB=1,∠EBC=120°,所以∠BCE=30°,因为ED=EC,所以∠D=30°,则∠DEB=90°,所以DB=2EB=2,所以CD=2+1=3;当E在射线BA上时,如答图4(2),过点E作EF⊥BD于点F,则1BE=1.5,∠BEF=30°,所以BF=2所以CF=0.5,因为EC=ED,EF⊥CD,所以CD=2CF=1.综上,CD的长为1或3.答图4。

相关文档
最新文档