最新中考数学全真模拟预测试卷含答案
原创2023学年中考数学预测模拟考试卷 (含答案)
第I卷(选择题共30分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共30分)1. 4的算术平方根是A. 2B. -2C. ±2D. 162. 据统计部门报告,我市去年国民生产总值为238 770 000 000元,那么这个数据用科学记数法表示为A. 2. 3877×10 12元B. 2. 3877×10 11元C. 2 3877×10 7元D. 2387. 7×10 8元3.若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形4.把代数式322-+分解因式,结果正确的是x x y xy363A.(3)(3)+-B.22x x y x yx x xy y-+3(2)C.2x x y-3()-D.2(3)x x y5.已知⊙O1与⊙O2相切,⊙O1的半径为9 cm,⊙O2的半径为2 cm,则O1O2的长是A.1 cm B.5 cm C.1 cm或5 cm D.0.5cm 或2.5cm6.若0(12=)3yx,则y+y+-+x-的值为A .1B .-1C .7D .-77.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是8.如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是A. 3个B. 4个C. 5个D. 6个9.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 A .6cmB .35cm C .8cmD .53cm10. 在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了500m 到达目••••ABCDyxO(第7题)(第8题)ABC北东(第10题)(第9题)剪去的地C ,此时小霞在营地A 的A. 北偏东20︒方向上B. 北偏东30︒方向上C. 北偏东40︒方向上D.北偏西30︒方向上☆绝密级 试卷类型A济宁市二○一一年高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共70分)二、填空题(每小题3分,共15分;只要求填写最后结果)11.在函数4y x =+中, 自变量x 的取值范围是 .12.若代数式26x x b -+可化为2()1x a --,则b a -的值是. 13. 如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为.得分 评卷人(第13题)14.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是.15.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M(点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为.三、解答题(共55分,解答应写出文字说明、证明过程或推演步骤) 16.(5分)计算:084sin 45(3)4-︒+-π+-17.(5分)上海世博会自2010年5月1日到10月31日,历时184天.预测参观人数达7000万人次.如图是此次盛会在5月中旬入园人数的统计情况.(1)请根据统计图完成下表.众数 中位数 极差 入园人数得分 评卷人得分 评卷人A BCD· ·MNα(第15题)/万(2)推算世博会期间参观总人数与预测人数相差多少? 18.(6分)观察下面的变形规律:211⨯=1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ; (2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯. 19.(6分)如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .得分 评卷人得分 评卷人(1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.20.(7分)如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.得分 评卷人yABCEFD(第19题)得评卷21.(8分)分人某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.22.(8分)数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N .当6CP =时,EM 与EN 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DEFC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.得分 评卷人(第22题)23.(10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.得分 评卷人Axy B OCD数学试题参考答案及评分标准说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数. 一、选择题题号 12 3 4 5 6 7 8 9 10答案 A B B D C C D B BC二、填空题11.4x ≥-; 12.5; 13.(a -,b -); 14.16; 15.tan tan m n αα-⋅.三、解答题16.解:原式2224142=-⨯++ ··························································· 4分 5= ··············································································································· 5分 17.(1)24,24,16 ············································································ 3分 (2)解:17000184(2182232426293034)10-⨯⨯⨯++⨯++++ 700018.4249=-⨯70004581.62418.4=-=(万)答:世博会期间参观总人数与预测人数相差2418.4万 · 5分18.(1)111nn -+······················································································ 1分(2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n n n n +-+=)1(1+n n . ···· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ················································································· 5分 19.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =. ················································· 3分(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 4分理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =.······················································ 6分 由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ···· 7分20.解:(1)设A 点的坐标为(a ,b ),则k b a=.∴ab k =.∵112ab =,∴112k =.∴2k =.∴反比例函数的解析式为2y x=.······································· 3分(2) 由212y x y x ⎧=⎪⎪⎨⎪=⎪⎩得2,1.x y =⎧⎨=⎩∴A 为(2,1). ····························· 4分 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-). 令直线BC 的解析式为y mx n =+. ∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ·············································· 6分 当0y =时,53x =.∴P 点为(53,0). ··························· 7分21.(1)解:设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-. ·············································· 2分 解得70x =.检验:70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ············· 4分 (2)解:设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤. ···················· 6分所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米; 方案三:分配给甲工程队700米,分配给乙工程队300米. 8分22.(1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FC EP =,EM EF EN EG=,12GF BC ==.∵DE EP =,∴DF FC =. ······················································ 2分∴116322EF CP ==⨯=,12315EG GF EF =+=+=. ∴31155EM EF EN EG ===. ··························································· 4分(2)证明:作MH ∥BC 交AB 于点H , ········································· 5分则MH CB CD ==,90MHN ∠=︒. ∵1809090DCP ∠=︒-︒=︒, ∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠,∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆. ································· 7分 ∴DP MN =. ····································································· 8分23.(1)解:设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =.∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分(2) 答:l 与⊙C 相交.…………………………………………………………………4分证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴223213AB =+=.设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠. ∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴62213CE -=.∴8213CE =>.…………………………6分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交.……………………………………………7分(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .(第22题)HBCDEMNA PAxyBOCD(第23题)EPQ可求出AC 的解析式为132y x =-+.…………………………………………8分 设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+).∴2211133(23)2442PQ m m m m m =-+--+=-+.∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,PAC ∆的面积最大为274.此时,P 点的坐标为(3,34-).…………………………………………10分。
广东省广州市广雅中学2024届中考数学全真模拟试题含解析
广东省广州市广雅中学2024届中考数学全真模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A.(4030,1)B.(4029,﹣1)C.(4033,1)D.(4035,﹣1)2.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④3.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a24.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°5.关于x 的方程(a ﹣1)x |a|+1﹣3x+2=0是一元二次方程,则( )A .a≠±1B .a =1C .a =﹣1D .a =±16.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A .8,9B .8,8.5C .16,8.5D .16,10.57.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( ) A .13 B .25 C .23 D .358.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)9.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 10.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b π的系数是23,次数是4次 C .2x 2y –3y 2–1是3次3项式D 32y 3与–3213x y 是同类项 二、填空题(共7小题,每小题3分,满分21分)11.在矩形ABCD 中,AB=6CM ,E 为直线CD 上一点,连接AC ,BE ,若AC 与BE 交与点F , DE=2,则EF :BE= ________ 。
2023年江苏省南京市中考数学模拟预测卷+答案解析
2023年江苏省南京市中考数学模拟预测卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.二次根式中字母x的取值范围是()A. B. C. D.2.如果点在平面直角坐标系的第三象限内,那么x的取值范围在数轴上可表示为()A. B.C. D.3.如图是近一年来某企业产值增长率的折线统计图,下列信息正确的是()A.2022年4月份该企业产值最低B.2022年9月份是该企业产值最大的月份C.2022年11月份比2022年10月份产值低D.2022年4月至2023年3月该企业产值一直在增大4.下列运算正确的是()A. B. C. D.5.已知a,b是一元二次方程的两根,则的值为()A.4B.C.2D.16.学习《设计制作长方体形状的包装纸盒》后,小宁从长方形硬纸片上截去两个矩形图中阴影部分,再沿虚线折成一个无盖的长方体纸盒.纸片长为30cm,宽为18cm,,则该纸盒的容积为()A. B. C. D.二、填空题:本题共10小题,每小题3分,共30分。
7.的相反数是_____.8.计算:______.9.2022年11月30日,神舟十五号飞船载乘3名航天员成功与神舟十四号航天员乘组上演“太空相会”.航天员的宇航服加入了气凝胶,可以抵御太空的高温.气凝胶是一种具有纳米多孔结构的新型材料,其颗粒尺寸通常小于,将数据用科学记数法表示为_____.10.若关于x的方程有两个相等的实数根,则m的值是_____.11.如图,用一个圆心角为的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为2cm,则这个扇形的半径是_______12.如图,已知菱形ABCD的边长为4,,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于_________.13.如图,将沿BC边上的中线AD平移到的位置,已知的面积为9,阴影部分三角形的面积为4,若,则_______.14.在平面直角坐标系中、反比例函数的图象与边长是4的正方形OABC的两边AB,BC分别相交于M,N两点,三角形OMN的面积为,若动点P在x轴上,则的最小值是___.15.如图,二次函数的图象与x轴的负半轴交于点A,对称轴为直线下面结论:①;②;③;④为实数其中正确的是_____只填序号16.如图,E为正方形ABCD的边CD上一点不与C、重合,将沿直线BE翻折到,延长EF交AD于点G,点O是过B、E、G三点的圆劣弧EG上一点,则__________三、计算题:本大题共1小题,共6分。
2024年中考数学模拟试卷及答案
20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
2024年中考数学模拟测试试卷(带有答案)
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
原创2023学年中考数学模拟预测考试卷 (附答案)
一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.下列四个数的绝对值比2大的是( ) A .3-B .0C .1D .22.在平面直角坐标系中,点P 的坐标为(46)-,,则点P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.在ABC △中,4080B C ∠=∠=,,则A ∠的度数为( ) A .30B .40C .50D .604.如图,在ABC △中,D E ,分别是边AB AC ,的中点, 已知10BC =,则DE 的长为( ) A .3 B .4C .5D .65.化简222m n m mn-+的结果是( )A .2m nm- B .m nm- C .m nm+ D .m nm n-+ 6.今年5月16日我市普降大雨,基本解除了农田旱情.以下是各县(市、区)的降水量分布情况(单位:mm ),这组数据的中位数,众数,极差分别是 A .29.4,29.4,2.5B .29.4,29.4,7.1C .27,29.4,7D .28.8,28,2.5A D E BC7.下列图象中,以方程220y x --=的解为坐标的点组成的图象是( ) 8) A910.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下: 如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( ) A .计算机行业好于其它行业 B .贸易行业好于化工行业 C .机械行业好于营销行业D .建筑行业好于物流行业二、填空题(本大题含10个小题,每小题2分,共20分) 把答案填在题中的横线上或按要求作答.11.在函数y =x 的取值范围是 .12.在一个不透明的袋中装有2个绿球,3个红球和5个黄球,它们除了颜色外都相同,从中随机摸出一个球,摸到红球的概率是 .C .13.分解因式(4)4x x ++的结果是 .14.在市政府与国家开发银行山西省分行举行的“百校兴学”工程金融合作签约仪式上,首批项目申请银行贷款3.16亿元.用科学记数法表示3.16亿的结果是.15.如图,在矩形ABCD 中,对角线AC BD ,交于点O , 已知120 2.5AOD AB ∠==,,则AC 的长为 .16.已知圆锥的底面半径为2cm ,母线长为 cm2.17.抛物线2243y x x =-+的顶点坐标是 .18.如图,AB 是O 的直径,CD 是O 的弦,连接AC AD ,, 若35CAB ∠=,则ADC ∠的度数为 .19.在梯形ABCD 中,3AD BC AB DC ==∥,,沿对角线BD 翻折梯形ABCD ,若点A 恰好落在下底BC 的中点E 处,则梯形的周长为 .20.已知22m n ≥,≥,且m n ,均为正整数, 如果将n m 进行如下方式的“分解”,那么下列三个叙述: (1)在52的“分解”中最大的数是11. (2)在34的“分解”中最小的数是13.(3)若3m 的“分解”中最小的数是23,则m 等于5. 其中正确的是 .三、解答题(本大题含9个小题,共70分) 解答应写出文字说明、证明过程或演算步骤. 21.(本小题满分5分)ABDD221 33215 3 233 5 337 11 9 24 7 93425 2927 43解不等式组:253(2)213x x x x ++⎧⎪⎨-<⎪⎩≤,. 22.(本小题满分5分) 解方程:2620x x --=. 23.(本小题满分6分)为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数. 24.(本小题满分6分)如图,在ABC △中,2BAC C ∠=∠.(1)在图中作出ABC △的内角平分线AD .(要求:尺规作图,保留作图痕迹,不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由. 25.(本小题满分10分)甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J ,Q ,K ,K .游戏规则是:将牌面全部朝下,从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K ,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.26.(本小题满分6分)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h 时,视野为80度.如果视野f (度)是车速v (km/h )的反比例函数,求f v ,之间的关系式,并计算当A BCD车速为100km/h 时视野的度数. 27.(本小题满分10分)用商家免费提供的塑料袋购物,我们享受着方便和快捷,但同时要关注它对环境的潜在危害.为了解太原市所有家庭每年丢弃塑料袋个数的情况,统计人员采用了科学的方法,随机抽取了200户,对他们某日丢弃塑料袋的个数进行了统计,结果如下表: 每户丢弃塑料袋数(单位:个)1 2 3 4 5 6 家庭数(单位:户)15606535205(1)求这天这200户家庭平均每户丢弃塑料袋的个数.(2)假设我市现有家庭100万户,据此估计全市所有家庭每年(以365天计算)丢弃塑料袋的总数.(3)下图是我市行政区划图,它的面积相当于图中ABC △的面积.已知A B ,间的实际距离为150km ,B C ,间的实际距离为110km ,60ABC ∠=.根据(2)中的估算结果,求我市每年每平方公里的土地上会增加多少个塑料袋?(取3 1.7=,ABC △的面积和最后计算结果都精确到千位)28.(本小题满分10分)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片ABC △和DEF △.将这两张三角形胶片的顶点B 与顶点E 重合,把DEF △绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .(1)当DEF △旋转至如图②位置,点()B E ,C D ,在同一直线上时,AFD ∠与DCA ∠的数量关系是 .2分 (2)当DEF △继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由. (3)在图③中,连接BO AD ,,探索BO 与AD 之间有怎样的位置关系,并证明. 29.(本小题满分12分)如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E D O A ,,,为顶点的四边形是平行四边形?如果存在,直线写出BECD的值;如果不存在,请说明理由.CA EFD B C DO AFB (E )AD OF CB (E )图①图②图③数学试卷参考答案一、选择题二、填空题11.2x≥12.310(或0.3)13.2(2)x+14.83.1610⨯15.516.8π 17.(1,1) 18.55° 19.15 20.(2) 三、解答题21.解:解不等式253(2)x x ++≤,得1x -≥. ·································· 2分 解不等式213x -<x ,得3x <. ······························································· 4分 所以,原不等式组的解集是13x -<≤. ·············································· 5分 22.解法一:这里162a b c ==-=-,,. ·············································· 1分224(6)41(2)440b ac -=--⨯⨯-=>, ······················································· 2分621x ∴=⨯. ··························································································· 3分 即3x =±. ··························································································· 4分所以,方程的解为1233x x == ·········································· 5分 解法二:配方,得2(3)11x -=. ····························································· 3分 即3x -=3x -= ····································································· 4分所以,方程的解为1233x x == ·········································· 5分 23.解法一:设第二次捐款人数为x 人,则第一次捐款人数为(50)x -人. 1分根据题意,得90001200050x x=-. ································································· 3分 解这个方程,得200x =. ······································································· 4分 经检验,200x =是所列方程的根. ······················································· 5分 答:该校第二次捐款人数为200人. ················································· 6分 解法二:人均捐款额为(120009000)5060-÷=(元). ························ 3分 第二次捐款人数为1200060200÷=(人). ··········································· 5分 答:该校第二次捐款人数为200人. ················································· 6分24.解:(1)如图,AD 即为所求. ········ 2分 (2)ABD CBA △∽△,理由如下. ············ 3分AD 平分2BAC BAC C ∠∠=∠,,BAD BCA ∴∠=∠.··········································· 5分 又B B ∠=∠,ABD CBA ∴△∽△. ················ 6分25.解:乙获胜的可能性大. ····························································· 2分 进行一次游戏所有可能出现的结果如下表:······································ 6分从上表可以看出,一次游戏可能出现的结果共有16种,而且每种结果出现的可能性相等,其中两次取出的牌中都没有K 的有(J ,J ),(J ,Q ),(Q ,J ),(Q ,Q )等4种结果.··································· 7分P (两次取出的牌中都没有K )41164==. P ∴(甲获胜)14=,P (乙获胜)34=. ············································9分 1344<,∴乙获胜的可能性大. ························································ 10分 26.解:设f v ,之间的关系式为(0)kf k v=≠.·································· 1分50v =时,808050kf =∴=,. ································································· 2分 ABCD解,得4000k =. ······················································································ 3分所以,4000f v=. ····················································································· 4分 当100v =时,400040100f ==(度). ························································ 5分 答:当车速为100km/h 时视野为40度. ········································ 6分 27.解:(1)(15160265335420556)200⨯+⨯+⨯+⨯+⨯+⨯÷6002003=÷=(个/户). ·············································· 2分 所以,这天这200户家庭平均每户丢弃3个塑料袋. ··················· 3分 (2)1003365109500⨯⨯=(万个). ······················································· 5分 所以,我市所有家庭每年丢弃109500万个塑料袋. ····················· 6分 (3)如图,过点C 作CD AB ⊥,垂足为点D . ·································· 7分 在Rt BDC △中,11060BC DBC =∠=,, 由sin 60CDBC=,得110sin 6055CD ==. ············································· 8分 150AB =,2111507000(km )22ABC S AB CD ∴==⨯⨯△. ······································9分 1095007000156000÷≈(个/km2).答:我市每年平均每平方公里的土地上会增加156000个塑料袋.10分 28.解:(1)AFD DCA ∠=∠(或相等). ············································ 2分 (2)AFD DCA ∠=∠(或成立),理由如下: ······································ 3分 方法一:由ABC DEF △≌△,得AB DE BC EF ==,(或BF EC =),ABC DEF BAC EDF ∠=∠∠=∠,. ABC FBC DEF CBF ∴∠-∠=∠-∠,ABF DEC ∴∠=∠. ····························4分 在ABF △和DEC △中,AB DE ABF DEC BF EC =⎧⎪∠=∠⎨⎪=⎩,,,ABF DEC BAF EDC ∴∠=∠△≌△,. ·························································5分 BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠,. AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠,AFD DCA ∴∠=∠. ····················································································· 6分 方法二:连接AD .同方法一ABF DEC AF DC ∴=△≌△,. ··············· 5分 由ABC DEF △≌△,得FD CA =.在AFD DCA △≌△,AF DC FD CA AD DA =⎧⎪=⎨⎪=⎩,,,AFD DCA ∴△≌△,AFD DCA ∠=∠.························································ 6分 (3)如图,BO AD ⊥. ·········································································· 7分 方法一:由ABC DEF △≌△,点B 与点E 重合, 得BAC BDF BA BD ∠=∠=,.∴点B 在AD 的垂直平分线上,且BAD BDA ∠=∠.·································· 8分OAD BAD BAC ∠=∠-∠, ODA BDA BDF ∠=∠-∠, OAD ODA ∴∠=∠.OA OD ∴=,点O 在AD 的垂直平分线上............................................. 9分 ∴直线BO 是AD 的垂直平分线,BO AD ⊥. . (10)分方法二:延长BO 交AD 于点G ,同方法一,OA OD =. ···················· 8分在ABO △和DBO △中,AB DB BO BO OA OD =⎧⎪=⎨⎪=⎩,,,ABO DBO ABO DBO ∴∠=∠△≌△,.························································· 9分 A DOF CB (E )G在ABG △和DBG △中,AB DB ABG DBG BG BG =⎧⎪∠=∠⎨⎪=⎩,,,ABG DBG ∴△≌△,90AGB DGB ∠=∠=.BO AD ∴⊥. ····················· 10分29.解:(1)在1y x =+中,当0y =时,10x +=,1x ∴=-,点B 的坐标为(10)-,. ······························································ 1分 在334y x =-+中,当0y =时,33044x x -+=∴=,,点C 的坐标为(4,0). 2分 由题意,得1334y x y x =+⎧⎪⎨=-+⎪⎩,.解得87157x y ⎧=⎪⎪⎨⎪=⎪⎩,. ∴点A 的坐标为81577⎛⎫⎪⎝⎭,. ········································································· 3分(2)当CBD △为等腰三角形时,有以下三种情况,如图(1).设动点D 的坐标为()x y ,由(1①当1BD 1112BM M C BC ==.11553312222BM OM x ∴==-==,,.33153428y ∴=-⨯+=,点1D 的坐标为31528⎛⎫⎪⎝⎭,. ·······································4分 ②当2BC BD =时,过点2D 作22D M x ⊥轴,垂足为点2M ,则2222222D M M B D B +=.21M B x =--,2223354D M x D B =-+=,,2223(1)354x x ⎛⎫∴--+-+= ⎪⎝⎭.解,得121245x x =-=,(舍去).此时,312243455y ⎛⎫=-⨯-+= ⎪⎝⎭. ∴点2D 的坐标为122455⎛⎫- ⎪⎝⎭,. ··································································· 6分图(1) 图(2)③当3CD BC =,或4CD BC =时,同理可得34(03)(83)D D -,,,. ··········· 9分由此可得点D 的坐标分别为12343151224(03)(83)2855D D D D ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,,,,,,. 评分说明:符合条件的点有4个,正确求出1个点的坐标得1分,2个点的坐标得3分,3个点的坐标得5分,4个点的坐标得满分;与所求点的顺序无关. (3)存在.以点E D O A ,,,为顶点的四边形是平行四边形有以下三种情形,如图(2).①当四边形11AE OD为平行四边形时,1120BE CD =. ·························· 10分 ②当四边形21AD E O为平行四边形时,1210BE CD =. ·························· 11分 ③当四边形12AOD E为平行四边形时,2120BE CD =. ······················· 12分 评分说明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分说明进行估分.2.如解答题由多个问题组成,前一问解答有误或未答,对后面问题的解答没有影响.可依据参考答案及评分说明进行估分.。
2024年重庆市中考数学预测模拟试题及答案
2024年重庆中考数学预测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.62.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.767.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是.13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积cm2.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=,∴四边形ABCD是.∴.∵,∴OB=.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=,b=,c=.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A 出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.2024年重庆中考数学预测模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.6【答案】A2.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.【答案】A3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【答案】C4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)【答案】B5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°【答案】B6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.76【答案】D7.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间【答案】C8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.【答案】B9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α【答案】C10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.【答案】见试题解答内容12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是18.【答案】见试题解答内容13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.【答案】.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=﹣20.【答案】﹣20.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积2πcm2.【答案】2π.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为8.【答案】8.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.【答案】见试题解答内容18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为15;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是1125.【答案】15,1125.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).【答案】(1)2xy;(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=OC.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=90° ,∴四边形ABCD是矩形.∴AC=BD.∵,∴OB=AC.【答案】OC,90°,矩形,AC=BD,AC.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=48,b=49,c=45%.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.【答案】(1)48,49,45%;(2)乙班的学生测试成绩较好,理由:乙班的优秀率大于甲班;(3)580人.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?【答案】(1)这个服务区的充电桩有12个,加油枪有8个;(2)新能源汽车在高速路上行驶时平均每公里费用为0.15元.23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.【答案】(1)y=;(2)图象见解析过程,该函数的性质:函数值的最大值为8;(3)x的值为2或5.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?【答案】(1)米;(2)选择路线①所用时间少.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.【答案】(1)y=﹣x2+x+2;(2)PE+CF的最大值为:4.5,此时点P(3,2);(3)点M的横坐标为.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】(1)△ADE的周长为2+2+2;(2)FD=CG+FG,证明见解答;(3)的值为.。
四川省师大一中学2024届中考数学全真模拟试卷含解析
四川省师大一中学2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A.B.C.D.2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.53.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和294.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC 的度数是()A.44°B.53°C.72°D.54°5.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1076.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠17.若kb<0,则一次函数y kx b=+的图象一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限8.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .255B .55C .2D .129.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°10.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( )A .m <1B .m >﹣1C .m >1D .m <﹣1二、填空题(共7小题,每小题3分,满分21分)11.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.12.在△ABC 中,AB=1,BC=2,以AC 为边作等边三角形ACD ,连接BD ,则线段BD 的最大值为_____. 13.在△ABC 中,∠C =90°,sin A =25,BC =4,则AB 值是_____. 14.将多项式xy 2﹣4xy+4y 因式分解:_____. 15.点(a -1,y 1)、(a +1,y 2)在反比例函数y =k x (k >0)的图象上,若y 1<y 2,则a 的范围是________. 162(2)-17.在平面直角坐标系xOy 中,位于第一象限内的点A (1,2)在x 轴上的正投影为点A′,则cos ∠AOA′=__.三、解答题(共7小题,满分69分)18.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.19.(5分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.20.(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t 分钟),将调查统计的结果分为四个等级:Ⅰ级(020)t ≤≤、Ⅱ级(2040)t ≤≤、Ⅲ级(4060)t ≤≤、Ⅳ级(60)y >.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在__________级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?21.(10分)如图,点A ,B 在O 上,直线AC 是O 的切线,OC OB .连接AB 交OC 于D .(1)求证:AC DC =AC ,O的半径为5,求OD的长.(2)若222.(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组7 8 9 10 11 12 13 14 15 16 17x男生平均身高115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2 y(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?23.(12分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.24.(14分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,3≈1.73)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可. 【题目详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【题目点拨】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.2、A【解题分析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.【题目详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)[300+20(60-x)]=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.∴每件商品应降价60-57=3元.故选:A.【题目点拨】本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.3、D【解题分析】【分析】根据中位数和众数的定义进行求解即可得答案.【题目详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【题目点拨】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4、D【解题分析】根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.【题目详解】根据直径所对的圆周角为直角可得∠BAE=90°,根据∠E=36°可得∠B=54°,根据平行四边形的性质可得∠ADC=∠B=54°.故选D【题目点拨】本题考查了平行四边形的性质、圆的基本性质.5、B【解题分析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:280万这个数用科学记数法可以表示为62.810,⨯ 故选B.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.6、C【解题分析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k >12且k≠1. 故选C【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac ,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7、D【解题分析】根据k ,b 的取值范围确定图象在坐标平面内的位置关系,从而求解.【题目详解】∵kb<0,∴k 、b 异号。
2024年广东省中考数学模拟卷及答案
2024年广东省初中数学中考模拟卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.352.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.63.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1 4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-946.如图所示,水平放置的几何体的俯视图是()A. B. C. D.7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.599.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.1010.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A .3B .√10C .9√15D .√152二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy 2﹣2x = .12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .14.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-417.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ②18. (8分)先化简,再求值:(1+)÷,其中a=+1.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
2024年山东省中考数学模拟押题预测卷及答案
2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。
第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。
考试时间为120分钟。
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。
所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。
第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。
原创2023学年中考数学预测模拟考试卷含答案
数 学 试 卷(满分100分,考试时间90分钟)一、细心选一选(本大题共8个小题,每小题3分,共24分)每小题下面都有代号为A 、B 、C 、D 的四个选项,其中只有一个选项是正确的,请把正确选项的代号填在该题后面的括号内.填写正确记3分,不填、填错或填出的代号超过一个均记0分.1.计算2009(1)-的结果是( ) A .1-B .1C .2009-D .20092.在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--,B .(25)--,C .(25)-,D .(25)-,3.某物体的展开图如图1,它的左视图为( )4.方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =5.已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ) A .2B .2.5C .3D .56.化简123()x x -的结果是( ) A .5xB .4xC .xD .1x7.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =8.如图2,AB 是O ⊙的直径,点C 、D在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( )A .B .C .D .图1(图2) OBDACA .70°B .60°C .50°D .40°二、认真填一填(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.9.不等式5(1)31x x -<+的解集是.10.某校为了举办“庆祝建国60周年”的活动,调查了本校所有学生,调查的结果如图3所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.11.如图4,等腰梯形ABCD6047B AD BC ∠===°,,,则梯形的周长是. 12.ABC △中,10cm 8cm 6cm AB AC BC ===,,,以点B 为圆心、6cm 为半径作B ⊙,则边AC 所在的直线 与B ⊙的位置关系是.三、(本大题共2个小题,每小题6分,共12分) 13.计算:0(π2009)2|-+.14.化简:221211241x x x x x x --+÷++--. 四、(本大题共2个小题,每小题6分,共12分)15.如图5,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F . 求证:AF BF EF =+.16.甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个(图3)A :文化演出B :运动会C :演讲比赛C A B 40% 35%(图4)(图5)DCB AEFG相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球. (1)取出的3个小球上恰好有两个偶数的概率是多少? (2)取出的3个小球上全是奇数的概率是多少? 五、(本大题共2个小题,每小题8分,共16分)17.在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?18.如图6,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A . (1)求tan BOA ∠的值;(2)将点B 绕原点逆时针方向旋转90°后记作点C ,求点C 的坐标; (3)将OAB △平移得到O A B '''△,点A 的对应点是A ',点B 的对应点B '的坐标为(22)-,,在坐标系中作出O A B '''△,并写出点O '六、(本大题8分)19方式A 以每分钟0.120元外,再以每分钟0.06有x 分钟,上网费用为y 元.(1)分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7(2七、(本大题8分)20.如图8,半圆的直径10AB=,点C在半圆上,6BC=.(1)求弦AC的长;(2)若P为AB的中点,PE AB⊥交AC于点E,求PE的长.八、(本大题8分)PB CEA(图8)21.如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S ?若存在,求点E 的坐标;若不存在,请说明理由.数学试卷参考答案及评分意见说明:1. 全卷满分100分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数. 2.参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分. 3.要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、细心选一选(本大题共8个小题,每小题3分,共24分)1.A 2.C 3.B 4.D 5.B 6.C 7.A 8.D 二、认真填一填(本大题共4个小题,每小题3分,共12分) 9.3x < 10.100 11.17 12.相切 三、(本大题共2个小题,每小题6分,共12分)13.解:原式12=+- ························ [共4分,分项给分:0(π2009)1-=(1分)=1分),2|2=-2分)](12)=++ (结果正确,没有此步不扣分)3=+ ······················································································· (6分)14.解:原式221412211x x x x x x --=++-+- ············································· (1分)21(2)(2)12(1)1x x x x x x -+-=++-- ·································································· (3分)2111x x x -=+--······················································································· (4分) 211x x -+=-11x x -=- ································································································· (5分) 1=······································································································· (6分) 四、(本大题共2个小题,每小题6分,共12分) 15.证明:ABCD 是正方形,90AD AB BAD ∴=∠=,°.································································· (1分) DE AG ⊥,90DEG AED ∴∠=∠=°. 90ADE DAE ∴∠+∠=°.又90BAF DAE BAD ∠+∠=∠=°,ADE BAF ∴∠=∠. ············································································ (2分) BF DE ∥,AFB DEG AED ∴∠=∠=∠. ······························································· (3分)在ABF △与DAE △中,AFB AEDADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABF DAE ∴△≌△. ································································· (4分)BF AE ∴=. ······················································································ (5分) AF AE EF =+,AF BF EF ∴=+. ·············································································· (6分)16.解:根据题意,画出如下的“树形图”:从树形图看出,所有可能出现的结果共有12个. ················· (2分)(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,7;2,5,6.所以6 7 6 7 6 7 3 4 5 16 7 6 7 6 7 3 4 5 2甲乙 丙P (两个偶数)41123==.······························································ (4分) (2)取出的3个小球上全是奇数的结果有2个,即1,3,7;1,5,7.所以P (三个奇数)21126==.······························································ (6分) 五、(本大题共2个小题,每小题8分,共16分)17.解:设甲工程队单独完成任务需x 天,则乙工程队单独完成任务需(2)x +天,······························· (1分)依题意得2312xx +=+. ···································································· (4分) 化为整式方程得2340x x --=······················································································· (5分)解得1x =-或4x =. ········································································· (6分) 检验:当4x =和1x =-时,(2)0x x +≠,4x ∴=和1x =-都是原分式方程的解.但1x =-不符合实际意义,故1x =-舍去; ································· (7分)∴乙单独完成任务需要26x +=(天).答:甲、乙工程队单独完成任务分别需要4天、6天. ········ (8分)18.解:(1)点(42)B ,,BA x ⊥轴于A , 42OA BA ∴==,,21tan 42AB BOA OA ∴∠===. ···················· (3分) (2)如图,由旋转可知:24CD BA OD OA ====,∴点C 的坐标是(24)-,. ······················ (5分)(3)O A B '''△如图所示,(24)O '--,,(24)A '-,. ························· (8分)六、(本大题8分)19.(1)方式A :0.1(0)y x x =≥, ·············································· (1分) 方式B :0.0620(0)y x x =+≥, ······················································· (2分) 两个函数的图象如图所示. ·························································· (4分)(250050(5分)500分时,选择方式A 省钱;当一个月内上网时间等于500分时,选择方式A 、方式B 一样;当一个月内上网时间多于500分时,选择方式B 省钱. ················································ (8分) 七、(本大题8分)20.解:AB 是半圆的直径,点C 在半圆上,90ACB ∴∠=°.在Rt ABC △中,8AC ===(3分) (2)PE AB ⊥,90APE ∴∠=°.90ACB ∠=°, APE ACB ∴∠=∠.又PAE CAB ∠=∠,AEP ABC ∴△∽△, ··········································································· (6分)PE APBC AC∴=(7分) 110268PE ⨯∴= 301584PE ∴==. ················································································ (8分)八、(本大题8分)21.解:(1)设正比例函数的解析式为11(0)y k x k =≠, 因为1y k x =的图象过点(33)A ,,所以133k =,解得11k =.这个正比例函数的解析式为y x =. ············································· (1分) 设反比例函数的解析式为22(0)k y k x=≠. 因为2k y x=的图象过点(33)A ,,所以 233k =,解得29k =. 这个反比例函数的解析式为9y x=. ············································ (2分) (2)因为点(6)B m ,在9y x=的图象上,所以9362m ==,则点362B ⎛⎫⎪⎝⎭,. ······························································· (3分) 设一次函数解析式为33(0)y k x b k =+≠. 因为3y k x b =+的图象是由y x =平移得到的, 所以31k =,即y x b =+.又因为y x b =+的图象过点362B ⎛⎫ ⎪⎝⎭,,所以362b =+,解得92b =-, ∴一次函数的解析式为92y x =-. ················································· (4分) (3)因为92y x =-的图象交y 轴于点D ,所以D 的坐标为902⎛⎫- ⎪⎝⎭,.设二次函数的解析式为2(0)y ax bx c a =++≠.因为2y ax bx c =++的图象过点(33)A ,、362B ⎛⎫ ⎪⎝⎭,、和D 902⎛⎫- ⎪⎝⎭,,原创2023学年胡文作品11 / 11 所以933336629.2a b c a b c c ⎧⎪++=⎪⎪++=⎨⎪⎪=-⎪⎩,,(5分) 解得1249.2a b c ⎧=-⎪⎪=⎨⎪⎪=-⎩,, 这个二次函数的解析式为219422y x x =-+-. ······························ (6分)(4)92y x =-交x 轴于点C ,∴点C 的坐标是902⎛⎫ ⎪⎝⎭,, 如图所示,15113166633322222S =⨯-⨯⨯-⨯⨯-⨯⨯ 99451842=--- 814=. 假设存在点00()E x y ,,使12812273432S S ==⨯=. 四边形CDOE 的顶点E 只能在x 轴上方,∴00y >,1OCD OCE S S S ∴=+△△ 01991922222y =⨯⨯+⨯ 081984y =+. 081927842y ∴+=,032y ∴=.······························································ (7分) 00()E x y ,在二次函数的图象上,2001934222x x ∴-+-=. 解得02x =或06x =. 当06x =时,点362E ⎛⎫ ⎪⎝⎭,与点B 重合,这时CDOE 不是四边形,故06x =舍去, ∴点E 的坐标为322⎛⎫ ⎪⎝⎭,. ·································································· (8分)。
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵
∴
∵
∴
∴
∴
在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式
;
【小问2详解】
原式
.
【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54
2024年中考数学模拟考试试卷(带有答案)
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数 图象在一三象限,进而可得 ,解不等式即可求解.
【详解】解:∵当 时有
∴反比例函数 的图象在一三象限
∴
解得:
故选:C.
【点睛】本题考查了反比例函数图象 性质,根据题意得出反比例函数 的图象在一三象限是解题的关键.
故答案为①③④.
【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
三、解答题(本大题共9个题,满分75分)
16.(1)计算: ;
(2)解分式方程: .
【答案】(1) ;(2)
【详解】解:如图:作 的垂直平分线 ,作 的垂直平分线 ,设 与 相交于点O,连接 ,则点O是 外接圆的圆心
由题意得:
∴
∴ 是直角三角形
∴
∵
∴
故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
8.如图,在 中 ,点 在边 上,且 平分 的周长,则 的长是()
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示较大的数时一般形式为 ,其中 , 为整数,据此判断即可.
【详解】解:数12910000用科学记数法表示为 .
故选:B.
【点睛】本题考查了科学记数法,科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时要看把原来的数,变成 时小数点移动了多少位, 的绝对值与小数点移动的位数相同.
2023年河南省中考数学模拟预测试卷(附答案)
河南省中考数学模拟预测试卷注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
参考公式:二次函数2y =ax +bx+c (a ≠0)图象的顶点坐标为(-2b a,244ac-b a ).一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中最小的是 (A )-5(B )-π(C )3(D )02.如图所示的几何体的左视图是3.电子比荷是自然科学中的重要常数,其数值约为1760亿,若将1760亿用科学计数法表示为1.76×10n,则n 的值是 (A )10(B )11(C )12(D )-114.如图,a ,b 为平面内两条直线,且a ∥b ,直线c 截a ,b 于A ,B 两点,C ,D 分别为a ,b 上的点,在平面内有一点E ,EA ,EB 分别平分∠BAC 和∠ABD ,则∠E 等于(C)(D )15.不等式组⎧⎨⎩≥23-2<2x +x 的解集在数轴上可表示为 6.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3 : 4 : 4,则李明的最终成绩是 (A )96.7分(B )97.1分(C )88.3分(D )265分7.如图所示的图形是按下列步骤做得的:①在直线l 上截取线段AB ,使AB = 2;②分别以A ,B 为圆心,以1.5为半径作弧,两弧分别交于C ,D 两点,连接AC ,AD ,BC ,(D )(C )(A )(B )(D )(C )(B )(A )453210-1543210-1-1012345543210-1BD ,则四边形ACBD 的面积是 (A )5 (B )25 (C )3 (D )23 8.在如图所示的直角坐标系xOy 中有一线段AB ,其中A 和B 均在坐标轴上且AB = 4,点P (x ,y )是AB 的中点.现将AB 进行移动,但仍保持AB = 4,则x ,y 应满足的关系是 (A )x 2 + y 2 = 1 (B )x + y = 1 (C )x 2 + y 2= 4 (D )x + y = 4(第7题) (第8题)(第10题)二、填空题(每小题3分,共21分) 9.计算:20+|-1| - 3-2= .10.如图,DE ∥BC ,AD = 3,DC = 1,若BC = 3,则DE = .11.一个不透明的矩形容器里装有10个小球(除颜色外完全相同),其中4个白球,6个红球,现从容器中摸出两个球,则摸到相同颜色的球的概率是 . 12.如图,两个45°的三角板叠放在一起,延长BC 和AC ,分别交DE 于点M ,N ,若∠ABD = 30°,则∠AND 的大小是 度. 13.在如图所示的直角坐标系xOy 中,AC ⊥OB ,OA ⊥AB ,OB = 3,点C 是OB 上靠近O 点的三等分点,若反比例函数ky =x >x ( )0 的图象(图中未画出)与△OAB 有两个交点, 则k 的取值范围是 . 14.如图,在Rt △ABC 中,AB = 1,∠ACB = 30°,点D 是AC 的中点,⊙O 是△ABC 的内切圆,以点D 为圆心,以AD 的长为半径作AB ,则图中阴影部分的面积是 . 15.如图,△ABC 是以BC 为底边的等腰三角形,AB = 3,BC = 5,P 是折线BAC 上动点(不与B ,C 重合),过P 作BC 的垂线l 交BC 于D ,连接AD .当△ACD 是等腰三角形时,BP 的长是 .(第12题) (第13题) (第14题) (第15题) 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:⎛⎫⨯ ⎪⎝⎭22221--112-b a +ab+b a b a a ,其中a = b = 202X .DCBAlPB AOyxED CBA MNEDC B ACBAO yxlP DCBA17.(9分)如图,AB 是⊙O 的直径,D 是圆周上半部分不与A ,B 重合的动点,连接BD ,AD .(1)延长BD 交⊙O 在A 点的切线于C ,若AO =3CD ,求∠ACB 的大小;(2)填空:①若AB = 2,当AD = 时△ABD 的面积最大;②当∠BAD = °时BD =3AD .18.(9分)临近毕业,许多学生面临选择普通高中还是职业高中的问题.为了了解同学们的看法,红星中学数学兴趣小组已对全校3 000名毕业生进行调查,其中男生1 700人,女生1 300人. (1)展开调查由于调查3 000人费时费力,小组决定采用抽签作为样本进行抽样调查的方式,则抽到男生的概率为 ,抽到女生的概率为 ; (2)结果分析将调查结果绘制成如下不完整的统计图,回答问题: “毕业生对于高中选择”的条形统计图 “毕业生对于高中选择”的扇形统计图①调查中认为“无所谓”的有多少人? ②调查中认为“两者都有准备”的圆心角度数是多少? ③补全统计图; ④全校毕业生中认为“一定要进入普通高中”的人数约是多少?19.(9分)已知方程x 2+ 3mx + 2m - 3 = 0. (1)求证:对于任意的实数m ,方程总有两个不相等的实数根; (2)设a ,b 是平行四边形的两邻边边长,也是方程的两根,且a > b ,求a - b 的最小值. 20.(9分)某数学活动小组测量了学校旗杆的高度.如图,BC 为旗杆,他们先在A 点测得C 的仰角为45°,再向前走3米到达D 点,测得C 的仰角为53°,求旗杆高.(结果保留整数)参考数据:sin 53°≈0.8,cos 53°≈0.6,tan 37°≈0.75,2≈1.41.21.(10分)为便民惠民,人民公园特推出下列优惠方案: ①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元; ③至尊卡:年费为500元,但进入不再收费. 设某人参观x 次时,所需总费用为y 元.ODCDCBACBAyy 3y 2y 1(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A ,B ,C 的坐标; (3)根据图象,直接写出选择哪种方案更合算.22.(10分)如图①,△ABC 和△DBE 是两个一模一样的三角板(两锐角为30°,60°),现将△DBE 绕点B 顺时针旋转,计旋转角为θ(0°<θ≤180°),连接AD ,CE . (1)问题发现当θ= 90°时,CEAD = .(2)拓展探究试判断,当0°<θ< 180°时,CEAD 的大小有无变化?请仅就图②的情形给出证明.(3)解决问题若AC = 2,请直接写出....在旋转过程中AD 的最大值. 23.(11分)已知抛物线y = ax 2+(b + 1)x + b - 1(a ≠0),直线y = - x + 2541aa -a +.定义:若存在某一数x 0,使得点(x 0,x 0)在抛物线y = ax 2+(b + 1)x + b - 1(a ≠0)上,则称x 0是抛物线的一个不动点.(1)当a = 1,b = - 2时,求抛物线的不动点;(2)若对任意的b 值,抛物线恒有两个不动点,求a 的取值范围;(3)在(2)的条件下,若A ,B 两点的横坐标是抛物线的不动点,且AB 的中点C 在直线上,请直接写出....b 的最小值.备用图图②图①ADECBA ( D)BC ( E )C ( E)BA ( D)参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题(本大题共8个小题,满分75分)16.(8分)原式 = a +b a -b a +b a -b a ab 2-1()()() ………………………………………………………… 3分=a +b ab a -1=bb a b a b+a - =b1 (6)分将b=2016代入得:原式 =12016………………………………………………………… 8分 17.(9分)(1)设CD = 1,AD = x ,由已知条件可得AB = ………………… 2分根据射影定理可得出关系式:AD 2= CD ·BD ………………………………… 5分所以x 2即x 4= 12 - x 2得, …………………………………………………………………… 6分 ∴∠ACB = 60°. …………………………………………………………………… 7分(2)②60. (9)分 18.(9分)(1)①1730;②1330; …………………………………………………………………… 2分 (2)①参与调查的总人数为80/16% = 500(人)∴调查中认为“无所谓”的有500×24% =120(人) ………………………… 3分 ②调查中认为“两者都有准备”所占百分比为100=20%500,∴调查中认为“两者都有准备”的圆心角度数是360°×20% = 72° (4)分③正确补全统计图(图略)…………………………………… 7分提示:在条形统计图中持“无所谓”看法的人数为120人,1分;在扇形统计图中“两者都有准备”为20%;1分;“一定要进入普通高中” ,40%,1分. ④全校毕业生中认为“一定要进入普通高中”的人数约为人2003000=1200 500()× …………………………………… 9分19.(9分)(1)证明:方程的判别式Δ=(3m )2- 4(2m - 3)= 9m 2- 8m + 12 ………………… 1分该式子的判别式Δ' = 82- 4×9×12 = - 368 < 0 …………………2分所以对于任意的m ,Δ恒大于0…………………………………… 3分即对于任意的实数m ,方程总有两个不相等的实数根 ………………… 4分(2)由韦达定理(或:根与系数的关系)可得:①a + b = -3m ;②ab = 2m - 3 (6)分又a > b ,所以………………………… 8分所以当m =49时,a - b…………………………9分 20.(9分) 设旗杆高为x 米 在△ABC 中AB = x 米…………………………………………………………… 2分在△BCD 中BD = 0.75 x 米 ..................................................................... 4分 由题意知x - 0.75x = 3 (6)分解得:x = 12…………………………………………………………… 8分 即旗杆高为12米…………………………………………………………… 9分21.(10分)(1)普通卡:y 1 = 20x ;贵宾卡:y 2 = 10x + 200; ………………………………………2分(2)令y 1 = 500得x 1 = 25;令y 2 = 500得x 1 = 30;联立y 1和y 2得x 3 = 20;所以A (20,400),B (25,500),C (30,500) ………………………………… 5分(3)①当0 < x < 20时,选择普通卡更合算;(注:若写为0 ≤ x < 20,不扣分)②当x = 20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20 < x < 30时,选择贵宾卡更合算;④当x = 30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x > 30时,选择至尊卡更合算. (10)分22.(10分)(1 …………………………………………………………… 1分(2)无变化(注:若无判断,但后续证明完全正确,不扣分)证明如下:在旋转过程中∠CBE =∠ABD………………………………………………… 3分又由△ABC ≌△DBE 可知:AB = DB ,CB = EB∴CB EB =D B AB ∴△CBE ∽△DBA ………………………………………………… 6分∴CE CB ==AD AB ………………………………………………… 7分 ∴CE AD的大小无变化 ………………………………………………… 8分(3)………………………………………………… 10分【提示】当旋转角θ= 180°时AD 达到最大. 23.(11分)(1)当a = 1,b = - 2时,抛物线y = x 2- x - 3令x 2 - x - 3 = x ,即x 2- 2x - 3 = 0,解得x 1 = -1,x 2 = 3所以此时抛物线的不动点为-1或3 …………………………………………… 3分 (2)若对任意的b 值,抛物线恒有两个不动点则令ax 2+(b + 1)x + b - 1 = x即ax 2+ bx + b - 1 = 0恒有两个不等实数解 ………………………………… 5分∴令Δ= b 2- 4a (b - 1)> 0对任意的b 值恒成立 即b 2- 4ab + 4a > 0对任意的b 值恒成立 (7)分方法一:令Δ' =(4a )2- 4·4a < 0 即a 2- a < 0解得0 < a < 1 (9)分方法二:令×()a --a 2444>04即a 2- a < 0解得0 < a < 1 (9)分 (3)-1…………………………………………………………………… 11分【提示】设A (x 1,x 1),B (x 2,x 2)(x 1≠x 2)因为AB 的中点C 在直线上,所以12122++=-+22541x x x x aa -a +所以122+=541ax x a -a +又因为x 1,x 2是方程ax 2+ bx + b - 1 = 0的两根所以12+=-b x x a ,即2-=541b aa a -a +整理得⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222115411114521a b =-=-=-a -a +-+-+a a a 所以b 的最小值是-1.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
最新中考数学全真模拟预测试卷(解析版)
一、仔细选一选(本大题有10小题,每小题3分,共30分。
)1.下列四个几何体中,主视图与左视图相同的几何体有()A. 1个B. 2个C. 3个 D. 4个2.下列调查中,须用普查的是()A. 了解我区初三同学的视力情况B. 了解我区初三同学课外阅读的情况C. 了解我区初三同学今年4月12日回校报到时的校园健康“入学码”情况D. 了解我区初三同学疫情期间参加晨练的情况3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.4.已知{a+2b=4则a+b等于()3a+2b=8B. 3C. 2 A. 83D. 15.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A. 3cmB. 4cmC. 5cmD. 6cm6.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C.D.7.分解因式(x−1)2−2(x−1)+1的结果是()A. (x−1)(x−2)B. x2C. (x+1)2 D. (x−2)28.下列计算错误的是()A. 0.2a+b0.7a−b =2a+b7a−bB. x3y2x2y3=xyC. a−bb−a=−1 D. 1c +2c=3c9.求1+2+22+23+…+22021模拟的值,可令S=1+2+22+23+…+22021模拟,则2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,计算出1+2021模拟+2021模拟2+2021模拟3+…+2021模拟2021模拟的值为()A. 2021模拟2021模拟−12021模拟B. 2021模拟2021−12021模拟C. 2021模拟2021−12019D. 2021模拟2021模拟−1201910.如图,在菱形纸片ABCD 中,∠A=60°,将纸片折叠,点A ,D 分别落在点A',D'处,且A'D'经过点B ,EF 为折痕,当D'F ⊥CD 时,CF DF 的值为( )A. √3−12B. √36C. 2√3−16D. √3+18二、填空题(本题有6小题,每小题4分,共24分)11.已知∠α的补角是130°,则∠α的度数为________.12.太阳的半径为696000千米,把这个数据696000用科学记数法表示为________.13.从2,-2,-1这三数中任取两个不同数作为点坐标,则该点在第二象限的概率为________.14.已知y=x -1,则(x −y)2+(y −x)+1的值为________.15.已知平面直角坐标系xOy ,正方形OABC ,点B (4,4),过边BC 上动点P(不含端点C)的反比例函数y =kx 的图象交AB 边于Q 点,连结PQ ,若把横、纵坐标均为整数的点叫做好点,则反比例函数图象与线段PQ 围成的图形(含边界)中好点个数为三个时,k 的取值范围为________.16.已知如图1,圆柱体铅笔插入卷笔刀充分卷削,得到底面直径BC为2的圆锥,∠BAC=30°. 底面边长为1的正六棱柱铅笔插入卷削,得到如图2所示铅笔和锯齿状木屑(木屑厚度忽略不计),木屑锯齿齿锋点G相邻凹陷最低点为H,则AG=________,GH=________.三、解答题(本题有8小题,共66分。
最新中考数学全真模拟预测适应性试卷(解析版)
一.选择题(共8小题)1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.PM2.5是指大气中直径小于或等于2.5×10﹣3毫米的颗粒物,也称为可入肺颗粒物,把2.5×10﹣3用小数形式表示正确的是()A.0.000025B.0.00025C.0.0025D.0.0253.下列运算正确的是()A.(x3)2=x5B.﹣=C.(x+1)2=x2+1D.x3•x2=x54.是方程组的解,则5a﹣b的值是()A.10B.﹣10C.14D.215.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0B.0或﹣2C.﹣2D.26.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)7.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A.3B.C.3或D.4或8.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,AB =3,一动点P以1cm/s的速度沿折线OB﹣BA运动,那么点P 的运动时间x(s)与点C、O、P围成的三角形的面积y之间的函数图象为()A.B.C.D.二.填空题(共6小题)9.已知a﹣b=5,ab=1,则a2b﹣ab2的值为.10.若关于x的一元一次不等式组有解,则m的取值范围为.11.一组数据3,4,x,6,7的平均数为5,则这组数据的方差.12.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,则AB=cm.13.如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为.14.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y 轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.三.解答题(共10小题)15.计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.16.先化简,再求值:(﹣)÷,其中x=2y(xy ≠0).17.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.18.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?19.在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A 处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).20.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP =:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD 于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.22.为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A.喜欢吃苹果的学生;B.喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E.喜欢吃西瓜的学生,并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)23.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F 在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.24.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y 轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.参考答案与试题解析一.选择题(共8小题)1.的倒数的绝对值是()A.1B.﹣2C.±2D.2【分析】根据倒数的定义,两数的乘积为1,这两个数互为倒数,先求出﹣的倒数,然后根据负数的绝对值等于它的相反数即可求出所求的值.【解答】解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.【点评】此题考查了倒数的求法及绝对值的代数意义,其中求倒数的方法就是用“1”除以这个数得到商即为这个数的倒数(0除外),绝对值的代数意义是:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.2.PM2.5是指大气中直径小于或等于2.5×10﹣3毫米的颗粒物,也称为可入肺颗粒物,把2.5×10﹣3用小数形式表示正确的是()A.0.000025B.0.00025C.0.0025D.0.025【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数),n是负几小数点向左移动几位就可以得到.【解答】解:2.5×10﹣3用小数形式表示正确的是0.0025,故选:C.【点评】本题考查写出用科学记数法表示的原数.3.下列运算正确的是()A.(x3)2=x5B.﹣=C.(x+1)2=x2+1D.x3•x2=x5【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x6,不符合题意;B、原式不能合并,不符合题意;C、原式=x2+2x+1,不符合题意;D、原式=x5,符合题意,故选:D.【点评】此题考查了整式的混合运算,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.4.是方程组的解,则5a﹣b的值是()A.10B.﹣10C.14D.21【分析】方程组两方程左右两边相加后,把x与y的值代入求出所求即可.【解答】解:方程组两方程相加得:5x﹣y=10,把代入方程得:5a﹣b=10,故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0B.0或﹣2C.﹣2D.2【分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【解答】解:∵一元二次方程mx2+mx﹣=0有两个相等实数根,∴△=m2﹣4m×(﹣)=m2+2m=0,解得:m=0或m=﹣2,经检验m=0不合题意,则m=﹣2.故选:C.【点评】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.6.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)【分析】求得直角△ABO的两条直角边的长,即可利用解直角三角形的方法求得AB,以及∠OAB的度数,则∠OAB′是直角,据此即可求解.【解答】解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选:B.【点评】本题考查了一次函数与解直角三角形,正确证明∠OAB′=90°是关键.7.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A.3B.C.3或D.4或【分析】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【解答】解:∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB =4,CD=2,∴∠A=∠DCE,∴=或=,即=或=解得,CE=3或CE=故选:C.【点评】本题考查相似三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.8.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,AB =3,一动点P以1cm/s的速度沿折线OB﹣BA运动,那么点P 的运动时间x(s)与点C、O、P围成的三角形的面积y之间的函数图象为()A.B.C.D.【分析】根据邻补角的定义求出∠AOB,判断出△AOB、△COD是等边三角形,然后根据等边三角形的性质求出等边三角形的高,再分①点P在OB上时,根据三角形的面积公式,底边为OP,列式求解即可得到y与x的关系式;②点P在BA上时,表示出点P到AC的距离,然后利用三角形的面积公式列式求解即可得到y与x的关系式,然后确定出函数图象即可.【解答】解:∵∠BOC=120°,∴∠AOB=∠COD=180°﹣120°=60°,又∵OA=OB=OC=OD,∴△AOB、△COD是等边三角形,∴等边三角形的高=•AB=,①点P在OB上时,y=•OP•=x;②点P在BA上时,AP=3+3﹣x=6﹣x,点P到AC的距离=(6﹣x),y=•OC•(6﹣x),=(6﹣x),∵OB=AB=3,∴x=3时,y有最大值,纵观各选项,只有C选项图形符合.故选:C.【点评】本题考查了动点问题的函数图象,根据矩形的性质,等边三角形的判定与性质,分别表示出点P在OB、BA上时y与x的函数关系式解题的关键.二.填空题(共6小题)9.已知a﹣b=5,ab=1,则a2b﹣ab2的值为 5 .【分析】先分解因式,再代入求出即可.【解答】解:∵a﹣b=5,ab=1,∴a2b﹣ab2=ab(a﹣b)=5×1=5,故答案为:5.【点评】本题考查了因式分解的应用,能正确分解因式是解此题的关键.10.若关于x的一元一次不等式组有解,则m的取值范围为m>.【分析】首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【解答】解:,解①得:x<2m,解②得:x>2﹣m,根据题意得:2m>2﹣m,解得:m>.故答案是:m>.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.11.一组数据3,4,x,6,7的平均数为5,则这组数据的方差 2 .【分析】先由平均数的公式求出x的值,再根据方差的公式计算即可.【解答】解:∵数据3,4,x,6,7的平均数为5,∴(3+4+x+6+7)=5×5,解得:x=5,∴这组数据为3,4,5,6,7,∴这组数据的方差为:S2=[(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为:2.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn 的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,则AB=2cm.【分析】连接AC、BC.利用圆周角定理知∠D=∠B,然后根据已知条件“CD是⊙O的直径,弦AB⊥CD于点H”,利用垂径定理知BH=AB;最后再由直角三角形CHB的正切函数求得BH的长度,从而求得AB的长度.【解答】解:连接AC、BC.∵∠D=∠B(同弧所对的圆周角相等),∠D=30°,∴∠B=30°;又∵CD是⊙O的直径,弦AB⊥CD于点H,∴BH=AB;在Rt△CHB中,∠B=30°,CH=1cm,∴BH=,即BH=;∴AB=2cm.故答案是:2.【点评】本题考查了垂径定理和直角三角形的性质,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.13.如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为.【分析】连接OA、OC,如图,根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:连接OA、OC,如图.∵五边形ABCDE是正五边形,∴∠E=∠D==108°.∵AE、CD与⊙O相切,∴∠OAE=∠OCD=90°,∴∠AOC=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴的长为=.故答案为.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.14.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y 轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为(0,256).【分析】根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A4坐标即可.【解答】解:∵l:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256),故答案为:(0,256).【点评】综合考查一次函数的知识;根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.三.解答题(共10小题)15.计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.【分析】原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,第四项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+1﹣(﹣2)+﹣1﹣2×=﹣1+1+2+﹣1﹣=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:(﹣)÷,其中x=2y(xy ≠0).【分析】根据分式的减法和除法可以化简题目中的式子,然后将x =2y代入即可解答本题.【解答】解:(﹣)÷====,当x=2y时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.17.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.【分析】连接AF,ED,EF,EF交AD于O.只要证明OE=OF,OB=OC即可解决问题.【解答】证明:连接AF,ED,EF,EF交AD于O.∵AE=DF,AE∥DF.∴四边形AEDF为平行四边形,∴EO=FO,AO=DO,又∵AB=CD,∴AO﹣AB=DO﹣CD,∴BO=CO,又∵EO=FO,∴四边形EBFC是平行四边形.【点评】本题考查平行四边形的判定和性质,解题的关键是学会添加常用辅助线,灵活运用平行四边形的性质和判定解决问题.18.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?【分析】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数结合小明步行12 000步与小红步行9 000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.【解答】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.【点评】本题考查了分式方程的应用,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数列出关于x的分式方程是解题的关键.19.在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A 处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).【分析】作PQ垂直于AB的延长线于点Q,根据直角三角形的性质和三角函数解答即可.【解答】解:作PQ垂直于AB的延长线于点Q,由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,∵在△BQP中,∠BPQ=45°,∴PQ=BQ=30海里,∴AB=AQ﹣BQ=30﹣30≈21.9海里,∴=14.6海里/小时,∴不明船只的航行速度是14.6海里/小时.【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.20.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP =:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.【分析】(1)过P作PC⊥y轴于C,由P(,n),得到OC=n,PC=,根据三角函数的定义得到P(,8),于是得到反比例函数的解析式为y=,Q(4,1),解方程组即可得到直线的函数表达式为y=﹣2x+9;(2)过Q作OD⊥y轴于D,于是得到S△POQ=S四边形PCDQ =.【解答】解:(1)过P作PC⊥y轴于C,∵P(,n),∴OC=n,PC=,∵tan∠BOP=,∴n=8,∴P(,8),设反比例函数的解析式为y=,∴a=4,∴反比例函数的解析式为y=,∴Q(4,1),把P(,8),Q(4,1)代入y=kx+b中得,∴,∴直线的函数表达式为y=﹣2x+9;(2)过Q作OD⊥y轴于D,则S△POQ=S四边形PCDQ=(+4)×(8﹣1)=.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,利用待定系数法求反比例函数和一次函数的解析式,正切函数的定义,难度适中,利用数形结合是解题的关键.21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.【分析】(1)连接OA,利用已知首先得出OA∥DE,进而证明OA ⊥AE就能得到AE是⊙O的切线;(2)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.【解答】(1)证明:连接OA,∵OA=OD,∴∠1=∠2.∵DA平分∠BDE,∴∠2=∠3.∴∠1=∠3.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵点A在⊙O上,∴AE是⊙O的切线.(2)解:∵BD是⊙O的直径,∴∠BAD=90°.∵∠5=90°,∴∠BAD=∠5.又∵∠2=∠3,∴△BAD∽△AED.∴,∵BA=4,AE=2,∴BD=2AD.在Rt△BAD中,根据勾股定理,得BD=.∴⊙O半径为.【点评】此题主要考查了圆的综合应用以及相似三角形的判定及性质的运用和切线的求法等知识点的掌握情况.要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.22.为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A.喜欢吃苹果的学生;B.喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E.喜欢吃西瓜的学生,并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)【分析】(1)根据百分比=计算即可;(2)求出B、C的人数画出条形图即可;(3)利用树状图,即可解决问题;【解答】解:(1)此次抽查的学生人数为16÷40%=40人.(2)C占40×10%=4人,B占20%,有40×20%=8人,条形图如图所示,(3)由树状图可知:两名学生为同一类型的概率为=.【点评】本题考查列表法、树状图法、扇形统计图、条形统计图等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=ME,DM⊥ME.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F 在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC,AC和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【解答】猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是正方形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=EF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME.(2)如图2,连接AC,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AC和EC在同一条直线上,在Rt△ADF中,AM=MF,∴DM=AM=MF,∠MDA=∠MAD,∴∠DMF=2∠DAM.在Rt△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.∵∠MDA=∠MAD,∠MAE=∠MEA,∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.∴DM⊥ME.【点评】本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.24.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【分析】(1)由待定系数法建立二元一次方程组求出求出m、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC的解析式,设出E点的坐标为(a,﹣a+2),就可以表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF求出S与a的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤a≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤a≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).【点评】本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又 ∵ ∠EAB=∠DAB
∴ △AEB~△ABD ………… 10分
∴ = 即 AB2=AD·AE ………… 11分
又 ∵ AB=AC
∴ AB·AC=AD·AE ………… 12分
24、解:(1)解方程组 得 ……2分
∴ 点B的坐标为P(2,2 ) …………3分
过点B作BC⊥OA于C
理由:买牡丹花费用:4×10×4×150=24000(元)
剩下资金:50000−24000=26000(元) ………… 10分
5×10×4×125=25000(元) < 26000(元) ………… 12分
或: ② 中间五个长方形1个种上玫瑰花,4个种上茉莉花
③ 中间五个长方形2个种上玫瑰花,3个种上茉莉花 ………… 8分
∴ OC=2,BC=2 ,
∴ OB= =4
tan∠BOC= =
∴ ∠BOC=60°
又 当y=0时,- x+4 =0
∴ x=4 ,即OA=4
∴ △OAB是等边三角形. …………6分
(2)① 当点P在线段OB上时,OP=t,OE= t,PE= t
∴ S= × t× t= t2 (0<t≤4)……8分
② 当P在线段AB上时,设PF与OB交于D
(1)求每个小长方形的长和宽;
(2)小区计划投入5万元用于购买花卉,并设计上下四个长方形种上
牡丹花,中间五个长方形种上玫瑰花或茉莉花(每块长方形种的
花相同)请你在不超过预算的情况下,为小区设计一种种植方案。
并说明理由。
23、(1)如图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D.
求证:AB·AC=AD·AE
解不等式组(2)得:不等式组无解 …………7分
∴ 不等式的解集是:- <x<2 …………8分
∴ 当- <x<2时,分式 的值为负 …………9分[
20、解:(1)∵ 点(2,1)在反比例函数y= 的图象上
∴ 1= 解得 k=2 ………… 2分
∴ y= 为所求反比例函数的解析式 ………… 3分
又∵点(2,1)在一次函数y=kx+b的图象上
(参考数据: ≈1.73, ≈2.24)
五、解答题(本大题共3小题,每小题12分, 共36分)
22、某住宅小区准备将一块周长为76米的长方形草地(如图)设计分成形状大小完全相同的九块长方形,种上各种花卉。经市场预测,牡丹花每平方米造价150元,玫瑰花每平方米造价135元,茉莉花每平方米造价125元。
= · - ………………2分
= - ………………4分
= ………………5分
当x=2时,原式= = ………………7分
16解:(1)2,△AEG≌△CFH和△BEH≌△DFG。……………3分
(2)答案不唯一。例如:选择证明△AEG≌△CFH。
证明:在□ABCD 中,∠BAG=∠HCD,
∴ ∠EAG=1800-∠BAG=1800-∠HCD=∠FCH。……4分
7、如图,⊙O的半径OC= ,直线 ⊥OC,垂足为H,且 交⊙O于A、B
两点,AB= ,若 要与⊙O相切,则要沿OC所在直线向下平移:
A、1cmB、2cmC、3cmD、4cm
8、点P为矩形ABCD内部或边上的点,若AB>2BC,那么使△PAD∽△PDC
的点P的个数有:
A、 1 B、2 C、 3 D、 4
CD=AC·sin30°=12× =6 …… 4分
Rt△BCD中,BC=9
BD= = =3 …………6分
∴ AB=AD+BD=6 +3 ≈6×1.73+3×2.24≈17.10(km) ……7分
∴ AC+CD-AB=12+9-17.10≈4(km) ………… 8分
答:隧道开通后,汽车从A地到B地比原来少走4km. ………… 9分
(说明:本卷共五大题24小题,请把答案写在答案卷上)
一、选择题(本大题共8小题,每小题4分,共32分)
1、-8的绝对值等于:
A、 8 B、 C、- D、-8
2、下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是:
A. B. C. D.
3、下列函数中,自变量 的取值范围是 ≥3的是:
A、 B、 C、 D、
23、(1)证明:连接CE
∵ AB=AC ∴ =
∴ ∠AEC=∠ACD
又 ∵ ∠EAC=∠DAC
∴ △AEC~△ACD ………… 4分
∴ = 即 AC2=AD·AE ………… 5分
又 ∵ AB=AC ∴ AB·AC=AD·AE ………… 6分
(2)答:上述结论仍成立. ………… 7分
证明:连接BE
∵ AB=AC ∴ =
二、填空题:(本题共5小题,每小题4分,共20分)
9、 1.6×10-7 10、 , 11、 6 12、 2 13、 a7b20 anb3n-1
三、解答题:(本题共5小题,每小题7分,共35分)
14、解:原式=1+3- × +16÷(-8) ………………4分
=1+3-1-2=1 ………………7分
15、解: ÷ -
(2) 在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明。若不成立,请说明理由。
24、已知:如图,直线y=- x+4 与x轴相交于点A,与直线y= x相交于点B.
(1)求点B的坐标.并判断△OAB的形状.
(2)动点P从原点O出发,以每秒1个单位的速度沿着
又 ∵ BA∥DC, ∴ ∠E=∠F …… ……5分
又 ∵分
17、解:(1)100÷0.2-(50+100+200+25)=125
∴ 第三小组的频数是125, ……2分
补全如图. ……3分
(2)成绩的中位数落在第3小组.……5分
(3)10000× =500(人)
五、解答题:(本题共3小题,每小题12分,共36分)
22、解:(1)设每个小长方形的长为x米,宽为y米,则 ………… 1分
…… 3分 ………… 5分
答:每个小长方形的长和宽分别为10米和4米。 ………… 6分
(2) 答案不唯一,方法不限,只要答对1种方案即可
例如:① 中间五个长方形都种上茉莉花 ………… 8分
12、如图,⊙O的半径为2,C1是函数y=x2的图象, C2是函数y=-x2的
图象,则阴影部分的面积是 ▲ .
13、一组按规律排列的式子:a b2,a2 b5,a3 b8,a4 b11,……(ab≠0),
其中第七个式子是 ▲ ,第n个式子是 ▲ .(n为正整数)
三、解答题(本大题共5小题,每小题7分,共35分)
出点D的坐标
(2)菱形ABCD的周长为 个单位长度.
四、解答题(本大题共3小题,每小题9分,共27分
19、仔细阅读下面例题,解答问题:
例题: 当x取何值时,分式 的值为正?
解:依题意,得 >0
则有 (1) 或 (2)
解不等式组(1)得: <x<1; 解不等式组(2)得:不等式组无解
∴ 不等式的解集是: <x<1
17、年初某市举行了九年级数学知识竞赛(满分100分),为了解九年级参赛的1万名学生竞赛成绩情况,从中随机抽取部分学生的竞赛成绩作为一个样本,整理后分成五组,绘制出频数分布直方图。已知图中从左到右的第一、第二、第四、第五小组的频数分别是50、100、200、25,其中第二小组的频率是0.2。
(1)求第三小组的频数,并补全频数分布直方图;
∵ 2 < , ∴ 当t= 时S最大= . ………… 12分
则 PA=8-t,PD=t-4,AE= (8-t)
PE= (8-t),OE=4- (8-t)= t
∴ S= 〔(t-4)+ t 〕· (8-t) ……10分
∴ S = - t2+4 t-8 (4<t<8) …………11分
(3)(3)当0<t≤4时,S= t 2 ∴ t=4时,S最大=2
当4<t<8时,S = - t2+4 t-8 ∴ t= 时,S最大=
4、如图,小手盖住的点的坐标可能为:
A、(5,2) B、(-6,3) C、(-4,-6) D、(3,-4)
5、下列图形中,是中心对称图形的是:
A.、直角三角形 B、等边三角形 C、平行四边形 D.、梯形
6、如图,在△ABC中, ,EF//AB, ,则∠A的度数为:
A、60° B、50° C、40° D、30°
∴ 当 <x<1时,分式 的值为正
问题:仿照以上方法解答问题:当x取何值时,分式 的值为负?
20、已知反比例函数y= 的图象与一次函数y=kx+b的图象相交于点(2,1),
(1)分别求出这两个函数的解析式.
(2)这两个函数的图象还有其他交点吗?若有,求出另一个交点的坐标,若没有,请说明理由.
21、如图,A、B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A—C—B行驶,现开通隧道后,汽车直接沿直线AB行驶,已知AC=12 km,BC=9 km,∠A=30°,隧道开通后,汽车从A地到B地比原来少走多少路程?(结果保留整数)
∴估计全市九年级参赛学生中获优胜奖的约500人 ……7分
18、(1)如图,菱形ABCD为所求图形
(画图正确) …… 3分
D(-2,1) …… 5分
(2) 4 ………… 7分
四、解答题:(本题共3小题,每小题9分,共27分)
19、解:依题意,得 < 0 …………1分
则有 (1) 或 (2) ……3分
解不等式组(1)得:- <x<2; …………5分
理由:买牡丹花费用:4×10×4×150=24000(元)
剩下资金:50000−24000=26000(元) ………… 10分
② 1×10×4×135+4×10×4×125=25400(元)<26000(元)
③ 2×10×4×135+3×10×4×125=25800(元)<26000(元) ……12分