(完整版)苏教版七年级下《平面图形的认识(二)》单元试卷含答案.doc
【单元卷】苏科版七年级数学下册:第7章 平面图形的认识 单元质量检测卷(二)含答案与解析
苏科版七年级数学下册单元质量检测卷(二)第7章平面图形的认识姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.65.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED 的度数.23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°【答案】B【分析】根据同位角相等、内错角相等、同旁内角互补,两直线平行即可判断.【解答】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【知识点】平行线的判定2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°【答案】C【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF度数,由直角三角形的性质即可得出结论.【解答】解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.【知识点】平行线的性质3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°【答案】B【分析】根据平行线的性质即可求解.【解答】解:延长BC至G,如下图所示,由题意得,AF∥BE,AD∥BC,∵AF∥BE,∴∠1=∠3(两直线平行,同位角相等),∵AD∥BC,∴∠3=∠4(两直线平行,同位角相等),∴∠4=∠1=40°,∵CD∥BE,∴∠6=∠4=40°(两直线平行,同位角相等),∵这条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,∴∠5=∠6=40°,∴∠2=180°﹣∠5﹣∠6=180°﹣40°﹣40°=100°,故选:B.【知识点】平行线的性质4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【答案】D【分析】根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB的取值范围,进而得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.【知识点】平行四边形的性质、三角形三边关系5.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【答案】B【分析】根据平行线的性质即可求解.【解答】解:过E作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.【知识点】平行线的性质6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)【答案】D【分析】根据平行线的判定与性质逐一进行推论即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行);所以A正确;B.∵AD∥BC,∴∠2=∠4(两直线平行,内错角相等);所以B正确;C.∵∠BAD+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);所以C正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),所以D错误.故选:D.【知识点】平行线的判定与性质7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定【答案】A【分析】根据平行线的性质求出∠EAB+∠ABF=180°,根据∠DAE=∠BAE和∠DBF=∠ABF求出∠DAB+∠ABD=135°,根据三角形内角和定理求出即可.【解答】解:∵a∥b,∴∠EAB+∠ABF=180°,∵∠DAE=∠BAE,∠DBF=∠ABF,∴∠DAB+∠ABD=×180°=135°,∴∠ADB=180°﹣(∠DAB+∠ABD)=180°﹣135°=45°,故选:A.【知识点】平行线的性质8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【分析】解法一:根据多变的内角和定理可求解∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E =(6﹣2)×180°=720°,进而可求解.解法二:利用三角形的内角和定理和平角的定义也可求解.【解答】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.【知识点】多边形内角与外角9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】根据平行线的判定得出GH∥BC,根据平行线的性质得出∠1=∠HGM,∠1=∠D,再逐个判断即可.【解答】解:∵∠B=∠AGH,∴GH∥BC,故①正确;∴∠1=∠HGM,∵∠1=∠2,∴∠2=∠HGM,∴DE∥GF,∵GF⊥AB,∴HE⊥AB,故④正确;∵GF∥DE,∴∠D=∠1,∵∠1=∠CMF,根据已知条件不能推出∠F=∠CMF,即不能推出∠D=∠F,故②错误;∵∠AHG=∠2+∠AHE,根据已知不能推出∠2=∠AHE,故③错误;即正确的有2个,故选:B.【知识点】平行线的判定与性质10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能【答案】B【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.【知识点】平行线的判定二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.【答案】65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【解答】解:∵∠1=50°,∴∠DBE=180°﹣∠1=180°﹣50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC==65°.故答案为:65.【知识点】平行线的判定与性质12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.【答案】75°【分析】由同旁内角互补,两直线平行可得l1∥l2,可得∠3+∠6=180°,即可求解.【解答】解:如图,∵∠2=∠5=100°,∠1=80°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠6=180°,∴∠6=180°﹣∠3=75°,∴∠4=∠6=75°,故答案为:75°.【知识点】平行线的判定与性质13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.【答案】20【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EF A=∠CAP,∴∠BAP=∠EF A,∵∠BEF=40°,∠BEF=∠BAP+∠EF A,∴∠BAP=∠EF A=20°,即∠AFE=20°,故答案为:20.【知识点】平行线的性质14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.【答案】140°【分析】由AD∥BC,利用“两直线平行,内错角相等”可得出∠CBD的度数,由折叠的性质可得出∠EBD 的度数,结合∠CBE=∠CBD+∠EBD可得出∠CBE的度数,由AD∥BC,利用“两直线平行,同旁内角互补”可求出∠BED的度数.【解答】解:∵AD∥BC,∴∠CBD=∠BDE=20°.由折叠的性质可知:∠EBD=∠CBD=20°,∴∠CBE=∠CBD+∠EBD=40°.∵AD∥BC,∴∠BED=180°﹣∠CBE=140°.故答案为:140°.【知识点】平行线的性质、翻折变换(折叠问题)15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.【答案】5【分析】只要证明△BDF和△CEF为等腰三角形,即可解决问题.【解答】证明:∵BF、CF分别平分∠ABC、∠ACG,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴△BDF和△CEF为等腰三角形;∵DF=BD,CE=EF,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=9﹣4=5(cm),∴EC=5(cm),故答案为:5.【知识点】等腰三角形的判定与性质、平行线的性质16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.【答案】70°【分析】设∠C=∠AOC=∠BOD=∠BDO=x,∠CAP=∠P AB=y,∠P=z,则∠B=2y,构建方程组解决问题即可.【解答】解:∵∠C=∠COA,∠BDC=∠BOD,∠AOC=∠BOD,∴∠C=∠AOC=∠BOD=∠BDO,设∠C=∠AOC=∠BOD=∠BDO=x,∴∠B=∠CAO,设∠CAP=∠P AB=y,∠P=z,则∠B=2y,则有,解得,∴∠C=70°,故答案为70°.【知识点】三角形内角和定理18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.【答案】2或4【分析】分两种情况进行解答,分别画出图形,结合图形,利用三角形内角和、平行线的性质,等量代换,得出各个角之间的倍数关系.【解答】解:如图,①当∠ABP1=∠DCA时,即∠1=∠2,∵∠D=120°,∴∠1+∠3=180°﹣120°=60°,∵∠BAD=3∠CAD,∠ABE=2∠CBE,AD∥BC,∴3∠3+3∠EBC=180°,∴∠3+∠EBC=60°,∴∠EBC=∠1=∠2=∠P1BE,∴∠CBP1:∠ABP1的值为2,②当∠ABP2=∠DCA时,∴∠CBP2:∠ABP2的值为4,故答案为:2或4.【知识点】平行线的性质三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠CAD的度数,在△ACD中,利用三角形内角和定理可求出∠ADC的度数,结合对顶角相等可得出∠PDE 的度数,再在△PDE中利用三角形内角和定理可求出∠P的度数.【解答】解:在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°﹣∠ACB﹣∠B=76°.∵AD平分∠BAC,∴∠CAD=∠BAC=38°.在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°﹣∠ACD﹣∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC于E,∴∠PED=90°,∴∠P=180°﹣∠PDE﹣∠PED=28°.【知识点】三角形内角和定理、角平分线的定义、对顶角、邻补角20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.【分析】(1)由∠1与∠2互补,利用“同旁内角互补,两直线平行”可得出AC∥DF,再利用“两直线平行,同位角相等”可求出∠BFD的度数;(2)由(1)可知∠BFD=∠C,结合∠C=∠3可得出∠BFD=∠3,再利用“内错角相等,两直线平行”即可找出DE∥BC.【解答】解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BD,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.【知识点】平行线的判定与性质21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().【答案】【第1空】DE【第2空】BC【第3空】同位角相等,两直线平行【第4空】两直线平行,同旁内角互补【第5空】等量代换【第6空】EF【第7空】AB【第8空】同旁内角互补,两直线平行,【第9空】两直线平行,内错角相等【分析】先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB即可.【解答】解:因为∠AED=∠C(已知)所以DE∥BC(同位角相等,两直线平行)所以∠B+∠BDE=180°(两直线平行,同旁内角互补)因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°(等量代换)所以EF∥AB(同旁内角互补,两直线平行)所以∠1=∠2 (两直线平行,内错角相等).故答案为:DE,BC,同位角相等,两直线平行,两直线平行,同旁内角互补,等量代换EF,AB,同旁内角互补,两直线平行,两直线平行,内错角相等.【知识点】平行线的判定与性质22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.【分析】(1)作EF∥AB,如图1,利用角平分线的定义得到∠ABE=25°,∠EDC=40°,利用平行线的性质得到∠BEF=∠ABE=25°,∠FED=∠EDC=40°,从而得到∠BED的度数;(2)作EF∥AB,如图2,利用角平分线的定义得到∠ABE=60°,∠EDC=40°,利用平行线的性质得到∠BEF=120°,∠FED=∠EDC=40°,从而得到∠BED的度数.【解答】解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.【知识点】平行线的性质、平移的性质23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.【答案】【第1空】1470平方米【第2空】108米【分析】(1)结合图形,利用平移的性质求解;(2)结合图形,利用平移的性质求解;(3)结合图形,利用平移的性质求解.【解答】解:(1)将小路往左平移,直到E、F与A、B重合,则平移后的四边形EFF1E1是一个矩形,并且EF=AB=30,FF1=EE1=1,则草地的面积为:50×30﹣1×30=1470(平方米);故答案为:1470平方米;(2)小路往AB、AD边平移,直到小路与草地的边重合,则草地的面积为:(50﹣1)×(30﹣1)=1421(平方米);(3)将小路往AB、AD、DC边平移,直到小路与草地的边重合,则所走的路线(图中虚线)长为:30﹣1+50+30﹣1=108(米).故答案为:108米.【知识点】生活中的平移现象24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.【答案】【第1空】∠EFC【第2空】两直线平行,内错角相等【第3空】∠EFC【第4空】两直线平行,同位角相等【第5空】50°【第6空】115°【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50°;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115°.【知识点】平行线的性质、相交线25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.【分析】(1)如图①,延长AB交DE于点F,根据平行线的性质即可得结论∠BED+∠D=120°;(2)设∠BEF=α,∠CDE=β,可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,结合(1)可知∠BED+∠CDE=120°,进而可得结论;(3)根据已知条件和三角形的外角可得∠G+30°=∠E+(120°﹣∠E),进而可得结论.【解答】解:(1)结论:∠BED+∠D=120°,证明:如图①,延长AB交DE于点F,∵AB∥CD,∴∠BFE=∠D,∵∠ABE=120°,∴∠BFE+∠BED=∠ABE=120°,∴∠D+∠BED=120°;(2)如图②,∵∠DEF=2∠BEF,∠CDF=∠CDE,即∠CDE=3∠CDF,设∠BEF=α,∠CDF=β,∴∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,由(1)知:∠BED+∠CDE=120°,∴3α+3β=120°,∴α+β=40°,∴2α+2β=80°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣(2α+2β)=180°﹣80°=100°,答:∠EFD的度数为100°;(3)如图③,∵BG⊥AB,∴∠ABG=90°,∵∠ABE=120°.∴∠GBE=∠ABE﹣∠ABG=30°,∵∠CDE=4∠GDE,∴∠GDE=∠CDE,∵∠G+∠GBE=∠E+∠GDE,∴∠G+30°=∠E+∠CDE,由(1)知:∠BED+∠CDE=120°,∴∠CDE=120°﹣∠E,∴∠G+30°=∠E+(120°﹣∠E),∴∠G=∠E,∴=.【知识点】平行线的性质、垂线26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.【答案】55【分析】猜想:如图①,根据平行线的性质和∠P AC=15°,∠PBD=40°,即可得∠APB的大小;探究:如图①,结合猜想即可写出∠P AC、∠APB、∠PBD之间的数量关系;拓展:如图②,分两种情况画出图形,当点P在射线CE上或在射线DF上时,结合探究过程即可写出∠P AC、∠APB、∠PBD之间的数量关系.【解答】解:猜想:如图①,过点P作PG∥l1,∵l1∥l2,∴l1∥l2∥PG,∴∠APG=∠P AC=15°,∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD=15°+40°=55°,∴∠APB的大小为55度,故答案为:55;探究:如图①,∠P AC=∠APB﹣∠PBD,理由如下:∵l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD,∴∠P AC=∠APB﹣∠PBD;拓展:∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD,理由如下:如图,当点P在射线CE上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠BPG﹣∠APB,∴∠P AC=∠PBD﹣∠APB;当点P在射线DF上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠APB+∠BPG,∴∠P AC=∠APB+∠PBD,综上所述:当点P在射线CE上或在射线DF上时,∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD.【知识点】平行线的性质31。
(word完整版)苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案,推荐文档
第7 章平面图形的认识(二)一、选择题(本大题共 6 小题,每小题 4 分,共 24 分;在每个小题列出的四个选项中,只有一项符合题意)1.如图7-Z-1 所示的四个图形中,∠1和∠2是同位角的是( )图 7-Z-1A.②③B.①②③C.①②④D.①④2.下列图形中,不能通过其中一个四边形平移得到的是( ),A) ,B),C) ,D)图 7-Z-23.如图 7-Z-3,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )图 7-Z-3A.AC 是△ABC 的高 B.DE 是△BCD 的高C.DE 是△ABE 的高 D.AD 是△ACD 的高4. 如图7-Z-4,BE∥AF,D 是AB 上一点,且DC⊥BE 于点C,若∠A=35°,则∠ADC 的度数为( )图7-Z-4A.105°B.115°C.125°D.135°5.若一个多边形的每一个外角都是24°,则此多边形的内角和为( )A.2160°B.2340°C.2700°D.2880°6.将一张长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)7.如图 7-Z-5,直线AB,CD 被直线EF 所截,若要AB∥CD,需增加条件:.(填一个即可)图 7-Z-58.若一个三角形的三边长分别为2,3,x,则x 的值可以为.(只需填一个整数)9.如图7-Z-6,点D,E 分别在AB,BC 上,DE∥AC,AF∥BC,∠1=70°,则∠2=°.图 7-Z-610.如图7-Z-7,已知AB∥CD,直线EF 与AB,CD 分别交于点E,F,EG 平分∠BEF.若∠1=50°,则∠2的度数为.图 7-Z-711.如图7-Z-8 所示,∠A+∠B+∠C+∠D+∠E+∠F=.图 7-Z-812.某中学校园内有一块长30 m,宽22 m 的草坪,中间有两条宽2 m 的小路,把草坪分成了4 块,如图7-Z-9 所示,则草坪的面积为.图 7-Z-9三、解答题(共 46 分)13.(8 分)如图 7-Z-10,在方格纸内将△ABC 水平向右平移 4 个单位长度得到△A′B′C′(每个小方格的边长为 1 个单位长度).(1)画出△A′B′C′;(2)画出AB 边上的中线CD 和高线CE(利用网格和直尺画图);(3)△BCD 的面积为.图 7-Z-1014.(8 分)如图 7-Z-11,已知∠1=∠2,∠B=100°,求∠D 的度数.图 7-Z-1115.(8 分)已知一个多边形的所有内角的和与它的外角之和为1620°,求这个多边形的边数n..(10 分)如图 7-Z-12,四边形ABCD 中,∠BAD=100°,∠BCD=70°,点M,N 分别在AB,BC 上,将△BMN 沿MN 翻折,得到△FMN.若MF∥AD,FN∥DC,求∠B 的度数.图 7-Z-1217.(12 分)如图 7-Z-13,在△ABC 中,AD⊥BC 于点D,AE 平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE 的度数; (2)∠DAE 的度数.图 7-Z-13教师详解详析1.C [解析] 根据同位角的定义进行判断.2.D 3.C 4.C 5. B6.D [解析] ①将长方形沿对角线剪开,得到两个三角形,两个多边形的内角和为180°+180°=360°;②将长方形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为180°+360°=540°;③将长方形沿一组对边剪开,得到两个四边形,两个多边形的内角和为360°+360°=720°.故选D.7.答案不唯一,如∠EGB=∠EHD 等8.答案不唯一,如 2 或3 或4,只要填其中一个即可[解析] 根据三角形的三边关系“三角形两边之和大于第三边;三角形两边之差小于第三边”得 3-2<x<3+2,即 1<x<5.因为x 为整数,所以x=2 或 3 或 4.9.70 [解析] 因为DE∥AC,所以∠C=∠1=70°.又因为AF∥BC,所以∠2=∠C=70°.故答案为 70.10.65° [解析] 因为AB∥CD(已知),所以∠1+∠BEF=180°(两直线平行,同旁内角互补).又因为∠1=50°(已知),所以∠BEF=130°(等式的性质).又因为EG 平分∠BEF(已知),所以∠FEG=∠BEG=65°(角平分线的定义).因为AB∥CD(已知),所以∠2=∠BEG=65°(两直线平行,内错角相等).11.360°12.560 m2 [解析] (30-2)×(22-2)=560(m2).13.解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD,CE 即为所求.(3)414.解:由∠1=∠AEF,∠1=∠2,得∠AEF=∠2,所以AB∥CD(同位角相等,两直线平行),所以∠B+∠D=180°(两直线平行,同旁内角互补).因为∠B=100°,所以∠D=80°.15.解:根据题意,得(n-2)·180°+360°=1620°,解得n=9.16.解:因为MF∥AD,FN∥DC,所以∠BMF=∠A=100°,∠BNF=∠C=70°(两直线平行,同位角相等).因为△BMN 沿MN 翻折,得到△FMN,1所以∠BMN=2∠BMF=50°,1∠BNM=2∠BNF=35°.在△BMN 中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.17.解:(1)因为∠B+∠C+∠BAC=180°,所以∠BAC=180°-∠B-∠C=180°-70°-30°=80°.因为AE 平分∠BAC,1所以∠BAE=2∠BAC=40°.(2)因为AD⊥BC,所以∠ADB=90°.而∠ADB+∠B+∠BAD=180°,所以∠BAD=180°-∠ADB-∠B=20°,所以∠DAE=∠BAE-∠BAD=40°-20°=20°.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
苏教版七年级下册第7章 平面图形的认识(二) 单元检测(含答案)
第7章平面图形的认识(二) 单元检测[时间:45分钟分值:100分]一、选择题(本大题共10小题,每小题3分,共30分;在每个小题列出的四个选项中,只有一项符合题意)1.如图-1,与∠B是同旁内角的角有()A.1个B.2个C.3个D.4个图-12.如图-2所示,下列推理及括号中所注明的推理依据错误的是()图-2A.因为∠1=∠3,所以AB∥CD(内错角相等,两直线平行)B.因为AB∥CD,所以∠1=∠3(两直线平行,内错角相等)C.因为AD∥BC,所以∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.因为∠DAM=∠CBM,所以AB∥CD(两直线平行,同位角相等)3.以下列长度的线段为边能构成三角形的是()A.1 cm,2 cm,3 cm B.2 cm,3 cm,4 cmC.4 cm,4 cm,9 cm D.1 cm,2 cm,4 cm4.若一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形5.如图-3,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿BC方向平移到△DEF的位置,若CF=3,则下列结论错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE图-36.如-4,AD是△ABC的中线,DE是△ADC的中线,已知△ABC的面积为10,则△ADE 的面积为()图-4A.5 B.3 C.2.5 D.27.如图-5,已知l1∥AB,AC为∠DAB的平分线,下列选项错误的是()A.∠1=∠4 B.∠1=∠5C.∠2=∠3 D.∠1=∠3图-58.如图-6,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D,E,F,则△ABC 中BC边上的高是()图-6A.CF B.BE C.AD D.CD9.如图-7,将一副三角尺叠放在一起,使两直角顶点重合于点O,AB∥OC,DC与OB相交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°图-710.如图-8,∠B=∠C,∠A=∠D,有下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND.其中正确的是()图-8A.①②④B.②③④C.③④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)11.一个n边形的每个外角都是45°,则这个n边形的内角和是________.12.如图-9,现给出下列条件:①∠1=∠B;②∠2=∠5;③∠3=∠4;④∠BCD+∠D=180°.其中能够得到AB∥CD的是________.(填序号)图-913.如图-10,AB∥CD,直线EF与AB,CD分别交于M,N两点,将一个含有45°角的三角尺按图中所示的方式摆放.若∠EMB=75°,则∠PNM的度数为________.图-1014.一个三角形两边的长分别为3和6,若第三边长为奇数,则此三角形的周长为________.15.在△ABC 中,若∠A =12∠B =13∠C ,则∠A =________°,△ABC 是________三角形.16.某中学校园内有一块长30 m ,宽22 m 的长方形草坪,中间有两条宽2 m 的小路,把草坪分成了4块,如图-11所示,则草坪的面积为________.图-1117.如果一个多边形的内角和为1620°,那么过这个多边形的一个顶点可以画________条对角线.18.如图-12所示,∠A +∠B +∠C +∠D +∠E +∠F = ________°.图-12三、解答题(共46分)19.(6分)如图-13,在网格纸中(每个小正方形的边长均为1),将格点三角形ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)连接AA′,BB′,则线段AA′与BB′的数量关系是________,位置关系是________;(3)求△A′B′C′的面积.图-1320.(5分)如图-14,直线EF与直线AB,CD分别相交于点M,N,且∠1=∠2,MO,NO分别平分∠BMF和∠END,试判断△MON的形状,并说明理由.图-1421.(6分)如图-15,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)试说明:AD∥BC.图7-Z-1522.(9分)如图-16,在△ABC中,AD⊥BC于点D,AE平分∠BAC,∠B=70°,∠C =30°.(1)求∠BAE的度数.(2)求∠DAE的度数.(3)探究:如果将条件“∠B=70°,∠C=30°”改成“∠B-∠C=40°”,你还能得出∠DAE的度数吗?若能,请写出求解过程;若不能,请说明理由.图-1623.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当三角形PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系是_________.(2)当三角形PMN所放位置如图②所示时,求证:∠PFD —∠AEM =90°.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.24.(10分)(1)如图1,∠MON=70°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变化,求出变化范围.(2)如图2,画两条相交的直线OX、OY,使∠XOY=60°,①在射线OX、OY上分别再任意取A、B两点,②作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数.若发生变化,求出变化范围.答案解析1.[解析] C根据同旁内角的定义,图中与∠B是同旁内角的角有3个,分别是∠BAC,∠BEF,∠ACB.故选C.2.D3.B4.[解析] C n边形的内角和为(n-2)×180°,所以设边数为n,可列方程(n-2)×180=108n,解得n=5.5.[解析] C因为把△ABC沿BC的方向平移到△DEF的位置,BC=5,∠A=70°,∠B =75°,所以CF=BE=3,∠F=∠ACB=180°-∠A-∠B=180°-70°-75°=35°,AB∥DE,所以A,B,D正确,C错误.故选C.6.[解析] C因为AD是△ABC的中线,△ABC的面积为10,所以S△ADC=12S△ABC=12×10=5.因为DE是△ADC的中线,所以S△ADE=12S△ADC=12×5=2.5.故选C.7.[解析] B因为l1∥AB,所以∠2=∠4,∠3=∠2,∠5=∠1+∠2.因为AC为角平分线,所以∠1=∠2所以∠1=∠2=∠4=∠3,∠5=2∠1.故选B.8.[解析] C根据图形知,AD是△ABC中BC边上的高.故选C.9.[解析] C因为AB∥OC,∠A=60°,所以∠A+∠AOC=180°,所以∠AOC=120°,所以∠BOC=120°-90°=30°,所以∠OEC=180°-∠C-∠BOC=180°-45°-30°=105°,所以∠DEO=180°-∠OEC=75°.故选C.10.[解析] A因为∠B=∠C,所以AB∥CD,所以∠A=∠AEC.又因为∠A=∠D,所以∠AEC=∠D,所以AE∥DF,所以∠AMC=∠FNM.又因为∠BND=∠FNM,所以∠AMC=∠BND,故①②④正确.由条件不能得出∠AMC=90°,故③不一定正确.故选A.11.[答案] 1080°[解析] 多边形的边数是360÷45=8,则多边形的内角和是(8-2)×180=1080°.12.①②13.[答案] 30°[解析] 因为AB ∥CD ,所以∠DNM =∠EMB =75°.因为∠PND =45°,所以∠PNM =∠DNM -∠PND =30°.14.[答案] 14或16[解析] 根据三角形的三边关系可得:6-3<第三边长<6+3,即3<第三边长<9.因为第三边长取奇数,所以第三边长是5或7,所以三角形的周长为14或16.15.[答案] 30 直角[解析] 因为∠A =12∠B =13∠C , 所以可以假设∠A =x ,∠B =2x ,∠C =3x .因为∠A +∠B +∠C =180°,所以6x =180°,所以x =30°,所以∠A =30°,∠C =90°,所以△ABC 是直角三角形.故答案为30,直角.16.[答案] 560 m 2[解析] (30-2)×(22-2)=560(m 2).17.[答案] 8[解析] 设此多边形的边数为x .由题意,得(x -2)×180°=1620°,解得x =11.从这个多边形的一个顶点出发所画的对角线条数为11-3=8.18.36019.解:(1)如图所示,△A ′B ′C ′即为所求.(2)相等 平行(3)△A ′B ′C ′的面积为12×4×4=8. 20.解:△MON 是直角三角形.理由:因为∠1=∠2,∠2=∠END ,所以∠1=∠END ,所以AB ∥CD ,所以∠BMF +∠END =180°.因为MO ,NO 分别平分∠BMF 和∠END ,所以∠OMN +∠ONM =12(∠BMF +∠END )=90°, 所以∠O =180°-(∠OMN +∠ONM )=90°,所以△MON 是直角三角形.21.解:(1)因为六边形ABCDEF 的内角都相等,所以∠BAF =∠B =∠C =∠CDE =∠E =∠F =120°.因为∠F AD =60°,所以∠F +∠F AD =180°,所以EF ∥AD ,所以∠E +∠ADE =180°,所以∠ADE =60°.(2)因为∠BAD =∠BAF -∠F AD =60°,所以∠BAD +∠B =180°,所以AD ∥BC .22.解:(1)因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C =180°-70°-30°=80°.因为AE 平分∠BAC ,所以∠BAE =12∠BAC =40°. (2)因为AD ⊥BC ,所以∠ADB =90°,所以∠B +∠BAD =90°,则∠BAD =90°-∠B =90°-70°=20°,所以∠DAE =∠BAE -∠BAD =40°-20°=20°.(3)能.因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C .因为AE 平分∠BAC ,所以∠BAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ). 因为AD ⊥BC ,所以∠ADB =90°,所以∠B +∠BAD =90°,则∠BAD =90°-∠B ,所以∠DAE =∠BAE -∠BAD =90°-12(∠B +∠C )-(90°-∠B )=12(∠B -∠C ). 因为∠B -∠C =40°,所以∠DAE =12×40°=20°. 23.24.。
苏科版七年级下数学第七章平面图形的认识(二)单元检测卷含答案.docx
第七章平面图形的认识(二)单元检测卷姓名:_________ 班级:___________题号- 总分评分一、选择题(共12小题;每小题3分,共36分)1•下列长度的三根小木棒能构成三角形的是()A. 2cm, 3cm, 5cmB. 7cm, 4cm, 2cm C・ 3cm, 4cm, 8cm D. 3cm, 3cm, 4cm2•如图为一张椅子的侧面视图,图中Z1和Z2是一对()5•如图,由已知条件推出的结论,正确的是()A.同旁内角B.内错角3.下列说法正确的是()A. a, b, c 是直线,且a〃b, b〃c,贝!Ja〃cC. a, b, c 是直线,且a/7b, b丄c,贝ija〃cC.同位角D.对顶角B. a, b, c是直线,且a丄b, b丄c,贝!j a_LcD. a, b, c是直线,且a〃b, b〃c,则a丄c 4•如图,对于图中标记的各角, 卜•列条件能够推理得到a//b的是(B. Z2=Z4C. Z3+Z2=Z4D. Z2+Z3+Z4=180°C. rt|Z2=Z6,可以推出 AD 〃BC 6.如图,和Z2是同位角的是( )A. Z1=Z3 C.如果Z2=30°,则有 BC 〃AD 9.如图,下列结论中不正确的是( )10•如图,a//b, c 与 a , b 都相交,Zl=50°,则Z2=(B ・ Z1=Z2+Z4C ・ Z1=Z3+Z4+Z5D ・ Z2=Z4+Z5 A. 40° B. 50° C. 100° D. 130°D.由Z3=Z7,可以推出AB//DC7•若三角形的三边长分别为3, 4, X,则x 的值可能是(A. 1B. 6C. 7D. 10 8 •若将一副三角板按如图所示的方式放置, 则下列结论不正确的是(B.如果Z2=30°,则有 AC 〃DED.如果Z2=30°,必有Z4=ZC口.把一块直尺与一块三角板如图放置,若Zl=40°,则Z2的度数为()12.如图1,两个等边AABD, ACBD 的边长均为2,将AABD 沿AC 方向向右平移k 个单位到厶A8D 7的位C. 140°D. 130°置,得到图2,则下列说法:①阴彫部分的周长为4;②当k<l 吋,图屮阴影部分为正六边形;③若阴 彫部分和空白部分的面积相等,则k 巫.其中正确的说法是( )A.① D.①②③二、填空题(共10题;共13分)GF 交ZDEB 的平分线EF 于点F, ZAGF=130°,则ZF 二14.两个角的两边分别平行,其屮一个角是60。
苏科版七年级数学下册第7章 平面图形的认识(二) 单元综合卷(B)含答案.doc
第7章平面图形的认识(二) 单元综合卷(B)一、选择题。
(每题3分,共21分)l.如图,△DEF经过怎样的平移得到△ABC ( )A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位2.如图,直线a、b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥b B.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90︒D.当∠1+∠2=180︒时,一定有a∥b 3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么这两次拐弯的角度可能是( )A.先向左转130︒,再向左转50︒B.先向左转50︒,再向右转50︒C.先向左转50︒,再向右转40︒D.先向左转50︒,再向左转40︒4.现有3 cm、4 cm、7 cm、9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个5.将一张长方形纸片如图所示折叠后,再展开,如果∠1=56︒,那么∠2等于( ) A.56︒B.68︒C.62︒D.66︒6.如图所示,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DG→CA→BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体( )A.转过90︒B.转过180︒C.转过270︒D.转过360︒7.如图,在长方形网格中,每个小长方形的长为2、宽为1,A、B两点在网格点上,若点C也在网格格点上,以A、B、C为顶点的三角形的面积为2,则满足条件的点C的个数是( )A.2个B.3个C.4个D.5个二、填空题。
(每空3分,共21分)8.如图,(1)∠B=∠1,那么根据,可得AD∥BC;(2) ∠D=∠1,那么根据,可得AB∥CD.9.若(a一1)2+︱b—2︱=0,则a、b为边长的等腰三角形的周长为.10.如图,直线a∥b,EF⊥CD于点F,∠2=65︒,则∠1的度数是.11.若一个三角形的三个内角的度数之比为2:3:4,则相应的外角度数的比是.12.如图,将边长为3个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为.13.将一副三角板如图所示摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那图中∠a= .14.某机器零件的横截面积如图所示,按要求线段AB和DC的延长线相交成直角才算合格.若一名工人测得∠A=23︒,∠D=31︒,∠AED=143︒,则该零件(填“合格”或“不合格”).三、解答题。
苏科版七年级下册数学第7章 平面图形的认识(二)含答案(2023年最新)
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线m∥n.若∠1=70°,∠2=25°,则∠A等于()A.30°B.35°C.45°D.55°2、如图,AB∥CD,直线EF 分别交AB,CD 于M,N 两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM 等于()A.15°B.25°C.30°D.45°3、若一个多边形的内角和是外角和的3倍,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形4、将一幅直角三角板(,,,点在边上)按图中所示位置摆放,两条斜边为,,且,则等于()A. B. C. D.5、下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①6、如图,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于( )A.52B.46C.48D. 507、如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S 1、S2、S3,则S1、S2、S3之间的关系是()A. B. C. D.8、如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是( )A.61°B.60°C.37°D.39°9、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°10、如图,在五边形中,,,分别平分,,则的度数()A.70°B.65°C.60°D.55°11、如图:一条公路两次转弯后又回到原来的方向(即AB∥CD),如果第一次转弯时的∠B=140°。
苏科版七年级下册数学第7章 平面图形的认识(二)含答案(考试真题)
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,下列结论:①a2+b2=c2;②ab=ch;③ .其中正确的是()A. B. C. D.2、如图所示,等边三角形沿射线向右平移到的位置,连接、,则下列结论:(1)(2)与互相平分(3)四边形是菱形(4),其中正确的个数是()A.1B.2C.3D.43、已知一个多边形有9条对角线,则这个多边形的内角和是()A.720°B.900°C.1080°D.1260°4、如图,AB∥CD,AC∥BD,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有()A.5对B.6对C.7对D.8对5、如图,将一块含有45°角的直角三角板的两个顶点放在长方形直尺的一组对边上,则∠1+∠2=()A.25°B.45°C.30°D.50°6、若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.五边形C.四边形D.六边形7、如图,在中,,,以点为中心,把逆时针旋转,得到,则图中阴影部分的面积为()A.2B.C.4D.8、如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°9、正十二边形的每一个内角的度数为()A.120°B.135°C.150°D.1080°10、如图,在△ABC中,∠ABC=90°,将△ABC沿AB方向平移AD的长度得到△DEF,已EF=8,BE=3,CG=3,则图中阴影部分的面积是()A.12.5B.19.5C.32D.45.511、如图,AB∥CD,如果∠B=20°,那么∠C的度数是()A.40°B.20°C.60°D.70°12、如图所示,四幅汽车标志设计中,能通过平移得到的是()A.奥迪B.本田C.大众D.铃木13、如图,△ABC中,点D,E分别在BC,AC边上,E是AC的中点,BC=3BD,BE与AD相交于F,S△ABD =2,S△BFD=0.5,则四边形FDCE的面积为()A.1.5B.2.5C.3D.614、已知P(x,y)→P1(x-2,y+1)表示点P到点P1的平移过程,则下列叙述中正确的是( )A.点P右移2个单位长度,下移1个单位长度B.点P左移2个单位长度,下移1个单位长度C.点P右移2个单位长度,上移1个单位长度D.点P左移2个单位长度,上移1个单位长度15、如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()A.∠1=∠2B.∠D+∠ACD=180°C.∠D=∠DCED.∠3=∠4二、填空题(共10题,共计30分)16、如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为________度.17、如图,在△ABC中,∠A=60°,BD,CD分别平分∠ABC,∠ACB,M,N,Q 分别在DB,DC,BC的延长线上,BE,CE分别平分∠MBC,∠BCN,BF,CF分别平分∠EBC,∠ECQ,则∠F=________.18、如图,在△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC =________.19、已知等腰三角形的一个角为42°,则它的底角度数为________.20、一个多边形有9条对角线,则这个多边形的边数为________.21、己知如图,平分,当,且时,的度数为________.22、如图,点P在正方形ABCD的对角线AC上,PE⊥PB于点P,交AD于点E,若△PAE的面积占正方形ABCD面积的,则=________23、如图,已知等边三角形的边长为,点为平面内一动点,且,将点绕点按逆时针方向转转,得到点,连接,则的最大值________.24、图1是一盏可折叠台灯。
完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、一副三角板,如图所示叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°2、以下列各组长度的线段为边,能构成三角形的是()A.3,4,8B.5,6,10C.5,6,11D.5,9,153、下面每组数分别是三根小木棒的长度,不能搭成三角形的是()A.7cm,10cm,5cmB.5cm,8cm,3cmC.3cm,4cm,5cm D.6cm,10cm,10cm4、如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()A.∠2+∠1﹣∠3=180°B.∠3+∠1=∠2C.∠3+∠2+∠1=360° D.∠3+∠2﹣2∠1=180°5、下列每个图中都有一对全等三角形,其中的一个三角形只经过一次旋转运动即可和另一个三角形重合的是()A. B. C. D.6、如图,BE、CF都是△ABC的角平分线,且∠BDC=130°,则∠A=()A.50°B.60°C.70°D.80°7、如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.48、已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=15°,则∠2等于()A. B. C. D.9、如图,直线a∥b,若∠1=120°,则∠2等于()A.60°B.80°C.120°D.150°10、三角形三条中线的交点叫做三角形的()A.内心B.外心C.中心D.重心11、在△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,∠ACD的度数为()A.50°B.60°C.70°D.130°12、电力公司需要制作一批如图1所示的安全用电标记图案,该图案可以抽象为如图2所示的几何图形,其中,,点,在上,且,,则制作时的度数是()A.50°B.65°C.80°D.90°13、已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a 2﹣b 2=c 2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:2514、如图,给出下列条件,①∠1=∠3;②∠2=∠4;③∠B=∠DCE;④∠D=∠DCE.其中能推出AD∥BC的条件为()A.②③④B.②④C.②③D.①④15、如图,下列推理错误的是()A.∵,B.∵C.D.∵二、填空题(共10题,共计30分)16、如图,在长方形ABCD中,AB=4cm,BC=8cm.E、F分别是AB、BC的中点.则E到DF的距离是________cm.17、一次函数y=2x+b的图象与两坐标轴所围成的三角形的面积为8,则b=________.18、已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于________.19、在△ABC中,若其中一个内角等于另外两个内角的差,则必有一个内角等于________°.20、正六边形的每一个内角的度数是 ________ .21、如图,已知矩形,,,点E在上,连接,将四边形沿折叠,得到四边形,且刚好经过点D,则的面积为________.22、如图,≌,点A和点B,点C和点D是对应点.如果,,那么________.23、如图,在△ABC中,∠C=60°,将边AB绕点A顺时针旋转α(0°<α<90°)得到AD,边AC绕点A逆时针旋转β(0°<β<90°)得到AE,连结DE。
完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,纸片△ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使C落在△ABC内,则∠1+∠2等于()A.130°B.50°C.100°D.260°2、如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°3、如图所示,△ABC中,∠C=90°,AB的垂直平分线交BC于点D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30C.35°D.40°4、如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A,C两点之间B.E,G两点之间C.B,F两点之间D.G,H 两点之间5、如图,在中,,,,将沿射线的方向平移,得到,再将绕点逆时针旋转一定角度后,点恰好与点重合,则平移的距离为()A.2B.3C.4D.56、如图,AB//CD, ∠CED=90°, ∠BED=40°, 则∠C 的度数是()A.30°B.40°C.50°D.60°7、如图,在菱形ABCD中,菱形的边长为5,对角线AC的长为8,延长AB至E,BF平分∠CBE,点G是BF上的任意一点,则△ACG的面积为()A.20B.12C.D.248、如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数是()A.102个B.114个C.126个D.138个9、如图所示,△ABC中AB边上的高是()A.线段CDB.线段CBC.线段DAD.线段CA10、如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是( )A.40°B.60°C.80°D.120°11、如图,N,C,A 三点在同一直线上,在△ ABC 中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN 等于( )A.1:2B.1:3C.2:3D.1:412、如图,,,,则的度数为()A. B. C. D.13、如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处.若,则等于()A. B. C. D.14、如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°15、如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.60°B.70°C.80°D.50°二、填空题(共10题,共计30分)16、如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为________.17、如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD,若∠BAD=55°,∠B=50°,则∠DEC的度数为________.18、如图,直线,点在直线上,且,=,则的度数是________.19、已知三角形的三边长分别为2,a-1,4,则化简|a-3|-|a-7|的结果为________.20、如果将点B先向右移动4个单位长度,再向左移动6个单位长度后,这时点B表示的数是-6,则点B最初在数轴上表示的数为________.21、已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为________.22、如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是________.23、如图,平面上直线a,b分别经过线段OK两端点(数据如图),则a,b相交所成的锐角是________.24、如图,△ABC中,AB=5,AC=7,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N,且MN∥BC,则△AMN的周长等于________.25、如图,点B,D在⊙O上,且在直径AC的两侧,连结OD,AD,BC,AB。
完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°2、等腰三角形底边长为,一腰上的中线把其分为周长之差为的两部分,则腰长为()A. B. C. 或 D.不确定3、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°4、已知等腰三角形一个外角等于120°,则它的顶角是()A.60°B.20°C.60°或20°D.不能确定5、如图,已知AB∥CO,那么∠1,∠2,∠3之间的关系是()A.∠1+∠2=∠3B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°6、三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是()A.8B.10C.8或10D.不能确定7、九边形的内角和为()A.1260°B.1440°C.1620°D.1800°8、如右图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD : ∠DBA =3:1,则∠A为().A.18°B.20°C.22.5°D.30°9、已知三角形的两边长分别为5和7,则第三边长不可能是()A.1B.3C.5D.710、正十二边形的一个内角的度数为()A.30°B.150°C.360°D.1800°11、下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A. B. C. D.12、701班小明同学想利用木条为七年级数学组制作一个三角形的工具,那么下列哪组数据的三根木条的长度能符合他的要求()A. 4,2,2B.3,6,6C.2,3,6D.7,13,613、已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为()A.8 cm或10 cmB.8 cm或9 cmC.8 cmD.10 cm14、下列各组长度的线段,能构成三角形的一组是( )A.1cm,3cm,2cmB.3.5cm,7.1cm,3.6cmC.6cm,1cm,6cm D.4cm,10cm,4cm15、如图,AB∥DE,∠E=65°,则∠B+∠C=( )A.135°B.115°C.36°D.65°二、填空题(共10题,共计30分)16、如图,AB∥CD ,以点A为圆心,小于AC长为半径作圆弧,分别交AB ,AC于E , F两点,再分别以E , F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD于点M .若∠ACD=114°,则∠MAB的度数为________°.17、如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=30°,∠BCA=100°,则∠DAE的度数为________.18、如图,在△ABC 中,∠A=60°,D 是 AB 上一点,E 是 AC 上一点,BE、CD 相交于 O,且∠BOD=55°,∠ACD=30°,则∠ABE 的度数是________.19、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,当∣BC-AC∣最大时,点C的坐标是________.20、已知如图,BC=3,∠ABC和∠ACB的平分线相交于点O,OE∥AB,OF∥AC,则三角形OEF的周长为________.21、完成以下证明,并在括号内填写理由.已知:如图所示,∠1=∠2,∠A=∠3.求证:∠ABC+∠4+∠D=180°.证明:∵∠1=∠2∴________∥________(________)∴∠A=∠4(________)∠ABC+∠BCE=180°(________)即∠ABC+∠ACB+∠4=180°∵∠A=∠3∴∠3=________∴________∥________∴∠ACB=∠D(________)∴∠ABC+∠4+∠D=180°.22、已知:如图,在△ABC 中,AB=AC,DE垂直平分AB ,交边AB于点 D ,交边AC于点 E,BF垂直平分 CE ,交 AC于点F ,则∠A ________度.23、如图所示,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的四条线段首尾相接组成一个四边形,最少需要________ 步.24、已知:△ABC中,∠A+∠B= ∠C,则∠C =________.25、如图1,MA1∥NA2,则∠A1+∠A2=________ 度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=________ 度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=________ 度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=________ 度.从上述结论中你发现了什么规律?如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=________ 度.三、解答题(共5题,共计25分)26、化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.27、已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.28、小明在学习三角形内角和定理时,由于病假缺课,只知道三角形内角和为180度,却不知道原理。
苏科版初一数学下册《平面图形的认识(二)》单元测试卷及答案解析
苏科版初一数学下册《平面图形的认识(二)》单元测试卷及答案解析一、选择题1、已知一多边形的内角和等于它外角和的3倍,那么该多边形是()边形。
A.8 B.7 C.6 D.52、如图,把等腰直角三角板的直角顶点靠在直尺的一边上,那么∠1+∠2=()A.60°B.90°C.120°D.135°3、下面哪个图中能由∠1=∠2得到AB∥CD的结论?A.B.C.D.4、如图,以下说法正确的是哪一个?( )A.若∠1=∠2,则AB∥CD B.若∠1=∠2,则AD∥BCC.若∠A=∠3,则AD∥BC D.若∠A+∠ADC=180°,则AD∥BC5、正多边形的每一个内角都为 135°,则该多边形的边数为()A.5 B.6 C.7 D.86、下列哪个说法正确?()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若a∥b,a∥c,则b∥c D.两直线不相交就平行7、如图,如果,那么()A.∠1= ∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180°D.∠1-∠2+∠3=180°8、如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中一共有几对全等三角形?()A.5对B.3对C.6对D.4对9、如图所示,直线AB和CD相交于E点,DF∥AB。
如果∠AEC=100°,那么∠D= ( )A. 70°B. 80°C. 90°D. 100°10、如图:AB∥CD,CB⊥DB,∠D=55°,那么∠ABC=()A.55°B.35°C.25°D.65°二、填空题11、如图,直线AB∥CD,BC∥DE,如果∠B=55°,那么∠D=_____.12、如图,∥,AB⊥,BC与相交,如果∠ABC=130°,那么∠1=________°.(第11题图) (第12题图) (第13题图)13、如图,AB∥CD,∠1=62°,FG平分∠EFD,那么∠BGF=_______度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面图形的认识(二)》单元测试卷一.选择题(共8 小题)1.下列四个图形中,不能推出∠ 2 与∠ 1 相等的是()A.B.C.D.2.如图,甲船从北岸码头 A 向南行驶,航速为 36 千米 / 时;乙船从南岸码头 B 向北行驶,航速为 27 千米 / 时.两船均于 7:15 出发,两岸平行,水面宽为 18.9千米,则两船距离最近时的时刻为()A.7:35 B.7:34 C.7:33 D.7:323.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n 边形的一个顶点可以引( n﹣3)条对角线,把 n 边形分成( n﹣2)个三角形,因此, n 边形的内角和是( n﹣2)?180°;④六边形的对角线有 7 条,正确的个数有()A.4 个 B.3 个 C.2 个 D.1 个4.下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,45.如果将一副三角板按如图方式叠放,那么∠ 1 等于()A.120°B.105°C.60°D.45°6.如图, DH∥EG∥BC,且 DC∥EF,那么图中和∠ 1 相等的角有()个.A.2B.4C.5D.67.a,b,c 为△ ABC的三边,化简 | a+b+c| ﹣| a﹣ b﹣c| ﹣| a﹣ b+c| ﹣| a+b﹣c| ,结果是()A.0 B.2a 2b 2c C.4a D. 2b﹣2c+ +8.在同一平面内,有 8 条互不重合的直线, l1 ,l2,l3 l8,若 l1⊥l2,l2∥ l3, l3⊥l4,l4∥l5以此类推,则l1和 l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定二.填空题(共10 小题)9.如图,直线 a∥b,∠ P=75°,∠ 2=30°,则∠ 1=.10.如图,已知△ ABC中,∠ABC的平分线与∠ ACE的平分线交于点D,若∠ A=50°,则∠ D=度.11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.12.如图,将一块含有 30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠ 1=27°,那么∠ 2=°.13.已知 AD、 BE是△ ABC的中线, AD、BE相交于点 F,如果 AD=6,那么 AF 的长是.14.如图,点 D 在△ ABC的边 BC上,已知点 E、点 F 分别为△ ABD 和△ ADC的重心,如果 BC=12,那么两个三角形重心之间的距离EF的长等于.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对.16.如图 1 所示,△ABO 与△ CDO称为“对顶三角形”,其中∠ A+∠B=∠C+∠ D.利用这个结论,在图 2 中,∠ A+∠ B+∠C+∠D+∠E+∠F+∠G=°.17.如图,△ ABC的面积为 S.点 P1,P2,P3,, P n﹣1是边 BC 的 n 等分点( n≥ 3,且 n 为整数),点 M ,N 分别在边 AB,AC 上,且= =,连接MP1,MP2,MP3,, MP n﹣1,连接 NB,NP1,NP2,,NP n﹣1,线段 MP1与 NB 相交于点 D1,线段 MP2与 NP1相交于点 D2,线段 MP3与 NP2相交于点 D3,,线段 MP n与NP n﹣ 2 相交于点D n﹣1,则△ND1P 1,△ND2P2,△ND3P3,,△ND n﹣1 P n﹣ 1 的﹣1面积和是.(用含有 S 与 n 的式子表示)18.如图,将边长为 2 个单位的等边△ ABC沿边 BC向右平移 1 个单位得到△ DEF,则四边形 ABFD的周长为个单位.三.解答题(共8 小题)19.如图所示,在△ ABC中, BO、CO是角平分线.(1)∠ ABC=50°,∠ ACB=60°,求∠ BOC的度数,并说明理由.(2)题( 1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠ BOC的度数.(3)若∠ A=n°,求∠ BOC的度数.20.如图,已知点 D、F、E、G 都在△ ABC的边上, EF∥AD,∠1=∠2,∠BAC=70°,求∠ AGD的度数.(请在下面的空格处填写理由或数学式)解:∵ EF∥ AD,(已知)∴∠2=()∵∠ 1=∠ 2,(已知)∴∠1=()∴∥,()∴∠ AGD+=180°,(两直线平行,同旁内角互补)∵,(已知)∴∠ AGD=(等式性质)21.如图, A,B 分别为 CD,CE的中点, AE⊥ CD于点 A, BD⊥CE于点 B.求∠AEC的度数.22.已知:如图,在△ ABC中,∠ B=∠ C,AD 平分外角∠ EAC.求证: AD∥BC.23.如图,在方格纸内将△ABC水平向右平移 4 个单位得到△ A′ B′.C′(1)画出△ A′B′;C′(2)画出 AB 边上的中线 CD 和高线 CE;(利用网格点和直尺画图)(3)△ BCD的面积为.24.如图,△ ABC 中,点 E 在边 BA 上, AD⊥ BC,EF⊥BC,垂足分别是D、 F,∠1=∠2.(1) DG 与 BA 平行吗?为什么?(2)若∠ B=51°,∠ C=54°,求∠ CGD的度数.25.(1)如图①,已知任意△ ABC,过点 C 作 DE∥ AB,求证:△ ABC的三个内角(即∠ A,∠ B,∠ ACB)之和等于 180°;(2)如图②,求证:∠ AGF=∠AEF+∠F;(3)如图③,AB∥ CD,∠CDE=119°,GF交∠ DEB的平分线 EF于点 F,∠AGF=150°,求∠ F 的度数.26.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:4 5 n6 7 8多边形的顶点数从一个顶点出发的对角线的条数12345①多边形对角线的总条数25912②4 0( 1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②;(2)实际应用数学社团共分为 6 个小组,每组有 3 名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为( 1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.参考答案与试题解析一.选择题(共8 小题)1.下列四个图形中,不能推出∠ 2 与∠ 1 相等的是()A.B.C.D.【解答】解: A、∵∠ 1 和∠ 2 互为对顶角,∴∠ 1=∠ 2,故本选项错误;B、∵ a∥ b,∴∠ 1+∠ 2=180°(两直线平行,同旁内角互补),不能判断∠ 1=∠ 2,故本选项正确;C、∵a∥ b,∴∠ 1=∠ 2(两直线平行,内错角相等),故本选项错误;D、如图,∵ a∥ b,∴∠ 1=∠ 3(两直线平行,同位角相等),∵∠ 2=∠ 3(对顶角相等),∴∠ 1=∠ 2,故本选项错误;故选 B.2.如图,甲船从北岸码头A 向南行驶,航速为36 千米 / 时;乙船从南岸码头 B向北行驶,航速为 27 千米 / 时.两船均于 7:15 出发,两岸平行,水面宽为18.9 千米,则两船距离最近时的时刻为()A.7:35 B.7:34 C.7:33 D.7:32【解答】解:设 x 分钟后两船距离最近,当如图 EF⊥BD,AE=DF时,两船距离最近,根据题意得出: 36x=18.9﹣ 27x,解得: x=0.3,0.3 小时 =0.3× 60 分钟 =18(分钟),则两船距离最近时的时刻为:7:33.故选: C.3.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n 边形的一个顶点可以引( n﹣3)条对角线,把 n 边形分成(n﹣2)个三角形,因此,n 边形的内角和是(n﹣2)?180°;④六边形的对角线有7 条,正确的个数有()A.4 个 B.3 个 C.2 个 D.1 个【解答】解:①假设一个三角形有两个钝角,那么这两个钝角的和大于180°,与三角形的内角和为180°相矛盾.故三角形的内角中最多有一个钝角,正确;②三角形的中线把三角形分成的两个三角形的底边相等,高相同,所以面积相等,正确;③因为连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n 边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故从 n 边形的一个顶点可以引(n﹣3)条对角线,把 n 边形分成( n﹣2)个三角形,每一个三角形的内角和是 180°,因此, n 边形的内角和是( n﹣2)?180°,正确;④ n 边形共有条对角线,所以六边形的对角线有6×3÷2=9 条,错误.故选 B.4.下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,4【解答】解: A.∵ 3+2=5,∴ 2,3,5 不能组成三角形,故A 错误;B.∵ 4+2<7,∴ 7,4,2 不能组成三角形,故 B 错误;C.∵ 4+3<8,∴ 3,4,8 不能组成三角形,故 C 错误;D.∵ 3+3>4,∴ 3,3,4 能组成三角形,故 D 正确;故选: D.5.如果将一副三角板按如图方式叠放,那么∠ 1 等于()A.120°B.105°C.60°D.45°【解答】解:如图,∠ 2=90°﹣ 45°=45°,由三角形的外角性质得,∠1=∠ 2+60°,=45°+60 °,=105°.故选 B.6.如图, DH∥EG∥BC,且 DC∥EF,那么图中和∠ 1 相等的角有()个.A .2 B.4C.5D.6【解答】解:根据两直线平行,同位角相等、内错角相等,与∠ 1 相等的角有:∠2、∠ 3、∠ 4、∠ 5、∠ 6 共 5个.故选 C.7.a,b,c 为△ ABC的三边,化简 | a+b+c| ﹣| a﹣ b﹣c| ﹣| a﹣ b+c| ﹣| a+b﹣c| ,结果是()A.0B.2a+2b+2c C.4a D. 2b﹣2c【解答】解: | a+b+c| ﹣| a﹣ b﹣ c| ﹣| a﹣ b+c| ﹣ | a+b﹣c|=(a+b+c)﹣( b+c﹣ a)﹣( a﹣b+c)﹣( a+b﹣c)=a+b+c﹣b﹣c+a﹣ a+b﹣c﹣ a﹣ b+c=0故选: A.8.在同一平面内,有8 条互不重合的直线, l1,l2,l3 l8,若 l1⊥l2,l2∥ l3, l3⊥l4,l4∥l5以此类推,则 l1和 l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【解答】解:∵ l2∥ l3, l3⊥ l4, l4∥ l5, l5⊥l6, l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥ l8.∵l1⊥ l2,∴l1∥ l8.故选 A二.填空题(共10 小题)9.如图,直线 a∥b,∠ P=75°,∠ 2=30°,则∠ 1=45° .【解答】解:过 P 作 PM∥直线 a,∵直线 a∥ b,∴直线 a∥ b∥PM,∵∠ 2=30°,∴∠ EPM=∠2=30°,又∵∠ EPF=75°,∴∠ FPM=45°,∴∠ 1=∠ FPM=45°,故答案为: 45°.10.如图,已知△ ABC中,∠ABC的平分线与∠ ACE的平分线交于点 D,若∠A=50°,则∠ D= 25 度.【解答】解:∵∠ ACE=∠A+∠ ABC,∴∠ ACD+∠ECD=∠A+∠ABD+∠DBE,∠ DCE=∠D+∠DBC,又 BD 平分∠ ABC,CD平分∠ ACE,∴∠ ABD=∠DBE,∠ ACD=∠ECD,∴∠ A=2(∠ DCE﹣∠ DBC),∠ D=∠ DCE﹣∠ DBC,∴∠ A=2∠D,∵∠ A=50°,∴∠ D=25°.故答案为: 25.11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是10.【解答】解:设正多边形的边数为n,由题意得,=144°,解得 n=10.故答案为: 10.12.如图,将一块含有 30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠ 1=27°,那么∠ 2= 57 °.【解答】解:∵将一块含有 30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠ 4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠ 4=33°,∴∠ 2=180°﹣90°﹣33°=57°,故答案为: 57°.13.已知 AD、 BE是△ ABC的中线, AD、BE相交于点 F,如果 AD=6,那么 AF 的长是4.【解答】解:∵ AD、BE是△ ABC的中线,∴点 F 是△ ABC的重心,∴AF= AD=4,故答案为: 4.14.如图,点 D 在△ ABC的边 BC上,已知点 E、点 F 分别为△ ABD和△ ADC 的重心,如果 BC=12,那么两个三角形重心之间的距离 EF的长等于 4 .【解答】解:如图,连接 AE 并延长交 BD 于 G,连接 AF 并延长交 CD于 H,∵点 E、F 分别是△ ABD和△ ACD的重心,∴DG= BD, DH= CD,AE=2GE,AF=2HF,∵ BC=12,∴GH=DG+DH= (BD+CD)= BC= ×12=6,∵AE=2GE,AF=2HF,∠ EAF=∠GAH,∴△ EAF∽△ GAH,∴==,∴ EF=4,故答案为: 4.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以 BC 为公共边的“共边三角形”有 3 对.【解答】解:△ BDC与△ BEC、△ BDC与△ BAC、△ BEC与△ BAC共三对.故答案为: 3.16.如图 1 所示,△ABO 与△ CDO称为“对顶三角形”,其中∠ A+∠B=∠C+∠D.利用这个结论,在图 2 中,∠ A+∠ B+∠C+∠D+∠E+∠F+∠G= 540 °.【解答】解:如图 2,连接 BE,由对顶三角形可得,∠ C+∠D=∠CBE+∠DEB,∵五边形 ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠ A+∠ ABC+∠CBE+∠ BED+∠DEF+∠F+∠G=540°,∴∠ A+∠ ABC+∠C+∠D+∠DEF+∠F+∠ G=540°,故答案为: 540.17.如图,△ ABC的面积为 S.点 P1,P2,P3,, P n﹣1是边 BC 的 n 等分点( n ≥ 3,且 n 为整数),点 M ,N 分别在边 AB,AC 上,且= =,连接MP1,MP2,MP3,, MP n﹣1,连接 NB,NP1,NP2,,NP n﹣1,线段 MP1与 NB 相交于点 D1,线段 MP2与 NP1相交于点 D2,线段 MP3与 NP2相交于点 D3,,线段 MP n与NP n﹣ 2 相交于点D n﹣1,则△ND1P1,△ND2P2,△ND3P3,,△ND n﹣1 P n﹣ 1 的﹣1面积和是?S.(用含有S与n的式子表示)【解答】解:连接 MN,设 BN 交 MP1于 O1,MP2交 NP1于 O2,MP3交 NP2于 O3.∵= = ,∴MN∥BC,∴==,∵点 P1, P2,P3,,P n﹣1是边BC的n等分点,∴MN=BP1=P1P2 =P2P3,∴四边形 MNP1B,四边形 MNP2P1,四边形 MNP3P2都是平行四边形,易知 S△ABN= ?S,S△BCN=?S, S△MNB=?S,∴===?S,∴ S 阴△ NBC﹣(n﹣1)? ﹣=?S﹣( n ﹣ 1 ) ??S﹣=SS=?S,故答案为?S.18.如图,将边长为 2 个单位的等边△ ABC沿边 BC向右平移 1 个单位得到△ DEF,则四边形 ABFD的周长为8个单位.【解答】解:根据题意,将边长为2 个单位的等边△ABC沿边BC向右平移1 个单位得到△ DEF,故四边形 ABFD的边长分别为 AD=1个单位, BF=3个单位, AB=DF=2个单位;故其周长为 8 个单位.故答案为: 8.三.解答题(共8 小题)19.如图所示,在△ ABC中, BO、CO是角平分线.(1)∠ ABC=50°,∠ ACB=60°,求∠ BOC的度数,并说明理由.(2)题( 1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠ BOC的度数.(3)若∠ A=n°,求∠ BOC的度数.【解答】解:如图,∵ BO、CO是角平分线,∴∠ ABC=2∠ 1,∠ ACB=2∠2,∵∠ ABC+∠ACB+∠A=180°,∴2∠1+3∠2+∠A=180°,∵∠ 1+∠ 2+∠BOC=180°,∴2∠ 1+2∠2+2∠BOC=360°,∴2∠ BOC﹣∠ A=180°,∴∠ BOC=90°+ ∠ A,(1)∵∠ ABC=50°,∠ ACB=60°,∴∠ A=180°﹣50°﹣60°=70°,∴∠ BOC=90°+ × 70°=125°;(2)∠ BOC=90°+ ∠ A=125°;(3)∠ BOC=90°+ n°.20.如图,已知点 D、F、E、G 都在△ ABC的边上, EF∥AD,∠1=∠2,∠BAC=70°,求∠ AGD的度数.(请在下面的空格处填写理由或数学式)解:∵ EF∥ AD,(已知)∴∠ 2=∠3(两直线平行同位角相等)∵∠ 1=∠ 2,(已知)∴∠ 1=∠3(等量代换)∴DG ∥ BA ,(内错角相等两直线平行)∴∠ AGD+ ∠ CAB =180°,(两直线平行,同旁内角互补)∵ ∠CAB=70°,(已知)∴∠ AGD= 110°(等式性质)【解答】解:∵ EF∥AD,(已知)∴∠ 2=∠ 3(两直线平行同位角相等)∵∠ 1=∠ 2,(已知)∴∠ 1=∠ 3(等量代换)∴ DG∥ BA,(内错角相等两直线平行)∴∠ AGD+∠CAB=180°,(两直线平行,同旁内角互补)∵∠ CAB=70°,(已知)∴∠ AGD=110°(等式性质).故答案为:∠ 3;两直线平行同位角相等;∠3;等量代换; DG; BA;内错角相等两直线平行;∠ CAB;∠ CAB;70°;110°21.如图, A,B 分别为 CD,CE的中点, AE⊥ CD于点 A, BD⊥CE于点 B.求∠AEC的度数.【解答】解:连接 DE∵ A, B 分别为 CD, CE的中点,AE⊥CD于点 A,BD⊥ CE于点 B,∴CD=CE=DE,∴△ CDE为等边三角形.∴∠ C=60°.∴∠ AEC=90°﹣∠C=30°.22.已知:如图,在△ ABC中,∠ B=∠ C,AD 平分外角∠ EAC.求证: AD∥BC.【解答】证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠ B=∠ C,∴∠ EAC=2∠ B,∵AD 平分外角∠ EAC,∴∠ EAC=2∠EAD,∴∠ B=∠EAD,∴ AD∥BC.23.如图,在方格纸内将△ABC水平向右平移 4 个单位得到△ A′ B′.C′(1)画出△ A′B′;C′(2)画出 AB 边上的中线 CD 和高线 CE;(利用网格点和直尺画图)(3)△ BCD的面积为 4 .【解答】解:(1)如图所示,△ A′B′即C为′所求;(2)如图所示, CD、CE即为所求;(3)△ BCD的面积为×4×4﹣×1×3﹣× 1× 3﹣ 1=4,故答案为: 424.如图,△ ABC 中,点 E 在边 BA 上, AD⊥ BC,EF⊥BC,垂足分别是D、 F,∠1=∠2.(1) DG 与 BA 平行吗?为什么?(2)若∠ B=51°,∠ C=54°,求∠ CGD的度数.【解答】解:(1)平行,理由如下:∵ EF⊥ BC,AD⊥BC,∴∠ BFE=∠ BDA=90°,∴EF∥AD,∴∠ 2=∠ 3,∵∠ 1=∠ 2,∴∠ 1=∠ 3,∴DG∥ AB;(2)∵ DG∥AB,∴∠ CDG=∠B=51°,∵∠ C+∠ CDG+∠CGD=180°,∴∠CGD=180°﹣ 51°﹣ 54°=75°.25.(1)如图①,已知任意△ ABC,过点 C 作 DE∥ AB,求证:△ ABC的三个内角(即∠ A,∠ B,∠ ACB)之和等于 180°;(2)如图②,求证:∠ AGF=∠AEF+∠F;(3)如图③,AB∥ CD,∠CDE=119°,GF交∠ DEB的平分线 EF于点 F,∠AGF=150°,求∠ F 的度数.【解答】证明:(1)如图①所示,在△ ABC中,∵ DE∥BC,∴∠ B=∠ 1,∠ A=∠ 2(内错角相等).∵∠ 1+∠ ACB+∠ 2=180°,∴∠ A+∠ B+∠C=180°即三角形的内角和为180°;(2)∵∠ AGF+∠FGE=180°,由( 2)知,∠ GEF+∠EG+∠FGE=180°,∴∠ AGF=∠AEF+∠F;(3)∵ AB∥ CD,∠ CDE=119°,∴∠ DEB=119°,∠ AED=61°,∵GF交∠ DEB的平分线 EF于点 F,∴∠ DEF=59.5°,∴∠ AEF=120.5°,∵∠ AGF=150°,∵∠ AGF=∠AEF+∠F,∴∠ F=150°﹣120.5 °=29.5 °.26.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:4 5 n6 7 8多边形的顶点数从一个顶点出发的对角线的条数12345①n﹣3 多边形对角线的总条数25912②4 0n(n﹣3)( 1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①n﹣3;②n(n﹣3);(2)实际应用数学社团共分为 6 个小组,每组有 3 名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为( 1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.【解答】解:(1 )由题可得,当多边形的顶点数为n 时,从一个顶点出发的对角线的条数为 n﹣ 3,多边形对角线的总条数为n(n﹣3);故答案为: n﹣3,n( n﹣ 3);(2)∵ 3×6=18,∴数学社团的同学们一共将拨打电话为×18×( 18﹣ 3) =135(个);( 3)每个同学相当于多边形的一个顶点,则共有n 个顶点;每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n( n﹣3);数学社团有 18 名同学,当 n=18 时,× 18×(18﹣3)=135.。