汽车主动安全系统
汽车主动安全系统有哪些
汽车主动安全系统有哪些汽车主动安全系统是指通过车辆自身的技术装备,能够在遇到危险情况时主动采取措施,保障车辆和乘车人员的安全。
随着科技的不断进步,汽车主动安全系统也在不断完善和更新。
下面将介绍几种常见的汽车主动安全系统。
1. 制动辅助系统。
制动辅助系统是一种能够在紧急情况下提供额外制动力的系统。
其中最常见的是紧急制动辅助系统(EBA),它能够在紧急制动时提供更大的制动力,以缩短制动距离,减少碰撞的可能性。
此外,还有防抱死制动系统(ABS)和电子制动力分配系统(EBD),它们能够在制动时保持车辆的稳定性,避免车轮抱死和侧滑。
2. 车道偏离预警系统。
车道偏离预警系统能够通过摄像头或传感器监测车辆的行驶轨迹,一旦发现车辆偏离了车道,系统就会发出警报,提醒驾驶员及时纠正。
有些高级系统还能够主动对车辆进行纠正,保持车辆在正确的行驶轨迹上。
3. 自适应巡航控制系统。
自适应巡航控制系统能够根据车辆与前车的距离和速度自动调整车速,保持与前车的安全距离。
一些系统还能够在交通拥堵时完全停车,并在车流畅通时重新启动,减轻驾驶员的疲劳程度。
4. 主动安全气囊系统。
主动安全气囊系统是一种能够根据车辆速度、碰撞力度和碰撞角度等信息,实现多阶段、多角度的气囊充气和释放的系统。
它能够根据碰撞情况,准确判断气囊的充气程度和时间,最大限度地减少乘车人员受伤。
5. 盲点监测系统。
盲点监测系统能够通过传感器监测车辆周围的盲区,一旦有其他车辆或障碍物进入盲区,系统就会发出警报,提醒驾驶员注意,避免盲区内的危险情况。
6. 自动紧急呼叫系统。
自动紧急呼叫系统是一种能够在发生事故时自动拨打紧急救援电话的系统。
它能够通过车辆的传感器监测到碰撞情况,并自动拨打紧急救援电话,以便及时救援受困人员。
以上便是几种常见的汽车主动安全系统,随着科技的不断发展,相信汽车主动安全系统会不断完善和更新,为驾驶员和乘车人员提供更加全面的安全保障。
希望每一辆汽车都能装备上这些先进的主动安全系统,让驾驶变得更加安全可靠。
汽车安全系统主动安全与被动安全的区别与重要性
汽车安全系统主动安全与被动安全的区别与重要性汽车安全系统: 主动安全与被动安全的区别与重要性随着汽车制造技术的不断发展,汽车安全问题已日益引起人们的关注。
汽车安全系统作为保障驾驶员和乘客安全的重要组成部分,主动安全和被动安全是两个核心概念。
本文将重点讨论汽车安全系统中主动安全与被动安全的区别与重要性。
1. 主动安全与被动安全的定义主动安全是指车辆在发生事故前能主动采取措施预防事故发生或减少事故风险的能力,而被动安全则是指事故发生后,车辆能够最大限度地保护驾驶员和乘客免受伤害的能力。
2. 主动安全与被动安全的区别主动安全是预防事故的主要手段,它主要通过技术手段提高车辆的稳定性和操控性能,预警驾驶员潜在的危险情况,帮助驾驶员采取正确的驾驶策略,例如:(1)防抱死制动系统(ABS):通过调节制动压力,防止车轮在制动时发生抱死现象,保持车辆的操控性能,减少刹车距离,提高驾驶员的制动控制能力;(2)车道偏离预警系统:通过感知车辆在车道内的位置,并向驾驶员发出音频或视觉警示,提醒其调整车辆方向;(3)主动刹车辅助系统:当车辆接近前方障碍物或行人时,系统自动刹车,减少事故发生的风险。
被动安全则是在事故发生后,通过车辆的 pass简化来减轻事故对驾驶员和乘客造成的伤害,例如:(1)安全气囊系统:在车辆碰撞时,安全气囊能迅速充气,为驾驶员和乘客提供额外的保护,减少头部、胸部和腹部的冲击力;(2)安全带:安全带可以防止驾驶员和乘客在车辆发生碰撞时被抛出,有效减少身体的前冲程度,降低伤害风险;(3)车身结构:通过合理的车身设计和高强度材料的应用,确保车辆在碰撞时能够保持良好的结构完整性,减少驾驶员和乘客的挤压伤害。
3. 主动安全与被动安全的重要性主动安全和被动安全在汽车安全系统中起着不可替代的作用。
主动安全能够预防事故的发生,提高驾驶员的驾驶技能和反应能力,减少意外事故的风险。
合理的主动安全技术,如刹车辅助系统和车道偏离预警系统,能够避免驾驶员在疲劳、分神或驾驶错误时发生事故。
汽车功能安全常见的ftti值
汽车功能安全常见的ftti值汽车功能安全通常涉及多个方面,从物理安全到网络安全,以保护乘客和车辆免受潜在的危害。
在这篇文章中,我们将探讨一些常见的汽车功能安全技术和FTTI值(到发生事故或技术故障的时间)。
尽管汽车安全标准和技术根据不同地区和制造商的要求可能会有所不同,但本文将介绍一些最常见的安全功能和相关的FTTI值。
1.主动安全系统主动安全系统是一种可以帮助驾驶员避免事故的技术。
这些系统包括自动紧急刹车、盲点监测、车道保持辅助、自适应巡航控制等。
这些功能通常具有非常低的FTTI值,通常在秒或亚秒级别。
例如,自动紧急刹车系统可以在驾驶员注意力不集中或未能及时反应时,以非常短的时间内进行制动,从而避免或减轻事故后果。
2.被动安全系统被动安全系统是指在事故发生时可减轻乘客伤害的技术。
这些系统包括安全气囊、预紧器、车身强度等。
虽然被动安全系统无法避免事故的发生,但它们可以通过减少事故后果来保护乘客。
被动安全系统的FTTI值通常是毫秒级别,因为它们需要在事故发生时迅速响应。
3.防盗系统防盗系统旨在防止车辆被盗。
这些系统可以是传感器、安全锁等的组合。
FTTI值取决于防盗系统的复杂性和措施的实施。
一些高级防盗系统可以通过接收到正常钥匙信号后迅速解锁,通常具有较低的FTTI值,可以在几秒钟内实现解锁。
4.防滚系统防滚系统通过传感器和控制单元来监测车辆的倾斜和横滑情况。
它可以自动对车辆进行制动来控制滚动。
这些系统通常具有极低的FTTI值,通常是毫秒级。
这是因为车辆在发生大规模滚动事故前需要迅速响应。
5.电子稳定控制系统电子稳定控制系统是一种通过传感器监测车辆的横向加速度和横滑角来稳定车辆的技术。
它可以自动调整车辆制动和功率分配,以避免横向滑移和失控。
由于电子稳定控制系统需要在极短的时间内进行响应,其FTTI值通常只有几毫秒。
6.轮胎压力监测系统轮胎压力监测系统可以检测轮胎内的气压是否正常。
这些系统可以帮助减少轮胎漏气造成的意外事故,并提醒驾驶员及时填充气压。
汽车的“主动安全”和“被动安全”设备
汽车的“主动安全”和“被动安全”设备答案汽车的主动安全和被动安全设备是指车辆安全性能方面的装备,分别在车辆发生危险时能够帮助驾驶员采取行动预防事故发生和减轻事故影响程度上发挥作用。
汽车的主动安全设备主要包括:车辆安全气囊系统、ABS防抱死制动系统、驾驶员辅助安全系统、车距警示系统、胎压监测系统、车道偏离预警系统、夜间行驶辅助系统等。
车辆安全气囊系统是汽车主动安全设备中最重要的一项,能有效减缓乘客在剧烈撞击中身体受到的冲击,起到保护乘客的作用。
ABS防抱死制动系统主要通过防止制动器突然失效而激活,降低汽车决策前的非控制因素,提高安全性能;驾驶员辅助安全系统则是指车辆行驶过程中出现危险时可以自动帮助驾驶员采取行动的系统。
车距警示系统是根据汽车前方车距进行距离自动监视,有助于驾驶者及时发现前车停车或异物,减少发生车祸的可能性;胎压监测系统则可以监测轮胎气压是否处于安全状态,能够及时发现轮胎破裂及气泡等异常情况,帮助驾驶者进行及时的维修维护;此外,车道偏离预警系统、夜间行驶辅助系统等也可以有效帮助驾驶员达到安全驾驶的目的。
被动安全设备主要包括:安全带及安全架系统、全新式橡胶安全底座系统、防爆膜、前挡护板及五合一防撞垫、安全把手等。
安全带及安全架系统主要在车辆突然起伏或发生危险时减轻乘客受伤的情况;全新式橡胶安全底座系统则利用橡胶弹性缓冲车辆剧烈冲击,能够有效保护乘客;防爆膜可以有效防止外部的破除给乘客带来伤害;前挡护板及五合一防撞垫可以有效吸收发生车祸时的撞击冲力;安全把手则可以在车辆发生危险时帮助乘客有效抓紧,从而减少冲击程度或受伤的可能性。
总的来说,汽车的主动安全设备和被动安全设备都是在车辆抵抗突发危险的,及时有效的采取行动的时候发挥作用,保障驾驶员及客货乘客的人身安全,确保安全出行。
2023年汽车主动安全系统行业市场前景分析
2023年汽车主动安全系统行业市场前景分析随着各种新技术的出现,汽车主动安全系统行业也在不断的发展壮大。
传统的汽车被动安全系统已经不能完全满足人们的需求,特别是在高速公路上的行车安全问题,因此各大汽车厂商已经加大了汽车主动安全系统的研发力度,推出了各种高科技的汽车主动安全系统。
汽车主动安全系统是指在车辆行驶过程中,通过预测和判断车辆状态,及时采取相应的控制措施保护车辆及其驾乘人员的安全。
随着科技的飞速发展,汽车主动安全系统逐渐成为汽车产业新的增长点,具有广阔的市场前景。
下面将从市场需求、竞争格局和政策环境三个方面进行分析。
一、市场需求当前,汽车行业变革正在全面升级,从以前单纯的传统汽车升级到新一代的智能化、电气化和网联化汽车,汽车主动安全系统正是这个变革过程中的重要组成部分,推动着汽车整体行业的转型和升级,因此在未来的汽车产业中,汽车主动安全系统将会逐渐成为标准配置甚至是必需品。
另外,汽车行业及消费者对汽车安全性能的要求也在逐年提高,据统计,全球每年有近1.5万人死于交通事故,10倍于非洲埃博拉疫情的死亡人数。
这种情况下,各国政府和消费者对汽车行业严格的安全要求和标准越来越高。
汽车企业需要适应这样的市场趋势,以创新的汽车主动安全系统来提高车辆的安全性能,提高车辆行驶的可靠性和舒适性。
二、竞争格局目前,全球汽车主动安全系统市场竞争格局趋于激烈。
竞争主要集中在传统车企和新兴汽车制造商之间,如现代、通用、丰田、宝马等传统车企,以及特斯拉、谷歌、苹果等新兴汽车厂商。
传统汽车厂商通过自主研发、技术合作和收购等方式获取技术和市场优势,而新兴汽车企业则通过自主研发和资源优势等方式获得市场份额。
三、政策环境政府政策对汽车主动安全系统市场发展也起到了重要作用。
一方面,政府出台了一系列规定和标准,鼓励汽车企业加大对主动安全系统的研发和应用。
例如,欧盟将车辆主动安全系统作为交通安全基础设施测评的重要评估因素,大力推行主动安全技术,提高交通事故防控能力。
汽车安全系统
汽车安全系统
车辆安全系统是指通过安全装备、安全科学管理体系、安全制度和法规等手段,保障乘车人员、车辆和行人等在道路交通中的安全。
汽车安全系统主要包括主动安全系统和被动安全系统。
主动安全系统是指在汽车行驶过程中,通过预防事故的发生或减少事故的影响来保障安全。
主动安全系统包括ABS防抱死
制动系统、ESP车身稳定控制系统、刹车辅助系统、车道保持辅助系统和防疲劳驾驶系统等。
这些系统通过传感器、计算机和执行器等组成的控制系统,对汽车进行实时监测和控制,以保证汽车行驶的稳定性和安全性。
例如,ABS防抱死制动系
统可以避免制动时轮胎锁死,提供制动效果,避免滑行和侧滑,提高制动稳定性;ESP车身稳定控制系统通过感知车辆的横摇和侧滑状态,及时调节刹车力,提供操控稳定性,防止车辆侧翻。
被动安全系统是指在事故发生时,通过车辆结构的安全设计、安全气囊、安全带和车身坚固等设备来保障乘车人员的安全。
被动安全系统的主要目标是减少碰撞对车上人员的伤害,并尽量避免车辆起火、爆炸等二次伤害。
例如,安全气囊在发生碰撞时迅速充气,防止乘车人员头部和胸部受到严重伤害;安全带通过缠绕在乘车人员身体上,限制其前冲的距离,减少碰撞力;车体坚固的设计能够保护车内人员免受碰撞外力的侵袭。
汽车安全系统的发展有助于提高道路交通的安全性,减少交通事故的发生。
不过,汽车安全系统并非万能的,没有绝对的安全。
在实际驾驶中,驾驶员的素质和行车习惯仍然是确保道路
安全的关键。
因此,除了完善汽车安全系统,还需要加强交通安全教育和宣传,提高驾驶员的安全意识和驾驶技能,才能进一步提高道路交通的安全水平。
汽车主动安全系统名词解释
汽车主动安全系统名词解释汽车主动安全系统为预防汽车发生事故,避免人员受到伤害而采取的安全设计,称为主动安全设计,如ABS,EBD,TCS,LDWS等都是主动安全设计。
它们的特点是提高汽车的行驶稳定性,尽力防止车祸发生。
其它像高位刹车灯,前后雾灯,后窗除雾等也是主动安全设计。
目前安全技术逐渐在完善,有更多的安全技术将被开发并得到应用。
汽车主动安全技术ABS(防抱死制动系统)它通过传感器侦测到的各车轮的转速,由计算机计算出当时的车轮滑移率,由此了解车轮是否已抱死,再命令执行机构调整制动压力,使车轮处于理想的制动状态(快抱死但未完全抱死)。
对ABS功能的正确认识:能在紧急刹车状况下,保持车辆不被抱死而失控,维持转向能力,避开障碍物。
在一般状况下,它并不能缩短刹车距离。
EBD(电子制动力分配系)它必须配合ABS使用,在汽车制动的瞬间,分别对四个轮胎附着的不同地面进行感应、计算,得出摩擦力数值,根据各轮摩擦力数值的不同分配相应的刹车力,避免因各轮刹车力不同而导致的打滑,倾斜和侧翻等危险。
ESP(电子稳定程序)它实际上也是一种牵引力控制系统,与其它牵引力控制系统比较,ESP 不但控制驱动轮,而且控制从动轮。
它通过主动干预危险信号来实现车辆平稳行驶。
如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会放慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会放慢内后轮,从而校正行驶方向。
EBA(紧急刹车辅助系统)电脑根据刹车踏板上侦测到的刹车动作,来判断驾驶员对此次刹车的意图,如属于紧急刹车,则指示刹车系统产生更高的油压使ABS发挥作用,从而使刹车力更快速的产生,缩短刹车距离。
LDWS(车道偏离预警系统)该系统提供智能的车道偏离预警,在无意识(驾驶员未打转向灯)偏离原车道时,能在偏离车道0.5秒之前发出警报,为驾驶员提供更多的反应时间,大大减少了因车道偏离引发的碰撞事故,此外,使用LDWS还能纠正驾驶员不打转向灯的习惯,该系统其主要功能是辅助过度疲劳或长时间单调驾驶引发的注意力不集中等情况。
主动安全系统
主动安全系统主动安全系统是指那些能够在事故发生前预防事故或减轻事故严重程度的汽车安全设备和技术。
随着汽车制造技术的不断进步,主动安全系统在汽车上的应用越来越广泛,成为了汽车安全的重要组成部分。
首先,主动安全系统包括了许多先进的技术,比如车辆稳定控制系统(VSC)、自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等。
这些系统能够通过感知车辆周围环境的传感器,及时发现潜在的危险,并采取相应的措施来避免事故的发生。
比如,VSC系统能够监测车辆的行驶状态,一旦发现车辆出现侧滑或失控的情况,系统就会自动对车辆进行制动或调整转向,以维持车辆的稳定性,避免侧翻或失控事故的发生。
其次,主动安全系统还包括了一些智能辅助驾驶功能,比如车道偏离警示系统(LDW)、盲点监测系统(BSD)等。
这些系统能够帮助驾驶员及时发现并纠正驾驶中的错误操作,避免因驾驶疲劳或分神而导致的事故。
比如,LDW系统能够监测车辆的行驶轨迹,一旦发现车辆偏离了车道,系统就会通过声音或震动的方式提醒驾驶员及时纠正方向,避免车辆与其他车辆相撞或偏离道路。
另外,主动安全系统还包括了一些针对行人和自行车等非机动车的安全技术,比如行人碰撞预警系统(PCW)、自行车识别系统等。
这些系统能够通过摄像头或雷达等传感器监测车辆周围的行人和自行车,一旦发现有行人或自行车横穿车道,系统就会发出警示,甚至自动进行紧急制动,以避免与行人或自行车的碰撞事故。
总的来说,主动安全系统的应用能够有效地提高汽车的安全性能,减少交通事故的发生。
随着科技的不断进步,相信主动安全系统会在未来发展出更加先进和完善的技术,为驾驶者和行人带来更加安全的出行体验。
希望在不久的将来,主动安全系统能够成为每一辆汽车的标配,让道路上的交通更加安全、顺畅。
汽车安全之主动安全设备篇
汽车安全之主动安全设备篇随着现代汽车技术的发展,汽车安全成为人们购买新车时的重要考虑因素之一。
为了提高汽车驾驶的安全性能和减少事故风险,汽车制造商不断引入各种主动安全设备。
主动安全设备通过提供预警和辅助驾驶功能,帮助驾驶员避免事故或者减少事故的严重程度。
本文将重点介绍几种主流的主动安全设备。
第一种主动安全设备是自适应巡航控制系统(ACC)。
自适应巡航控制系统是通过使用雷达或摄像头等传感器来监测前方车辆的距离和速度,根据车间距离和速度差异自动调整车辆的巡航速度,以保持安全的距离和速度。
当前方车辆减速或停止时,自适应巡航控制系统会自动减速或停止汽车,避免追尾事故的发生。
第二种主动安全设备是车道保持辅助系统(LKA)。
车道保持辅助系统使用摄像头等传感器来监测车辆在道路上的位置,并向驾驶员发出警报或者自动调整方向,以保持车辆在车道内行驶。
当驾驶员不小心偏离车道时,车道保持辅助系统会迅速作出反应,纠正车辆的行驶方向,避免事故的发生。
第三种主动安全设备是盲点监测系统(BSM)。
盲点监测系统通过使用侧面的传感器来检测驾驶员视线盲区的车辆,并向驾驶员发出警报,提醒驾驶员注意盲区的车辆。
这种设备特别适用于高速公路上的车道变换时,可以帮助驾驶员更好地掌控车辆和周围环境,减少事故的风险。
第四种主动安全设备是交通标志识别系统(TSR)。
交通标志识别系统使用摄像头等传感器来识别道路上的交通标志,并将相关信息显示在驾驶员的仪表盘或HUD(Head-up Display)上,提醒驾驶员注意路况和交通规则。
这种设备可以帮助驾驶员更好地遵守交通规则,减少违章和交通事故的发生。
第五种主动安全设备是自动紧急制动系统(AEB)。
自动紧急制动系统使用雷达或摄像头等传感器来监测前方障碍物的距离和速度,并在驾驶员未能及时反应时,自动紧急制动来避免碰撞事故的发生。
这种设备可以大大减少事故的发生率,并减轻事故的严重程度。
总而言之,主动安全设备在提高汽车的安全性能和减少事故风险方面发挥着重要作用。
汽车aebs的组成
汽车AEBS的组成一、什么是汽车AEBS?汽车AEBS(Autonomous Emergency Braking System)是一种被广泛应用于现代汽车的主动安全系统。
它的主要功能是在驾驶员未能及时采取行动时,自动对潜在的碰撞进行预警或紧急制动,以避免或减少事故的发生。
AEBS是现代汽车安全领域的一项重大技术进步,对于提高道路交通安全性起到了积极的作用。
二、汽车AEBS的组成部分汽车AEBS由多个组成部分构成,下面将逐一介绍每个组成部分的作用。
1. 前向传感器前向传感器是AEBS系统的核心组件之一。
通过使用雷达、激光或摄像头等技术,前向传感器可以实时感知车辆前方的情况,包括距离、速度和方向等参数。
它能够发现潜在的碰撞风险,并将这些信息传输给AEBS系统。
2. 控制单元控制单元是AEBS系统的主要控制核心。
当前向传感器检测到潜在的碰撞风险时,控制单元将根据传感器提供的数据进行分析和判断,并向车辆发出相应的控制指令。
它能够快速准确地识别碰撞风险并采取紧急制动措施。
3. 制动系统制动系统是AEBS系统的执行部分。
一旦控制单元判断存在碰撞风险并下达制动指令,制动系统会立即响应并施加制动力来减速或停止车辆。
制动系统需要具备高效可靠的制动性能,以确保在紧急情况下可以及时有效地制止车辆。
4. 跟踪系统跟踪系统是AEBS系统的辅助组件之一。
它可以通过持续跟踪车辆前方的运动情况,进一步提供相关数据供控制单元使用。
跟踪系统可以提高AEBS系统的准确性和稳定性,以及对复杂交通场景的适应能力。
5. 警示装置警示装置是AEBS系统的用户界面之一。
当AEBS系统检测到潜在的碰撞风险且需要驾驶员采取相应行动时,警示装置会发出声音、光或震动等警示信号,提醒驾驶员注意并采取避免碰撞的措施。
6. 人机交互界面人机交互界面是AEBS系统的用户界面之一,也是驾驶员和AEBS系统之间进行信息交流的重要途径。
通过人机交互界面,驾驶员可以了解AEBS系统的工作状态、碰撞风险等信息,并进行相应的操作。
汽车安全系统区别方法
汽车安全系统区别方法
汽车安全系统是指一系列措施和装置,以确保汽车运行过程中乘车人员和行人的安全。
目前,市面上有许多不同类型的汽车安全系统,其中一些是标准配置,而其他一些则需要额外购买。
为了帮助消费者选择最适合他们的汽车安全系统,以下是区分各种汽车安全系统的方法:
1. 主动安全系统 VS 被动安全系统
主动安全系统是指能够在事故发生前,帮助驾驶员避免事故的系统。
例如,盲点监测、自动刹车、车道偏离警告等。
被动安全系统则是指在事故发生后,保护驾驶员和乘车人员安全的系统。
例如,安全气囊、安全带、车身变形吸能等。
2. 高科技汽车安全系统 VS 传统汽车安全系统
高科技汽车安全系统使用最先进的技术,例如激光雷达、摄像头、红外线传感器等,以确保车辆在驾驶过程中有更好的感知和反应能力。
传统汽车安全系统则使用基础技术,例如机械部件、传感器等。
3. 驾驶员辅助系统 VS 安全辅助系统
驾驶员辅助系统是指那些能够帮助驾驶员更好地控制车辆和驾
驶的系统,例如自适应巡航控制、自动泊车等。
安全辅助系统则是指那些能够帮助驾驶员更好地保护车辆和乘车人员安全的系统,例如自动刹车、车道偏离警告等。
综上所述,消费者可以根据自身需求和预算选择适合自己的汽车安全系统。
无论选择哪种系统,都应该重视汽车安全,以确保驾驶过
程中的人身安全。
2024年汽车安全之主动安全设备篇
2024年汽车安全之主动安全设备篇
1. 自动紧急制动系统(AEB):该系统使用传感器和摄像头来监测前方的障碍物,如果驾驶员没有及时反应,则自动启动制动系统以避免碰撞。
2. 自适应巡航控制系统(ACC):ACC系统通过使用雷达和摄像头来监测前方车辆的速度和距离,并自动调整车辆的巡航速度以保持与前车的安全距离。
3. 盲点监测系统(BSD):BSD系统使用传感器来监测车辆后方的盲点,并在有其他车辆进入盲点区域时提供警告。
4. 车道保持辅助系统(LKAS):LKAS系统使用摄像头和传感器来检测车辆的车道位置,并通过控制方向盘来保持车辆在车道内的稳定。
5. 主动车道保持辅助系统(ALKA):ALKA系统与LKAS类似,但它还可以主动对车辆进行车道变更操作,并在车辆要离开当前车道时提供警告。
6. 困乏驾驶警示系统(FDAS):FDAS系统使用摄像头来监测驾驶员的眼睛和头部运动,并发出警告,以提醒驾驶员注意力不集中或疲劳驾驶。
7.可视化360度全景摄像头:该系统使用多个摄像头来提供车辆周围的全景图像,以帮助驾驶员进行停车和转弯。
第 1 页共 1 页。
汽车主动安全
汽车主动安全汽车主动安全是指通过车辆自身的技术手段,来提高行车安全性能,减少交通事故的发生。
随着汽车技术的不断进步,汽车主动安全系统也得到了极大的发展和完善,为驾驶员和乘客的安全出行提供了更多的保障。
本文将重点介绍汽车主动安全的相关技术和措施,以及对行车安全性能的提升。
首先,汽车主动安全系统包括了许多技术手段,比如车辆稳定控制系统(ESC)、防抱死制动系统(ABS)、电子制动力分配系统(EBD)等。
这些系统可以帮助驾驶员在紧急情况下保持车辆的稳定性,避免侧滑和打滑,有效地减少交通事故的发生。
此外,还有一些新兴的技术,比如自动紧急制动系统(AEB)、车道偏离预警系统(LDW)等,可以在驾驶员不注意时及时发出警告,并在必要时自动采取制动等措施,避免碰撞事故的发生。
其次,汽车主动安全还包括了车辆的 passiv安全性能,比如车身结构设计、气囊系统、安全带预紧器等。
这些 passiv 安全措施可以在事故发生时,最大限度地保护车内乘客的安全,减少伤害程度。
其中,气囊系统可以在车辆碰撞时迅速充气,为乘客提供缓冲和保护,而安全带预紧器可以在碰撞时迅速拉紧安全带,防止乘客受到二次伤害。
最后,除了车辆本身的技术手段,驾驶员的驾驶行为也是影响汽车主动安全的重要因素。
合理的驾驶行为和规范的驾驶习惯,可以有效地减少交通事故的发生。
比如保持车距、遵守交通规则、谨慎超车等,都是提高汽车主动安全性能的重要手段。
此外,驾驶员的疲劳驾驶和酒驾也是导致交通事故的重要原因,因此驾驶员在驾驶前应充分休息,避免酒后驾驶,以确保行车安全。
总之,汽车主动安全是保障驾驶员和乘客安全出行的重要手段。
通过不断完善汽车主动安全系统和加强驾驶员的安全意识,可以有效地减少交通事故的发生,降低交通事故的伤害程度,为社会交通安全做出更大的贡献。
希望各方能够共同努力,推动汽车主动安全技术的进一步发展,为人们的出行安全保驾护航。
汽车最常见的五种主动安全技术
汽车最常见的五种主动安全技术
随着汽车安全意识的不断提高,越来越多的汽车采用了各种主动安全技术来提高驾驶安全性。
以下是汽车最常见的五种主动安全技术:
1.防抱死制动系统(ABS):ABS能够在制动时避免车轮卡死,保持车轮旋转,防止车辆失控。
它通过电子控制装置来调节制动压力,使制动更加平稳和可控。
2.车身稳定控制系统(ESP):ESP可以在车辆转弯或紧急制动时保持车辆稳定。
它通过感应车辆的方向盘、刹车和加速器输入,以及车辆实际运动状态来调节制动力和引擎输出,让车辆更加容易操控。
3.自适应巡航控制系统(ACC):ACC可以在车辆巡航时自动调整车速以保持与前方车辆的安全距离。
它通过感应前方车辆的距离和速度来自动调整车速,使驾驶者更加轻松和安全。
4.盲点监测系统(BSM):BSM可以在驾驶者无法看到的区域监测到其他车辆的存在,避免驾驶者因盲点而发生碰撞事故。
它通过感应车辆周围的雷达来检测车辆位置,当车辆进入盲点时,它会向驾驶者发出警告。
5.车道偏离预警系统(LDW):LDW可以监测车辆是否偏离了当前车道,并在需要时向驾驶者发出警告。
它通过感应车辆的轨迹和行驶方向来检测车辆是否偏离,以提醒驾驶者及时调整方向。
以上这些主动安全技术不仅可以提高驾驶者的安全性,还可以
减少事故的发生。
随着技术的不断发展,汽车的主动安全技术还将不断升级和完善,为驾驶者带来更加安全和便利的驾驶体验。
汽车最常见的五种主动安全技术
汽车最常见的五种主动安全技术
1.防抱死制动系统(ABS):ABS是一种防止轮胎因急刹车而被锁死的系统,它可以让车轮在制动时保持旋转,从而帮助司机更好地控制车辆。
ABS技术可以提高车辆制动效果,减少制动距离,防止侧滑和打滑,从而提高行驶安全性。
2.电子稳定控制系统(ESC):ESC是一种能够保持车辆稳定的系统,它使用传感器检测车辆动态参数,并通过控制制动系统和发动机输出动力来纠正车辆的姿态。
ESC技术可以防止车辆发生侧翻、失控或滑行,提高车辆的稳定性和操控性,从而减少事故发生的可能性。
3.车道偏移警示系统(LDWS):LDWS是一种通过摄像头或雷达系统检测车辆行驶轨迹,当车辆偏离车道时发出警示提醒驾驶者的系统。
LDWS技术可以提醒驾驶员注意车辆行驶方向,避免因疲劳、分散注
意力等因素导致车辆偏离车道,从而减少交通事故的发生。
4.自适应巡航控制系统(ACC):ACC是一种能够自动调节车速的巡航控制系统,它使用雷达或激光传感器检测前方车辆,并调节车速以保持安全距离。
ACC技术可以减少驾驶员疲劳,提高行车舒适性,同时也可以降低事故风险和交通堵塞。
5.前碰撞预警和自动制动系统(FCW):FCW是一种能够检测前方障碍物并通过警示和自动制动等方式减少碰撞风险的系统。
FCW技术可以在驾驶员未能及时发现前方障碍物时提醒驾驶员注意,同时也可以在紧急情况下自动制动车辆,从而有效减少碰撞事故的发生。
- 1 -。
汽车最常见的五种主动安全技术
汽车最常见的五种主动安全技术在现代社会中,汽车已成为人们生活中必不可少的交通工具,而安全驾驶更是每个车主必须重视的问题。
为了提高驾驶安全性,汽车制造商们不断地研发出各种安全技术,其中主动安全技术可以在驾驶过程中自动检测和避免潜在危险,大大提高了驾驶安全性。
本文将介绍汽车最常见的五种主动安全技术。
一、自动刹车系统自动刹车系统是一种能够自动检测前方交通状况并在必要时自动刹车的安全技术。
该系统通过雷达、摄像头等传感器来检测前方的车辆和行人,当检测到有碰撞的风险时,自动刹车系统会发出警报并自动刹车以避免碰撞。
该技术可以大大减少交通事故的发生,保障驾驶者和行人的生命安全。
例如,斯巴鲁的EyeSight自动刹车系统可以在车速低于50km/h时自动刹车,避免碰撞,同时还可以提供车道偏离警告、自适应巡航控制等多种安全功能。
二、盲点监测系统盲点监测系统是一种能够监测车辆盲区的安全技术。
该系统通过传感器监测车辆两侧的盲区,当有车辆进入盲区时,系统会发出警报提醒驾驶者,避免驾驶者在变道时发生碰撞事故。
例如,现代汽车的盲点监测系统可以通过雷达和摄像头监测车辆两侧的盲区,并在发现有车辆进入盲区时发出警报提醒驾驶者。
三、车道偏离警告系统车道偏离警告系统是一种能够监测车辆行驶轨迹的安全技术。
该系统通过摄像头等传感器监测车辆行驶轨迹,当车辆偏离车道时,系统会发出警报提醒驾驶者,避免驾驶者因疲劳、分心等原因偏离车道,发生交通事故。
例如,宝马的车道偏离警告系统可以通过摄像头监测车辆行驶轨迹,并在发现车辆偏离车道时发出警报提醒驾驶者。
四、自适应巡航控制系统自适应巡航控制系统是一种能够自动控制车速和保持安全距离的安全技术。
该系统通过雷达和摄像头等传感器监测前方车辆的行驶速度和距离,自动调整车速和保持安全距离,避免驾驶者因疲劳、分心等原因导致的跟车不当,发生交通事故。
例如,特斯拉的自适应巡航控制系统可以通过雷达和摄像头监测前方车辆的行驶速度和距离,并自动调整车速和保持安全距离,避免碰撞事故的发生。
汽车主动安全系统介绍
汽车主动安全功能介绍01020304主动安全功能概述ESC功能详解LDWS其他系统01主动安全功能主动安全功能概述汽车安全被动安全发生事故时车辆对人体的保护措施,例如安全带、安全气囊主动安全在车辆行驶中,检测车辆失控或者发生事故的可能性,通过一系列措施来避免摄像头红外探测器疲劳驾驶预警系统、BSD 等在危险情况下对驾驶员进行提示的功能ESC 、AEB 等对车辆的纵向和横向干预来保证安全行驶的功能ESC 帮助稳定转向自动紧急制动01020304主动安全功能概述ESC功能详解AEB及FCW详解其他系统ESC概念汽车电子稳定控制系统(Electronic Stability Controller)是一个主动安全控制系统,通过传感器监控车辆自身行驶状态,在车辆紧急躲避障碍物、转弯等容易出现不稳定状况时,以及在转向过度或转向不足情况下,利用动力系统干预及制动系统干预,帮助车辆克服偏离理想轨迹的倾向,为车辆行驶提供更好的安全性。
对于传统ESC,其必须具备的四大基本功能:防抱死制动系统(ABS)电子制动力分配(EBD)牵引力控制系统(TCS)车辆动态控制系统(VDC)ESC基本功能ESC 硬件组成ESC 控制器轮速传感器转向角传感器YG 传感器1 ESC 控制器2 轮速传感器检测轮速信号最常用的传感器是电磁感应式传感器,当齿圈相对传感器转动时,在传感器上激励出交变电压信号,ECU 采用专门的信号处理电路将传感器信号转换为同频率的方波,再通过测量方波的频率或周期来计算车轮转速。
3 转向角传感器ESP 通过计算方向盘转角的大小和转角变化速率来识别驾驶员的操作意图。
方向盘转角传感器将方向盘转角转换为一个可以代表驾驶员期望的行驶方向的信号。
4 YG 传感器即横摆角度、侧向加速度传感器:监测车体绕垂直轴线转动的状态、汽车转弯时的离心力等。
发动机通讯管理系统EBDESC当车轮制动时,由轮速传感器采集四个车轮的转速信号,发给电子控制单元计算出车辆的减速度及车轮的滑移率。
汽车主动安全系统
5.2 车轮防抱死制动系统(ABS)
ABS的性能主要是以装车后进行实车道路试验的方法进行评价,主要的试验方法和评价项目如下表所示:
五、ABS的试验评价
5.2 车轮防抱死制动系统(ABS)
1
直线行驶制动试验
2
目的:测定不同路面附着系数下的制动距离,直线制动稳定性。 试验条件:各种附着系数路面和各种制动初速度。
汽车在行驶时,其驱动力决定于传递到驱动轮上的发动机转矩和轮胎和路面的附着系数。发动机的转矩与发动机的性能和传动系特性有关。汽车在起动或加速时,随着发动机的转矩不断增大,汽车的驱动力随之增大,驱动能力增强。但当驱动力超过地面的附着力时,驱动轮开始滑转。因此,汽车获得的驱动能力只有在轮胎和路面之间附着极限内驱动轮不发生滑转时才有效。
5.3 驱动防滑控制系统(ASR)
三、驱动轮防滑控制方式
发动机控制方式
原理:调整发动机加到车轮上的驱动转矩,以使车轮滑移率保持在最佳范围。
思路:根据路面状况—调节燃油喷油量(减小或中断供油)、调节点火时间、调节进气量等调整发动机的输出转矩—供给驱动车轮和路面附着力相适应的最佳驱动转矩。
第5章 汽车主动安全系统
ABS在汽车上的配置 定义:汽车车轮或车轴的制动力矩是否直接受控于防抱制动系统和其他控制方式,以及ABS转速传感器、电磁阀的安装数量和安装部位的设计形式。
第5章 汽车主动安全系统
ABS在汽车上的配置
ABS在汽车上的配置
A
轴控制的两种选择: 高选调节:以两侧车轮中附着系数较高一侧的传感器信号来确定制动压力的调节—充分利用高附着系数侧车轮的制动力,缩短制动距离 低选调节:以两侧车轮中附着系数较低一侧的传感器信号来确定制动压力的调节—提高稳定性,避免侧滑。
机动车辆安全技术
机动车辆安全技术机动车辆安全技术是指一系列在现代汽车上应用的科技,旨在提高车辆的安全性能和行驶舒适度。
这些技术包括了主动和被动安全系统,涵盖了车辆控制、驾驶员辅助、碰撞预警和减少碰撞伤害等方面。
这篇文档将从以下几个方面,介绍机动车辆安全技术的相关内容。
一、主动安全系统主动安全系统是车辆预防事故发生的系统。
它们能够帮助驾驶员更好地控制车辆,提高行驶安全性。
其中常用的主动安全技术包括:1. ABS系统:ABS就是防抱死刹车系统。
它可以防止车轮在制动时发生卡死,提高制动效果,并且能够向驾驶员传递准确的行驶信息。
2. TCS系统:TCS是牵引力控制系统,这套系统就是为了提高汽车的抓地力而设计的。
当车辆驶入刹车、加速、转向等情况时,TCS系统会调节车轮的转速,保证车轮与地面的摩擦力不会降低,通过调节引擎的输出来改变车辆的转向情况,确保车辆行驶的稳定性,从而减少驾驶员在行驶时的压力和疲劳。
3. ESP系统:ESP是电子稳定控制系统,有时也称为车辆稳定控制系统或者动态稳定控制系统。
它可以监控车辆的运动状态,通过调节引擎、制动和转向等部分来解决或减少车辆失控的风险。
ESP可以在紧急情况下帮助驾驶员保持对车辆的控制力,有效避免事故发生。
然而,此技术仅在口碑大师、凯迪拉克等高端车型上才有应用。
二、被动安全系统被动安全系统是车辆事故后能够提供保护驾驶员、乘客的系统。
包括了车身钢板、吸能材料、气囊等等。
其中常用的被动安全技术包括:1. 安全气囊:气囊系统属于中低速碰撞时的主动安全技术,发生高速碰撞时,安全气囊能够减轻驾驶员和乘客因巨大冲击而身体受伤的程度,解决部分碰撞对人体造成的撞击伤害。
2. 防侧翻系统:这是车辆稳定性控制系统的一种新成员,在车辆翻转前会发射车辆倾斜的警报通知驾驶员,具有非常大的被动安全性。
三、驾驶员辅助系统驾驶员辅助系统是帮助驾驶员控制汽车,提高驾驶员操作方便性的技术,主要包括:1. 倒车雷达:倒车雷达技术可以帮助驾驶员在行车过程中掌握车辆后侧的交通状况,提高车辆排放效率、减少碰撞和损坏的几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 驱动防滑控制系统(ASR)
三、驱动轮防滑控制方式 ②发动机控制方式 原理:调整发动机加到车轮上的驱动转矩, 以使车轮滑移率保持在最佳范围。 思路:根据路面状况—调节燃油喷油量(减 小或中断供油)、调节点火时间、调节进气 量等调整发动机的输出转矩—供给驱动车轮 和路面附着力相适应的最佳驱动转矩。
第5章
主要内容:
汽车主动安全系统
①概述 ②ABS ③ASR ④EBS ⑤可控悬架系统 ⑥电控动力转向系统 ⑦先进安全汽车 ⑧其他的主动控制系统
第5章
5.1
汽车主动安全系统
引言
确保车辆具有和驾驶人员的操作特性相匹配 的动特性,主动预防汽车交通事故的发生。 “防患于未然”,通过提高汽车主动安全技 术和安全性能,可以最有效地减少道路交通事 故的发生,从而从根本上降低道路交通事故对 人类生命及财产安全造成的危害,因此当今汽 车研发、设计者将主动安全技术作为当今汽车 安全技术的重点研究领域和主要发展方向。
第5章
汽车主动安全系统
二、ABS的结构组成和工作原理 ※ECU的电路组成 ④稳压供电电路: 除ECU芯片5V外,还需具备掉电保护故障代码 的功能,应提供一个独立的5V电源。 ⑤通信电路 作用:提供多CPU之间的信息传递和运算结果 的复合核对(冗余技术);提供已存储的故障代 码和故障出项的先后次序。 ⑥故障自诊断电路 作用:功能检查、故障诊断
第5章
汽车主动安全系统
一、ABS的基本原理
※ABS的作用:
①防止后轮抱死,提高制动时的行驶稳定性; ②防止前轮抱死,提高制动时的操纵性; ③减少轮胎磨损,减轻驾驶员的紧张程度; ④最大可能利用车轮与地面的附着,减少制动 距离。
(制动初速度80k m/h)
第5章
汽车主动安全系统
一、ABS的基本原理 2. ABS的理论依据
5.3 驱动防滑控制系统(ASR)
三、驱动轮防滑控制方式 ②发动机控制方式
缺点:响应速度较慢,在非对称附着系数路面 不能实现最佳控制,效能和ABS的低选调节情 形相似。(低选调节:以两侧车轮中附着系数较低一侧的
传感器信号来确定制动压力的调节,牺牲了高附着系数侧车轮 的部分制动力来保持车辆的行驶稳定性。)
第5章
汽车主动安全系统
一、ABS的基本原理 2. ABS的理论依据 ※分析:汽车在制动时,将汽车车轮的滑移率 控制在10%~35%之间,这时既可使纵向附着 系数接近峰值,同时又可以获得较大的侧向附 着系数(也就是说,能兼顾相对最大的纵向制 动力和横向抓地力) , 从而使汽车获得最佳 的制动效能和方向稳定性。 ※出发点: 用滑移率作为参数,通过调节制动压力来控 制车轮的转速,达到防抱死的目的。
五、ABS的试验评价
ABS的性能主要是以装车后进行实车道路试验的方法 进行评价,主要的试验方法和评价项目如下表所示:
5.2
车轮防抱死制动系统(ABS)
五、ABS的试验评价
1、直线行驶制动试验
目的:测定不同路面附着系数下的制动距离,直 线制动稳定性。 试验条件:各种附着系数路面和各种制动初速度。
5.2 车轮防抱死制动系统(ABS) 五、ABS的试验评价 1、直线行驶制动试验
直线行驶制动的稳定性评价: 汽车横摆角速度(装ABS)偏转角速度不大于5deg/s
5.2
车轮防抱死制动系统(ABS)
五、ABS的试验评价 ABS的性能主要是以装车后进行实车道路试 验的方法进行评价,主要的试验方法和评价 项目如下表所示:
5.3 驱动防滑控制系统(ASR) 一、理论依据
汽车在行驶时,其驱动力决定于传递到驱动 轮上的发动机转矩和轮胎和路面的附着系数。 发动机的转矩与发动机的性能和传动系特性 有关。汽车在起动或加速时,随着发动机的 转矩不断增大,汽车的驱动力随之增大,驱 动能力增强。但当驱动力超过地面的附着力 时,驱动轮开始滑转。因此,汽车获得的驱 动能力只有在轮胎和路面之间附着极限内驱 动轮不发生滑转时才有效。
5.3 驱动防滑控制系统(ASR)
二、ASR的组成、工作原理和作用
汽车起步、行驶中驱动轮可提供最佳驱动 力,与无ASR相比,提高了汽车的动力性, 特别是在附着系数较小的路面上,起步、加 速性能和爬坡能力较佳; 能保持汽车方向的稳定性和前轮驱动汽车 的转向控制能力;(FR型车:猛加油门又快速放
5.3 驱动防滑控制系统(ASR)
三、驱动轮防滑控制方式 ③综合控制方式 将驱动轮制动控制和发动机输出转矩控 制方式结合起来。 采用合理的控制算法,可以解决各种路 面条件的驱动控制问题,使车辆的加速性、 经济性、方向稳定性和操纵性达到最佳。
5.3 驱动防滑控制系统(ASR)
评价指标:制动距离比(要求≯110%)
直线行驶制动的稳定性评价: 汽车横摆角速度(装ABS)偏转角速度不大于5deg/s
5.2 车轮防抱死制动系统(ABS) 五、ABS的试验评价 1、直线行驶制动试验
评价指标:制动距离比(要求≯110%)
★在越低附着系数路面上,装用ABS后制动距离的
缩短量也越大,制动性能改善效果越好。
第5章
汽车主动安全系统
二、ABS的结构组成和工作原理
第5章
汽车主动安全系统
二、ABS的结构组成和工作原理 ABS的基本工作原理: 汽车在制动过程中,轮速传感器不断把轮速信 号传送给ECU,这些信号被ECU进行逻辑判断 和分析,并加以计算,一且识别到某一或几个 车轮有抱死倾向时,ECU就发出指令,并送至 液压或气压调节器中,通过调节器中电磁阀 “升压”、“保压”、“降压”3种不同工作 状态,及时调节车轮制动缸(气室)中的压力, 以防止车轮制动抱死。
5.3 驱动防滑控制系统(ASR)
二、ASR的组成、工作原理和作用
ASR系统主要元部件的车上布置 1—ECU;2—制动压力调节器;3—轮速传感器脉冲盘; 4—轮速传感器;5—差速制动阀;6—发动机控制缸;7— 发动机控制阀
5.3 驱动防滑控制系统(ASR)
二、ASR的组成、工作原理和作用
基本原理:车轮速度传感器车轮转速转变为电信号, 输送给控制器,控制器计算出驱动车轮的滑转率,如 果滑转率超出了目标范围,控制器确定控制方式,输 出控制信号使执行器动作,将驱动车轮的滑转率控制 在目标范围内. (降低发动机输出转矩,同时控制制动 系统,降低传递给驱动车轮的力矩—既可控制制动又 可控制发动机输出)
第5章
汽车主动安全系统
四、ABS的正确使用
2.不可忽视ABS指示灯的检查。正常情况下, 按通点火开关后,此灯应亮;大约3秒后自 动熄灭。这一过程,实质上是电子控制装置 在按自检程序对车轮传感器、液压调节器的 控制阀进行通电检查,若此灯一直不亮,说 明ABS有故障。
5.2
车轮防抱死制动系统(ABS)
5.3 驱动防滑控制系统(ASR) 一、理论依据
驱动轮的滑转程度用驱动轮滑移率来表示:
★轮胎滑移率和路面的附着条件有密切关系
5.3 驱动防滑控制系统(ASR) 一、理论依据
汽车的驱动轮在滑转 时,将其滑转率控制 在最佳滑转率(10%30%)范围内,从而 获得较大的附着系数, 使路面能够提供较大 的附着力,车轮的驱 动力能够得到充分利 用。 ★汽车防滑控制利用驱动滑转率和附着系数之间的关 系进行控制
汽车电子技术的发展促进了汽车安全 新理念,新技术和新设备的产生。
5.2
第5章 ABS
汽车主动安全系统
一、ABS的基本原理 1. 轮胎与地面的附着特性 ※附着系数:驱动轮的附着率不能大于地 面的附着系数,否则会发生驱动轮滑转的 现象。 ※纵向附着系数:制动附着系数,制动效能 ※侧向附着系数:侧滑附着系数,方向稳定性 和轮胎的滑移率有很大关系
第5章
汽车主动安全系统
一、ABS的基本原理 2. ABS的理论依据
※理想的制动控制:
①车轮滑移率从稳定区进入不稳定区的瞬间, 迅速而适度地减少制动器制动力,使车轮的转 动回复到稳定区域内; ②逐渐地增加制动器制动力直至车轮状态再次 越过稳定界限位置,尽量长时间地保持车轮运 动于稳定界限附近的最佳滚动状态。
传感器的安装位置
支架固定在制动底板上
固定在转向节支架上
第5章
汽车主动安全系统
二、ABS的结构组成和工作原理
※ECU的电路组成
•整形电路: 作用:将转速传感器输入的信号进行调制,使 之成为电子控制器能识别的信号。 ②运算电路 作用:计算车体速度、滑移率和车轮加速度, 并与对应的设定值进行比较判断后对电磁阀发 出相应的减压、保压或升压指令。 ③电磁阀驱动、检测控制电路
第5章
汽车主动安全系统
三、ABS在汽车上的配置
※定义:汽车车轮或车轴的制动力矩是否直接
受控于防抱制动系统和其他控制方式,以及 ABS转速传感器、电磁阀的安装数量和安装部 位的设计形式。
第5章
汽车主动安全系统
三、ABS在汽车上的配置
第5章
汽车主动安全系统
三、ABS在汽车上的配置
※轴控制的两种选择:
第5章
汽车主动安全系统
一、ABS的基本原理 2. ABS的理论依据 ※理想的制动控制: ★制动车轮始终在纵向峰值附着系数最大处附 近的狭小滑移率范围内滚动,既保证了转向操 纵和制动方向的稳定性,又获得最小制动距离。
▲ABS的工作过程实际上是“抱死—松开—抱
死—松开”的循环工作过程,使车辆始终处于 临界抱死的间隙滚动状态,有效克服紧急制动 时由车轮抱死产生的车辆跑偏现象,防止车身 失控等情况的发生。