最2013年八年级(下)数学期末试卷(3)答案
2013年八年级数学下册期末数学试卷(2)
1211+=-x x A ′ GD BC A2013年八年级数学下学期期末数学试卷(2)一、选择题:(每题3分,共30分)1、式子①x 2 ②5yx + ③a -21 ④1-πx 中,是分式的有( )A .①② B. ③④ C. ①③ D.①②③④2、某校参加“姑苏晚报·可口可乐杯”中学生足球赛的队员的年龄如下(单位:岁): 13,14,16,15,14,15,15,15,16,14,则这些队员年龄的众数是( ) A;13 B;14 C;15 D;163、在2,3,4,5,x 五个数据中,平均数是4,那么这组数据的方差是( )A .2B .10C .2D .104、平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm第4题 第7题 第8题5、若直角三角形的三边长分别为3,4,x ,则x 的值可能有( ). (A)1个 (B)2个 (C)3个 (D)4个6、如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为( )A .9B .10.5C .12D .157、如图,反比例函数)0(>x xky =的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形 ODBE 的面积为6,则k 的值为( ) A 、1 B 、2 C 、3 D 、48、如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23 D .29、对于分式11-x ,永远成立的是( )A . B. C. D.10、如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿 AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) A .1B .2C .3D .4第10题 第18题二、填空题11、某商场家电部为了调动营业员的工作积极性,决定实行目标等级管理。
江苏省徐州市度第二学期期末考试八年级数学试卷(Word版含答案)
江苏省徐州市第二学期期末考试八年级数学试题(提醒:本卷共6页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上, 写在本卷上无效.)、一、选择题(每小题3分,共24分)1.下列成语描述的事件为随机事件的是A .守株待兔B .缘木求鱼C .水中捞月2 .下列图形中,是轴对称图形,但不是中心对称图形的是3. 下列调查方式较为合理的是A. 了解某班学生的身高,采用抽样的方式B .调查某晶牌电脑的使用寿命,采用普查的方式C. 调查骆马湖的水质情况,采用抽样的方式D. 调查全国初中学生的业余爱好,采用普查的方式y4. 下列分式中,与—3x相等的是2A 3^2 C .—二: -y;-3xxy6x25 •下列运算正确的是B. 2.2 2 = - 2C・「(二2厂(二3)= ..(-2) x ,(-3)6. 为了解我市八年级学生的视力状况,从中随机抽取此项调查的样本为A. 500C.被抽取500名学生的视力状况2018500名学生的视力状况进行分析,B .被抽取的500名学生D .我市八年级学生的视力状况7. 若A(x i,y i)、B(x2,y2)都在函数y= 的图像上,且X| v O v X2,则xA . y1 v y2B . y1 = y2&从一副扑克牌中任意抽取1张,下列事件:①抽到“ K”;②抽到“黑桃”:③抽到“大王”;④抽到“黑色的” 其中,发生可能性最大的事件是A .①B .②C .③八年级数学试题第1页(共6页)C. y i>y2 D • y i= = - y2D .④D •水涨船高二、填空题(每小题4分,共32分)9.当m= _________ ,分式m十1的值为零.m _110•若J2—x有意义,则x的取值范围是_______________ •11. 若口ABCD的周长为20,且AC= 5,则厶ABC的周长为________________12. ___________________________________________________ 若■ 48n是正整数,则n可取到的最小正整数为_________________________________________ •13. 如图,矩形ABCD的对角线AC、BD相交于点O, DE // AC , CE// BD,若BD = 5,则四边形DOCE的周长为___________ •ky= 的图像相交于A(m, 2), B两点.xk则不等式-2x> -的解集为x16 .下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③再次用计算机模拟实验,当投掷次数为1000时,“钉尖向上”的概率一定是0.620 .其中,不合理的是___________ (填序号).14.如图,若正比例函数y=- 2x与反比例函数15.如图,△ OAC 和+ △ BADky= 的图像经过点凡若x都是等腰直角三角形,OA2 —AB2 = 12」ACO =Z ADB = 90°,反比例函数(第13题)八年级数学试题第2页(共6页)三、解答题(共84分) 17. (本题10分)计算:⑴冷12 — 3 — +1 , 3 — 2 |;\3(2)( 3 — 2)2 — ,3 X 12 .18.(本题10分)(1)计算: 52m —4(m+2) •m -23 -m (2)解方程:11 -x 门=一 3.x -2 2 - x19.(本题9分)某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间/ (单位:min),然后利用所得数据绘制成如下不完整的统计图表.课外阅读时间频数分布表课外阅读时间频数分布直方图(第 19 题)根据图表中提供的信息,回答下列问题: (1) a = __________ , b = _____________ ; (2) 将频数分布直方图补充完整;⑶若该校共1 000名学生,估计有多少学生平均每天的课外阅读时间不少于50min?课外阅读时间「百分比4S%16%50^t<70 a 40%700 V9016b24%合计 \ 50100%20.(本题6分)如图,在方格纸中,,5~ABC为格点三角形.(1)画出△ ABC绕点C顺时针旋转后的格点△ A i B i C,使得点P在厶A i B i C的内部;⑵在(1)的条件下,若/ ACB= n°,则/ A i CB=____________ ° (用含n的代数式表示).21. (本题i0分)在口ABCD中,BE丄CD于点E,点F在AB 上,且AF=CE,连接DF .(i)求证:四边形BEDF是矩形;⑵连接CF,若CF平分/ BCD,且CE=3, BE=4,求矩形BEDF的面积.22. (本题9分)“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本.甲、乙两种图书的单价分别为多少元?八年级数学试题第4页(共6页)23. (本题10分)一辆汽车通过某段公路时,行驶时间t(h)与行驶速度v(km/h)之间成反比例k函数关系,t= ,其图像为图中一段曲线,端点为A(35, 1.2), B(m , 0.5).v(1)求k和m的值⑵若该路段限速60km / h,则汽车通过该路段至少需要多少时间?v(km/h)(第23题)24. (本题10分)已知:如图,在正方形ABCD中,点E、F、G分别在AB、AD、CD 上,AB= 6, AE = 2, DG > AE, BF = EG , BF 与EG 交于点P.(1) 求证:BF丄EG;(2) 连接DP,贝U DP的最小值为__________ •(第24题)25. (本题10分)探索函数y = x + (x > 0)的图像和性质.1已知正比例函数y=x与反比例函数y= 在第一象限内的图像如图所示•若P为函数x1y= x+ (其中x> 0)图像上任意一点,过P作PC垂直于x轴且与已知函数的图像、x1x轴分别交于点A、B、C,贝y PC= x + =AC+ BC,从而发现下述结论:x“点P可以看作点A沿竖直方向向上平移BC个长度单位(PA = BC)而得到”.的图像.1(2)观察图像,写出函数y = x + (x >0)两条件不同类型的性质.xx2017—2018学年度第二学期期末抽测八年级数学参考答案題号12345678 选项 A AC B B CAD9. -1 10.15. 616・①(D17. (I)原式-275-75 + 2-^3 (3分)《2・ ................................................................ 5 分(2)原式=3-40 + 4-6 (9 分)=1-4力・ .................................. 10 分 18. (|)原式二也.沁(2分)=如型口.怦 .................................... 4分加・2 3-m m-2 3-ms-2(m + 3) = -2m-6・(未去括号,不扣分) ...................... 5分(2) l=x-l-Xx-2)> (7 分)2x = 4, (8 分)x = 2.经检脸,“2是增根,原方程无解. ................................. 10分19. (1) 20.32%: .............................................................................................. 4 分(2) 如图: ....................................................... 6分 (3) 1000X(40%+32%+4%)=760・ ............................................................. 8 分(第 198) (第 2085)21. (I) V 四边形ABCD 是平行四边形、:・AACD. AB//CD ・ .................. I 分•:A2CE 、:・AB-AF 二CD ・CE 即 BF=DE ・ ............................................. 2 分 •••四边形BEDF 是平行四边形.(3分)又TBE 丄CD •'•ZB 妙90°・•……4分DBEDF 是矩形. ................................................... 5分(2) VCFT 分ZBCD •••ZDCQZDCF • (6 分)9:AB//CD. :.ZBFC^ZDCF.:MBCF 二ZBFC . (7 分) :.BOBF ・ ................................ 8 分在 MBCE 中,由勾股定理得 J?C = V C E 2 + 5E 2=732 + 42=5, :.BC-BF-5.・9 分:・S 杯问产BF ・BE = 5x4 = 20. ...............................................................10分 八年级第I 页(共2处)答:该校约有760名学生平均每夭的课外阅读时间不少干50 min. ................ 9分22・设乙种图书的单价是每本x元,则甲种图书的单价是每本0・5x元. ........... 1分由题意,得探一譽=4.解得x = 90.经检验.x = 90是所列方程的解.且当x = 90时,0.5A = 45符合题意. ............. 8分答:甲种图书的单价为每本45元.乙种图书的单价为每本90元. ............... 9分23. (1)将(35, 1.2)代入/ = -,得1.2 = —, (2 分) 解得k=42. ............................................ 3 分v 354? 4?将戶0.5代入/ =—,得0.5 = — , (5分) 解得尸84・................................................ 6分(2)将v=60代入/ =—,得/ = —, (7分)解得f=0 7・....................................... 8分v 60由函数图像(或增减性)可知,vW60时,/N0.7. ...................................................... 9分答:汽车通过该路段至少需耍0.7h. ........................................................................... 10分24. (I)证明:如图,过点E作EM丄CQ于点M,交BF于点N..................................... 1分•••四边形ABCD是正方形,Z2ZADC二ZDME=90° ・ .......................... 2 分•••四边形ADME是矩形,:.EM=AD=AB............................................................................ 3分又•:BF=EG,・(4 分) A /ABF=ZMEG・............... 5 分在R3EN中,•:乙ABF+ZENB今丫 ,二ZMEG+ZEN沪90。
湘教版八年级下学期期末数学试卷(含答案)
八年级下册期末数学试卷一、选择题(每小题3分,共8道小题,合计24分)1.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.83.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠24.将点A(﹣1,2)向左平移4个单位长度得到点B,则点B坐标为()A.(﹣1,6)B.(﹣1,﹣2)C.(3,2)D.(﹣5,2)5.在平面直角坐标系中,点P(3,﹣x2﹣1)关于x轴对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥B D 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.小刚以400m/min的速度匀速骑车5min,在原地休息了6min,然后以500m/min的速度骑回出发地,小刚与出发地的距离s(km)关于时间t(min)的函数图象是()A.B.C.D.8.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE在以上4个结论中,正确的共有()个A.1个B.2 个C.3 个D.4个二、填空题(每小题3分,共6道小题,合计18分)9.若一个多边形的内角和是外角和的5倍,则这个多边形是边形.10.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.11.已知一次函数y=(1﹣m)x+m﹣2图象不经过第一象限,求m的取值范围是.12.函数y=中自变量x的取值范围是.13.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm(结果不取近似值).14.如图:在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…﹣1在y轴正半轴上,则点B2018的坐标是.三、解答题:(共9道大题,共58分)15.(6分)已知关于x的一次函数y=(1﹣2m)x+m﹣1,求满足下列条件的m的取值范围:(1)函数值y随x的增大而增大;(2)函数图象与y轴的负半轴相交;(3)函数的图象过原点.16.(6分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准.若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,(1)分别写出x≤5和x>5的函数解析式;(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;(3)若某户居民六月交水费31元,则用水多少吨?17.(6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.18.(6分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B(9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它l与矩形没有公共点时,直接写出b的取值范围.19.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标.(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.20.(6分)在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类频数百分比A.科普类12nB.文学类1435%C.艺术类m20%D.其它类615%(1)统计表中的m=,n=;(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?21.(6分)已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣4)点且与x轴平行的直线上.22.(6分)如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.23.(10分)已知如图:直线AB解析式为y=,其图象与坐标轴x,y轴分别相交于A、B两点,点P在线段AB上由A向B点以每秒2个单位运动,点C在线段OB上由O向B点以每秒1个单位运动(其中一点先到达终点则都停止运动),过点P与x轴垂直的直线交直线AO于点Q.设运动的时间为t秒(t≥0).(1)直接写出:A、B两点的坐标A,B.∠BAO=度;(2)用含t的代数式分别表示:CB=,PQ=;(3)是否存在t的值,使四边形PBCQ为平行四边形?若存在,求出t的值;若不存在,说明理由;(4)是否存在t的值,使四边形PBCQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点C的速度(匀速运动),使四边形PBCQ在某一时刻为菱形,求点C的速度和时间t.参考答案与试题解析一、选择题(每小题3分,共8道小题,合计24分)1.解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.2.解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选:D.3.解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.4.解:∵点A(﹣1,2)向左平移4个单位长度得到点B,∴B(﹣5,2),故选:D.5.解:点P(3,﹣x2﹣1)关于x轴对称点坐标为:(3,x2+1),∵x2+1>0,∴点P(3,﹣x2﹣1)关于x轴对称点所在的象限是:第一象限.故选:A.6.解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.7.解:因为开始时的速度小,路程逐渐变大,中间的6分钟速度为0,路程不变、后来速度大,路程逐渐减小,故选:C.8.解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,∴BG=2AG,②正确;∵△ADG≌△FDG,∴∠ADG=∠FDG,由折叠可得,∠CDE=∠FDE,∴∠GDE=∠GDF+∠EDF=∠ADC=45°,故③正确;∵AG=4,AD=12,CE=6,CD=12,∴DG==,DE==,∴DG<DE,故④错误;故选:C.二、填空题(每小题3分,共6道小题,合计18分)9.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,故答案为:十二.10.解:∵函数y=2x+b与函数y=kx﹣3的图象交于点P(4,﹣6),∴不等式kx﹣3>2x+b的解集是x<4.故答案为x<4.11.解:根据一次函数的性质,函数y随x的增大而减小,则1﹣m<0,解得m>1;函数的不图象经过第一象限,说明图象与y轴的交点在x轴下方或原点,即m﹣2≤0,解得m≤2;所以m的取值范围为:1<m≤2.故答案为:1<m≤212.解:由题意,得x≥0且x+1≠0,解得x≥0,故答案为:x≥0.13.解:连接DQ,交AC于点P,连接PB、BD,BD交AC于O.∵四边形ABCD是正方形,∴AC⊥BD,BO=OD,CD=2cm,∴点B与点D关于AC对称,∴BP=DP,∴BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ===cm,∴△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm).故答案为:(+1).14.解:当y=0时,有x﹣1=0,解得:x=1,∴点A1的坐标为(1,0).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,∴B n(2n﹣1,2n﹣1)(n为正整数),∴点B2018的坐标是(22017,22018﹣1).故答案为:(22017,22018﹣1).三、解答题:(共9道大题,共58分)15.解:(1)∵函数值y随x的增大而增大,∴1﹣2m>0,解得:m<,∴当m<时,函数值y随x的增大而增大;(2)∵函数图象与y轴的负半轴相交,∴m﹣1<0,1﹣2m≠0解得:m<1且m,∴当m<1且m时,函数图象与y轴的负半轴相交;(3)∵函数图象过原点,∴m﹣1=0,解得:m=1,∴当m=1时,函数图象过原点.16.解:(1)当x<5时,设函数解析式为y=kx,将x=5,y=15代入得:5k=15,解得k=3,∴当x≤5时,y=3x,当x>5时,设函数的解析式为y=kx+b,将x=5,y=15;x=8,y=27代入得:,解得:k=4,b=﹣5.∴当x>5时,y=4x﹣5.(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.x>5自来水公司的收费标准是每吨4元;(3)若某户居民六月交水费31元,设用水x吨,4x﹣5=31,解得:x=9(吨).17.(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;18.解:(1)∵A(1,0),B(9,0),AD=6.∴D(1,6).将B,D两点坐标代入y=kx+b中,得,解得,∴.(2)把A(1,0),C(9,6)分别代入y=﹣x+b,得出b=,或b=,∴或.19.解:(1)如图所示:△A1B1C1即为所求,点B1的坐标为:(﹣2,﹣1);(2)如图所示:△A2B2C2即为所求,点C2的坐标为(1,1).20.解:(1)n=1﹣35%﹣20%﹣15%=30%,∵此次抽样的书本总数为12÷30%=40(本),∴m=40﹣12﹣14﹣6=8,故答案为:8,30%.(2)补全条形图如图:(3)2000×30%=600(本)答:估计有600本科普类图书.21.解:(1)∵点P(2m+4,m﹣1),点P在y轴上,∴2m+4=0,解得:m=﹣2,则m﹣1=﹣3,故P(0,﹣3);(2)∵点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,故P(﹣12,﹣9);(3)∵点P在过A(2,﹣4)点且与x轴平行的直线上,∴m﹣1=﹣4,解得:m=﹣3,∴2m+4=﹣2,故P(﹣2,﹣4).22.(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.23.解:(1)∵直线AB解析式为y=,令x=0,y=,∴B(0,),∴OB=,令y=0,∴﹣x+=0,∴x=3,∴A(3,0),∴OA=3,在Rt△AOB中,tan∠BAO==,∴∠BAO=30°,故答案为:(3,0),(0,),30;(2)由运动知,OC=t,AP=2t,∴CB=OB﹣OC=﹣t,∵PQ⊥OA,∴∠AQP=90°,在Rt△APQ中,∠PAQ=30°,∴PQ=AP=t,故答案为:﹣t,t;(3)∵PQ∥BC,∴当PQ=BC时,t=﹣t,∴t=,四边形PBCQ是平行四边形.(4)由(3)知,t=时,四边形PBCQ是平行四边形,∴PB=2﹣2t=,PQ=t=,∴PB≠PQ,∴四边形PBCQ不能构成菱形.若四边形PBCQ构成菱形则PQ∥BC,PQ=BC,且PQ=PB时成立.则有t=2﹣2t,∴t=∴BC=BP=PQ=,∴OC=OB﹣BC=﹣=∴V C===∴当点C的速度变为每秒个单位时,t=秒时四边形PBCQ是菱形.1、读书破万卷,下笔如有神。
2013年初二下册数学期末联考试卷(带答案)
2013年初二下册数学期末联考试卷(带答案)?012-2013?鍒?浜?鏁?瀛?璇?棰??2?鍒嗭紝鍏?8A銆丅銆丆銆丏1锛?鐐筆锛?4,5锛锛?A锛庯紙4锛?锛?B锛庯紙-4锛?5锛?C锛庯紙5锛?4锛?D锛庯紙4,-5锛?2锛?宸茬煡鐐筆锛?2,-1锛?鍒欑偣P锛?A B岃薄闄?C?D?3锛庝娇鍒嗗紡鏃犳剰涔?鍒檟鐨勫彇鍊艰寖鍥达紙锛?A锛巟鈮? B锛?x=-1 C锛?x鈮? D锛?x=1 4锛庝笅鍒楀洓y=- 锛?A锛?2,4) B锛?-2锛?4) C锛?-2,4) D锛?4,2) 5锛?璁$畻梅鐨勭粨鏋滄槸锛?锛?A锛?B 锛?C锛?D锛?6锛庡凡鐭ュ叧浜巟鐨勬柟绋?锛?=0锛?锛?A锛?-2 B锛?2 C锛?5 D 3 7锛庡凡鐭ヤ竴娆″嚱鏁皔=(m 锛?)x锛?鐨勫浘璞$粡杩囷紙1,4锛夛紝鍒檓鐨勫€间负锛?锛?A锛?7 B锛?0 C锛? D锛?2 8锛庡凡鐭?+ =3锛屽垯鐨勫€间负锛?锛?A锛?B锛?C锛?D锛?9锛庡凡鐭ュ弽姣斾緥鍑芥暟y= ?锛?锛? (3, ),( , ),鍒?锛?锛?鐨勫ぇ灏忓叧绯绘槸锛?锛?A锛?锛?锛?B锛?锛?锛?C 锛?锛?锛?D锛?锛?锛?10锛庡嚱鏁?涓?锛?锛?11BCD A锛?3,2锛夛紝C锛?,0锛夛紝鍒欑洿绾緽D鐨勮В鏋愬紡涓猴紙锛?A锛?y= x锛?B锛?y=锛?x+ C锛?y= x+ D锛?y= x+ 12?鍜?,澶ф呴櫎鍘诲皬姝f柟褰㈤儴鍒嗙殑闈㈢Н涓簊锛堥槾褰遍儴鍒嗭級锛屽垯s涓巟鐨勫ぇ鑷村浘璞′负锛?锛?ч6?鍒嗭紝鍏?4鍒嗭級璇峰皢?13锛庡綋x=__________鏃讹紝鍒嗗紡鐨勫€间负闆?14锛庝竴绮掔背鐨勯噸閲忕害涓?.000036篲_ 鍏?15y=ax+b锛坅鈮?锛夊拰鍙屾洸绾縴= (k鈮?)鐩镐氦,y鐨勬柟绋嬬粍鐨勮В鏄痏________ 16锛庝竴娆″嚱鏁皔=kx+b(k鈮?)鐨勫浘璞′笌鐩寸嚎y=-2x+1骞y=3x-1浘璞¤〃杈惧紡涓篲________ 銆?17锛庡皢x= 浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??锛屽張灏唜= +1浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??锛屽張灏唜= +1浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??鍒?=______________ 18鍥撅紝鐭╁舰OABC鐨勪袱杈筄A銆丱C鍒嗗埆鍦▁杞淬€亂杞寸殑姝e崐杞翠笂锛孫A=4锛孫C=2锛岀偣G掔嚎鐨勪氦鐐癸紝缁忚繃鐐笹鐨勫弻鏇茬嚎y=BC鐩镐氦浜庣偣M,姹侰M锛歁B鐨勫€兼槸_______銆???鍒嗭紝鍏?4鍒嗭級瑙g嗚В?1920锛??紝姣忓皬棰?0鍒嗭紝鍏?0鍒В?21锛庤В鏂圭▼锛?= 22锛庡寲绠€锛屽啀姹傚€硷細鍏朵腑鏄?锛?? 23锛=kx+b鐨勫浘璞′笌x杞翠氦涓庣偣C锛屼笖涓庡弽姣斾緥鍑芥暟y= 鐨勫浘璞¢兘缁忚繃鐐笰锛?2,6锛夊拰鐐笲锛?锛宯锛?(1) 姹傚弽姣斾緥鍑芥暟鍜屼竴娆″嚱鏁拌В鏋愬紡(2) 鐩存帴鍐欏嚭涓嶇瓑寮弅x+b鈮?鐨勮В闆?(3) 姹?AOB鐨勯潰绉?24锛?013骞?鏈?0鏃ワ紝鍥涘窛闆呭畨鍙戠敓浜?.0绾у湴闇囥€傚湪鎶楅渿鏁7200椤跺笎绡锋敮鎻村洓宸濈伨鍖猴紝鍚庢潵鐢变簬鎯呭喌绱ф€ワ紝鎺ユ敹鍒颁笂绾ф寚绀猴紝瑕佹眰鐢熶骇鎬婚噺姣斿師璁″垝澧炲姞20%锛屼笖蹇呴』鎻愬墠5澶╁畬鎴愮敓浜т换鍔★紝璇ュ巶杩呴€熷姞娲句汉鍛樼粍缁囩敓浜э紝瀹?姣忓ぉ鐢熶骇鐨勯《鏁扮殑2鍊嶏紝璇烽棶璇ュ巶瀹為檯姣忓ぉ鐢熶骇澶氬皯椤跺笎绡?浜斻€佽В??2鍒?锛屽叡24鍒嗭В?25锛庡洓宸濊媿20澶╁叏y锛堝崟浣嶏細鍗冨厠锛変笌涓婂競鏃堕棿x1锛夋墍绀猴紝绾㈡槦鐚曠尨妗冪殑浠锋牸z(鍗曚綅锛氬厓/鍗冨厠)涓庝笂甯傛椂闂磝锛堝ぉ锛夌殑2锛夋墍绀恒€?锛?у€硷紱锛?勬棩閿€閲弝涓庝笂甯傛椂闂磝鐨勫嚱鏁拌В殑鍙栧€艰寖鍥淬€?锛?锛夎瘯姣旇緝绗?澶╁拰绗?3?26?绾縴=x涓巠=-x+2浜や簬鐐笰锛岀偣P A涓婁竴鍔ㄧ偣()锛屼綔PQ y=-x+2浜庣偣Q,Q涓鸿竟QMN,璁剧偣P鐨勬í鍧愭爣涓簍銆?锛?锛夋眰浜ょ偣A 鐨勫潗鏍囷紱锛?锛夊啓鍑?鐐筆浠庣偣O杩愬姩鍒扮偣AQMN涓?OAB閲嶅彔鐨勯潰绉痵涓巘鐨勫嚱鏁板叧绯诲紡锛屽苟鍐欏嚭鐩稿簲鐨勮嚜鍙橀噺t鐨勫彇鍊艰寖鍥达紱锛?锛夋槸鍚﹀瓨鍦ㄧ偣Q锛屼娇OCQ鑻??。
2012-2013八年级下学期期末考试数学试卷(人教版)(含答案)
2012-2013学年度第二学期期末考试一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( B )A .2个B .3个C .4个D .5个2.当x =( B )时,分式x x 242--的值为0。
A. 2B. -2C. ±2D. 63.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( B ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( C )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个A B OyxABCDEABEDC第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 甲、乙两名学生在5次数学考试中,得分如下: 甲:89,85,91,95,90; 乙:98,82,80,95,95。
华师大版八年级下册2013年数学期末考试卷和答案免费下载
华师大版八年级下册2013年数学期末考试卷和答案免费下载此套华师大版八年级下册2013年数学期末考试卷和答案免费下载由整理,所有试卷与八年级数学华师大版教材大纲同步,试卷供大家免费使用下载打印,转载前请注明出处。
如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!试卷内容预览:八年级数学期末试题一、选择题(每小题3分,共18分)1. 要使分式有意义,必须满足的条件是【】a. b. c. d.2.小明五次跳远的成绩(单位:米)是:,,,,,这组数据的中位数是【】a.b. d. d.3.如图,ab=ad,bc=cd,点e在ac上,则全等三角形共有【】a.1对 b.2对c.3对 d.4对4.下列说法中错误的是【】a.两条对角线互相平分的四边形是平行四边形b.两条对角线相等的四边形是矩形c.两条对角线互相垂直的矩形是正方形d.两条对角线相等的菱形是正方形5.一次函数的图象不经过【】a.第一象限 b.第二象限 c.第三象限 d.第四象限6.如图(1),在矩形abcd中,动点p从点b出发,沿bc—cd—da 运动至点a停止.设点p运动的路程为x,△abp的面积为y,如果y关于x的函数图象如图(2)所示,则y的最大值是【】a.55 b.30 c.16 d.15二、填空题(每小题3分,共27分)7.分式方程的解为.8.某种微粒的直径为,用科学记数法表示是 . 9.点(4,-3)关于原点对称的点的坐标是_____________.10.命题“若,则”的逆命题是命题(选填“真”或“假”).11.若正比例函数(≠ )经过点(,),则的值为_______.12.已知四边形abcd中,,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.13.甲、乙两人进行射击比赛,在相同条件下,各射击10次,他们的平均成绩均为7环,10次射击的成绩的方差分别是s2甲= 3,s2乙=,则成绩比较稳定的是__________(填“甲”或“乙”).14.小青在八年级上学期的数学成绩如下表所示.平时测验期中考试期末考试成绩86 90 81如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是分.15.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数 1 2 3 4 … n正三角形个数 4 7 10 13 …则剪10次时正三角形的个数=.三.解答题(本大题8个小题,共75分)16.(8分)先化简再求值: ÷(1+ ) ,其中x=-2 .17.(9分)如图,菱形abcd中,点e、f分别是bc、cd边的中点.求证:ae=af.18.(9分)如图,已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2) 请直接写出不等式的解集.19.(9分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名 1 3 2 324 1每人月工资/元21000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.20.(9分)如图,已知平行四边形abcd.(1)用直尺和圆规作出∠abc的平分线be,交ad的延长线于点e,交dc于点f(保留作图痕迹,不写作法);(2)在第(1)题的条件下,求证:△abe是等腰三角形.21.(10分)如图是一个等腰直角三角板△abc,ac=bc,∠acb=90°,把三角板△abc放在平面直角坐标平面内,点a(0,2)、c(1,0),函数的图象经过点b,过点b作x轴垂线,垂足为d.⑴求证:△aoc≌△cdb;⑵求函数的解析式.更多免费资源下载http:// 课件|教案|试卷|无需注册22.(10分)如图,在梯形abcd中,ad//bc,e是bc的中点,ad=5,bc=12,梯形的高df=4,∠c=45°,点p是bc边上一动点,设pb的长为x.(1)当x的值为____________时,以点p、a、d、e为顶点的四边形为直角梯形;(2)当x的值为____________时,以点p、a、d、e为顶点的四边形为平行四边形;;(3)点p在bc边上运动的过程中,以p、a、d、e为顶点的四边形能否构成菱形试说明理由.23.(11分)某经销商用2350元购进a、b、c三种新型电动玩具共50套,并且购进的a种玩具不少于10套、但最多不超过23套,设购进a种电动玩具x套,购进b种电动玩具y 套,三种电动玩具的进价和售价如下表:电动玩具型号 a b c进价(单位:元/套)40 55 50销售价(单位:元/套)50 80 65(1)用含x、y的代数式表示购进c种电动玩具的套数;(2)求出y与x之间的函数关系式;(3)假设所购进的电动玩具全部售出,且在购进这批玩具过程中需要另外支出各种费用共200元.①求出利润p(元)与x(套)之间的函数关系式(利润=销售收入-总进价-其他费用);②求出利润的最大值,并写出此时购进三种电动玩具各多少套。
2013—2014学年第二学期八年级数学期末试题(含答案)
2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
北京市西城区(南区)2013年八年级下期末数学试卷及答案
北京市西城区(南区)2012-2013学年下学期八年级期末质量检测数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,不是一次函数的是A. 4+-=x yB. x y 52=C. x y 321-=D. xy 7=2. 下列图形中,既是轴对称图形,又是中心对称图形的是3. 一个多边形的内角和与外角和相等,则这个多边形是 A. 四边形B. 五边形C. 六边形D. 八边形4. 正方形具有而矩形没有的性质是 A. 对角线互相平分 B. 每条对角线平分一组对角 C. 对角线相等D. 对边相等5. 下列各点中,在双曲线xy 12-=上的点是A. (-2,3)B. (4,3)C. (-2,-6)D. (6,-2)6. 甲、乙、丙、丁四名学生10次小测验成绩的平均数(单位:分)和方差如下表:选手 甲 乙 丙 丁 平均数 92 92 92 92 方差 3.61.21.42.2则这四人中成绩最稳定的是A. 甲B. 乙C. 丙D. 丁7. 如图,在平行四边形ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于A. 2cmB. 4cmC. 6cmD. 8cm8. 一次函数22-=x y 的图象不经过...的象限是 A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 某人驾车从A 地走高速公路前往B 地,中途在服务区休息了一段时间。
出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从A 地出发到达B 地的过程中,油箱中所剩燃油y (升)与时间t (小时)之间的函数图象大致是10. 如图,A 、B 是函数=y x2的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A. 2=SB. 4=SC. 42<<SD. 4>S11. 如图,在梯形ABCD 中,AB ∥DC ,∠A =90°,AD =DC =4,AB =1,BC 的长度是A. 5B. 4C. 7D. 612. 如图,△ABC 中,BC =18,若BD ⊥AC 于D ,CE ⊥AB 于E ,F 、G 分别为BC 、DE 的中点,若ED =10,则FG 的长为A. 142B. 9C. 10D. 无法确定二、填空题(本大题共8小题,每小题3分,共24分。
2023-2024学年山东省济南市历下区八年级(下)期末数学试卷及答案解析
2023-2024学年山东省济南市历下区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(4分)下列是关于x的一元二次方程的是()A.B.x(x+6)=0C.a2x﹣5=0D.4x﹣x3=23.(4分)下列分式是最简分式的是()A.B.C.D.﹣4.(4分)无论a取何值,下列分式中,总有意义的是()A.B.C.D.5.(4分)一个多边形外角和是内角和的.则这个多边形的边数是()A.10B.11C.12D.136.(4分)若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是()A.0B.﹣1C.1D.不能确定7.(4分)如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AE=3,DF=1,则边BC的长为()A.7B.8C.9D.108.(4分)《鹊华秋色图》是画家赵孟颠的作品,如图是它的局部画面,装裱前是一个长为54cm,宽为27cm 的矩形,装裱后,整幅图画宽与长的比是5:12,且四周边框的宽度相等,则边框的宽度应是多少?设边框的宽度为x cm,下列符合题意的方程是()A.B.C.D.9.(4分)如图,△ABC绕点O顺时针旋转角度α后得到△DEF,若∠COE=15°,∠BOF=85°,则旋转角α的值为()A.40°B.45°C.50°D.55°10.(4分)如图,在正方形ABCD中,AD=4,对角线AC与BD交于点O,OG⊥AB于点G,E为平面内一动点,且∠AEB=90°,F为AE中点,连接GF,OF.有下列说法:①∠AFG=90°;②取AG=2;④在点E运动过中点P,连接PF,则∠FPG=2∠FAB;③当四边形AOBE为正方形时,S△FGO程中,OF的最小值为,其中正确的序号有()A.①②B.①②④C.②③④D.①②③④二、填空题(本大题共5个小题,每小题4分,共20分.)11.(4分)如图1,是某公园里采用的八角形空窗,其轮廓是一个正八边形,图2是该八角形空窗的示意图,则它的任意一个内角∠a为度.12.(4分)化简分式:的结果是.13.(4分)如图,在菱形ABCD中,对角线AC=6,BD=8,过点A作AE⊥CD于点E,则AE为.14.(4分)如图,为美化环境,某地准备将一片面积为7812m2的矩形空地建为一个花圃,花圃中间共设有4条等宽的水渠,将花圃分为了8个形状相同的矩形区域,在每个区域内种植花草,花草的总面积为7200m2,若测得空地的宽长为62m,则水渠的宽度为m.15.(4分)如图,在矩形ABCD中,AB=7,对角线AC,BD相交于点O,点M,N分别在线段OD,OC 上,且CN=6,DM=2,若CM=DN,则DN的长为.三、解答题(本大题共10个小题,共90分.请写出文字说明、证明过程或演算步骤.)16.(7分)先化简,再求值:,其中x=2.17.(7分)已知关于x的一元二次方程x2﹣2mx+m2﹣n+1=0有两个不相等的实数根,求n的取值范围.18.(7分)如图,点O为▱ABCD的对角线AC,BD的交点,经过点O的直线分别与BA的延长线和DC的延长线交于点E,F.求证:BE=DF.19.(8分)解方程:(1);(2)x2+6x﹣1=0.20.(8分)如图,在平面直角坐标系中,已知点A(﹣2,2),B(﹣1,4),C(﹣4,5),请解答下列问题:(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(1,﹣1),请作出△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°得到△A2B2C2,请作出△A2B2C2;(3)当四边形ABCD为平行四边形时,请直接写出点D的坐标.21.(9分)“城是济南城,湖是大明湖,楼是超然楼”是网友为超然楼写的广告词.随旅游旺季的到来,大明湖超然楼景区的游客人数逐月增加,4月份游客人数约为16万人次,6月份游客人数约为25万人次.(1)求这两个月中该景区游客人数的月平均增长率;(2)若增长率保持不变,请求出7月份的游客人数.22.(10分)【问题背景】如图1,某小区的大门是伸缩电动门,它由若干个全等的图形组成.爱思考的小腾发现大门打开的宽度受每个图形内角(如图2中∠A)度数的影响.【提出问题】大门打开的宽度是如何随着内角度数变化的?【分析问题】经过思考,小腾准备按照如下步骤解决问题:①利用图形的性质,先求出特殊内角度数时伸缩门(包括安装驱动器的门柱)的长度,进而计算出大门打开的宽度;②建立平面直角坐标系,通过列表、描点、连线的方法,用函数刻画内角度数x(°)与大门打开的宽度y(m)之间的关系.【解决问题】(1)小腾实地测量了相关数据,并画出了示意图,如图2,伸缩电动门中最上面一排是12个全等的图形,每个图形的边长均为0.3m,在伸缩电动门运行的过程中,这些图形始终是;A.矩形B.菱形C.梯形(2)已知安装驱动器的门柱是宽度为0.5m的矩形,大门的总宽度为7m(门框的宽度忽略不计),小腾记录了不同内角度数对应的伸缩门的长度(m)和大门打开的宽度(m),请你通过计算帮他补全数据(结果精确到0.01m):内角∠A度数x(°)3045607590105120伸缩门的长度(m) 2.36 3.26a 4.88 5.59 6.21大门打开的宽度y(m) 4.64 3.74b 2.12 1.410.79①当每个图形的内角度数为60°时,表格中a=,b=;②当每个图形的内角度数为120°时,大门打开的宽度约为多少米?(参考数据:,,结果精确到0.01m)【问题总结】如图3,小腾为了进一步研究内角度数x(°)与大门打开的宽度y(m)之间所满足的函数关系,他利用列表,描点,连线的方式画出了函数图象,通过观察图象,小腾发现:随着内角度数的增大,大门打开的宽度逐渐减小,减小的速度先较快,然后逐渐变慢.23.(10分)法国数学家韦达在研究一元二次方程时发现:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1、x2,那么两个根的关系为:,.习惯上把这个结论称作“韦达定理”.小明在探究二次项系数为1的一元二次方程x2+bx+c=0根的特征时发现,此时“韦达定理”可表述为:x1+x2=﹣b,x1•x2=c.借此结论,小明进行了对“倍根方程”和“方根方程”的根的特征的探究.定义:倍根方程:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根(都不为0),且其中一个根等于另外一个根的2倍,则称这样的方程为“倍根方程”.方根方程:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根(都不为0),且其中一个根的平方等于另外一个根,则称这样的方程为“方根方程”.(1)请你判断:方程x2+9x+18=0是(填“倍根方程”或“方根方程”);(2)若一元二次方程x2﹣6x+c=0是“倍根方程”,求c的值;(3)根据探究,小明想设计一个一元二次方程x2+bx+c=0,使这个方程既是“倍根方程”又是“方根方程”,请你先帮他算一算,这个方程的根是多少?24.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,且OA=6,OC =4.点D为OA的中点,连接CD,DE为∠ADC的平分线,交BC于点E.(1)求点B和点E的坐标;(2)点P为射线DE上一动点,点Q为平面内任意一点,①连接BD,CP,若S△CDP=S△BCD,请求出点P的坐标;②是否存在P,Q两点,使得四边形OBPQ为矩形?若存在,请求出P点的坐标;若不存在,请说明理由.25.(12分)如图1,正方形ABCD的边BE与正方形BEFG的边AB重合,直线AG交直线FE于点H,连接EC.(1)图1中线段AG与CE的数量关系是,∠AGF与∠BEC的关系是;(2)如图2,正方形BEFG绕点B顺时针旋转角度α(0°≤α≤90°),当点H与点A重合时,(1)中的结论依然成立的,请予以证明;不成立的,请写出它们新的关系,并说明理由;(3)如图3,若AB=8,BE=4,连接AC,正方形BEFG绕点B顺时针旋转角度α(0°≤α≤90°),当点F落在对角线AC上时,请直接写出此时△AGF的面积.2023-2024学年山东省济南市历下区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图形既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;B.该图形不是轴对称图形,是中心对称图形,故本选项不符合题意;C.该图既是中心对称图形,又是轴对称图形,故本选项符合题意;D.该图形是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点评】本题考查了中心对称图形和轴对称图形,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.2.【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程”进行分析即可.【解答】解:A、该方程是分式方程,不是关于x的一元二次方程,故本选项不符合题意;B、该方程是关于x的一元二次方程,故本选项符合题意;C、当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意;D、该方程是关于x的一元三次方程,故本选项不符合题意;故选:B.【点评】本题主要考查了一元二次方程的定义,关键是掌握一元二次方程的一般形式.3.【分析】直接利用分式的基本性质分别化简,进而判断得出答案.【解答】解:A.无法化简是最简分式,故此选项符合题意;B.==,不是最简分式,不合题意;C.=,不是最简分式,不合题意;D.﹣=﹣,不是最简分式,不合题意;故选:A.【点评】此题主要考查了最简分式,正确掌握最简分式的定义是解题关键.一个分式的分子与分母没有公因式时,叫最简分式.4.【分析】根据分式有意义的条件是分母不等于零判断.【解答】解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.【点评】本题的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.5.【分析】设这个多边形的边数为n,根据题意列得方程,解方程即可.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=360°,解得:n=12,即这个多边形的边数为12,故选:C.【点评】本题考查多边形的内角和及外角和,结合已知条件列得正确的方程是解题的关键.6.【分析】把x=1代入方程计算求出a+b+c的值.【解答】解:把x=1代入方程得:a+b+c=0,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.【分析】由三角形的中位线定理得到EF∥BC,BC=2EF,BE=AE=3,利用等腰三角形的判定结合平行线的性质和角平分线的定义求出DE=3,可得EF=4,即可求出BC的长.【解答】解:∵EF是△ABC的中位线,AE=3,∴EF∥BC,BC=2EF,BE=AE=3,∴∠EDB=∠DBC,∵BD平分∠EBC,∴∠EBD=∠DBC,∴∠EDB=∠EBD,∴ED=BE=3,∵DF=1,∴EF=ED+DF=3+1=4,∴BC=8,故选:B.【点评】本题考查三角形的中位线定理,等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【分析】根据题意可知,装裱后的长为(54+2x)cm,宽为(27+2x)cm.再根据整幅图画宽与长的比是5:12,即可得到相应的方程.【解答】解:由题意可得:,故选:D.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找到等量关系,列出相应的分式方程.9.【分析】先根据旋转的性质得到∠BOE=∠COF=α,由于∠BOF=∠BOE+∠COF﹣∠COE,所以α+α﹣15°=85°,然后解方程即可.【解答】解:∵△ABC绕点O顺时针旋转角度α后得到△DEF,∴∠BOE=∠COF=α,∵∠BOF=∠BOE+∠COF﹣∠COE,∴α+α﹣15°=85°,解得α=50°.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.【分析】①正确,利用三角形中位线定理证明;②正确,利用直角三角形斜边中线的性质证明即可;③错误,△OGF的面积=1;④正确,连接OP,求出OP,PF,利用两点之间线段最短解决问题.【解答】解:∵四边形ABCD是正方形,∴OA=OB,∵OG⊥AB,∴AG=GB,∵AF=EF,∴FG∥EB,∴∠AFG=∠AEB=90°,故①正确,∵∠AFG=90°,AP=PG,∴AP=PF=PG,∴∠FAP=∠AFP,∴∠FPG=∠FAG+∠AFP=2∠FAB,故②正确,如图1中,当四边形AOBE是正方形时,FG∥EB∥OA,∴△FOG的面积=△AFG的面积=AF•FG=××=1,故③错误,如图2中,连接OP.∵OP===,PF=AG=1,∴OF≥OP﹣PF=﹣1,∴OF的最小值为﹣1.故④正确.故选:B.【点评】本题考查正方形的性质,直角三角形斜边中线的性质,三角形中位线定理,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题(本大题共5个小题,每小题4分,共20分.)11.【分析】先求出正八边形的一个外角的度数,再根据邻补角的定义即可求出答案.【解答】解:∵正八边形的一个外角的度数为360°÷8=45°,∴正八边形的一个内角的度数为180°﹣45°=135°.故答案为:135.【点评】本题主要考查多边形内角与外角,熟练掌握多边形的外角和公式是解题的关键.12.【分析】先把能够分解因式的分母分解因式,然后约分,最后按照同分母的分式相加减法则进行计算即可.【解答】解:原式===,故答案为:.【点评】本题主要考查了分式的加减运算,解题关键是熟练掌握几种常见的分解因式的方法和分式的约分.13.【分析】因为四边形ABCD是菱形,AC=6,BD=8,则AC⊥BD,OA=OC=3,OB=OD=4,利用勾股定理求出菱形的边长为5.则菱形ABCD的面积为,根据AE⊥CD,则,求出AE即可.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AC⊥BD,OA=OC=3,OB=OD=4,∴CD==5,即菱形的边长为5.∵四边形ABCD是菱形,AC=6,BD=8,∴菱形ABCD的面积为,∵AE⊥CD,∴,∴.故答案为:.【点评】本题考查菱形的性质,勾股定理,解题的关键是掌握相关知识的灵活运用.14.【分析】根据空地的面积与宽,利用矩形面积公式求出长,设水渠的宽度为x m,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设水渠的宽度为x m,空地的长为7812÷62=126(m),根据题意得:(62﹣x)(126﹣3x)=7200,整理得:x2﹣104x+204=0,即(x﹣2)(x﹣102)=0,解得:x1=2,x2=102(不合题意,舍去),则水渠的宽度为2m.故答案为:2.【点评】此题考查了一元二次方程的应用,平移的性质,弄清题意是解本题的关键.15.【分析】过D作DE⊥OC于E,过C作CF⊥OD于F,根据矩形的性质得到AB=CD,OD=,OC=,根据全等三角形的判定和性质定理即可得到结论.【解答】解:过D作DE⊥OC于E,过C作CF⊥OD于F,∵四边形ABCD是矩形,∴AB=CD,OD=,OC=,∴OD=OC,=,∴S△COD∴CF=DE,∵CM=DN,∴Rt△CMF≌Rt△DNE(HL),∴FM=NE,设FM=NE=x,∴DF=DM+FM=2+x,CE=CN﹣NE=6﹣x,∵CD=DC,DE=CF,∴Rt△CFD≌Rt△DEC(HL),∴DF=CE,∴2+x=6﹣x,∴x=2,∴CE=4,∵CD=AB=7,∴DE2=CD2﹣CE2=72﹣42=33,∴DN===,故答案为:.【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练掌握矩形的性质以及全等三角形的判定和性质是解题的关键.三、解答题(本大题共10个小题,共90分.请写出文字说明、证明过程或演算步骤.)16.【分析】先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.【解答】解:=•=,当x=2时,原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.17.【分析】根据题意可得根的判别式Δ>0,列出不等式求解即可.【解答】解:∵关于x的一元二次方程x2﹣2mx+m2﹣n+1=0有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣2m)2﹣4(m2﹣n+1)>0,∴n>1.【点评】本题重点考查了一元二次方程根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)中,当Δ>0时,方程有两个不相等的两个实数根是解答此题的关键.18.【分析】由四边形ABCD是平行四边形,易证得△BOE≌△DOF(ASA),即可证得BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴BE=DF.【点评】此题考查了平行四边形的性质,全等三角形的判定和性质,解决本题的关键是得到△BOE≌△DOF.19.【分析】(1)先找出最简公分母2(x﹣2),去分母后求出x的值,然后检验确定分式方程的解即可;(2)利用配方法求解即可.【解答】解:(1)方程两边同乘2(x﹣2),得4x﹣(x﹣2)=﹣3,解得x=﹣,检验:当x=﹣时2(x﹣2)≠0,∴原分式方程的解是x=﹣;(2)x2+6x﹣1=0,x2+6x=1,x2+6x+9=10,即(x+3)2=10,∴x+3=,∴x1=﹣3+,x2=﹣3﹣.【点评】本题考查了解分式方程,解一元二次方程,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.解分式方程必须要检验.20.【分析】(1)由题意得,△ABC是向右平移5个单位长度,向下平移6个单位长度得到的△A1B1C1,根据平移的性质作图即可.(2)根据旋转的性质作图即可.(3)结合平行四边形的性质可得答案.【解答】解:(1)由题意得,△ABC是向右平移5个单位长度,向下平移6个单位长度得到的△A1B1C1.如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)∵四边形ABCD为平行四边形,∴CD∥AB,CD=AB,∴点D的坐标为(﹣5,3).【点评】本题考查作图﹣平移变换、旋转变换、平行四边形的性质,熟练掌握平移的性质、旋转的性质、平行四边形的性质是解答本题的关键.21.【分析】(1)设这两个月中该景区游客人数的月平均增长率为x,根据4月份游客人数约为16万人次,6月份游客人数约为25万人次.列出一元二次方程,解之取符合题意的值即可;(2)由题意列式计算即可.【解答】解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意得:16(1+x)2=25,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去),答:这两个月中该景区游客人数的月平均增长率为25%;(2)由题意可知,25(1+25%)=31.25(万人次),答:7月份的游客人数为31.25万人次.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【分析】(1)依据题意,根据所给条件判断四边形的形状即可得解;(2)①依据题意,画出图形得到△ABD是等边三角形,然后计算即可;②依据题意,连接BD、AC交于点O,利用勾股定理解题即可.【解答】解:(1)∵每个图形的边长均为0.3m,∴图形为菱形.故选:B.(2)①当每个图形的内角度数为60°时,如图,连接BD.∴△ABD是等边三角形.∴BD=AB=0.3m.∴伸缩门的长度为a=0.3×12+0.5=4.1(m),b=7﹣4.1=2.9(m).故答案为:4.1;2.9.②如图,每个图形的内角度数为120°时,连接BD、AC交于点O,∴∠ABC=60°,即△ABC是等边三角形.∴AC=0.3.又∵四边形ABCD是菱形,∴OA=AC=0.15,BD=2BO.∴BD=m.∴大门打开的宽度为7﹣×12﹣0.5≈0.26(m).【点评】本题主要考查了动点问题的函数图象、等边三角形的判定与性质、菱形的性质、勾股定理,解题时要熟练掌握并能灵活运用是关键.23.【分析】(1)求出方程的解,再判断是否为倍根方程;(2)设方程x2﹣6x+c=0的两个根为x1,x2,由倍根方程”的定义可知x2=2x1,利用根与系数的关系即可求得c的值;(3)设一元二次方程x2+bx+c=0,的两个实数根分别为x1、x2,由题意可知x1=2x2,x1=或x2=2x1,x1=,即可得到方程的根是2、4或、.【解答】解:(1)解方程x2+9x+18=0得:x1=﹣3,x2=﹣6,∵x2=2x1,∴方程x2+9x+18=0是倍根方程;故答案为:“倍根方程”;(2)设方程x2﹣6x+c=0的两个根为x1,x2,∵一元二次方程x2﹣6x+c=0是“倍根方程”,∴x2=2x1,∴3x1=6,2=c,∴x1=2,∴c=8;(3)设一元二次方程x2+bx+c=0,的两个实数根分别为x1、x2,∵这个方程既是“倍根方程”又是“方根方程”,∴x1=2x2,x1=,∴2x2=,解得x2=2或x2=0(舍去),∴x1=4,或x2=2x1,x1=,∴x2=,解得x2=或x2=0(舍去),∴x1=,∴这个方程的根是2、4或、.【点评】本题考查了一元二次方程的根与系数的关系,一元二次方程的一般形式,新定义“倍根方程”或“方根方程”的意义,理解“倍根方程”或“方根方程”的意义和掌握根与系数的关系是解决问题的关键.24.【分析】(1)根据矩形的性质可得BC=6,AB=4从而得到B的坐标,再由角平分线+平行线可以证出CE=CD,进而得到点E的坐标;(2)利用割补法将△CDP的面积表示出来,再转化为坐标之间的关系求解即可;(3)要使四边形OBPQ是矩形,则△OBP为直角三角形,∠OBP=90°,设出点P的坐标,利用两点距离公式和勾股定理建立方程求解即可.【解答】解:(1)∵四边形OABC为矩形,∴BC∥OA,BC=OA,AB∥OC,AB=OC,∴∠CED=∠ADE,∵OA=6,OC=4,∴B(6,4),∵DE为∠ADC的平分线,∴∠CDE=∠ADE,∴∠CED=∠CDE,∴CE=CD,∵D为OA中点,∴OD=OA=3,∴D(3,0),由勾股定理可得CD=5,∴CE=5,∴E(5,4).(2)①∵四边形OABC为矩形,点D为OA的中点,=S四边形OABC=OA•OC=12,∴S△BCD=S△BCD=12,∴S△CDP延长ED,交y轴于点M,∵D(3,0),E(5,4),∴y DE=2x﹣6,∴M(0,﹣6),∴CM=10,=S△PCM﹣S△DCM=CM•(x P﹣x D)=12,∵S△CDP∴×10×(x P﹣3)=12,∴x P=,∴P(,).②存在,∵点P是射线DE上的动点,∴设P(x,2x﹣6),∵O(0,0),B(6,4),∴OB2=62+42=52,OP2=x2+(2x﹣6)2=5x2﹣24x+36,BP2=(x﹣6)2+(2x﹣6﹣4)2=5x2﹣52x+136,要使四边形OBPQ是矩形,则△OBP为直角三角形,∠OBP=90°,∴OB2+BP2=OP2,即52+5x2﹣52x+136=5x2﹣24x+36,解得x=,∴P(,).【点评】本题主要考查了待定系数法求一次函数、一次函数上点的坐标特征、矩形的性质、三角形的面积公式、勾股定理等知识,熟练掌握相关知识是解决问题的关键.25.【分析】(1)证△CBE≌△ABG(SAS)即可;(2)同第一问思路,证△CBE≌△ABG(SAS)即可得解;(3)由BO=BD=4=BF可得F、O重合,画图示意图,△AGF的面积很容易就得出.【解答】解:(1)∵四边形BEFG和四边形ABCD都是正方形,∴BE=BG,∠CBE=∠ABG=90°,BC=BA,∴△CBE≌△ABG(SAS),∴CE=AG,∠BEC=∠AGB,∵∠AGF+∠AGB=90°,∴∠AGF+∠BEC=90°,故答案为:AG=CE,∠AGF+∠BEC=90°.(2)AG=CE依然成立;∠AGF与∠BEC的关系是∠BEC﹣∠AGF=90°.理由:∵四边形BEFG和四边形ABCD都是正方形,∴BG=BE,AB=BC,∠GBE=90°=∠ABC,∴∠GBA=∠EBC,∴△CBE≌△ABG(SAS),∴AE=CE,∠AGB=∠CEB,∵四边形BEFG是正方形,∴∠BGF=90°,∴∠AGF=∠AGB﹣∠BGF=∠BEC﹣90°,即∠BEC﹣∠AGF=90°.(3)如图,连接BF,连接BD与AC交于点O,∴AC=BD ==8,BF ==4,∴BO =BD=4=BF,∵F在AC上,∴F与O 点重合,如图:=×4×4=8.∴S△AGF【点评】本题主要考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,熟练掌握相关知识点是解题的关键。
2013八年级(下册)数学期末测试卷(含答案)
2013年八年级(下册)数学期末测试题(考试时间:120分钟 满分:150分)姓名:_________ 得分:____________说明:本试卷分为A 卷和B 卷两部分。
卷 名 A 卷B 卷总分 题 号 一 二 三 四 一 二 得 分A 卷 第I 卷一、选择题(每题只有一个正确答案,每题3分,共30分)1.不等式21>+x 的解集是( )A.1>xB.1<xC.1≥xD.1≤x2.多项式22y x -分解因式的结果是( )A.2)(y x +B.2)(y x -C.))((y x y x -+D.))((x y x y -+3.函数23-=x y 的自变量的取值范围是( ) A.2>x B.2≠x C.2≥x D.2-≠x4.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是 ( ) A.ACBCAB AC = B.BC AB BC ⋅=2 C.215-=AB AC D.618.0≈AC BC 5.若ABC ∆∽DEF ∆,若050=∠A ,060=∠B ,则F ∠的度数是 ( ) A.050 B.060 C.070 D.080 6.下列调查中,适宜采用普查方式的是 ( )A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间4题图10题图7.若分式方程5156-=+--x k x x (其中k 为常数)产生增根,则增根是 ( ) A.x=6 B.x=5 C.x=k D.无法确定8.若的值是,则131242++=+x x x x x ( )A.21 B.101 C.41 D.81 9.关x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有四个整数解,则a 的取值范同是( )A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 10.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .6第II 卷二、填空题(每题3分,共15分)11、分解因式:2m 2-8m+8=_________12、若的值为那么分式b ba b b a +=-,352__________13、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为___________。
2013-2014学年八年级下期末考试数学试题及答案
八年级数学第1 页共6 页2013-2014学年度(下)八年级期末质量检测数学(满分:150分;考试时间:120分钟) 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A .234265+=B .842=C .2733¸=D .2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0 6、如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L ′,则直线L /的解析式为()A.12+=x yB. 42-=x yC. 22y x =- D. 22+-=x y 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为()(A )4 cm (B )5 cm (C )6 cm (D )10 cm A第7题BCDEEDCBA(第8题A B C D E F 8、如图,ABC D 和DCE D 都是边长为4的等边三角形,的等边三角形,点点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(的长为( )(A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分.分. 9、计算123-的结果是的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
学1213学年下学期八年级期末考试数学(附答案) (1)
车逻初中2012—2013学年第二学期期末考试八年级数学(考试时间120分钟 满分150分)一、选择题(本大题有8小题,共24分.把答案填入下表)1.若分式12x x -+的值为0,则 A. 2x =-B. x= 0C. x = 1或2x =-D. x = 12. 若n m <,则下列不等式不一定正确的是A.n m 22<B.0<-n mC.23-<-n mD.22n m <3. 若反比例函数的图象经过点(-1,2),则它的解析式是 A. y = -x 21 B. y = -x 2 C. y = x 2 D. y = x14. 下列计算正确的是A.336x x x += B.236m m m ⋅= C.3= 5. 对4000米长的大运河堤进行绿化时,为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是A.21040004000=+-x x B.24000104000=--x x C.24000104000=-+x x D.21040004000=--x x6.如图,点D 、E 分别在△ABC 的 AB 、AC 边上,下列条件不能使△ADE ∽△ACB 的是A. ∠ADE =∠CB. ∠AED =∠BC. AD :AC=DE :BCD. AD :AC=AE :ABCE DA第6题图第7题图第8题图7.如图,身高1.6m 的小玲想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,若AC=0.8m ,BC=3.2m ,则树的高度为A. 4.8mB. 6.4mC. 8mD. 10m 8.如图,两个反比例函数xy 1=和x y 3-=的图象分别是1l 和2l .设点A 在1l 上,xAB ⊥轴交2l 于点B ,y AC ⊥轴交2l 于点C ,则△ABC 的面积为A. 4cm 2B. 6cm 2C. 8cm 2D. 10cm 2 二、填空题(本大题有10小题,共30分.把答案填在对应题号的横线上)9. 当m ▲ 时,42-m 有意义.10. 化简的结果为 ▲ . 11.在比例尺为1:500000的地图上,若甲、乙两地的距离cm 4,则甲、乙的实际距离 是 ▲ km .12.命题“平行四边形的对角线互相平分”的逆命题是 ▲ .13.学校举行中学生运动会,某班需要从3名男生和2名女生中随机抽取一名做志愿者,则女生被选中的概率是 ▲ . 14.关于x 的方程32=-+x ax 无解,则a 的值是 ▲ .15.如果将一张矩形的A4纸沿长边对折,得到两张全等的矩形纸片,恰好与原矩形相似,那么A4纸的长与宽的比为 ▲ . 16. 若点P (m , n )在反比例函数xy 4=的图象上,则243m n m -+的值为 ▲ . 17.已知△ABC 如图所示,A (5,0)、B (6,3) 、C (3,0),将△ABC 以坐标原点O 为位似中心、位似比3:1进行缩小,则缩小后的点B 所对应的点的坐标为 ▲ .18.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,21=CD DE ,若△DEF 的面积为1,则平行四边形ABCD 的面积为 ▲ . 三、解答题(本大题有10小题,共96分) 19.(本题满分8分)解不等式组()⎪⎩⎪⎨⎧≤-->+51325x x x x ,并写出最大整数解.20.(本题满分8分)已知x 是绝对值不大于2的整数,先化简221112x x x x x---÷+,再选择一个合适的x 的值代入求值.第17题图第18题图CBE DA F21.(本题满分8分)计算:(1(2)1)(1-22.(本题满分8分)我市自2013年1月开始实行的《交通新规》规定:在十字路口,机动车应按所需行进方向驶入导向车道. 如图,在一个两车道的十字路口,向左转弯的必须进入第一车道,直行或者向右转弯的进入第二车道.假设每一辆车经过该路口时,左转、直行、右转的可能性的大小均相同.(1)机动车驶入第二条车道的概率是 .(2)如果在第二条车道共有三辆机动车,利用画树状图或列表求车辆可以通行时这三辆车全部直行的概率.23.(本题满分10分)如图,在下列五个关系:①AB∥CD,②AD=BC,③∠A =∠C,④∠B =∠D,⑤∠B +∠C=180°中,选出两个关系作为条件,可以推出四边形ABCD是平行四边形,并以平行四边形定义.......作为依据予以证明.(写出一种即可)已知:在四边形ABCD中,,.求证:四边形ABCD是平行四边形.24.(本题满分10分)“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?25.(本题满分10分)在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D , EF 垂直平分AD 交AB 于点E .(1)证明:△DEF ∽△ADC ; (2)若AE=25 ,AC=32,求AD 的长.26.(本题满分10分)已知一次函数7+-=x y 与反比例函数()00>>=x k xky ,图象相交于A 、B 两点,其中A (1,a )、B (b ,1).(1)求k b a 、、的值; (2)观察图象,直接写出不等式07<-+x xk的解集; (3)若点M (3,0),连接AM 、BM ,探究∠AMB 是否为90°,并说明理由.27.(本题满分12分)暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价-进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.28.(本题满分12分)如图1,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 是BC 上一定点.动点P 从C 出发,以2cm /s 的速度沿C →A →B 方向运动,动点Q 从D 出发,以1cm /s 的速度沿D →B 方向运动.点P 出发5 s 后,点Q 才开始出发,且当一个点达到B 时,另一个点随之停止. 图2是当50≤≤t 时△BPQ 的面积S( cm 2)与点P 的运动时间t (s )的函数图象. (1)CD = ,=a ;(2)当点P 在边AB 上时,t 为何值时,使得△BPQ 与△ABC 为相似? (3)运动过程中,求出当△BPQ 是以BP 为腰的等腰三角形时的t 值.图1图2)。
2013年人教版八年级下册数学期末试题及答案.doc
DA BC2013年上人教版八年级下数学期末测试题一、选择题(每题4分,共48分) 1、下列各式中,分式的个数有( )31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍 3、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以(x -2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x -2D .1+(1-x)=x -2 7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对(第7题) (第8题) (第9题)8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 ( )ABCA 、1516B 、516C 、1532D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <2 10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。
2013年八年级下第三次联考数学试题及答案
2012-2013学年第二学期第三次联考八年级数学试卷一、选择题:(每小题3分,共30分)1. 使分式12-x x有意义,则x 的取值范围是 ( )A.21≥xB.21≤xC. 21>xD.21≠x 2. 下列因式分解错误的是( ) A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+ D.222()x y x y +=+3. 已知函数xky =的图象经过点(2,3),下列说法正确的是( )A .当x <0时,必有y <0 B.函数的图象只在第一象限C .y 随x 的增大而增大 D.点(-2,-3)不在此函数的图象上4. 小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、23231=⎪⎭⎫ ⎝⎛-- B 、b a b a +=+211 C 、 b a b a b a +=--22 D 、 02010=⎪⎭⎫⎝⎛- 5. 化简2293m mm --的结果是( )A.3+m m B.3+-m mC.3-m mD.m m -3 6. 汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,那么可以提前到达的小时数为 ( )A.212v t v v + B. 112v t v v + C. 1212v v v v + D. 1221v t v tv v - 7.已知关于x 的函数y=k(x-1) 和ky x=- (0)k ≠,它们在同一坐标系中的图象大第9题图致是( )8.11(1)(2)x mx x x -=--+分式方程有增根,则m 的值为( )A 0和3B 1C 1和-2D 3 9.如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E 。
则AC 和CD 的关系是( ) A .2AC DC = B .3AC DC = C .32AC DC = D .无法确定10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )(A )1515112x x -=+ (B )1515112x x -=+ (C )1515112x x -=- (D )1515112x x -=- 二、填空题:(每小题3分,共24分)11.计算: a 2b 3(ab 2)-2= .12.用科学记数法表示—0.000 000 0314= .13、写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) .14.对于非零的两个实数a 、b,规定11,a b b a⊗=-⊗若1(x+1)=1,则x 的值为( ) 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .16、一个函数具有下列性质:①它的图像经过点(-2,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为17. 反比例函数(0)k y k x =≠在x=2处, 自变量增加1时, 函数值减小23,则k = 18、如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx--21,且点A ,B 到原点的距离相等,则x = .…… 三、解答题:(共46分)19 .(每小题6分,共12分)(1) 计算:)2(216322baa bc ab -⋅÷(2)解分式方程1233xx x=+--20. 已知y 与x+2成反比例,且当x=5时,y=-6, 求(1)y 与x 之间的函数关系式 (2)当y=5时x 的值(8分)21.(本题6分)先将分式232(1)11x x x ++÷--进行化简,然后请你给x 选择一个合适的值,再求原分式的值.22.(本题10分)如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图像和反比例函数my x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;23.(本题10分) 某一工程队,在工程招标时,接到甲乙工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书预算,可有三种施工方案: (1)甲队单独完成此项工程刚好如期完工。
八年级下册数学期末试卷综合测试卷(word含答案)(1)
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新2013年八年级下期末考试数学试题(三)(考试时间:120分钟 试卷总分:120分)题 号 得 分一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中。
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-11有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考 A 、众数 B 、平均数 C 、加权平均数 D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、30010、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
D 、对角线互相垂直的四边形面积等于对角线乘积的一半。
11、甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
其中正确的有A 、1个B 、2个C 、3个D 、4个12、如图,两个正方形ABCD 和AEFG 共顶点A ,连BE 、DG 、CF 、AE 、BG ,K 、M 分别为DG 和CF 的中点,KA 的延长线交BE 于H ,MN ⊥BE 于N 。
则下列结论:①BG=DE 且BG ⊥DE ;②△ADG 和 △ABE 的面积相等;③BN=EN ,④四边形AKMN 为平行四边形。
其中正确的是 A 、③④ B 、①②③C 、①②④D 、①②③④ 第9题图二、填空题(共4小题,每小题3分,共12分)13、一组数据8、8、x 、10的众数与平均数相等,则x= 。
14、如图,己知直线b kx y +=图象与反比例函数xk y =图 象交于A (1,m )、B (—4,n ),则不等式b kx +>xk 的 解集为 。
第14题图15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。
……第一个图 第二个图 第三个图16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky =的图象过点D ,则其 解析式为 。
第16题图三、解答题(共9题,共72分) 17、(本题6分)解方程13321-+=+x x x x18、(本题6分)先化简,再求值。
)121(12xx x x --÷-其中2=x19、(本题6分)如图,□ABCD 中,点E 、F 在对角线AC 上,且AE=CF 。
求证:四边形BEDF 是平行四边形。
20、(本题7分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A 、B 、C 、D五位老师作为评委,对演讲答辩情况进行评价,结果如下表,另全班50位同学则参与民主测评进行投票,结果如下图: 民主测评统计图演讲答辩得分表:规定:演讲得分按“去掉一个最高分和一个最低分 再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分 ⑴求甲、乙两位选手各自演讲答辩的平均分; ⑵试求民主测评统计图中a 、b 的值是多少⑶若按演讲答辩得分和民主测评6:4的权重比计算两位选手的综合得分,则应选取哪位选手当班长。
21、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。
22、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O ,且AC ⊥BD ,DH ⊥BC 。
⑴求证:AH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。
23、(本题10分)某单位为了响应政府发出的“全民健身”的号召,打算在长和宽分别为20米和16米的矩形大厅内修建一个40平方米的矩形健身房ABCD,该健身房的四面墙壁中有两面沿用大厅的旧墙壁(如图为平面示意图),且每面旧墙壁上所沿用的旧墙壁长度不得超过其长度的一半,己知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米,设健身房高3米,健身房AB的长为x米,BC的长为y米,修建健身房墙壁的总投资为w元。
⑴求y与x的函数关系式,并写出自变量x的范围。
⑵求w与x的函数关系,并求出当所建健身房AB长为8米时总投资为多少元?24、某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。
⑴该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。
图①图②图③⑵试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。
⑶将矩形ABCD 改为边长为1的正方形ABCD ,直角三角板的直角顶点绕O 点旋转到图④,两直角边与AB 、BC 分别交于M 、N ,直接写出BN 、CN 、CM 、DM 这四条线段之间所满足的数量关系(不需要证明)图④25、(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2=上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。
⑴试判断四边形ABCD 的形状。
⑵若点P 是线段BD 上一点PE ⊥BC 于E ,M 是PD 的中点,连EM 、AM 。
求证:AM=EM⑶在图⑵中,连结AE 交BD 于N ,则下列两个结论:①MNDMBN +值不变;②222MN DM BN +的值不变。
其中有且仅有一个是正确的,请选择正确的结论证明并求其值。
2013年第二学期期末考试(三)八年级数学试题参考答案一、选择题(共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBCABCBDBC二、填空题(共4小题,每空3分,共12分)13、6 14、-4<x <0或x >1 15、32 16、xy 3=三、解答题(共9题,共72分)17、解:方程两边同时乘以3(x+1)得3x=2x -3x -3…………………………………………………………2分x =-43…………………………………………………………………4分 检验:当x =-43时,3(x+1)≠0 ………………………………5分∴x =-43是原方程的解………………………………………………6分18、解:原式=xx x x x 1212+-÷- ………………………………………2分 =xxx x x -⋅-+1)1)(1(=1--x ………………………………4分 当2=x 时,原式=12-- ………………………………6分19、证明: 连接BD 交AC 于O …………1分∵ 四边形ABCD 是平行四边形∴ AO=CO BO=DO …………3分 ∵ AE=CF∴ AO -AE = CO -CE即 EO=FO …………5分∴ 四边形BEDF 为平行四边形 …………6分 注:证题方法不只一种 20、解:⑴甲演讲答辩的平均分为:923949290=++ ………………………1分乙演讲答辩的平均分为:893918789=++ ………………………2分 ⑵a=50―40―3=7 ……………………………………………3分 b=50-42-4=4 ………………………………………………4分 ⑶甲民主测评分为:40×2+7=87 乙民主测评分为:42×2+4=88∴甲综合得分:9046487692=+⨯+⨯ ………………………5分∴甲综合得分:6.8846488689=+⨯+⨯ ………………………6分∴应选择甲当班长。
………………………7分21、解:延长BD 交AC 于E∵BD ⊥AD …………………1分 ∴∠ADB=ADE=900 ∵AD 是∠A 的平分线∴∠BAD=EAD …………………2分 在△ABD 与△AED 中⎪⎩⎪⎨⎧∠=∠=∠=∠ADE ADB AD AD EAD BAD ∴△ABD ≌△AED …………………3分 ∴BD=ED AE= AB=12 …………………4分 ∴EC=AC -AE=18-12=6 …………………5分 ∵M 是BC 的中点 ∴DM=21EC=3 …………………7分 22、⑴证明:过D 作DE ∥AC 交BC 延长线于E ……1分∵AD ∥BC∴四边形ACED 为平行四边形……………2分 ∴CE=AD DE=AC ∵ABCD 为等腰梯形 ∴BD = AC=CE ∵AC ⊥BD ∴DE ⊥BD∴△DBE 为等腰直角三角形………………4分 ∵DH ⊥BC∴DH=21BE=21(CE+BC )=21(AD+BC )…………………5分 ⑵∵AD=CE ∴DBE ABCD S DH BC CE DH BC AD S ∆=⋅+=⋅+=)(21)(21…………7分 ∵△DBE 为等腰直角三角形 BD=DE=6 ∴186621=⨯⨯=∆DBE S ∴梯形ABCD 的面积为18……………………………………8分 注:此题解题方法并不唯一。