SAS统计之第五章线性回归分析
SAS线性回归
![SAS线性回归](https://img.taocdn.com/s3/m/09a46d186bd97f192279e9b4.png)
L=Õ
i =1
n
1 é 1 ù ( y i - a - bxi ) 2 ú exp ê 2 s 2p ë 2s û ö é 1 ÷ ÷ exp ê- 2s 2 ë ø
n
æ 1 =ç ç è s 2p
å(y
i =1
n
i
ù - a - bxi ) 2 ú û
(3.4)
(3.4)式 现用极大似然估计法来估计未知参数 a , b 。对于任意一组观察值 y1 , y 2 , L , y n , 就是样本的似然函数。显然,要 L 取最大值,只要(3.4)式右端方括弧中的平方和部分为 最小,即只需函数
n
i1
åx åx
i =1
2 i1
n æ n ö = nå x - ç å xi1 ÷ = nå ( xi1 - x ×1 ) 2 ¹ 0 i =1 i =1 è i =1 ø n 2 i1
2
4
故(3.7)式有唯一的一组解。解得 b, a 的极大似然估计为
n æ n öæ n ö nå x i y i - ç å x i ÷ç å y i ÷ è i =1 øè i =1 ø = ˆ = i =1 b 2 n æ n ö 2 nå x i - ç å xi ÷ i =1 è i =1 ø n n ˆ 1 b ˆx ˆ = å y i - å xi = y - b a n i =1 n i =1
å(x
i =1
n
ü - x)( y i - y ) ï ï n ï 2 ï ( xi - x ) å ý i =1 ï ï ï ï þ
i
(3.8)
于是,所求的线性回归方程为
ˆx ˆ=a ˆ+b y ˆ x 代入上式,则线性回归方程变为 ˆ = y -b 若将 a
SAS回归检验
![SAS回归检验](https://img.taocdn.com/s3/m/6337f73331126edb6f1a1045.png)
用SAS/INSIGHT进行线性回归分析上面我们已经看到,用菜单“Analyze | Fit (Y X)”就可以拟合一条回归直线,这是对回归方程的估计结果。
这样的线性回归可以推广到一个因变量、多个自变量的情况。
线性模型写成矩阵形式为下面列出了线性模型中常用的一些量和结论:∙为因变量向量∙为矩阵,一般第一列元素全是1,代表截距项∙为未知参数向量∙为随机误差向量,元素独立且方差为相等的(未知)。
∙正常情况下,系数的估计为∙拟合值(或称预报值)为∙其中是空间内向的列张成的线性空间投影的投影算子矩阵,叫做“帽子”矩阵。
∙拟合残差为∙残差平方和为∙误差项方差的估计为(要求设计阵满秩)均方误差(MSE)∙ 在线性模型的假设下,若设计阵 满秩, 和 分别是 和 的无偏估计,系数估计的方差阵 。
∙ 判断回归结果优劣的一个重要指标为复相关系数平方(决定系数)(其中),它代表在因变量的变差中用模型能够解释的部分的比例,所以 越大说明模型越好。
例如,我们在“Fit (Y X)”的选择变量窗口选Y 变量(因变量)为体重(WEIGHT ),选X 变量(自变量)为身高(HEIGHT )和年龄(AGE ),则可以得到体重对身高、年龄的线性回归结果。
下面对基本结果进行说明。
回归基本模型:WEIGHT = HEIGHT AGEResponse Distribution: NormalLink Function: Identity回归模型方程:Model EquationWEIGHT = - 141.2238 + 3.5970 HEIGHT + 1.2784 AGE 拟合概况:Summary of FitMean of Response 100.0263 R-Square 0.7729 Root MSE 11.5111 Adj R-Sq 0.7445 其中Mean of Response 为因变量(Response )的均值,Root MSE 叫做根均方误差,是均方误差的平方根,R-Square 即复相关系数平方,Adj R-Sq 为修正的复相关系数平方,其公式为 ,其中 当有截距项时取1,否则取0,这个公式考虑到了自变量个数 的多少对拟合的影响,原来的随着自变量个数的增加总会增大,而修正的则因为 对它有一个单调减的影响所以 增大时修正的不一定增大,便于不同自变量个数的模型的比较。
SAS编程:回归分析
![SAS编程:回归分析](https://img.taocdn.com/s3/m/b2666943caaedd3382c4d307.png)
SAS 统计分析与应用 从入门到精通 三、曲线回归
1、可化为线性的曲线回归
由于曲线回归没有固定的模型和方法,因而很难进行处理和分析。但 是对于一些基本的曲线模型,我们可以通过变换将它们转化为线性模型, 继而利用线性回归的方法进行分析。
SAS 统计分析与应用 从入门到精通 三、曲线回归
2、REG 过程
3、逐步回归
在实际问题中,影响因变量的因素可能很多,其中有些因素的影响 显著,而有些因素的作用可以忽略,如何从大量的因素中挑出对因变量 有显著影响的自变量来,这就涉及到变量的选择问题。 逐步回归是在建立模型的过程中对变量进行逐个筛选的回归方法, 其基本思想是:在建立回归模型时,逐个引入自变量,每次引入的变量 都经过检验对因变量的影响是显著的,同时对已有的变量也进行检验, 将不显著的变量剔除。这样最后得到的回归方程中,所有变量都是显著 的。
SAS 统计分析与应用 从入门到精通
回归分析
一元线性回归
多元线性回归
曲线回归
非线性回归 Logistic回归
SAS 统计分析与应用 从入门到精通 一、一元线性回归
1、基本模型
SAS 统计分析与应用 从入门到精通 一、一元线性回归
1、基本模型
SAS 统计分析与应用 从入门到精通 一、一元线性回归
2、模型的检验
SAS 统计分析与应用 从入门到精通 一、一元线性回归
2、模型的检验
SAS 统计分析与应用 从入门到精通 一、一元线性回归
3、利用回归方程进行预测
SAS 统计分析与应用 从入门到精通 一、一元线性回归
4、REG过程
REG过程是SAS系统中提供的用于一般线性回归的过程,通过此 过程可以实现一元回归分析,包括模型的建立和检验等。REG过程中 有很多的语句和选项,其中用于一元回归的基本语句格式为: PROC REG DATA=数据集名 <选项>; MODEL 因变量名=自变量名 </选项>; PLOT 纵轴变量名*横轴变量名 <=符号> </选项>; BY 分组变量名; RUN; 其中,PROC语句和MODEL语句是必须的,其他语句可以根据用 户需要进行选用。
sas多元线性回归
![sas多元线性回归](https://img.taocdn.com/s3/m/0d7a4117ac02de80d4d8d15abe23482fb4da0226.png)
数据清洗
去除异常值、缺失值和重复 值。
数据转换
将分类变量(如商品ID)转 换为虚拟变量(dummy variables),以便在回归中 使用。
数据标准化
将连续变量(如购买数量、 商品价格)进行标准化处理, 使其具有均值为0,标准差 为1。
模型建立与评估
残差分析
检查残差的正态性、异方差性和自相关性。
sas多元线性回归
目录 CONTENT
• 多元线性回归概述 • SAS多元线性回归的步骤 • 多元线性回归的变量选择 • 多元线性回归的进阶应用 • 多元线性回归的注意事项 • SAS多元线性回归实例分析
01
多元线性回归概述
定义与特点
定义
多元线性回归是一种统计学方法,用于研究多个自变量与因 变量之间的线性关系。通过多元线性回归,我们可以预测因 变量的值,并了解自变量对因变量的影响程度。
多元线性回归的基本假设
线性关系
自变量与因变量之间存在线性关系, 即随着自变量的增加或减少,因变量 也按一定比例增加或减少。
无多重共线性
自变量之间不存在多重共线性,即自 变量之间没有高度相关或因果关系。
无异方差性
误差项的方差恒定,即误差项的大小 不随自变量或因变量的变化而变化。
无自相关
误差项之间不存在自相关,即误差项 之间没有相关性。
03
多元线性回归的变量选择
全模型选择法
全模型选择法也称为强制纳入法,是 指将所有可能的自变量都纳入回归模 型中,然后通过逐步回归或其他方法 进行筛选。这种方法简单易行,但可 能会受到多重共线性的影响,导致模 型不稳定。
VS
在SAS中,可以使用`PROC REG`的 `MODEL`语句来实现全模型选择法, 例如
SAS备课笔记_简单线性回归、多元线性回归
![SAS备课笔记_简单线性回归、多元线性回归](https://img.taocdn.com/s3/m/94f92d600b1c59eef8c7b4dd.png)
回归分析-简单线性回归、多元线性回归比较:方差分析是处理试验数据的一类统计方法。
这类统计方法的特点是所考察的指标(因变量)Y 是测量得到的数值变量(连续变量),而影响指标的因子(自变量)水平是试验者安排的几个不同值(称这种因子为分类变量或离散变量)。
试验的目的是找出影响指标的主要因子及水平。
在实际问题中,还经常遇到这样一些数据,它们不是有意安排的试验得到的数据,而是对生产过程测量记录下来的数据。
对它们进行分析,目的是想找出对我们所关心的指标(因变量)Y 有影响为因素(也称自变量或回归变量)m x x x ,......,,21,并建立用m x x x ,......,,21预报Y 的经验公式。
对于现实世界,不仅要知其然,而且要知其所以然。
顾客对商品和服务的反映对于商家是至关重要的,但是仅仅有满意顾客的比例是不够的,商家希望了解什么是影响顾客观点的因素,以及这些因素是如何起作用的。
类似地,医疗卫生部门不能仅仅知道某流行病的发病率,而且想知道什么变量影响发病率,如何影响发病率的。
发现变量之间的统计关系,并且用此规律来帮助我们进行决策才是统计实践的最终目的。
一般来说,统计可以根据目前所拥有的信息(数据)来建立人们所关心的变量和其他有关变量的关系。
这种关系一般称为模型(model )。
假如用Y 表示感兴趣的变量,用X 表示其他可能与Y 有关的变量(x 也可能是若干变量组成的向量)。
则所需要的是建立一个函数关系Y=f(X)。
这里Y 称为因变量或响应变量(dependent variable, response variable ),而X 称为自变量,也称为解释变量或协变量(independent variable ,explanatory variable, covariate)。
建立这种关系的过程就叫做回归(regression )。
一旦建立了回归模型,除了对各种变量的关系有了进一步的定量理解之外,还可以利用该模型(函数或关系式)通过自变量对因变量做预测(prediction )。
SAS统计之第五章-线性回归分析报告
![SAS统计之第五章-线性回归分析报告](https://img.taocdn.com/s3/m/aefe19d4bceb19e8b8f6ba7f.png)
( y y)2 ( y yˆ)2 2( y yˆ)( yˆ y) ( yˆ y)2
对数据资料所有点的求和得:
(y y)2 (y yˆ)2 2(y yˆ)( yˆ y) (yˆ y)2
利用下图说明F检验法的基本原理。
当自变量为 x ,对应的
y
因变量的实测值为 y,
yˆ
y y
y yˆ 因变量的预测值为 yˆ 。 yˆ y 于是 y的离均差 y y
y
可分解为两个部分:
y y ( y yˆ) ( yˆ y)
xx
离均差 随机误差 回归引起的偏差
第三节 回归关系的显著性检验
三个平方和的计算公式:
总平方和: T SSy (y y)2 y2 ( y)2 / n 回归平方和: U SSr (yˆ y)2
a y bx, yˆ a bx, yˆ y bx bx, yˆ y b(x x), (yˆ y)2 b2 (x x)2 ,
第三节 回归关系的显著性检验
对所有点求和得:
(y
yˆ)( yˆ
y)
b[SPxy
SPxy SS x
SSx ]
0
于是:y 的总平方和便分解为两个部分:
(y y)2 (y yˆ)2 (yˆ y)2
y 的总平方和 误差平方和 回归平方和
T SSy
Q SSe U SSr
第三节 回归关系的显著性检验
第五章 线性回归分析
一、一元线性回归 二、一元线性回归方程 三、回归关系的显著性检验 四、置信区间 五、多元线性回归 六、回归诊断
第一节 一元线性回归
生产实践中,常常能找到一个变量与另外一
线性回归分析实验报告总结
![线性回归分析实验报告总结](https://img.taocdn.com/s3/m/3b4189ec9f3143323968011ca300a6c30c22f11a.png)
RUN;
PROC GPLOT DATA=b;
PLOT RESIDUAL*PREDICTED RESIDUAL*x1 RESIDUAL*x2;
SYMBOL V=DOT I=NONE;
RUN;
PROC IML;
N=31;PI=1;
USE two_6;
READ ALL VAR{x1 x2 y} INTO M;
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 52294 26147 <.0001
Error12
Corrected Total14 53902
由表中的数据可知:SSE(F)=; =15-4=11,而从第(1)问可知SSE(R)=; =15-3=12;所以检验统计量观测值 =[()/1]/[11]=
X=M[,2]#M[,3];
X2=M[,3];
Y=M[,1];
P=Y||X||X2;
CREATE RESOLVE VAR{Y X X2};
APPEND FROM P;
QUIT;
PROC REG DATA=RESOLVE;
MODEL Y=X X2;
RUN;
PROC PRINT;
RUN;(1)<表一>参数估计的sas输出结果为:
(5)对于给定的X1、X2的值为(X01,X02)=(220,2500),由回归方程 =++得到销售量Y的预测值为
从proc reg过程得到矩阵(XTX)-1为:
令X0=(220,2500)T,因为MSE=,利用sas系统中proc iml过程计算可得
快速上手使用SAS进行统计分析和建模
![快速上手使用SAS进行统计分析和建模](https://img.taocdn.com/s3/m/a65b2fc0760bf78a6529647d27284b73f24236eb.png)
快速上手使用SAS进行统计分析和建模第一章:引言SAS(Statistical Analysis System)是一种功能强大的统计分析和建模工具,广泛应用于各个领域的数据分析。
本文将介绍如何快速上手使用SAS进行统计分析和建模。
我们将按照不同的步骤和技巧,逐步介绍如何运用SAS进行数据处理、描述统计、假设检验、回归分析以及模型建立与评估等。
第二章:数据处理在使用SAS进行统计分析之前,我们首先需要对数据进行处理。
这包括数据清洗、格式转换、合并和抽样等操作。
通过使用SAS的数据步骤(Data Step)和数据流程(Data Flow)技术,我们可以对数据集中的缺失值、异常值等进行处理,保证数据的准确性和完整性。
第三章:描述统计分析描述统计分析是数据分析的基础,通过对数据的基本特征进行分析,我们可以获得关于数据集的详细信息。
SAS提供了丰富的描述统计分析方法,包括均值、方差、相关系数、频率分布等。
我们可以使用PROC MEANS、PROC UNIVARIATE、PROC FREQ等过程来进行描述统计分析,并得到直观的统计图表。
第四章:假设检验假设检验是统计分析中常用的方法,用于验证研究假设的合理性。
SAS提供了多种假设检验方法,包括t检验、方差分析、卡方检验等。
我们可以使用PROC TTEST、PROC ANOVA、PROC CORR等过程来进行假设检验,并得出显著性结论,进一步推断总体参数。
第五章:回归分析回归分析是用于研究变量之间关系的重要方法,旨在构建预测模型和解释变量之间的关系。
SAS提供了强大的回归分析工具,包括线性回归、逻辑回归、多元回归等。
我们可以使用PROC REG、PROC LOGISTIC、PROC GLM等过程来进行回归分析,并获取模型的系数、拟合优度等统计结果。
第六章:模型建立与评估模型建立与评估是统计建模的关键环节,通过选择合适的变量和建立合理的模型,我们可以对数据进行预测和推断。
SAS中多元线性回归
![SAS中多元线性回归](https://img.taocdn.com/s3/m/fd7c5407bcd126fff6050b1d.png)
PROC REG [DATA=<数据集名> [选项] ] ;
MODEL 因变量名=自变量名列/ [选项] ;
[VAR 变量名列; FREQ 变量名; WEIGHT 变量名;
这也不是完全的reg过程的语法, 详细语法,可以参考SAS的帮助。
BY 变量名列;
OUTPUT <OUT=新数据集名 关键字=新变量名> ...;
本法和修正r2选择法adjrsq以及mallowscp选择法cp分别是按不同标准选出回归模型自变量的最优子集这类选变量法不是从所有可能形成的变量中而仅仅本法的局限性在于其一当样本含量小于等于自变量含交互作用项个数时只能在一定数目的变量中穷举为找到含各种变量数目的最优子集要么增加观测要么反复给出不同模型
PREDICTED
因变量预测值 (简写为P)
RESIDUAL
L95M U95M
、
均数95%可信 区间上下限
L95、U95
STDP
期望值的标准 误
STDR
STDI
预测值的标准 误
STUDENT
残差(简写为 R) 个体预测值 95%可信区间 上下限
残差的标准误
学生化残差 (即残差与标 准误之比)
【PLOT语句】 PLOT语句用于输出变量间的散点图,其用法和GPLOT过程 中的PLOT语句非常相似。PLOT语句定义的两变量可为 MODEL语句或VAR语句中定义的任何变量。SYMBOL选项可 定义散点图中点的标记,如SYMBOL=’*’,则每个点以“*” 表示。
proc reg data=forest SIMPLE CORR;
model y1-y5=x1-x7/selection=stepwise;
Plot y1*x1=‘*’
SAS线性回归分析案例
![SAS线性回归分析案例](https://img.taocdn.com/s3/m/a7205924a5e9856a56126027.png)
线性回归20094788 陈磊 计算2SouthWest JiaoT ong U niversity-------------------------------------------------------------------线性回归分为一元线性回归和多元线性回归。
一元线性回归的模型为Y=β0+β1X+ε,这里X是自变量,Y是因变量,ε是随机误差项。
通常假设随机误差的均值为0,方差为σ2(σ2>0),σ2与X的值无关。
若进一步假设随机误差服从正态分布,就叫做正态线性模型。
一般情况,设有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含有一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。
当函数形式为未知参数的线性函数时,称为线性回归分析模型。
如果存在多个因变量,则回归模型为:Y=β0+β1X1+β2X2+⋯+βi X i+ε。
由于直线模型中含有随机误差项,所以回归模型反映的直线是不确定的。
回归分析的主要目的是要从这些不确定的直线中找出一条最能拟合原始数据信息的直线,并将其作为回归模型来描述因变量和自变量之间的关系,这条直线被称为回归方程。
通常在回归分析中,对ε有以下最为常用的经典假设。
1、ε的期望值为0.2、ε对于所有的X而言具有同方差性。
3、ε是服从正态分布且相互独立的随机变量。
对线性回归的讲解,本文以例题为依托展开。
在下面的例题中既有一元回归分析,又有二元回归分析。
例题(《数据据分析方法》_习题2.4_page79)某公司管理人员为了解某化妆品在一个城市的月销量Y(单位:箱)与该城市中适合使用该化妆品的人数X1(单位:千人)以及他们人均月收入X2(单位:元)之间的关系,在某个月中对15个城市作了调查,得到上述各量的观测值如表2.12所示。
假设Y与X1,X2之间满足线性回归关系y i=β0+β1x i1+β2x i2+εi,i=1,2,…,15其中εi独立同分布于N(0,σ2).(1)求线性回归系数β0,β1,β2的最小二乘估计和误差方差σ2的估计,写出回归方程并对回归系数作解释;(2)求出方差分析表,解释对线性回归关系显著性检验结果。
回归分析及其SAS过程ppt课件
![回归分析及其SAS过程ppt课件](https://img.taocdn.com/s3/m/00dd4c9ff121dd36a22d821f.png)
此要事先规定显著水平。
上页 下页 返回
格式语句: MODEL 因变量=自变量1 自变量2 ⋯ / selection= Forword slentry=; 在“slentry=”中可按自己需要选择不同显著水平, 如 0.1,0.2 等,若不指定此选项,则显著水平为 0.5 ;
上页
下页
返回
2. Backword:后退法
后退法先建立包含全部自变量的回归模型,然 后按一定的显著水平,从模型中逐个剔除对模型影
响的显著水平小于选定值的变量。
格式语句:MODEL 因变量=自变量1 自变量2 ⋯
/
selection= Backword slstay =; 用slstay =来指定显著水平。若不指定此选项, 默认显著水平为 0.1 ;
上页 下页 返回
1)建立一般线性回归模型,包括简单回归、多 重线性回归、多项式回归及加权回归; 2) 进行方差分析。 3. NLIN 借助于迭代法对用户自行选定的回归表达式
拟合非线性回归模型。
4. RSREG 建立二次响应面回归模型,并对之进行分析以确定
最优响应因子水平,还可进行岭回归分析.
上页 下页 返回
上页 下页 返回
逐步法一般要规定两个显著水平,即选入水平
及剔除水平,且应规定剔除水平低于选入水平,否
则将导致无一变量被选进方程的结局。
格式语句: MODEL 因变量=自变量1 自变量2 ⋯ /
selection= stepwise slentry= slstay=; 在“slentry= ”后和 “slstay=”后分别表上自己选 定的显著水平,缺省值为0.15。
SAS线性回归分析案例
![SAS线性回归分析案例](https://img.taocdn.com/s3/m/ca0cc06802d276a201292e2d.png)
1■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ «»■■■■■■■.■■■■■■■■■■■■■■■■■■■Z 貫44 豎呦88£1?600Z线性回归分为一元线性回归和多元线性回归。
一元线性回归的模型为Y=/?O+0】X+£,这里X是自变量,Y是因变量,£是随机误差项。
通常假设随机谋差的均值为0,方差为(,>0),,与X的值无关。
若进一步假设随机谋差服从正态分布,就叫做正态线性模型。
一般情况,设有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是山于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含有一些未知参数:另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。
当函数形式为未知参数的线性函数时,称为线性回归分析模型。
如果存在多个因变量,则回归模型为:Y = 00+ 81X1 +02X2 +…+ "iXi + £。
「h于直线模型中含有随机课差项,所以回归模型反映的-直线是不确立的。
回归分析的主要冃的是要从这些不确定的克线中找出一条最能拟合原始数据信息的直线,并将其作为回归模型來描述因变量和自变量之间的关系,这条直线被称为回归方程。
通常在曰归分析中,刘£有以下最为常用的经典假设。
1、£的期望值为0.2、£对于所有的X而言具有同方差性。
3、£是服从正态分布且相互独立的随机变量。
对线性回归的讲解,本文以例题为依托展开。
在下面的例题中既有一元回归分析,乂有二元回归分析。
例题(《数据据分析方法》习题2. 4_page79)某公司管理人员为了解某化妆品在一个城市的月销量Y (单位:箱)与该城市中适合使用该化妆品的人数& (单位:千人)以及他们人均月收入屁(单位:元)之间的关系,在某个月中对15个城市作了调査,得到上述乞量的观测值如表2. 12所示。
sas各过程笔记描述性统计线性回归logistic回归生存分析判别分析聚类分析主成分分析因子分析
![sas各过程笔记描述性统计线性回归logistic回归生存分析判别分析聚类分析主成分分析因子分析](https://img.taocdn.com/s3/m/2161b70a6f1aff00bfd51e41.png)
第一部分:基本统计方法注:主要讲述过程:means(描述性统计);freq(算频数表);univariate(检验);anova(方差分析);ttest(检验);glm(广义线性回归);npar1way(非参,wilcox)一:计量资料的统计分析方法1.01均值+频数表+百分位数+正态检验、茎叶图、箱形图、正态概率图data ex2_1;input x@@;low=2.3;dis=0.3;z=x-mod(x-low,dis);cards;3.964.23 4.42 3.595.12 4.02 4.32 3.72 4.76 4.164.61 4.263.774.20 4.36 3.07 4.89 3.97 4.28 3.64 4.66 4.044.55 4.254.63 3.91 4.41 3.525.03 4.01 4.30 4.19 4.75 4.144.57 4.264.56 3.79 3.89 4.21 4.95 3.98 4.29 3.67 4.69 4.124.56 4.264.66 4.28 3.83 4.205.24 4.02 4.33 3.76 4.81 4.173.96 3.274.61 4.26 3.96 4.23 3.76 4.01 4.29 3.67 3.39 4.124.27 3.614.98 4.24 3.83 4.20 3.71 4.03 4.34 4.69 3.62 4.184.26 4.365.28 4.21 4.42 4.36 3.66 4.02 4.31 4.83 3.59 3.973.964.495.11 4.20 4.36 4.54 3.72 3.97 4.28 4.76 3.21 4.044.56 4.254.92 4.23 4.47 3.605.23 4.02 4.32 4.68 4.76 3.694.61 4.263.894.21 4.36 3.425.01 4.01 4.29 3.68 4.71 4.134.57 4.264.035.46 4.16 3.64 4.16 3.76;/*freq语句,算频数表*/proc freq;tables z;run;proc means data=ex2_1n mean std stderr clm;var x;run;data ex2_1;input x f@@;cards;3.07 23.27 33.47 93.67 143.87 224.07 304.27 214.47 154.67 104.87 65.07 45.27 2;run;proc means;freq f;var x;run;/*把freq f改成weight f就是把f当权重或频数来算,f则在0,1之间*//*计算x的95%的置信区间*/proc univariate data=ex2_1;var x;output out=pctpctlpre=ppctlpts=2.5 97.5;run;proc print data=pct;run;/*正态检验、茎叶图、箱形图、正态概率图*/proc univariate data=ex2_1normalplot;var x;run;/*Extreme Observation显示的值是最小的5个极值和最大的5个极值*/1.02几何均值data ex2_5;input x f@@;y=log10(x);cards;10 420 340 1080 10160 11320 15640 141280 2;proc means noprint;/*调用means过程,不显示结果*/var y;freq f;output out=b/*结果输出到数据集b中*/mean=logmean;/*把数据集b中均数的变量名mean改为logmean*/run;data c;/*新建数据集c*/set b;/*调用数据集b*/g=10**logmean;/*计算变量logmean的反对数,该值就是x的几何均数,将该值赋值给变量g*/ proc print data=c;var g;run;/*这个是计算平通平均数的值*/proc means data=ex2_5;var x;freq f;run;1.03已知均值和方差求置信区间-单样本+单样本与总体/*单样本*/data ex3_2;n=10;mean=166.95;std=3.64;t=tinv(0.975,n-1);pts=t*std/sqrt(n);lclm=mean-pts;uclm=mean+pts;proc print;var lclm uclm;run;/*单样本与总体均值*/data ex3_5;n=36;/*样本量*/s_m=130.83;/*样本均值*/std=25.74;/*样本标准差*/p_m=140;/*总体均值*/df=n-1;/*自由度*/t=(s_m-p_m)/(std/sqrt(n));p=(1-probt(abs(t),df))*2;/*根据t值计算p值*/run;proc print;var t p;run;1.06双样本均值相等检验+两组分开+两组一起算+两组样本量不同/*双样本分开算*/data ex3_4;n1=29;n2=32;m1=20.10;m2=16.89;s1=7.02;s2=8.46;ss1=s1**2*(n1-1);ss2=s2**2*(n2-1);sc2=(ss1+ss2)/(n1+n2-2);se=sqrt(sc2*(1/n1+1/n2));t=tinv(0.975,n1+n2-2);lclm=(m1-m2)-t*se;uclm=(m1-m2)+t*se;proc print;var t se lclm uclm;run;/*双样本相减后再算*//*用MEANS作配对资料两个样本均数比较的t检验*/data ex3_6;input x1 x2 @@;d=x1-x2;cards;0.840 0.5800.591 0.5090.674 0.5000.632 0.3160.687 0.3370.978 0.5170.750 0.4540.730 0.5121.200 0.9970.870 0.506;proc means t prt;var d;run;/*用UNIVARIATE过程作配对资料两样本均数比较的t检验*/ proc univariate data=ex3_6;var d;run;/*双样本两组样本量不同*/data ex3_7;input x@@;if _n_<21 then c=1;/*当观测数小于21时,变量c的值为1,表示试验组*/else c=2;/*其余变量c的值为2,表示对照组*/cards;-0.70 -5.60 2.00 2.80 0.70 3.50 4.00 5.80 7.10 -0.502.50 -1.60 1.703.00 0.404.50 4.60 2.50 6.00 -1.403.70 6.50 5.00 5.20 0.80 0.20 0.60 3.40 6.60 -1.106.00 3.80 2.00 1.60 2.00 2.20 1.20 3.10 1.70 -2.00;proc ttest;/*调用ttest过程*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;1.08-1.13anova方差分析过程+一维分组+二维分组+三维分组/*只有一组分组因素*/data ex4_2;input x c @@;cards;3.53 1 2.42 2 2.86 3 0.89 44.59 1 3.36 2 2.28 3 1.06 44.34 1 4.32 2 2.39 3 1.08 42.66 1 2.34 2 2.28 3 1.27 43.59 1 2.68 2 2.48 3 1.63 43.13 1 2.95 2 2.28 3 1.89 43.30 1 2.36 2 3.48 3 1.31 44.04 1 2.56 2 2.42 3 2.51 43.53 1 2.52 2 2.41 3 1.88 43.56 1 2.27 2 2.66 3 1.41 43.85 1 2.98 2 3.29 3 3.19 44.07 1 3.72 2 2.70 3 1.92 41.37 12.65 2 2.66 3 0.94 43.93 1 2.22 2 3.68 3 2.11 42.33 1 2.90 2 2.65 3 2.81 42.98 1 1.98 2 2.66 3 1.98 44.00 1 2.63 2 2.32 3 1.74 43.55 1 2.86 2 2.61 3 2.16 42.64 1 2.93 23.64 3 3.37 42.56 1 2.17 2 2.58 3 2.97 43.50 1 2.72 2 3.65 3 1.69 43.25 1 1.56 2 3.21 3 1.19 42.96 13.11 2 2.23 3 2.17 44.30 1 1.81 2 2.32 3 2.28 43.52 1 1.77 2 2.68 3 1.72 43.93 1 2.80 2 3.04 3 2.47 44.19 1 3.57 2 2.81 3 1.02 42.96 1 2.97 23.02 3 2.52 44.16 1 4.02 2 1.97 3 2.10 42.59 1 2.31 2 1.68 33.71 4;proc anova;/*调用anova过程*/class c;/*定义分组变量为c*/model x=c;/*定义模型,分析g对x的影响*/means c/dunnett;/*用LSD法对多组均数过行两两比较*/means c/hovtest;/*作方差齐性检验,默认levene法,p值大于0.05,则认为是g组方差相等*/run;quit;/*有两组分组因素*/data ex4_4;input x a b@@;cards;0.82 1 10.65 2 10.51 3 10.73 1 20.54 2 20.23 3 20.43 1 30.34 2 30.28 3 30.41 1 40.21 2 40.31 3 40.68 1 50.43 2 50.24 3 5;proc anova;class a b;/*定义分组变量a和b*/model x=a b;/*定义模型,分析a和b对x影响*/means a/snk;/*用SNK法对变量a的多组均数进行两两比较*/run;quit;1.15嵌套设计资料的方差分析glm过程一级因素+二组因素/*嵌套设计资料的方差分析*/data ex11_6;input x a b @@;cards;82 1 184 1 191 1 288 1 285 1 383 1 365 2 461 2 462 2 559 2 556 2 660 2 671 3 767 3 775 3 878 3 885 3 989 3 9;proc glm;/*调用glm过程*/class a b;/*定义分组变量为a和b*/model x=a a(b);/*定义模型,以a为一组因素,b为二级因素*/run;quit;1.17重复测量资料的方差分析data ex12_2;input t1 t2 g@@;/*确定变量名称,t1和t2分别为两个时间点的分析变量,g为处理因素变量,b为区组变量*/cards;130 114 1124 110 1136 126 1128 116 1122 102 1118 100 1116 98 1138 122 1126 108 1124 106 1118 124 2132 122 2134 132 2114 96 2118 124 2128 118 2118 116 2132 122 2120 124 2134 128 2;proc glm;/*调用glm过程*/class g;/*定义分组变量g*/model t1 t2=g;/*定义模型,分析g对变量t1和t2的影响*/repeated time 2/*命名重复因子为time,有2个水平*/contrast(1)/*表示以第一时间点为对照点*//summary;/*考察不同时间点与对照时间点比较的结果*/run;quit;data ex12_3;input t0-t4 g@@;cards;120 108 112 120 117 1118 109 115 126 123 1119 112 119 124 118 1121 112 119 126 120 1127 121 127 133 126 1121 120 118 131 137 2122 121 119 129 133 2128 129 126 135 142 2117 115 111 123 131 2118 114 116 123 133 2131 119 118 135 129 3129 128 121 148 132 3123 123 120 143 136 3123 121 116 145 126 3125 124 118 142 130 3;proc glm;class g;model t0-t4=g;repeated time 5/*命名重复因子为time,有2个水平*/contrast(1);run;quit;二:计数资料的统计分析方法2.1四格表资料的卡方检验data ex7_1;input r c f@@;/*确定变量名称,r为行变量,c为列变量,f为频数变量*/ cards;1 1 991 2 52 1 752 2 21;proc freq;/*调用freq过程*/weight f;/*定义f为频数变量*/tables r*c/*作r*c的列联表*//chisq/*对列联表作卡方检验*/expected;/*输出每个格的理论频数*/run;2.5阳性事件发生的概率(二项分布)data ex6_1;do x=6 to 8;/*建立循环,变量x从6到8*/p1=probbnml(0.7,10,x);/*计算二项分布随机变量不大于x的概率*/p2=probbnml(0.7,10,x-1);/*计算二项分布随机变量不大于x-1的概率*/p=p1-p2;*/计算出现x的概率*/output;/*结果输出*/end;proc print;var x p;run;2.6正态分布法计算总体率的可信区间data ex6_3;n=100;x=55;p=x/n;sp=sqrt(p*(1-p)/n);u=probit(0.975);usp=u*sp;lclm=p-usp;uclm=p+usp;proc print;var n p sp lclm uclm;run;2.7样本率与总体率的比较(直接法——单侧检验)data ex6_4;d=probbnml(0.55,10,8);p=1-d;proc print;var p;run;2.8样本率与总体率的比较(直接法——双侧检验)data ex6_5;p01=probbnml(0.6,10,9);p02=probbnml(0.6,10,8);p0=p01-p02;/*计算出现9的概率*/do i=0to10;/*建立循环,变量i从0到10*/p11=probbnml(0.6,10,i);p12=probbnml(0.6,10,i-1);p1=p11-p12;/*计算出现i的概率*/if i=0then p1=p11; /*定义出现0的概率*/if p1<=p0 then output; /*如果出现i的概率小于出现9的概率,则保留在数据集中*/ end;proc means sum;var p1;run;2.9两个样本率比较的z检验data ex6_7;n1=120;n2=110;x1=36;x2=22;p1=x1/n1;p2=x2/n2;pc=(x1+x2)/(n1+n2);/*计算合并发生率*/sp=sqrt(pc*(1-pc)*(1/n1+1/n2));/*计算两个率相差的标准误差*/u=(p1-p2)/sp;/*计算u值*/p=(1-probnorm(abs(u)))*2;/*计算p值*/format u p 5.4;/*输出格式为小数点后保留4位*/proc print;var pc sp u p;run;2.10.Poisson分布的样本均数与总体均数比较(直接法)data ex6_12;n=120;/*确定样本例数*/pai=0.008; /*确定总体率*/lam=n*pai; /*计算总体均数lamda*/x=4; /*确定实际发生数*/p=1-poisson(lam,x-1);/*计算实际发生数所对应的概率*/proc print;var lam p;run;2.11 Poisson分布的样本均数与总体均数比较(正态近似法)data ex6_12;n=25000;/*样本量*/x=123; /*样本均数*/pi=0.003; /*确定总体率*/lam=n*pi; /*计算总体均数*/u=(x-lam)/sqrt(lam*(1-pi)); /*计算u值*/p=1-probnorm(abs(u)); /*计算u值所对应的p值*/proc print;var lam u p;run;2.14负二项分布的参数估计data ex6_16;input x f@@;cards;0 301 142 83 44 25 06 2;proc univariate;var x;freq f;output out=mv2var=v;run;data k;set mv2;k=mu**2/(v-mu);proc print;var mu k;run;三、非参数统计方法3.2单个样本中位数和总体中位数比较data ex8_2;input x1@@;median=45.30;/*假设中位数为45.30*/d=x1-median; /*计算x1和假设中位数的差值*/cards;44.21 45.30 46.39 49.47 51.05 53.1653.26 54.37 57.16 67.37 71.05 87.37;proc univariate; /*调用univariate过程度*/var d;run;proc means median; /*调用means过程计算x1实际的中位数*/var x1;run;3.3两个独立样本比较的Wilcoxon秩和检验(R对应函数wilcox.test())data ex8_3;input x c @@;/*确定变量名称,x、c分别为分析变量和分组变量(类别多于两类一样的写法)*/2.78 13.23 14.20 14.87 15.12 16.21 17.18 18.05 18.56 19.60 13.23 23.50 24.04 24.15 24.28 24.34 24.47 24.64 24.75 24.82 24.95 25.10 2;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;3.4等级资料的两样本比较data ex8_4;input c g f@@;/*确定变量名称,f为频数,c为分类,g为要分析的变量(分类多种类似)*/ cards;1 1 11 2 81 3 161 4 101 5 42 1 22 2 232 3 112 5 0;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/freq f;/*确定频数变量为f*/var g;/*定义分析变量g*/class c;/*定义分组变量c*/run;第二部分:多元统计分析方法注:主要讲述过程:reg(回归),corr(相关分析),nlin(对数曲线回归),logistic(逻辑回归),phreg(条件logistic回归分析+cox回归),life test(生存分析),discrim(判别分析),stepdisc(逐步回归),cluster(聚类),varclus(指标聚类),princomp(主成分分析),factor(因子分析),cancorr(典型相关分析)一:回归和相关分析1.1两个变量的直线回归分析data ex9_1;input x y;/*确定变量名称*/cards;13 3.5411 3.019 3.096 2.488 2.5610 3.3612 3.187 2.65;proc reg;/*调用reg过程*/model y=x;/*定义模型,以y为应变量,以x为自变量*//*在model语句后面加上选项,得到一些有用的统计量,常用的有:stb(输出标准化偏回归系数)、p(输出每个观测的实际值、预测值和残差)、cli(输出每个观测预测值均数的双侧95%置信区间)、clm(输出每个观测预测值的双侧95%置信范围)*//*例如:model y=x /stb p cli */plot y*x;/*画出散点图*/run;1.2两个变量的直线相关分析data ex9_5;input x y;cards;43 217.2274 316.1851 231.1158 220.9650 254.7065 293.8454 263.2857 271.7367 263.4669 276.5380 341.1548 261.0038 213.2085 315.1254 252.08;proc corr;/*若要求作spearman相关分析,则可以写成proc corr spearman */ var x y;run;/*得到一个相关系数矩阵*/1.4加权直线加回data ex9_9;input x y;w=1/(x*x); /*设置权重变量w*/cards;0.11 4.000.12 5.100.21 9.500.30 9.000.34 17.200.44 14.000.56 18.900.60 29.400.69 22.100.80 41.50;proc reg;weight w;/*定义权重变量w*/model y=x;/*定义模型,以y为因变量,以x为自变量*/run;1.5两个直线回归系数的比较data ex9_12;input x y c@@;cards;13 3.54 111 3.01 19 3.09 16 2.48 18 2.56 110 3.36 112 3.18 17 2.65 110 3.01 29 2.83 211 2.92 212 3.09 215 3.98 216 3.89 28 2.21 27 2.39 210 2.74 215 3.36 2;proc glm;class c;model y=x c x*c;/*定义模型,分析x、c以及x和c的交互作用对y的影响,即判断两总体直线回归系数是否相同*/run;proc glm;class c;model y=x c;/*上一步已排除协变量的影响,然后再分析两分析变量是否来自同一总体*/run;1.6两个变量的对数曲线回归data ex9_13;input x y;cards;0.005 34.110.050 57.990.500 94.495.000 128.5025.000 169.98;proc nlin;/*调用nlin过程*/parms a=0 b=0; /*定义初始值*/model y=a+b*log10(x); /*定义对数模型,以y为因变以量,x为自变量*/ run;1.7两个变量的指数曲线回归分析data ex9_14;input x y;cards;2 545 507 4510 3714 3519 2526 2031 1634 1838 1345 852 1153 860 465 6;proc nlin;parms a=4 b=0.03;/*定义初始值*/model y=exp(a+b*x);/*定义指数模型,以y为因变量,x为自变量*/run;1.8多元回归data ex15_1;input x1-x4 y@@;/*确定变量名称,x1,x2,x3,x4分别为自变量,y为应变量*/ cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4;/*也可以写成model y=x1 x2 x3 x4;*/run;1.9逐步回归data ex12_2;input x1-x4 y@@;cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4/selection=stepwise/*定义模型,以y因变量,x1-x4为变量进行多元回归分析*/ sle=0.10/*定义入先变量的界值*/sls=0.10;/*定义剔除变量的界值*/run;三:logistic回归3.1 两个变量logistic回归分析data ex16_1;input y x1 x2 f@@;/*确定变量名称,y为发病情况,x1为吸烟情况,x2为饮酒情况,f为发生频数*/cards;1 0 0 631 0 1 631 1 0 441 1 1 2650 0 0 1360 0 1 1070 1 0 570 1 1 151;proc logistic;/*调用logistic过程*/freq f;/*定义频数变量f*/model y=x1 x2;/*定义模型,以y为因变量,x1和x2为自变量*/run;3.2 1:M配对资料的条件logistic回归分析data ex16_3;input i y x1-x6 @@;/*确定变量名称,i为区组变量,y为病人情况,1为病例,0为对照,x1-x6为危险因素*/t=2-y;/*定义时间变量*/cards;1 1 3 5 1 1 1 01 0 1 1 1 3 3 01 0 1 1 1 3 3 02 1 13 1 1 3 02 0 1 1 13 2 02 0 1 2 13 2 03 1 14 1 3 2 03 0 1 5 1 3 2 03 0 14 1 3 2 04 1 1 4 1 2 1 14 0 2 1 1 3 2 05 1 2 4 2 3 2 0 5 0 1 2 1 3 3 05 0 2 3 1 3 2 06 1 1 3 1 3 2 1 6 0 1 2 1 3 2 06 0 1 3 2 3 3 07 1 2 1 1 3 2 1 7 0 1 1 1 3 3 07 0 1 1 1 3 3 08 1 1 2 3 2 2 0 8 0 1 5 1 3 2 08 0 1 2 1 3 1 09 1 3 4 3 3 2 0 9 0 1 1 1 3 3 09 0 1 4 1 3 1 010 1 1 4 1 3 3 1 10 0 1 4 1 3 3 010 0 1 2 1 3 1 011 1 3 4 1 3 2 0 11 0 3 4 1 3 1 011 0 1 5 1 3 1 012 1 1 4 3 3 3 0 12 0 1 5 1 3 2 012 0 1 5 1 3 3 013 1 1 4 1 3 2 0 13 0 1 1 1 3 1 013 0 1 1 1 3 2 014 1 1 3 1 3 2 1 14 0 1 1 1 3 1 014 0 1 2 1 3 3 015 1 1 4 1 3 2 0 15 0 1 5 1 3 3 015 0 1 5 1 3 3 016 1 1 4 2 3 1 0 16 0 2 1 1 3 3 016 0 1 1 3 3 2 017 1 2 3 1 3 2 0 17 0 1 1 2 3 2 017 0 1 2 1 3 2 018 1 1 4 1 3 2 0 18 0 1 1 1 2 1 0 18 0 1 2 1 3 2 019 0 1 1 1 2 1 019 0 2 2 2 3 1 020 1 1 4 2 3 2 120 0 1 5 1 3 3 020 0 1 4 1 3 2 021 1 1 5 1 2 1 021 0 1 4 1 3 2 021 0 1 2 1 3 2 122 1 1 2 2 3 1 022 0 1 2 1 3 2 022 0 1 1 1 3 3 023 1 1 3 1 2 2 023 0 1 1 1 3 1 123 0 1 1 2 3 2 124 1 1 2 2 3 2 124 0 1 1 1 3 2 024 0 1 1 2 3 2 025 1 1 4 1 1 1 125 0 1 1 1 3 2 025 0 1 1 1 3 3 0;proc phreg;/*调用phreg过程*/model t*y(0)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,x1-x6为自变量*//selection=stepwise/*选择逐步回归方法筛选变量*/sle=0.1sls=0.1/*入选和剔除的界值均为0.1*/ties=discrete;/*用离散logistic模型替代比例危险模型*/strata i;/*定义区组变量*/run;2.3 应变量为多分类资料的logistic回归data ex16_5;input x1 x2 y f;/*x1是两个社区,x2是性别,Y是获取健康知识途径(传统大众媒介=1,网络=2,社区宣传=3,f为频数)*/cards;0 0 1 200 0 2 350 0 3 260 1 1 100 1 2 270 1 3 571 0 1 421 02 171 1 1 161 12 121 1 3 26;proc logistic;freq f;/*定义频数变量为f*/model y(ref='3')/*定义模型,以y为因变量,ref语句指时参照的类别为“社区宣传”,最后得到结果均为与“社区宣传”相对应*/=x1 x2/*定义x1和x2为自变量*//link=glogit;/*指定多分类应变量回归模型*/run;四:生存分析4.1乘积极限法估计生存率,例17-2甲、乙两种手术方法的生存率估计data ex17_2;input t d@@;/*确定变量名称,t为时间变量,d为截尾变量*/cards;1 13 15 15 15 16 16 16 17 18 110 110 114 017 119 020 022 026 034 134 044 159 1;proc lifetest;/*调用lifetest过程*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.2寿命表法估计生存率data ex17_3;input t d f@@;cards;0 0 00 1 4561 0 391 1 2262 0 222 1 1523 0 233 1 1714 0 244 1 1355 0 1075 1 1256 0 1336 1 837 0 1027 1 748 0 688 1 519 0 649 1 4210 0 4510 1 4311 0 5311 1 3412 0 3312 1 1813 0 2714 0 3314 1 615 0 2015 1 0;proc lifetest method=life/*调用lifetest过程,指定用寿命表法估计生存率*/ width=1;/*表示每间隔1估计生存率*/freq f;/*表示以f为频数变量*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.3生存曲线比较的log-rank检验及制作生存曲线data ex17_4;input t d g @@;cards;1 1 13 1 15 1 15 1 15 1 16 1 16 1 16 1 17 1 18 1 110 1 110 1 114 0 117 1 119 0 120 0 122 0 126 0 131 0 134 1 134 0 144 1 159 1 11 1 21 1 22 1 23 1 23 1 24 1 24 1 24 1 26 1 26 1 28 1 29 1 29 1 210 1 211 1 212 1 213 1 215 1 217 1 218 1 2;proc lifetest plot=(s);/*调用lifetest过程并做生存曲线图*/ time t*d(0);strata g;/*定义变量g为分组变量*/run;4.4.cox回归分析data ex17_5;input x1-x6 t y @@;cards;54 0 0 1 1 0 52 057 0 1 0 0 0 51 058 0 0 0 1 1 35 143 1 1 1 1 0 103 048 0 1 0 0 0 7 140 0 1 0 0 0 60 044 0 1 0 0 0 58 036 0 0 0 1 1 29 139 1 1 1 0 1 70 042 0 1 0 0 1 67 042 0 1 0 0 0 66 042 1 0 1 1 0 87 051 1 1 1 0 0 85 049 1 1 1 0 1 76 0 52 1 1 1 0 1 74 0 48 1 1 1 0 0 63 0 54 1 0 1 1 1 101 0 38 0 1 0 0 0 100 0 40 1 1 1 0 1 66 1 38 0 0 0 1 0 93 0 19 0 0 0 1 0 24 1 67 1 0 1 1 0 93 0 37 0 0 1 1 0 90 0 43 1 0 0 1 0 15 149 0 0 0 1 0 3 150 1 1 1 1 1 87 0 53 1 1 1 0 0 120 0 32 1 1 1 0 0 120 0 46 0 1 0 0 1 120 043 1 0 1 1 0 120 044 1 0 1 1 0 120 0 62 0 0 0 1 0 120 0 40 1 1 1 0 1 40 1 50 1 0 0 1 0 26 1 33 1 1 0 0 0 120 0 57 1 1 1 0 0 120 0 48 1 0 0 1 0 120 0 28 0 0 0 1 0 3 1 54 1 0 1 1 0 120 1 35 0 1 0 1 1 7 1 47 0 0 0 1 0 18 1 49 1 0 1 1 0 120 0 43 0 1 0 0 0 120 0 48 1 1 0 0 0 15 1 44 0 0 0 1 0 4 1 60 1 1 1 0 0 120 0 40 0 0 0 1 0 16 1 32 0 1 0 0 1 24 1 44 0 0 0 1 1 19 1 48 1 0 0 1 0 120 0 72 0 1 0 1 0 24 1 42 0 0 0 1 0 2 1 63 1 0 1 1 0 120 0 55 0 1 1 0 0 12 1 39 0 0 0 1 0 5 1 44 0 0 0 1 0 120 074 0 0 0 1 1 7 161 0 1 0 1 0 40 145 1 0 1 1 0 108 038 0 1 0 0 0 24 162 0 0 0 1 0 16 1;proc phreg;model t*y(1)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,变量值1表示截尾数据,x1-x6为危险因素*//selection=stepwisesle=0.05sls=0.05;run;五:判别和聚类分析5.1判别分析data ex18_4;input x1-x4 g; /*确定变量名称,x1-x4为用于进行判别分析的指标,g为分组变量*/ cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc discrim;class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(结果横向是真实值,竖向的预测值)5.2逐步判别分析data ex18_5;input x1-x4 g;cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc stepdisc /*调用stepdisc过程*/slentry=0.2/*确定入选标准为0.2*/slstay=0.3;/*确定剔除标准为0.3*/class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(筛选出变量后,调用discrim过程对筛选出的变量作判别分析,即先做5.2再做5.1)5.3作样品聚类和指标聚类data ex19_3;input x1-x9;cards;46 25 5 2138 1.68 0.35 8.11 4 4 35 12 20 3510 2.76 1.43 6.84 3 3 52 25 20 2784 2.19 0.54 4.11 3 3 32 7 20 2451 1.93 0.47 11.45 9 6 38 22 0 3247 2.56 0.80 11.68 5 5 51 31 30 3710 2.92 0.37 11.60 2 2 40 9 10 3194 2.51 0.40 11.40 5 5 34 17 20 4658 3.67 0.46 11.35 3 3 50 29 0 5019 3.95 0.47 13.45 10 8 42 20 20 7482 5.89 0.12 13.11 0 0 57 30 15 3800 2.99 0.19 10.76 2 236 15 20 2478 1.95 0.25 10.00 0 037 12 0 3827 3.01 0.82 10.50 4 4 52 32 0 2984 2.35 0.16 11.15 3 3 52 32 10 3749 2.95 0.72 11.45 11 10 42 27 30 4941 3.89 0.73 13.80 7 6 44 27 20 3948 3.11 0.33 13.65 16 14 40 21 5 3360 2.64 0.37 11.40 0 0 38 21 5 2936 2.31 0.69 11.40 1 1 44 27 20 6851 5.39 0.99 12.28 7 6 43 27 0 3926 3.09 0.47 11.95 0 0 26 10 3 4381 3.45 0.52 11.80 7 5 37 18 20 7142 5.62 0.85 11.81 5 5 28 9 20 2612 2.06 0.37 11.65 1 1 25 9 30 2638 2.08 0.78 12.25 1 1 34 14 20 4322 3.40 0.41 15.00 5 5 50 32 20 2862 2.25 0.69 8.80 2 2;proc cluster/*调用cluster过程*/method=average;/*采用类平均法进行聚类*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;proc treegraphics haxis=axis1 horizontal;/*调用tree过程输出聚类图,并将图横向输出*/ run;/*对各个指标聚类,即对9个变量聚类*/proc varclus;/*调用varclus过程*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;六、主成分分析和因子分析6.1主成分分析data ex20_1;input x1-x6;cards;92 77 80 95 99 12697 75 77 80 95 12595 80 70 78 89 12075 75 73 88 98 11092 68 72 79 88 11390 85 80 70 78 10372 93 75 77 80 10088 70 76 72 81 10264 70 69 85 93 10570 73 70 87 84 10078 69 75 73 89 9778 72 71 68 75 9675 64 63 76 73 9284 66 77 55 65 7670 64 51 60 67 8858 72 75 62 52 7582 73 40 50 48 6145 65 42 47 43 60;proc princomp;/*调用princomp过程,对6个变量做主成分分析,结果包括主成分累积贡献率,特征向量矩阵*/run;6.2因子分析data ex20_2;input x1-x9;cards;4.34 389 99.06 1.23 25.46 93.15 3.56 97.51 61.663.45 271 88.28 0.85 23.55 94.31 2.44 97.94 73.334.38 385 103.97 1.21 26.54 92.53 4.02 98.484.18 377 99.48 1.19 26.89 93.86 2.92 99.41 63.164.32 378 102.01 1.19 27.63 93.18 1.99 99.71 80.004.13 349 97.55 1.10 27.34 90.63 4.38 99.03 63.164.57 361 91.66 1.14 24.89 90.60 2.73 99.69 73.534.31 209 62.18 0.52 31.74 91.67 3.65 99.48 61.114.06 425 83.27 0.93 26.56 93.81 3.09 99.48 70.734.43 458 92.39 0.95 24.26 91.12 4.21 99.76 79.074.13 496 95.43 1.03 28.75 93.43 3.50 99.10 80.494.10 514 92.99 1.07 26.31 93.24 4.22 100.00 78.954.11 490 80.90 0.97 26.90 93.68 4.97 99.77 80.533.53 344 79.66 0.68 31.87 94.77 3.59 100.00 81.974.16 508 90.98 1.01 29.43 95.75 2.77 98.72 62.864.17 545 92.98 1.08 26.92 94.89 3.14 99.41 82.354.16 507 95.10 1.01 25.82 94.41 2.80 99.35 60.614.86 540 93.17 1.07 27.59 93.47 2.77 99.80 70.215.06 552 84.38 1.10 27.56 95.15 3.10 98.63 69.234.03 453 72.69 0.90 26.03 91.94 4.50 99.05 60.424.15 529 86.53 1.05 22.40 91.52 3.84 98.58 68.423.94 515 91.01 1.02 25.44 94.88 2.56 99.36 73.914.12 552 89.14 1.10 25.70 92.65 3.87 95.52 66.674.42 597 90.18 1.18 26.94 93.03 3.76 99.28 73.813.05 437 78.81 0.87 23.05 94.46 4.03 96.223.94 477 87.34 0.95 26.78 91.784.57 94.28 87.344.14 638 88.57 1.27 26.53 95.16 1.67 94.50 91.673.87 583 89.82 1.16 22.66 93.43 3.55 94.49 89.074.08 552 90.19 1.10 22.53 90.36 3.47 97.88 87.144.14 551 90.81 1.09 23.06 91.65 2.47 97.72 87.134.04 574 81.36 1.14 26.65 93.74 1.61 98.20 93.023.93 515 76.87 1.02 23.88 93.82 3.09 95.46 88.373.90 555 80.58 1.10 23.08 94.38 2.06 96.82 91.793.62 554 87.21 1.10 22.50 92.43 3.22 97.16 87.773.75 586 90.31 1.12 23.73 92.47 2.07 97.74 93.893.77 627 86.47 1.24 23.22 91.17 3.40 98.98 89.80;proc factor/*调用factor过程*/n=4;/*确定因子数为4,如果不写就默认为3*/run;proc factorn=4rotate=quartimax;/*因子旋转的方法为四次方最大正交旋转*/run;七、典型相关分析data ex21_1;input x1-x4 y1-y4;cards;1210 120.1 23.8 61.0 10.2 66.3 2.01 2.731210 120.7 23.4 59.8 11.3 67.6 1.92 2.711040 121.2 22.9 59.0 10.1 66.5 1.92 2.601620 121.5 24.6 59.5 9.5 67.8 1.95 2.641690 122.5 24.4 60.7 11.0 69.2 2.08 2.641150 122.7 27.2 64.5 10.5 69.1 2.19 2.841460 123.3 24.9 58.4 10.5 69.0 2.01 2.72 1190 123.4 21.8 59.0 10.6 67.4 1.90 2.71 1840 123.9 23.5 60.2 9.6 67.1 2.00 2.84 1250 124.5 25.2 63.0 11.2 67.8 2.05 2.78 1480 124.8 22.3 58.1 10.7 67.9 2.05 2.73 1310 124.9 22.0 58.0 10.5 67.8 1.98 2.68 1660 125.3 24.7 60.0 10.8 69.3 1.95 2.80 1580 125.6 22.8 59.0 9.4 69.1 2.00 2.65 1460 125.8 25.7 61.0 10.2 69.6 1.95 2.70 1240 126.0 30.2 68.0 9.2 67.1 2.14 2.88 1100 126.2 25.2 60.5 9.8 68.4 1.98 2.72 1250 126.8 23.6 58.5 10.2 67.5 1.94 2.74 1270 127.1 23.0 57.7 10.8 69.8 1.90 2.78 1300 127.6 24.3 59.0 10.3 67.9 1.93 2.84 1350 127.7 24.1 60.0 11.0 69.7 2.03 2.77 1250 128.3 21.6 55.5 10.4 68.5 1.83 2.70 1720 128.5 27.1 62.0 11.4 71.2 2.03 2.75 1480 128.5 22.6 57.4 10.0 67.3 2.04 2.83 1380 129.4 24.9 60.5 11.5 69.8 2.04 2.76 1170 129.0 26.7 63.7 9.6 67.4 2.13 2.98 1640 129.8 26.1 62.0 9.8 71.0 2.00 2.84 1640 131.6 28.7 62.8 9.7 70.7 1.89 2.89 1150 130.2 25.0 58.6 10.5 71.8 1.96 2.78 1430 130.5 26.1 60.7 10.8 68.6 2.05 2.77 1150 130.6 23.4 54.4 11.8 69.2 1.96 2.78 1150 131.4 25.5 63.2 10.2 70.4 2.05 2.84 1320 131.6 25.6 58.9 10.9 70.2 2.06 2.86 1360 131.7 27.4 62.0 10.9 73.5 1.99 2.70 1460 132.0 26.3 61.5 11.1 71.2 2.17 2.13 1380 132.2 25.7 61.4 10.1 70.1 1.96 2.83 1300 132.5 24.5 57.0 10.8 71.8 2.02 2.84 1220 132.7 27.0 61.3 10.1 72.2 2.08 2.80 1320 132.9 25.2 60.5 11.2 73.1 2.01 2.73 1910 133.1 30.1 67.0 9.0 87.1 2.15 2.97 1800 133.5 26.5 62.5 9.8 71.7 2.07 2.82 1560 133.6 24.8 58.5 10.3 72.2 1.93 2.79 1840 134.0 26.0 60.5 10.4 73.0 1.98 2.74 1470 134.3 28.2 62.0 11.3 87.2 2.66 4.03 1590 134.4 25.5 60.7 9.6 69.9 1.99 2.81 1430 134.1 26.6 63.0 11.2 72.2 2.06 2.90 1760 134.6 32.5 66.0 9.9 87.4 2.61 2.98 1470 135.3 27.9 61.8 10.1 73.3 2.20 2.78 1580 135.6 28.1 65.8 9.8 73.1 2.05 2.891840 137.1 27.6 62.8 9.5 72.4 2.11 2.91 1810 137.4 28.3 62.5 9.4 74.2 2.06 3.00 1850 138.1 29.5 62.4 9.7 72.3 2.12 4.02 2120 140.0 34.9 68.8 9.5 87.9 2.74 4.15 1760 140.7 32.0 64.4 10.2 74.0 2.17 4.05 1800 141.0 32.5 63.8 9.5 88.2 2.65 4.08 1260 141.7 29.1 65.0 9.7 88.2 2.68 2.90 1860 142.4 19.3 70.0 10.1 89.6 2.71 4.06 1800 144.7 27.0 58.3 10.8 74.8 2.10 2.82 1470 136.8 26.3 61.4 10.0 72.2 2.07 2.93 1260 121.1 22.9 59.0 10.6 66.3 2.05 2.76 1570 132.7 25.3 58.6 11.5 73.6 2.16 2.78 1290 125.0 25.7 60.5 10.1 68.8 2.00 2.69 1580 133.2 27.3 60.7 9.6 71.7 2.11 2.85 1690 132.8 28.6 64.7 9.6 72.9 2.19 4.08 1670 131.6 25.4 59.7 10.6 69.8 2.14 2.76 1300 133.1 25.9 58.0 10.1 69.7 2.12 2.83 1610 134.0 25.8 59.6 9.4 70.8 2.10 2.88 1580 134.3 26.3 61.2 10.2 72.2 2.14 2.84 1570 129.1 27.7 62.2 11.1 72.9 2.09 2.93 1660 140.1 32.1 67.0 9.3 87.1 2.15 4.03 1040 132.6 27.9 62.0 10.3 72.5 2.08 2.81 1290 128.3 23.6 58.5 9.3 69.0 1.97 2.76 1980 145.8 34.5 68.0 9.8 89.7 2.68 4.25 1210 133.3 25.6 61.5 9.9 71.0 2.11 2.82 1300 134.3 25.6 61.0 10.5 73.2 2.02 2.83 1310 138.1 27.8 61.2 9.9 73.5 2.09 2.78 1590 135.6 25.9 59.6 9.6 72.8 2.10 2.91 1270 128.3 24.1 58.5 10.3 69.2 1.92 2.77 1310 129.7 24.7 61.7 10.1 69.4 2.03 2.80 2280 143.6 37.6 70.0 9.7 88.8 2.17 4.18 1580 136.6 32.3 67.2 10.3 87.1 2.66 4.04 2370 147.4 38.8 73.0 10.8 90.7 2.82 4.38 ;proc cancorr;/*调用cancorr过程*/var x1-x4;/*定义一组变组变量*/with y1-y3;/*定义另一组变量*/run;。
线性回归分析
![线性回归分析](https://img.taocdn.com/s3/m/2ca8d3e081c758f5f61f678d.png)
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy
❖
两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。
用SAS作回归分析RegressionAnalysis
![用SAS作回归分析RegressionAnalysis](https://img.taocdn.com/s3/m/a939cea3541810a6f524ccbff121dd36a32dc4d0.png)
交互项的检验
使用交互项的系数检验,判断交 互项是否显著,从而决定是否保 留交互项。
交互项模型的应用
场景
适用于研究多个因素之间相互作 用对因变量的影响,以及解释复 杂现象时使用。
06
案例分享与实战演练
案例一:使用SAS进行线性回归分析
总结词
线性回归分析是一种常用的回归分析方法,用于探索自变量和因变量之间的线 性关系。
表示为 y = f(x),其中 f 是一个非线性函数。
03
多重回归
当一个因变量受到多个自变量的影响时,可以使用多重回归分析。多重
回归模型可以表示为 y = b0 + b1x1 + b2x2 + ... + bnxn,其中 b0
是截距,b1, b2, ..., bn 是自变量的系数。
回归分析在统计学中的重要性
线性关系检验
通过散点图、残差图和正态性检验等手段,检验因变 量与自变量之间是否存在线性关系。
独立性检验
检查自变量之间是否存在多重共线性,确保自变量之 间相互独立。
误差项的独立性检验
检验误差项是否独立,即误差项与自变量和因变量是 否独立。
模型的评估与优化
模型评估
01
通过R方、调整R方、AIC等指标评估模型的拟合优度。
使用SAS进行线性回归分析
线性回归模型的建立
确定自变量和因变量
首先需要明确回归分析的目的,并确定影响因变量的自变量。
数据准备
确保数据清洗无误,处理缺失值、异常值和离群点。
模型建立
使用SAS的PROC REG或PROC GLMSELECT过程,输入自变量和 因变量,选择线性回归模型。
模型的假设检验
02
用SAS作回归分析
![用SAS作回归分析](https://img.taocdn.com/s3/m/dcfb6267be23482fb4da4c65.png)
变量选择准则
(逐步回归)
逐步回归方式挑选有关的选项: NONE:全部进入,不加选择 FORWARD: 逐个加入 BACKWARD: 全部加入后逐个剔除 STEPWISE: 边进边出 MAXR:逐个加入和对换,使R2增加最大 MINR: 逐个加入和对换,使R2增加最小
24
回归的假设检验
原假设:简单线性模型拟合数据不比基线 模型好 b1 = 0, r = 0, |b1| 小,SS(Model) 小
备选假设:简单线性模型拟合数据比基线 模型好 b1 ^= 0, r ^= 0, |b1| 不为零,SS(Model) 大
25
R2
R 2S S(M o d el) b 1 2 S S(C -T o tal)
P R E S S (Y i Y (i))2
42
多变量线性模型的检验
在多变量回归分析输出的回归参数的t -检 验里,都是假定其它相依变量进入回 归的前提下检验该变量进入的显著性。
若模型中有两个变量有相关,在这一检验 中两者的显著性都可被隐蔽起来。所以, 这一检验结果必须小心分析。
删除变量时,必须逐个删除。并在删除每 个变量后,注意观测其它变量的p-值的 变化。
(Yi b0 b1 X i ) 2
+ (b1 b1 ) 2 ( X i X ) 2
+ n (Y b0 b1 X ) 2
= SS(error) + SS(Ind.-var) + SS(Const.)
27
预测值与置信限
预 测 值 : Yx0 b0 + b1x0 均值置信限(CLM):
相关系数是描述两个变量间线性联系程度 的统计指标
用SAS作回归分析
![用SAS作回归分析](https://img.taocdn.com/s3/m/6bf4d2406ad97f192279168884868762cbaebb08.png)
其中 S (Yˆi )
第i个观测的预测值的标准差,
是为了把数据标准化。其中Dffits越大越好,
D是different和fit的缩写说明,
第i个观测的预测值 用排除第i个观测的回归对第i个观测的预测值 p 为模型中参数的个数, n 为样本容量
回归诊断
识别有影响的观测
Proc REG 的 Model语句加选项 r 可获得 Cook D 统计量
利用余差可以考 察余差和预测值 的 散 点 图{
重要工具
也可以检验余差
分布的正态性
1.
回归诊2断.
模型合 适
3.
应改曲 线模型
不等方 差
4.
观测值 不独立
单击此处添加标题
回
归
诊
生成余差
单击此处添加标题
断
在PROC REG的model语句加上选项 p,
就
会
输出预测值和相应的余差
单击此处添加标题
PROC
RUN;
回归诊断 识别有影响 的观测
Cook D统计量度量一个观测从分析中 剔除 时参数估计值的变化
对一个观测值其 Cook D 统计量的值 超 过 4/n 时(n为样本容量),这个观测存 在 反常效应,
其中4/n只是经验,没有统一的标准。
回归诊断 识别有影响 的观测
Yˆi
Yˆ Dffitsi 度量第i 个观测对预
Predict Value 预测值
PROC REG DATA=数据集名 ; MODEL 应变量=自变量/r;
Std Err Predict 预测值标准差RUN;
Residual
余差
Std Err Predict 余差标准差
学会使用SAS进行数据分析与统计
![学会使用SAS进行数据分析与统计](https://img.taocdn.com/s3/m/5dafeb7fcdbff121dd36a32d7375a417866fc135.png)
学会使用SAS进行数据分析与统计第一章:SAS简介与安装1.1 SAS的定义与发展历程1.2 SAS的应用领域与优势1.3 SAS的安装与配置步骤第二章:SAS基本语法与数据处理2.1 SAS数据集的创建与导入2.2 数据集的基本操作(查询、排序、合并等)2.3 数据集的转换与处理(缺失值处理、变量转换等)第三章:SAS统计分析3.1 描述性统计分析(中心趋势与离散程度测量)3.2 统计图表(直方图、散点图、箱线图等)3.3 参数检验方法(t检验、方差分析等)3.4 非参数检验方法(秩和检验、卡方检验等)3.5 回归分析(线性回归、逻辑回归等)第四章:SAS数据挖掘与建模4.1 数据挖掘的概念与方法论4.2 数据挖掘过程与流程4.3 数据探索与预处理4.4 分类与预测模型的建立4.5 模型评估与应用第五章:SAS与大数据分析5.1 大数据与SAS的关系与发展趋势5.2 大数据的存储与处理5.3 大数据分析的典型方法与应用5.4 SAS在大数据分析中的优势与应用案例第六章:SAS与业务决策支持6.1 SAS在决策支持系统中的作用6.2 基于SAS的数据驱动决策方法6.3 风险管理与预警系统的建立6.4 模拟与优化决策的实现6.5 基于SAS的智能决策系统案例分析第七章:SAS的应用案例分析7.1 金融行业中的风险控制与信用评估7.2 医疗保险领域中的疾病预测与费用预测7.3 零售行业中的用户行为分析与精准营销7.4 制造业中的质量控制与生产优化7.5 市场调研与品牌分析中的应用案例第八章:SAS的发展与前景展望8.1 SAS在数据科学领域的地位与作用8.2 SAS的发展趋势与技术创新8.3 SAS对于人才发展的需求8.4 对于SAS未来的个人职业规划建议总结:本文分析了SAS的基础语法与数据处理、统计分析、数据挖掘与建模、大数据分析、业务决策支持以及应用案例等多个方面。
SAS作为一种功能强大的数据分析与统计工具,在各行各业的实际应用中发挥着重要的作用。
sas回归分析实验报告
![sas回归分析实验报告](https://img.taocdn.com/s3/m/8c50bb47cd1755270722192e453610661ed95aa0.png)
sas回归分析实验报告SAS回归分析实验报告引言:回归分析是一种常用的统计方法,用于研究变量之间的关系。
在本次实验中,我们使用SAS软件进行回归分析,探索自变量和因变量之间的关系,并对结果进行解释和推断。
本实验旨在通过实际数据的分析和处理,加深对回归分析方法的理解和应用。
实验设计:本次实验使用了某公司销售数据,其中自变量包括广告费用、产品价格和季节因素,因变量为销售额。
我们的目标是通过回归分析,探究广告费用、产品价格和季节因素对销售额的影响,并建立一个可靠的模型来预测销售额。
数据处理:首先,我们对数据进行了清洗和预处理。
去除了缺失值和异常值,并进行了变量的标准化处理,以确保数据的准确性和可比性。
接下来,我们使用SAS软件进行回归分析。
回归模型建立:我们选择了多元线性回归模型来建立自变量和因变量之间的关系。
通过分析数据,我们发现广告费用、产品价格和季节因素对销售额都可能有影响。
因此,我们的模型为:销售额= β0 + β1 × 广告费用+ β2 × 产品价格+ β3 × 季节因素+ ε其中,β0、β1、β2和β3分别为回归系数,ε为误差项。
回归分析结果:通过SAS软件进行回归分析后,我们得到了如下结果:回归方程:销售额= 1000 + 2.5 × 广告费用+ 1.8 × 产品价格+ 0.3 × 季节因素回归系数的显著性检验结果显示,广告费用和产品价格对销售额的影响是显著的(p < 0.05),而季节因素的影响不显著(p > 0.05)。
模型解释和推断:根据回归方程的结果,我们可以得出以下结论:1. 广告费用对销售额有正向影响:每增加1单位的广告费用,销售额将增加2.5单位。
2. 产品价格对销售额也有正向影响:每增加1单位的产品价格,销售额将增加1.8单位。
3. 季节因素对销售额的影响不显著:季节因素对销售额的变化没有明显的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b(i i 0,1,2,, m)应该使
n
n
Q ( yi yˆi )2 [ yi (b0 b1x1i b2x2i bm xmi )]2 min
i 1
i 1
由求极值的必要条件得:
Q
b0
n
2
i 1
( yi
yˆi )
0
回归方程: yˆ = a + b x
a 称为回归截距 b 称为回归系数 i 称为随机误差
第二节 线性回归方程
回归参数的计算——最小二乘法
期望拟合的线性回归方程与试验资料的误差
最小,拟合的误差也称作离回归平方和或残 差 ,可以利用数学中求极值的方法解出 a 和 b 而使得误差平方和为最小。
U b2 (x x)2 b2SSx bSPxy SPx2y / SSx
误差平方和: SSe SSy SSr
或 Q T U
第三节 回归关系的显著性检验
利用方差分析表
变异来源 自由度 平方和
回归
1
U
误差
n-2
Q
总变异 n-1
T
均方
sU2 se2
F值
F0.05
sU2 se2
用光照强度来预测净光合强度是合理的。
第四节 预测值的置信区间
由x预测y时,y有一定的误差,其标准误差为:
sy se
1 1 x x 2
n SSx
因此由x预测y时,y 的95%置信区间为:
yˆ t0.05 sy
实例: 由x预测y的预测区间
第一步:计算当x=2500时, y 的点估计值:
第五章 线性回归分析
一、一元线性回归 二、一元线性回归方程 三、回归关系的显著性检验 四、置信区间 五、多元线性回归 六、回归诊断
第一节 一元线性回归
生产实践中,常常能找到一个变量与另外一
个变量之间的关系:小麦的施肥量与产量、 水稻的株高和穗长、冬天的温度与来年病虫 害的发生程度等等。
回归分析就是找出合适的回归方程,从而用
y yˆ y [( y bx) bx] 即 ( y yˆ) ( y y) b(x x)
( y yˆ)( yˆ y) b(x x)[( y y) b(x x)] b[(x x)( y y) b(x x)2 ]
第三节 回归关系的显著性检验
式中β 0 β 1 β 2 … β m 为(偏)回归系数
多元线性回归方程
yˆ b0 b1x1 b2x2 bmxm
式中b0 b1 b2 … bm 为(偏)回归系数的估计值
第五节 多元线性回归分析
二、参数估计方法——最小二乘准则
根据最小二乘法原理,i (i 0,1,2,, m) 的估计值
第四步:结论 有95%的把握预测当树冠的光照强度为 2500时,净光合作用的强度在338.95到 517.30之间。
第五节 多元线性回归分析
一、多元线性回归分析概述
上面讨论的只是两个变量的回归问题, 其中因变量只与一个自变量相关。但在大 多数的实际问题中,影响因变量的因素不 是一个而是多个,我们称这类多自变量的 回归问题为多元回归分析。
8 10810 1351
总变异
9 455595
F检验结论:回归关系达极显著,可得线性回归方程
yˆ 190.955 0.094868x
用光照强度估测净光合强度是合理的。
实例:P161
2、t 检验
sb
se SSx
0.005229
Q n2 SSx
10810 10 2 49421000
着不管 xi为什么值, yi 都不发生实质性变化;换言 之,x和 y 之间没有显著的回归关系。
检验线性回归关系是否存在,就是检验建立回归
模型的样本是否来自存在回归关系的总体,即
H0 : =0 vs HA: ≠0
只有在此检验结果为显著时,用 a 估计 ,用 b
估计 ,用 yˆ 估计 y 才是有意义的。
yˆ 190.955 0.094868 2500 428.125
第二步:求y的标准误差:
sy
36.76
1 1 2500 30702
10 49421000
38.67
实例: 由X预测Y的预测区间
第三步:求y的置信区间:
yˆ t0.05 sy 428.125 2.03638.67 338.95 yˆ t0.05 sy 428.125 2.03638.67 517.30
三个平方和的计算公式:
总平方和: T SSy (y y)2 y2 ( y)2 / n 回归平方和: U SSr (yˆ y)2
a y bx, yˆ a bx, yˆ y bx bx, yˆ y b(x x), (yˆ y)2 b2 (x x)2,
三、假设检验
1、回归方程的假设检验
原假设 H0 :β 1=β 2= … =β m=0
F统计量为: F U / m Q /(n m 1)
回归平方和:U ( yˆi y)2 自由度:m
误差平方和: Q ( yi yˆi )2 自由度:n-m-1
第五节 多元线性回归分析
y
可分解为两个部分:
y y( y yˆ) ( yˆ y)
xx
离均差 随机误差 回归引起的偏差
第三节 回归关系的显著性检验
对于任一个点有:( y y) ( y yˆ) ( yˆ y) 两边平方得:
(y y)2 (y yˆ)2 2(y yˆ)( yˆ y) (yˆ y)2
这里着重讨论简单而又最一般的线性 回归问题,这是因为许多非线性的情形可 以化为线性回归来做。多元线性回归分析 的原理与一元线性回归分析完全相同,但 在计算上却要复杂得多。
第五节 多元线性回归分析
一、多元线性回归分析概述
多元线性回归模型
y 0 1x1 2x2 mxm
(1)式除以 n 得: a b( x / n) y / n
(3)
于是: a y / n b( x / n) y bx (4)
(3)式各项乘 x:ax b(x)2 / n x y / n (5)
(2)-(5)式得:b[ x2 ( x)2 / n] xy x y / n
2、回归系数的假设检验
1)t检验 原假设 H0 :β i=0
统计量为t:
t bi Sbi
其中: Sbi S y c(i1)(i1) Sy Q n m 1
实例:
计算公式: 二级计算:
SSx x2 x2 / n 14367000 307002 /10
49421000
实例:
计算公式: 二级计算:
SPxy
xy
x n
y
19492000 3070 4822 10
4688460
实例:
回归系数 b :
研究光照强度与净光合强度的关系
光照 强度X
300 700 1000 1500 2200 3000 4000 5000 6000 7000
净光合 强度Y
140 260 300 380 410 492 580 690 740 830
一级计算: x 30700 y 4822 x2 143670000 y2 2780764 xy 19492000 n 10
x21
x22
x2m
b0
b1
0
1
x31
x23
x3m
B
b2
2
xn1 xn2 xnm
bm
n
解得: B (X ' X )1 X 'Y
第五节 多元线性回归分析
对数据资料所有点的求和得:
(y y)2 (y yˆ)2 2(y yˆ)( yˆ y) (yˆ y)2
证明:上式右边的中间项为0:
yˆ a bx (y bx) bx y b(x x) 即 (yˆ y) b(x x)
Q
b j
n
2 ( yi
a 1
yˆi )x ji
0
( j 1,2,, m)
第五节 多元线性回归分析
二、参数估计方法——最小二乘准则
采用矩阵形式: Y = XB+E
Y
y1
y
2
X
1 1 1
y
n
1
x11 x12 x1m
a
bx)
2(
y
na
b
x)
0
Q b
2 (y
a
bx) x
2(
xy
a
x
b
x2)
0
整理得正规方程组:
na b x y
a x b x2 xy
第二节 线性回归方程
解正规方程组: na b x y (1) a x b x2 xy (2)
一个变量来预测另一个变量。
一元线性回归:最简单的回归关系,即一个