测点、水准点布置图

合集下载

工程基坑监测点布设方案

工程基坑监测点布设方案

第五章监测点布置和埋设监测点布设原则1.以设计提供的主体围护结构监测平面图为参考;2.各监测项目的测点布设位置及密度应与基坑开挖顺序、被保护对象的位置及特性相配套;同时为综合把握基坑变形状况,提高监测数据的质量,应保证每一开挖区段内有监测点;遵循规范结合实际,参照围护体布置及开挖分区等参数,进行测点布置;3.基坑监测点总体布设原则:1监测点应充分结合基坑工程监测等级、基坑设计参数特性和基坑施工参数特性进行合理布置;2监测点布置应最大限度反映基坑围护结构体系受力和变形的变化趋势;3基坑围护结构侧边中部、阳角处、受力或变形较大处应布置测点,重点区域应加密监测点;4不同监测项目的监测点宜布置在同一断面上,便于数据比对;5监测点间距布置应满足规范要求,应满足设计及相关单位的合理要求;6各监测项目的测点布置,需兼顾基坑分块施工特点,确保每分块开挖施工中,均有对应测点有效工作,从而为分块施工过程提供数据信息;4.区间隧道监测点布置每10环在管顶和管底各设置一个,盾构始发井和接受井部位各设置一个断面;收敛监测布置间隔同隧道内管片沉降监测;围护结构体系观察基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法;整个基坑工程施工期内,与仪器监测频率相对应,应进行巡视检查,并形成书面巡视报表;巡视检查内容主要针对四部分:围护结构、施工工况、周边环境和监测设施;一般现场巡视内容汇总表现场巡视检查以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行;每日由专人对自然条件、支护结构、施工工况、周边环境、监测设施等的巡视检查情况进行书面记录,及时整理,并与仪器监测数据进行综合分析;巡视检查如发现异常和危险情况,应及时通知委托方及其他相关单位;围护结构顶部水平位移监测基坑开挖期间大面积土方卸载,围护结构将产生一定水平位移,为掌握围护结构顶部位移信息,布设墙顶水平位移监测点,围护结构顶水平位移值亦可作为测斜自管口向下计算时的管口位移修正值;测点布置与围护结构测斜孔位置一一对应;围护结构顶部水平位移监测点,一般直接布设在顶圈梁上,依据测点布设时机相对圈梁浇筑混凝土时间,可区分为先埋和后埋两种方式;“先埋”即在围护体顶部结构施工过程中,如圈梁钢筋笼绑扎过程中,在方案设计位置,将钢筋标杆预先竖直牢靠绑扎或焊接在钢筋笼上,预埋钢筋标杆顶部带“十”字应高出设计圈梁顶部1~2cm以上,混凝土浇筑完毕后,钢筋标杆即牢靠固定在圈梁中或在圈梁混凝土浇筑后12h内,将专用道钉按入测点设计位置,待混凝土完全凝固后,测点亦牢靠固定在圈梁中;“后埋”即围护结构顶部结构施工完成后,用冲击钻于测点设计位置用膨胀螺栓把强制对中盘固定,监测时放上小棱镜即可;水平位移点位埋设示意图周边地表沉降监测因开挖引起基坑围护结构向坑内的变形及坑底隆起等原因,会导致坑外土体出现一定程度的变形,会对影响范围内道路以及地面造成影响,如道路变形过大,将导致道路不能正常、安全使用,故需对基坑周边地表进行沉降监测;为了保证监测数据的准确性,道路及沉降测点标志采用窖井测点形式,采用人工开挖或钻具成孔的方式进行埋设;道路、地表沉降监测测点应埋设平整,防止由于高低不平影响人员及车辆通行,同时,测点埋设稳固,做好清晰标记,方便保存;地表沉降监测点埋设实样图周边建构筑物沉降监测因开挖引起基坑围护体向坑内的变形及坑底隆起等原因,会导致坑外土体出现一定程度的变形,会对影响范围内建筑物造成影响,如建筑物变形过大,将导致该建筑物不能正常、安全使用,故需对建筑物进行沉降和水平位移监测;建筑物垂直位移测点可利用射钉枪进行布设或使用冲击钻进行“L”形测标布设;需确保测点与建筑物连结紧密,不能有松动;建筑物沉降监测点埋设示意图基坑施工监测控制标准以上各项监测的报警指标根据设计施工蓝图确定,应在方案评审会上确认;施工过程中出现以下情况,应启动应急预案并加强监测和巡视:雨季:加强围护安全监测和巡视,必要时增设监测点;小雨时监测工作正常进行,中雨以上雨量时光学监测工作停测,但测斜监测、轴力监测、等科目仍应正常进行,数据异常时需进行加测;围护渗漏:渗漏处加强围护安全监测和巡视;地面裂缝:加强对裂缝处沉降监测、裂缝附近围护安全监测和巡视;监测数据持续报警:加密监测频率,出现异常时及时通知相关单位;监测预警:巡视预警:施工过程中通过巡视,发现一般安全隐患或不安全状态应予以预警;若风险点在扩大,则应在报表中注明,并予以巡视预警;综合预警:施工过程中根据现场参与各方的监测、巡视信息,并通过核查、综合分析和专家论证等,及时综合判定出工程风险不安全状态而进行的预警;施工过程中当判断为综合预警状态时,在信息报送的同时,应及时组织分析,加强监测、巡视,进行先期风险处置;第六章监测仪器和监测方法沉降测量6.1.1 基准点及工作基点的埋设基准点布设于隧道及基坑开挖影响区外,一般为开挖边界100米之外不受干扰的地方,在土质地区,应埋设水泥桩,优先考虑设立在基础好,沉降稳定,便于施测,便于保存,稳固的永久性建筑物上,也可以埋设于在变形影响区域外的原状土层上;工作点的选取应适观测点与基岩基准点的距离而定,初步确定为每个基准点联测3个工作点;基准点埋设方式如下图所示;墙角精密水准点埋设示意图基准点与工作基点的埋设要牢固可靠,如采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖;在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土或钻孔打入1米以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套;基准点与工作基点可适现场情况使用第三方交桩控制点或其他已有的精密水准点;地面基准点埋设示意图6.1.2测量方法基准点采用观测采用闭合水准路线时可以只观测单程,采用附合水准路线形式必须进行往返观测,取两次观测高差中数进行平差;观测顺序:往测:后、前、前、后,返测:前、后、后、前;根据使用仪器徕卡DNA03电子水准仪的精度是每公里偶然中误差为0.3mm,同时考虑本工程监测点是按照三等垂直位移监测精度进行观测,其视线长度≤50m,一般附合路线线路长约1km 左右,则在该路线上的测站数为:105021000 线线S S n 站各测站高程中误差为:04.0103.0 n m m 偶站mm在本线路中最弱点将是第5站,即n=5,其单向观测最高程中误差为:09.023.204.05)( 站单向最弱点m m mm当采用往返观测时,最弱点高程中误差为:06.0204.02)( 最弱点(单向)往返最弱点m m mm可以看出,采用该仪器按本观测方案可以达到垂直变形监测要求;观测注意事项如下:①对使用的电子水准仪、条码水准尺应在项目开始前和结束后进行检验,项目进行中也应定期进行检验;当观测成果异常,经分析与仪器有关时,应及时对仪器进行检验与校正;②观测应做到三固定,即固定人员、固定仪器、固定测站;③观测前应正确设定记录文件的存贮位置、方式,对电子水准仪的各项控制限差参数进行检查设定,确保附合观测要求;④应在标尺分划线成像稳定的条件下进行观测;⑤仪器温度与外界温度一致时才能开始观测;⑥数字水准仪应避免望远镜直对太阳,避免视线被遮挡,仪器应在生产厂家规定的范围内工作,震动源造成的震动消失后,才能启动测量键,当地面震动较大时,应随时增加重复测量次数;⑦每测段往测和返测的测站数均应为偶数,否则应加入标尺零点差改正;⑧由往测转向返测时,两标尺应互换位置,并应重新整置仪器;⑨完成闭合或附合路线时,应注意电子记录的闭合或附合差情况,确认合格后方可完成测量工作,否则应查找原因直至返工重测合格;6.1.3数据处理及分析1数据传输及平差计算观测记录采用电子水准仪自带记录程序进行,观测完成后形成原始电子观测文件,通过数据传输处理软件传输至计算机,检查合格后使用专用水准网平差软件进行严密平差,得出各点高程值;平差计算要求如下:①应使用稳定的基准点为起算,并检核独立闭合差及与2个以上的基准点相互附合差满足精度要求条件,确保起算数据的准确;②使用商用华星测量控制网平差软件,平差前应检核观测数据,观测数据准确可靠,检核合格后按严密平差的方法进行计算;③平差后数据取位应精确到0.1mm;通过变形观测点各期高程值计算各期阶段沉降量、阶段变形速率、累计沉降量等数据;2变形数据分析观测点稳定性分析原则如下:①观测点的稳定性分析基于稳定的基准点作为基准点而进行的平差计算成果;②相邻两期观测点的变动分析通过比较相邻两期的最大变形量与最大测量误差取两倍中误差来进行,当变形量小于最大误差时,可认为该观测点在这两个周期内没有变动或变动不显着;③对多期变形观测成果,当相邻周期变形量小,但多期呈现出明显的变化趋势时,应视为有变动;监测点预警判断分析原则如下:①将阶段变形速率及累计变形量与控制标准进行比较,如阶段变形速率或累计变形值小于预警值,则为正常状态,如阶段变形速率或累计变形值大于预警值而小于报警值则为预警状态,如阶段变形速率或累计变形值大于报警值而小于控制值则为报警态,如阶段变形速率或累计变形值大于控制值则为控制状态;②如数据显示达到警戒标准时,应结合巡视信息,综合分析施工进度、施工措施情况、支护围护结构稳定性、周边环境稳定性状态,进行综合判断;③分析确认有异常情况时,应及时通知有关各方采取措施;垂直位移基准网观测主要技术指标及要求水准观测仪器及主要技术指标水平位移测量现场监测基准点采用强制归心的水泥观测墩,顶面长宽各0.4米,地下部分埋深大于1.2米,地面部分高1.0米;监测点埋设时先在圈梁、围护桩或地下连续墙的顶部用冲击钻钻出深约10cm的孔,再把强制归心监测标志放入孔内,缝隙用锚固剂填充;埋设形式如下图;监测基点实景图监测点实景图5.2.1埋设技术要求测点标志埋设时应注意保证与测点间的通视,保证强制对中标志顶面的水平,测点埋设完毕后,应进行必要的保护、防锈处理,并作明显标记;监测点标志使用预制强制归心标志,可与桩顶沉降点制作成同一标识;5.2.2观测方法1基准点及工作基点观测根据基坑周边环境情况,水平位移基准点及监测控制点组成附合、闭合导线或导线网,参考下图观测方案;水平位移基准点及工作基点必须使用强制对中装置;基准点及工作基点布置示意图基准网测量采用2″级全站仪,测距精度2mm+2ppm;可按下式估算导线相邻点的相对点位中误差:"1t u m S T m m S1-1 其中S 为导线平均边长,m 为测角中误差″,1T 为测距相对中误差mm;取导线平均边长60米,测角中误差1.41”,测距中误差使用TC1800进行6测回观测,可达0.5毫米,于是得到导线相邻点的相对点位中误差ij M 为0.64毫米; mm M M M U T IJ 64.022 1-2水平位移监测控制点的测量选用Ⅰ级全站仪导线测量的方法,按国标“精密工程测量规范”的四等三角测量技术要求施测;其主要技术要求如下:①水平角观测采用方向观测法,6测回观测,方向数多于3个时应归零;方向数为2个时,应在观测总测回中以奇数测回和偶数测回分别观测导线前进方向的左角和右角,左角、右角平均值之和,与360°的差值不大于±″;②半测回归零数≤±4″;一测回中2倍照准差变动范围≤8″;同一方向各测回较差≤±4″;③观测时为了减少望远镜调焦误差对水平角的影响,每一方向的读数正倒镜不调焦完成; ④方位角闭合差≤±″n n 为测站数;⑤测距应往返观测各两测回,并进行温度、气压、投影改正;根据场地的稳定条件,应定期对基准网进行检核,一般每3个月检查1次,发现工作基点相对关系发生变化时应及时进行基准网复测;5.2.3监测点观测由于施工场地内环境条件一般较差,考虑现场情况,监测点水平位移观测一般采用极坐标法,使用工作基点为起算点,采用极坐标法测定各监测点坐标,计算围护桩顶测点的变形量;极坐标法进行监测点观测,测量方法与导线测量相同,在选定的工作基点上安置全站仪,精确整平对中,瞄准另一个工作基点作为起始方向,并用其它工作基点作检核,按测回法依次测定各监测点与测站连线的角度、距离,计算监测点坐标,根据各测次与初始值的坐标,计算桩顶水平位移矢量;极坐标法进行监测点水平位移监测中误差为:mmMmij8.022,满足精度要求;5.2.4数据处理及分析1数据传输及平差计算观测记录采用全站仪多测回测角测量记录程序进行,观测时可完成各项限差指标控制,观测完成后形成电子原始观测文件,通过数据传输处理软件传输至计算机,使用控制网平差软件进行严密平差,得出各点坐标;平差计算要求如下:①平差前对控制点稳定性进行检验,对各期相邻控制点间的夹角、距离进行比较,确保起算数据的可靠;②使用华星测量控制网平差软按严密平差的方法进行计算;③平差后数据取位应精确到0.1mm;通过各期变形观测点二维平面坐标值,计算投影至垂直于基坑方向的矢量位移,并计算各期阶段变形量、阶段变形速率、累计变形量等数据;2变形数据分析观测点稳定性分析原则如下:①观测点的稳定性分析基于稳定的基准点作为基准点而进行的平差计算成果;②相邻两期观测点的变动分析通过比较相邻两期的最大变形量与最大测量误差取两倍中误差来进行,当变形量小于最大误差时,可认为该观测点在这两个周期内没有变动或变动不显着;③对多期变形观测成果,当相邻周期变形量小,但多期呈现出明显的变化趋势时,应视为有变动;监测点预警判断分析原则如下:①将阶段变形速率及累计变形量与控制标准进行比较,如阶段变形速率或累计变形值小于预警值,则为正常状态,如阶段变形速率或累计变形值大于预警值而小于报警值则为预警状态,如阶段变形速率或累计变形值大于报警值而小于控制值则为报警态,如阶段变形速率或累计变形值大于控制值则为控制状态;②如数据显示达到警戒标准时,应结合巡视信息,综合分析施工进度、施工措施情况、基坑围护结构稳定性、周边环境稳定性状态,进行综合判断;③分析确认有异常情况时,应立即通知有关各方;仪器型号:索佳SRX2、南方NTS-332R;精度:±2″,±2mm+2ppm;。

测点布置方法.

测点布置方法.

一、XX地铁车站深基坑施工风险管理研究3.3测点布置的方法和数据处理要求3.3.1测点布置方法(1)建筑物倾斜及沉降监测在深基坑监测过程中,应依据建筑物的结构、形状、桩形、地质条件等因素综合考虑周边建筑物沉降观测点的布置方案,各监测点应最能容易的反映建筑物沉降变化的趋势。

一般情况下,建筑物差异沉降观察点应布设在差异沉降量较大的位置、建筑的四个角处、沉降裂缝的两侧以及地质条件有明显不同的区段。

保证观测点能准确反映建筑物的倾斜及不均匀沉降情况,埋设时注意观测点与建筑物的联结要牢靠。

根据监测点设计图来确定沉降观测点的位置。

固定的观测路线需在沉降观测点与工作点之间建立,并在架设仪器站点与转点处做好标记桩,以保证各次观测均沿统一路线。

用冲击钻在建筑物的基础或墙上钻孔,然后放入长200~300mm,Φ20~30mm的半圆头弯曲钢筋,四周用水泥砂浆填实。

测点的埋设高度应方便观测,对测点应采取保护措施,避免在施工过程中受到破坏。

测点的布设如图3-1所示。

对于建筑物倾斜监测,在需要监测的楼底部和顶部设置倾斜监测标志点。

底部和顶部标志点要求在同一铅垂线上。

观测时,精密经纬仪安置在离建筑物大于其高度的距离外测,出上部标志的高度H以及水平位移的投影值a,则倾斜度I为:I=a/H。

图3-1建筑物沉降观测点布设示意图(2)沉降及倾斜观测依照规范规定出发,事先设计图纸规定布设测点和分析结果,水准基准点宜均匀埋设,数量不应少于3点,埋设方法如图3-2所示。

图3-2沉降观测测点布设示意图(3)桩体变形及基坑外土体水平位移观测桩体变形观测:将测斜管绑扎在灌注桩钢筋笼内,钢筋笼深度与管深一致管体与桩体钢筋笼迎土面钢筋绑扎牢,每间距2米绑扎一次;测斜管内有一对槽必须垂直于基坑边线;下管之前,注意封好测斜管端管口盖子,并用胶带缠绕密封接头部位;待钢筋笼吊装完毕后,立即向测斜管内注入清水,防止泥浆浸入管中,同时做好测点保护。

仪器如图3-3所示。

水准测量方法

水准测量方法

(2)临时性水准点
关键词语:临时使用, 关键词语:临时使用,简易标志
水准点的“点之记” (3)水准点的“点之记”
便于以后使用查找, 便于以后使用查找,需绘制说明点 位的平面图,称之为点之记。 位的平面图,称之为点之记。 坞

山西建院

78.56m
BM5
88.66m 136.78m
学府街
学府大厦
2.水准路线 . 水准测量施测时所经过的路线。 水准测量施测时所经过的路线。 水准路线的布设有单一水准路线和水 准网,其中单一水准路线有三种布设形式: 准网,其中单一水准路线有三种布设形式: (1)闭合水准路线 (2)附合水准路线 (3)支水准路线
点号 点号 点号 1 1 1 BMA BMA BMA 1 1 1 2 2 2 3 3 3 BMB 4 BMB BMB BMB ∑
距离 距离 距离 /km /km /km 2 2 2
测站 测站 测站 数 数 数 3 3 3 6 6 6 10 10 10 8 8 8 6 6
实测高差 改正数 实测高差 改正数 实测高差 改正数 /mm /m /m /mm /m /mm 4 5 4 5 4 5 +2.336 +2.336 2.336 +2.336 -8.653 8.653 -8.653 +7.357 +7.357 +7.357 +3.456 +3.456
fh
1
h2 2 h3 3 4 h4
例如:
BM3
h1
(已知) 已知)
h5
∑h理 = 0
∑h实测 = h1 + h2 + h3 + h4 + h5 ≠ Σh理

水准基点

水准基点

1)水准基点的设置沉降观测水准基点(或称水准点)在一般情况下,可以利用工程标高定位时使用的水准点作为沉降观测水准基点。

如水准点与观测的距离过大,为保证观测的精度,应在建筑物或构造物附近,另行埋设水准基点。

建筑物和构筑物沉降观测的每一区域,必须有足够数量的水准点,按《工程测量规范》(GB50026-93)规定并不得少于3个。

水准点应考虑永久使用,埋设坚固(不应埋设在道路、仓库、河岸、新填土、将建设或堆料的地方以及受震动影响的范围内),与被观测的建筑物和构筑物的间距为30~50m,水准点帽头宜用铜或不锈钢制成,如用普通钢代替,应注意防锈。

水准点埋设须在基坑开挖前15天完成。

水准基点可按实际要求,采用深埋式和浅埋式两种,但每一观测区域内,至少应设置一个深埋式水准点。

2)沉降观测点标志测定建筑物或构筑物下沉的观测点,可根据建筑物的特点采用各种不同的类型。

观测点标志上部应为突出的半球形或有明显的突出之处,观测点标志本身应牢固。

沉降观测点应及时埋设,沉降观测点标志应安设稳定牢固,与柱身或墙保持一定距离,以保证能在标志上部垂直置尺。

3)沉降观测点应有良好的通视条件观测点的布置,应按能全面查明建筑物和构筑物基础沉降的要求,由设计单位根据地基的工程地质资料及建筑结构的特点确定。

砖墙承重的各观测点,一般可沿墙的长度每隔8~12m设置一个,并应设置在建筑物上。

当建筑物的宽度大于15m时,内墙也应在适当位置设观测点。

框架式结构的建筑物,应在每一个桩基或部分桩基上安设观测点。

具有浮筏基础或箱式基础的高层建筑,观测点应沿纵、横轴和基础(或接近基础的结构部分)周边设置。

新建与原有建筑物的连接处两边,都应设置观测点。

烟囱、水塔、油罐及其他类似的构筑物的观测点,应沿周边对称设置。

沉降观测点具体布置位置,应由设计单位负责确定。

对设计未作规定而按有关规定需作沉降观测的建筑或构筑物,其沉降观测点布置位置则由施工企业技术部门负责确定。

沉降观测点平面布置图的比例一般为1:100至1:500。

水准起测基点

水准起测基点

水准起测基点
水准基点是什么?
水准基点是一个永久的、被人们所认可的基准点,是指高程控制点,我国现以黄海附近某点的平均海平面高程定为0.000永久点,并建立了标高为绝对0的测量原点,是绝对高程。

相对高程则可以从任意点为起测点进行推算,是一个假定高程。

测量仪器
全站仪、激光经纬仪、GPS、精密水准仪、激光仪等
控制点的设置
1、应将点位选在土质坚实、稳固可靠的地方或稳定的建筑物上,且便于寻找、保存和引测;当采用数字水准仪作业时,水准路线还应避开电磁场的干扰。

2、宜采用水准标石,也可采用墙水准点。

标志及标石的埋设应符合规定。

3、埋设完成后,二、三等点应绘制点之记,其他控制点可视需要而定。

必要时还应设置指示桩。

建筑施工深基坑监测时,基准点、监测点如何布置符合规范?

建筑施工深基坑监测时,基准点、监测点如何布置符合规范?

建筑施工深基坑监测时,基准点、监测点如何布置符合规范?一、基准点设置1、竖向位移基准点布置竖向位移观测的高程基准点不应少于3 个,基准点离所测建筑距离较远致使变形测量作业不方便,设置工作基点。

高程基准点与观测点的距离不宜太远,以保证足够的观测精度。

基准点须埋设在变形影响范围以外且稳定、易于长期保存的地方,其点位与邻近建筑物的距离应大于建筑基础深度的2 倍,高程基准点也可选择在基础深且稳定的建筑物上。

在工程压力传播范围之外预先合理埋设BM1、BM2、BM3 三个基准点,为了测量方便,视现场情况设置基准点。

可选用浅埋钢管水准标石或墙上水准标志等。

2、竖向位移基准点测量基准点使用前,采用假定高程系统使用精密水准仪对三个基准点联测,经平差计算后的高程数据作为本工程三个基准点高程依据。

3、水平位移基准点布点水平位移基准点应基坑变形区域以外,宜设置有强制对中的观测墩,采用精密的光学对中装置,对中误差不宜大于0.5mm。

4、水平位移基准点测量基准点平面坐标数据以假定相对坐标系为依据,布设导线联测三个基准点,经平差后的坐标数据做为工程基准点平面已知数据。

二、监测点布置1、基坑及支护结构1)围护墙或基坑边坡顶部的水平和竖向位移监测点应沿基坑周边布置,周边中部、阳角处应布置监测点。

监测点水平间距不宜大于20m,每边监测点数目不宜少于3 个。

水平和竖向位移监测点宜为共用点,监测点宜设置在围护墙或基坑坡顶上。

围护墙或土体深层水平位移监测点宜布置在基坑周边的中部、阳角处及有代表性的部位。

监测点水平间距宜为20m~50m,每边监测点数目不应少于1 个。

围护墙内力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和水平间距视具体情况而定。

竖直方向监测点应布置在弯矩极值处,竖向间距宜为2m~4m。

2)支撑内力监测点的布置应符合下列要求:监测点宜设置在支撑内力较大或在整个支撑系统中起控制作用的杆件上。

每层支撑的内力监测点不应少于3 个,各层支撑的监测点位置在竖向上宜保持一致。

水准测量—水准路线施测简介(工程测量)

水准测量—水准路线施测简介(工程测量)

闭合水准路线
1
2
BM
3 4
三、水准测量成果计算
1.高差闭合差及其允许值的计算
3)支水准路线高差闭合差
fh = ∑h往+∑h返 ∑ h往——往测高差之和; ∑ h返——返测高差之和。
支水准路线
2
1
BM
项目二 水准测量
任务四 水准路线施测简介
一、水准点和水准路线 1.水准点 高程控制点 用水准测量方法测定的高程控制点称为水准点(记为BM. (Bench Mark)) 有永久性和临时性两种 国家水准点分为一、二、三、四等,按规范规定埋设永久性 标石标志。 图根水准点和施工测量水准点常采用临时性标志。
一、水准点和水准路线 1.水准点 一、二等水准测量——科学研究、提供高程起算数据(精密水准测 量) 三、四等水准测量——工程建设、提供高程起算数据(普通水准测 量) 注:采用某等级的水准测量方法测出其高程的水准点称为该等级水 准点;各等水准点均应埋设永久性标石或标志,水准点的等级应注 记在水准点标石或标记面上。水准点标石的类型可分为:基岩水准 标石、基土水准标石、普通水准标石和墙脚水准标志四种。
备注
三、水准测量成果计算 成果计算步骤:检查野外观测手薄,计算各点间高差,经检 核无误,则根据野外观测高差计算高差闭合差,若闭合差符 合规定的精度要求,则调整闭合差,最后计算各点的高程。 以上工作,称为水准测量的内业。
三、水准测量成果计算
1.高差闭合差及其允许值的计算
1) 附合水准路线的高差闭合差
附合水准路线 BM1
1
3 2
BM2
一、水准点和水准路线 2.水准路线 2)闭合水准路线 从一已知高级水准点出发,沿一条路线进行施测,以测定待 定水准点的高程,最后仍回到原来的已知点上,从而形成一 个闭合环线,这样的观测路线形式称为闭合水准路线。

水准测量PPT

水准测量PPT

HP4 =( HTP1 +a2)- C4; 2023/3/20
HTP2= (HTP1+a2)- b2; 13
§1-3 水准测量的仪器及其使用
一、水准仪的种类
• 1、光学水准仪:
• 微倾式水准仪 :用水准管来获得水平视线;
• 自动安平水准仪:用补偿器来获得水平视线。
• 2、电子水准仪
二、水准仪按仪器精度分:DS0.5、DS1、DS3、DS10、DS20五 个等级。D、S分别是“大地”和“水准仪”汉语拼音的第一个字 母,数字0.5 、1 、3 、10 、20表示该仪器的精度(每公里往、 返水准测量误差/毫米)
( Topcon系列)

图示:自动安平水准仪
( Leica 型)
29
§1-4 水准测量的方法
一、水准路线的布设形式
水准路线:
水准测量所经过的路线。
附合水准路线
闭合水准路线
支水准路线
2023/3/20
水准网
30
二、水准测量的施测方法
往测
返测
1.544
1.267 1.064
1.372 1.292
0.896
• 用时把三个尖脚用力踩入 土中,把水准尺立在突出的 圆顶上。
2023/3/20
16
四、DS3微倾式水准仪的构造及使用
DS3微倾式水准仪的构造
2023/3/20
17
1、望 远 镜
作用:它可以提供视线,并可读
出远处水准尺上的读数
构造:物镜、目镜、对光透镜和
十字丝分划板。
(1) 物镜:使目标的成像落在十字丝板前后。 (2) 调焦透镜:使目标的成像与十字丝重合。 (3) 目镜:放大十字丝和目标的成像。 (4) 十字丝分划板:竖丝 是为了瞄准目标,

水准测量原理及方法(共46张PPT)

水准测量原理及方法(共46张PPT)
CHAPTER 2 水 准 测 量
水准测量
高程测量的方法
三角高程测量 气压高程测量
GPS高程测量
§2-1 水准测量原理
前进方向
利用仪器提供水平视线,测定 地面上两点间的高差,推算待 测点的高程
a 水平视线
A
HI
HA
平均海水面
b
B hAB
HB?
A:后视点, a:后视读数; B:前视点, b:前视读数。
4〕菜单和按键操作功能丰富
§6-5 三、四等水准测量
一、高程控制网
由国家测绘部门在全国范围统一建 立的高程系统。(Ⅰ~Ⅳ〕
分为:①1956黄海高程系
②1985国家高程基准
关系:H85=H56-0.029m
0.1829m 0.0289m
江苏境内各新旧高程系统的 关系 1985年国家高程基准 1956年黄海高程系
-0.016 -0.011 -0.010 -0.047
+2.775
-4.385 +1.969 +2.335 +2.694
56.345 59.120 54.735 56.704 59.039
已知 已知
fh=2.741-(59.030-56.345)=+0.047m
fh 允 1 25 4 8 8 m m , fhfh 允
§2-3 水准仪的使用






置 略 准 平
仪 整 水 与
器 平 准 读
调目镜,看清十字丝
尺 数
用照门、准星,初找目标 对光、精瞄 检查、消除视差
§2-4 水准测量的外业
一、水准点、转点的概念
1、水准点〔Bench Mark〕:高程点 作用:统一全国的高程系统 满足各种测量需要

水准测量PPT课件(共53张PPT)

水准测量PPT课件(共53张PPT)
〔6〕记录要原始,当场填写清楚。
5用-望对远光镜透瞄镜准目6标-或物在镜水对准光尺螺“上旋D读〞数7-,和分均划“以板十S固字〞定丝螺表的丝交示点中为准文。 “大地〞和“水准仪〞中“大〞字和“水〞
精望密远水 镜准具仪有字均良的采好用的汉钢光构学语件性拼,能并。音且的密封第起一来,个受温字度母变化,影通响小常。 在书写时可省略字母“D〞,下标“05〞、
(a)
(b)
水准点
至南湖新村
21号楼
5 号 楼 1号楼
点之记
二 水准测量方法
1.624
0.612 0.713
1.634
1.536
0.615
1.852
0.671
TP3
TP2
TP1
A
HA=29.053
IV
1.214
2.812
TP4
V
B
HB
步骤
〔1〕立尺 〔2〕安置仪器
〔3〕瞄准后视尺
〔4〕瞄准前视尺
符合水准器气泡居中后,应立即用十字
丝中丝在水准尺上读数。读数时应从 小到大,从上到下读取。直接读
取米、分米和厘米,并估读出毫米 ,共四位数。读数后再次检查符合 水准器气泡是否居中。
13 14
15 16
1.464m
自动安平水准仪的使用
自动安平水准仪的操作程序分四步,即安置仪器——粗略整平— —瞄准水准尺——读数,其中安置仪器、粗平、瞄准与微倾式水准仪操 作方法相同。读数时应注意观察自动报警窗的颜色,假设全窗为绿色可 以读数,假设任意一端出现红色,说明仪器倾斜量超出自动安平补偿范 围,需重新整平仪器方可读数。有的自动安平水准仪在目镜下方配有一 个补偿器检查按钮,每次读数前按一下该按钮,如果目标影像在视场中 晃动,说明“补偿器〞工作正常,等待2~4s后即可读数。

地铁车站监测的方法及监测点的布置埋设【图】

地铁车站监测的方法及监测点的布置埋设【图】

地铁车站监测的方法及监测点的布置埋设:㈠墙体水平位移监测:1、测点埋设及技术要求:⑴埋设方法:本工程测斜管埋设采用绑扎埋设。

测斜管通过直接绑扎或设置抱箍将其固定在地连墙钢筋笼上,钢筋笼入槽后,浇筑混凝土。

测斜管与支护结构的钢筋笼绑扎埋设,绑扎间距不宜大于1.5米,测斜管与钢筋笼的固定必须十分稳定,以防浇筑混凝土时,测斜管与钢筋笼相脱落。

同时必须注意测斜管的纵向扭转,很小的扭转角度就可能使测斜仪探头被导槽卡住;埋设就位的测斜管必须保证有一对凹槽与基坑边缘垂直。

⑵埋设技术要求:围护结构测斜管埋设与安装应遵守下列原则:①管底宜与钢筋笼底部持平或略低于钢筋笼底部,顶部达到地面(或导墙顶);②测斜管与支护结构的钢筋笼绑扎埋设,绑扎间距不宜大于1.5m;③测斜管的上下管间应对接良好,无缝隙,接头处牢固固定、密封;④测斜管绑扎时应调正方向,使管内的一对测槽垂直于测量面(即平行于位移方向);⑤封好底部和顶部,保持测斜管的干净、通畅和平直;⑥做好清晰的标示和可靠的保护措施。

2、观测方法及数据采集:⑴观测仪器及方法:监测仪器采用测斜仪以及配套测斜管,监测精度可达到0.02mm/0.5m。

测斜仪⑵观测方法如下:①用模拟测头检查测斜管导槽;②使测斜仪测读器处于工作状态,将测头导轮插入测斜管导槽内,缓慢地下放至管底,然后由管底自下而上沿导槽全长每隔0.5m读一次数据,记录测点深度和读数。

测读完毕后,将测头旋转180°插入同一对导槽内,以上述方法再测一次,深点深度同第一次相同。

③每一深度的正反两读数的绝对值宜相同,当读数有异常时应及时补测。

⑶观测方法及数据采集技术要求:①初始值测定:测斜管应在测试前5天装设完毕,在基坑开挖前3天内用测斜仪对同一测斜管作3次重复测量,判明处于稳定状态后,以3次测量的算术平均值作为侧向位移计算的初始值。

②观测技术要求:测斜探头放入测斜管底应等候5分钟,以便探头适应管内水温,观测时应注意仪器探头和电缆线的密封性,以防探头数据传输部分进水。

水准点

水准点

水准点
水准点(Benchmark,简称BM)是在高程控制网中用水准测量的方法测定其高程的控制点。

一般分为永久性和临时性两大类。

永久性的水准点是在控制点处设立永久性的水准点标石,标石埋设于地下一定深度,也可以将标志直接灌注在坚硬的的岩石层上或坚固的永久性的建筑物上,以保证水准点能够稳固安全、长久保存以及便于观测使用。

指在高程控制测量时埋设的高程控制点标志。

由水准点组成的高程控制网称水准网。

标定
水准点位置的标石和其他标记,统称为水准标记。

其他相关水文名词
标高:亦称高程。

指地面点沿法线或重力线方向至高程基准面的高度,即测量点与设计的水准基面之间的垂直距离。

地形:地形是地物和地貌的统称。

地物是知地面上各种人为的或天然的固定物体,如河渠、房屋、道路等。

地貌是指地表面倾斜缓急、高低起伏的形状,如山头、洼地、山谷等。

悬移质:指悬浮在河道流水中、随流水向下移动的较细的泥沙及胶质物等。

推移质:指在水流中沿河底滚动、移动、跳跃或以层移方式运动的泥沙颗粒。

含沙量:指单位水体所含悬移质干泥沙的重量,其单位为每立方米浑水中含泥沙公斤数(kg/m3)。

勘测:指查勘、勘探和测量工作的总称。

测量:指使用专门的仪器和工具,量出地表面自然形态和人工设施的形状及位置缩绘成图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档