初中数学二次函数的应用(二)
数学北师大版九年级下册《二次函数的图象与性质(第二课时)》教学设计
北师大版数学九年级下册第二章第2节《二次函数的图象与性质(第二课时)》教学设计陕西师范大学附属中学马翠一、教材分析二次函数的图象—抛物线是人们最熟悉的曲线之一,生活中的应用非常广泛。
本节课是北师大版数学九年级下册第二章二次函数第2节二次函数的图象与性质的第二课时。
该内容属于《全日制义务教育课程标准(2011版)》中的“数与代数”领域,是在已经学习了二次函数定义、探究了y=±x2图象基础上,进一步探究函数y=ax2与y=ax2+c的图象与性质,既是前面所学知识的延续,又是探究其他二次函数图象的基础,起到了承上启下的作用。
二次函数的核心内容是它的概念和图象特征,本节课开始研究a、c对函数图象的影响,对后期研究一般的二次函数从方法和内容上有着重要的铺垫和打基础作用。
对二次函数图象的研究,充分体现了数形结合思想,通过对图象的研究和分析,可以确定函数本身的性质. 在以前学习的一次函数和反比例函数中都有所体现,结合本节课的内容,可以进一步加强对数形结合思想方法的理解。
从列表、解析式、图象三方面理解函数,分析a,c的影响,反应了研究函数图象的基本方法。
因此,学好本节课,将为今后的数学学习,尤其是函数学习,奠定坚实的基础。
二、学情分析学生的知识技能基础:在此之前,学生已掌握一次函数和反比例函数的图象和性质,并刚刚学习了二次函数的基本概念,能利用描点法画抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质。
学生的图形计算器基础:学生通过培训已经初步掌握了HP Prime图形计算器的使用,对图形计算器的运用熟悉,且有浓厚的学习兴趣。
学生活动经验基础:九年级学生逻辑思维从经验型逐步向理论型发展,开始有了数学抽象思维和一定的分析、归纳内能力,具备本节课的认知心理基础。
该阶段的学生几何直观能力也有了很大发展,教学中应深入浅出地引导分析,利用HP Prime图形计算器和几何画板相结合可以使学生更清晰的观察和认识图形,充分理解与归纳。
2.4 二次函数的应用 第2课时(教案)-北师大版数九年级下册
第2课时利用二次函数解决利润问题1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.1.经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.2.发展学生运用数学知识解决实际问题的能力.1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和人类发展的作用.【重点】1.探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.2.引导学生将简单的实际问题转化为数学问题,并运用二次函数知识求出实际问题的最大(小)值,从而得到解决某些实际生活中最大(小)值问题的思想方法.【难点】能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数知识解决某些实际生活中的最大(小)值问题.【教师准备】多媒体课件.【学生准备】复习关于销售的相关量之间的关系及二次函数最值的求法.导入一:【引入】如果你是某企业老总,你最关心的是什么?是的,当然是利润,因为它是企业生存的根本,并且每个企业都想在限定条件内获得更大利润.本节课我们就来探究形如最大利润的问题.[设计意图]开门见山,直入正题,让学生对本节课所要了解的知识一目了然,使他们的学习更有针对性.导入二:请同学们思考下面的问题:某工厂生产一种产品的总利润L(元)是产量x(件)的二次函数L=-x2+2000x-10000,则产量是多少时总利润最大?最大利润是多少?学生分析数量关系:求总利润最大就是求二次函数L=-x2+2000x-10000的最大值是多少.即L=-x2+2000x-10000=-(x2-2000x+10002-10002)-10000=-(x-1000)2+990000.∴当产量为1000件时,总利润最大,最大利润为99万元.【引入】显然我们可以通过求二次函数最大值来确定最大利润,你能利用这种思路求解下面的问题吗?[设计意图]让学生通过对导入问题的解答,进一步强化将实际问题转化为数学模型的意识,使学生感受到“何时获得最大利润”就是在自变量取值范围内,此二次函数何时取得最大值问题.服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?思路一教师引导学生思考下面的问题:1.此题主要研究哪两个变量之间的关系?哪个是自变量?哪个是因变量?生审题后回答:批发价为自变量,所获利润为因变量.2.此题的等量关系是什么?3.若设批发价为x元,该服装厂获得的利润为y元,请完成下面的填空题:(1)销售量可以表示为;(2)每件T恤衫的销售利润可以表示为;(3)所获利润与批发价之间的关系式可以表示为.4.求可以获得的最大利润实质上就是求什么?【师生活动】教师启发学生依次探究问题,根据引导要求学生独立解答后,小组交流,共同解决所发现的问题.解:设批发价为x元,该服装厂获得的利润为y元.由题意得y=(x-10)=(70000-5000x)(x-10)=-5000(x-12)2+20000.∴当x=12时,y=20000.最大∴厂家批发价是12元时可以获利最多.思路二【思考】此题还有其他的解法吗?可以不直接设批发价吗?【师生活动】学生进行小组讨论,师巡视并参与到学生的讨论之中去.组长发言,师生共同订正.解:设降价x元,该服装厂获得的利润为y元.则y=(13-10-x)=(5000+5000x)(3-x)=-5000(x-1)2+20000,=20000.∴当x=1时,y最大13-1=12.∴厂家批发价是12元时可以获利最多.【教师点评】在利用二次函数解决利润的问题时,可以直接设未知数,也可以间接设未知数.[设计意图]让学生回顾列一元二次方程解决“每件商品的销售利润×销售这种商品的数量=总利润”这种类型的应用题,做好知识的迁移,为下一环节的教学做好准备,以便降低学生接受知识的(教材例2)某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?〔解析〕此题的等量关系是:客房日租金总收入=提价后每间房的日租金×提价后所租出去的房间数.如果设每间房的日租金提高x个10元,那么提价后每间房的日租金为(160+10x)元,提价后所租出去的房间数为(120-6x)间.解:设每间房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x),即y=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.=19440,当x=2时,y最大这时每间客房的日租金为160+10×2=180(元),因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.[设计意图]让学生通过对例题的解答,进一步熟悉和掌握本课所学知识,拓宽知识面,使其解题能力和应用能力得到进一步提升.二、利用二次函数图象解决实际问题课件出示:【议一议】还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.问题(1):利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.请同学们在课本第49页图2-11中画出二次函数y=-5x2+100x+60000的图象.要求:同伴合作,画出图象.师课件出示函数图象,供学生参考.问题(2):增种多少棵橙子树,可以使橙子的总产量在60400个以上?看一看:从图象中你们可以发现什么?增种多少棵橙子树,可以使橙子的总产量在60400个以上?请同学们开始小组讨论交流.学生积极思考,合作交流.请代表展示他们的讨论成果:结论1:当x<10时,橙子的总产量随增种橙子树的增加而增加;当x=10时,橙子的总产量最大;当x>10时,橙子的总产量随增种橙子树的增加而减少.结论2:由图象可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.能力提升:在分析的过程中,用到了什么数学思想方法?学生迅速得出:用到了数形结合的数学思想方法.[设计意图]让学生绘制该二次函数图象,并利用图象进行直观分析,体会数形结合的思想方法,并感受自变量的取值范围.用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.1.某商店经营2014年巴西世界杯吉祥物,已知所获利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956.则获利最多为()A.3144元B.3100元C.144元D.2956元解析:利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956,∴y=-(x-12)2+3100.∵-1<0,∴当x=12时,y有最大值,为3100.故选B.2.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚收费应提高()A.4元或6元B.4元C.6元D.8元解析:设每床每晚收费应提高x个2元,获得利润为y元,根据题意得y=(10+2x)(100-10x)=-20x2+100x+1000=-20+1125.∵x取整数,∴当x=2或3时,y最大,当x=3时,每床收费提高6元,床位最少,即投资少,∴为了投资少而获利大,每床每晚收费应提高6元.故选C.3.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨1元,其销售量就减少10件,为了获得最大利润,其单价应定为.解析:设应涨价x元,则所获利润为y=(100+x)(500-10x)-90×(500-10x)=-10x2+400x+5000=-10(x2-40x+400)+9000=-10(x-20)2+9000,可见当涨价20元,即单价为100+20=120元时获利最大.故填120元.4.(2014·沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为元.解析:设最大利润为w元,则w=(x-20)(30-x)=-(x-25)2+25.∵20≤x≤30,x为整数,∴当x=25时,w 有最大值,为25.故填25.5.每年六、七月份,南方某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?解:(1)设购进荔枝k千克,荔枝售价定为y元/千克时,水果商才不会亏本,由题意,得y·k(1-5%)≥(5+0.7)k.∵k>0,∴95%y≥5.7,∴y≥6.∴水果商要把荔枝售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90,∵a=-10<0,∴当x=9时,w有最大值.∴当销售单价定为9元时,每天可获利润w最大.第2课时用二次函数知识解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)利用二次函数求解;(5)检验结果的合理性.一、教材作业【必做题】1.教材第49页随堂练习.2.教材第50页习题2.9第1,2题.【选做题】教材第50页习题2.9第3题.二、课后作业【基础巩固】1.学校商店销售一种练习本所获得的总利润y(元)与销售单价x(元)之间的函数关系式为y=-2(x-2)2+48,则下列叙述正确的是()A.当x=2时,利润有最大值48元B.当x=-2时,利润有最大值48元C.当x=2时,利润有最小值48元D.当x=-2时,利润有最小值48元2.一件工艺品进价为100元,按标价135元售出,每天可售出100件.若每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价()A.5元B.10元C.12元D.15元3.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是元.4.(2015·营口中考)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.【能力提升】5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x ,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低()A.0.2元或0.3元B.0.4元C.0.3元D.0.2元7.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式.若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大?最大利润是多少?8.(2015·汕尾中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价/(元/100110120130件)…月销量/200180160140件…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润;②月销量.(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大?最大利润是多少?【拓展探究】9.(2015·舟山中考)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x 满足下列关系式:y=(1)李明第几天生产的粽子数量为420只?(2)设第x天粽子的成本是p元/只,p与x之间的关系可用如图所示的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【答案与解析】1.A(解析:在y=-2(x-2)2+48中,当x=2时,y有最大值,是48.)2.A(解析:设每件降价x元,利润为y元,每件的利润为(135-100-x)元,每天售出的件数为(100+4x)件,=3600.)由题意,得y=(135-100-x)(100+4x)=-4x2+40x+3500=-4(x-5)2+3600,∵a=-4<0,∴当x=5时,y最大3.160(解析:设每张床位提高x个20元,每天收入为y元.则有y=(100+20x)(100-10x)=-200x2+1000x+10000.当x=-==2.5时,可使y有最大值.又x为整数,则当x=2时,y=11200;当x=3时,y=11200.故为使租出的床位少且租金高,每张床收费100+3×20=160(元).)4.22(解析:设定价为x 元,根据题意得平均每天的销售利润y =(x -15)·[8+2(25-x )]=-2x 2+88x -870,∴y =-2x 2+88x -870=-2(x -22)2+98.∵a =-2<0,∴抛物线开口向下,∴当x =22时,y 最大值=98.故填22.)5.D (解析:设在甲地销售x 辆,则在乙地销售(15-x )辆,根据题意得出:W =y 1+y 2=-x 2+10x +2(15-x )=-x 2+8x +30=-(x -4)2+46,∴最大利润为46万元.)6.C (解析:设应将每千克小型西瓜的售价降低x 元.根据题意,得(3-2-x )-24=200.解这个方程,得x 1=0.2,x 2=0.3.∵要减少库存,且200+>200+,∴应将每千克小型西瓜的售价降低0.3元.)7.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象可知解得故y 与x 的函数关系式为y =-x +180.(2)∵y =-x +180,∴W =(x -100)y =(x -100)(-x +180)=-x 2+280x -18000=-(x -140)2+1600.∵a =-1<0,∴当x =140时,W 最大=1600,∴售价定为140元/件时,每天获得的利润最大,最大利润为1600元.8.解:(1)①销售该运动服每件的利润是(x -60)元.②设月销量w 与x 的关系式为w =kx +b ,由题意得解得∴w =-2x +400.∴月销量为(-2x +400)件.(2)由题意得y =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.9.解:(1)设李明第n 天生产的粽子数量为420只,由题意可知30n +120=420,解得n =10.答:第10天生产的粽子数量为420只.(2)由图象得当0≤x ≤9时,p =4.1;当9≤x ≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入,得解得∴p =0.1x +3.2.①当0≤x ≤5时,w =(6-4.1)×54x =102.6x ,当x =5时,w 最大=513(元);②当5<x ≤9时,w =(6-4.1)×(30x +120)=57x +228,∵x 是整数,∴当x =9时,w 最大=741(元);③当9<x ≤15时,w =(6-0.1x -3.2)×(30x +120)=-3x 2+72x +336,∵a =-3<0,∴当x =-=12时,w 最大=768元.综上所述,第12天的利润最大,最大利润为768元.(3)由(2)可知m =12,m +1=13,设第13天每只粽子提价a元,由题意得w=[6+a-(0.1×13+3.2)](30×13+120)=510(a+1.5),∴510(a+1.5)-768≥48,解得a≥130.1.答:第13天每只粽子至少应提价0.1元.本节课设计了以生活场景引入问题,通过探索思考解决问题的教学思路.由于本节课较为抽象,学生直接解决比较困难,因此,在导入问题中,让学生初步接触“何时获得最大利润”这一问题,引导学生分析问题,初步掌握数学建模的方法,然后再放手给学生自主解决问题,并充分发挥小组的合作作用,以“兵教兵”的方式突破难点.在教学过程中,重点关注了学生能否将实际问题表示为函数模型,是否能运用二次函数知识解决实际问题并对结果进行合理解释,加强了学生在教师引导下的独立思考和积极讨论的训练,并注意整个教学过程中给予学生适当的评价和鼓励,收到了非常好的教学效果.对学情估计不足.原本认为学生的计算能力不错,但实际在解题过程中却出现了很多问题.今后还要在计算方法和技巧方面对学生多加以指导,加强学生建立函数模型的意识.随堂练习(教材第49页)解:设销售单价为x元(30≤x<50),销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500.当x=35时,y=4500.所以当销售单价为35元时,半月内可以获得的利润最大,最大最大利润为4500元.习题2.9(教材第50页)1.解:设旅行团的人数是x人,营业额为y元,则y=[800-10(x-30)]x=-10x2+1100x=-10(x-55)2+30250,当x=55时,y=30250.答:当旅行团的人数为55人时,旅行社可以获得最大的营业额,为30250元.最大值2.解:设销售单价为x(x≥10)元,每天所获销售利润为y元,则y=(x-8)[100-10(x-10)]=-10x2+280x-=360.答:将销售单价定为14元,才能使每天所获销售利润1600=-10(x-14)2+360,所以当x=14时,y最大值最大,最大利润为360元.3.解:y=x2-13x+42.25+x2-11.8x+34.81+x2-12x+36+x2-13.4x+44.89+x2-9x+20.25=5x2-59.2x+178.2=5(x2-11.84x+35.64)=5[(x-5.92)2+0.5936]=5(x-5.92)2+2.968,当x=5.92时,y的值最小,所以大麦穗长的最佳近似长度为5.92cm.利润问题之前已经有所接触,所以学生课前要熟练掌握进价、销售价、利润之间的关系.找出实际问题中的等量关系是前提,会把二次函数的一般式转化为顶点式是保障,而能熟练运用转化的数学思想方法把实际问题转化为数学问题是运用二次函数解决实际应用问题的关键,所以在解题的过程中要及时总结归纳出用二次函数知识解决实际问题的基本思路,并总结出销售利润问题的数学模型,提高解决此类问题的综合能力.某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x/天1≤x<5050≤x≤90售价/(元/x+4090件)每天销量/200-2x件已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.〔解析〕(1)根据(售价-进价)×数量=利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式组,然后解不等式组,可得答案.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000.当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=(2)当1≤x<50时,二次函数的图象开口向下,二次函数图象的对称轴为直线x=45,=-2×452+180×45+2000=6050.当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000.当x=50时,y最大综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.(3)当20≤x≤60时,即共41天,每天销售利润不低于4800元.。
二次函数的应用
二次函数的应用在数学中,二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。
二次函数是一种常见且重要的函数类型,在实际生活中有广泛的应用。
本文将介绍二次函数的应用,并通过具体的实例来说明其在不同领域中的作用。
一、二次函数在物理学中的应用二次函数在物理学中常常用于描述运动的轨迹、抛物线的形状以及力学的相关问题。
例如,当一个物体在空中自由落体时,其下落的高度与时间之间的关系可以用二次函数来描述。
假设物体从高度为h的位置自由落下,忽略空气阻力的影响,记时间为t,则物体的高度可以表示为h = -gt^2 + vt + h0,其中g是重力加速度,v是物体的初速度,h0是物体的初始位置。
该二次函数描述了物体下落的抛物线轨迹。
二、二次函数在经济学中的应用二次函数在经济学中的应用非常广泛,可以用于描述成本、收益、利润等与产量或销量之间的关系。
例如,对于某个企业而言,其生产的产品的总成本可以由二次函数表示。
假设该企业的总成本C与产量x之间的关系可以表示为C = a'x^2 + b'x + c',其中a'、b'、c'为常数。
该二次函数描述了生产成本随着产量的增加而递增的曲线,对企业的经营决策具有重要的参考意义。
三、二次函数在工程学中的应用在工程学中,二次函数常常用于描述曲线的形状以及材料的弯曲变形。
例如,对于一座桥梁而言,其横截面的弯曲变形可以用二次函数来表示。
假设桥梁横截面的变形高度与距离之间的关系可以表示为y = ax^2 + bx + c,其中y表示高度,x表示距离。
该二次函数描述了桥梁横截面弯曲变形的形状,对于设计和构建安全的桥梁至关重要。
四、二次函数在生物学中的应用在生物学研究中,二次函数常常用于描述某些生物过程的增长或衰减。
例如,某种细菌的数量随着时间的推移而增长,其增长过程可以用二次函数来描述。
假设细菌数量与时间之间的关系可以表示为N = at^2 + bt + c,其中N表示细菌数量,t表示时间。
初中数学二次函数的应用培优练习题2(附答案详解)
初中数学二次函数的应用培优练习题2(附答案详解)1.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y=﹣15x 2+3.5B .篮圈中心的坐标是(4,3.05)C .此抛物线的顶点坐标是(3.5,0)D .篮球出手时离地面的高度是2m2.如图,在平面直角坐标系中,抛物线y =ax 2+6与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =2x 2于B 、C 两点,则BC 的长为( )A .2B .3C .22D .233.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3m C .10m D .12m 4.直线5y x 22=-与抛物线21y x x 2=-的交点个数是( ) A .0个 B .1个 C .2个 D .互相重合的两个 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )6.某超市将进货单价为l8元的商品按每件20元销售时,每日可销售100件,如果每件提价1元,日销售就要减少10件,那么把商品的售出价定为多少元时,才能使每天获得的利润最大?( )A .22元B .24元C .26元D .28元7.函数2y ax bx c =++与y kx =的图象如图所示,有以下结论:①240b ac ->;②10a b c +++>;③9360a b c +++>;④当13x <<时,2()0ax b k x c +-+<.其中正确的结论有( )A .1个B .2个C .3个D .4个8.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( )A .8元或10元B .12元C .8元D .10元9.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上.设矩形的一边AB =x m ,矩形的面积为y m 2,则y 的最大值为________.10.某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形,•制造窗框的材料的总长为15m ,若AB=xm ,BC=ym ,则y 与x 的函数解析式为______,窗户的面积S 与x 的函数解析式为_____,当x≈______时,S 最大≈_____,此时通过的光线最多(结果精确到0.01m )11.如图,已知等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合,让△ABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y (厘米2)与时间t (秒)之间的函数关系式为____12.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m 2.13.已知,二次函数y=x 2+bx ﹣2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,则当x=x 1+x 2时,则y 的值为___________.14.若函数y=ax 2+3x-1的图像与x 轴有交点,则a 的取值范围是________.15.从地面竖直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是h=9.8t ﹣4.9t 2.若小球的高度为4.9米,则小球的运动时间为_____.16.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)17.江汉路一服装店销售一种进价为50元/件的衬衣,生产厂家规定每件定价为60~150元.当定价为60元/件时,每星期可卖出70件,每件每涨价10元,一星期少卖出5件.(1)当每件衬衣定价为多少元时(定价为10元的正整数倍),服装店每星期的利润最大?最大利润为多少元?(2)请分析每件衬衣的定价在哪个范围内时,每星期的销售利润不低于2 700元. 18.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20 m 和11 m 的矩形大厅内修建一个60 m 2的矩形健身房ABCD .该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3 m ,一面旧墙壁AB 的长为x m ,修建健身房墙壁的总投入为y 元.(1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x≤12,当投入的资金为4800元时,问利用旧墙壁的总长度为多少.19.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?20.如图,抛物线y=﹣212x 2x +2与x 轴相交于A ,B 两点,(点A 在B 点左侧)与y 轴交于点C . (1)求A ,B 两点坐标.(2)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S .试用含t 的式子表示S ,并求t 为何值时,S 最大.(3)在(2)的基础上,在整条抛物线上和对称轴上是否分别存在点G和点H,使以A,G,H,P四点构成的四边形为平行四边形?若存在,请直接写出G,H的坐标;若不存在,请说明理由.21.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t 的值;若不存在,说明理由.22.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF,求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF 时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.23.如图,Rt △ABC 中,90C ∠=︒,AC =BC ,AB =4cm .动点D 沿着A →C →B 的方向从A 点运动到B 点.DE ⊥AB ,垂足为E .设AE 长为x cm ,BD 长为y cm (当D 与A 重合时,y =4;当D 与B 重合时y =0).小云根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:补全上面表格,要求结果保留一位小数.则t ≈__________.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB =AE 时,AE 的长度约为 cm .24.如图,在△ABC 中,∠C=90°,AC=4,BC=3.点E 从点A 出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点E不与△ABC的顶点重合时,过点E作其所在直角边的垂线交AB于点F,将△AEF绕点F沿逆时针方向旋转得到△NMF,使点A的对应点N落在射线FE上.设点E的运动时间为t(秒).(1)用含t的代数式表示线段CE的长.(2)求点M落到边BC上时t的值.(3)当点E在边AC上运动时,设△NMF与△ABC重叠部分图形为四边形时,四边形的面积为S(平方单位),求S与t之间的函数关系式.(4)直接写出点M到AC、BC所在直线的距离相等时t的值.参考答案1.A【解析】【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2.5时,即可求得结论.【详解】解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣15,∴y=﹣15x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.D【解析】∵抛物线y=ax 2+6与y 轴交于点A ,∴A(0,6),∵当y=6时,2x 2=6,∴x=∴B 点坐标(6),C 6),-(,故选D.【点睛】本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x 轴的直线上两点间的距离等,解题的关键是先确定出点A 的坐标.3.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 4.C【解析】【分析】 抛物线212y x x =-与直线522y x =-交点函数值为同时满足两个解析式的点的函数值,即满足方程212x x -=522x -,解出方程的根即可求交点个数.解:抛物线212y x x =-与直线522y x =-相交, ∴212x x -=522x -,,即:2320x x -+=,解得:11x =,22x =. ∴抛物线212y x x =-与直线522y x =-的交点个数是2个. 故答案为C.【点睛】抛物线与直线的交点问题实质是一元二次方程的性质问题,联立直线与抛物线方程,可以求一元二次方程的根,也可以通过判别式判断:(1)当0,抛物线与直线有两个交点;(2)当=0,抛物线与直线有一个交点;(3)当0时抛物线与直线有无交点. 5.A【解析】把y =3代入y = 21416x -+中得: x =4,x = -4(舍去).∴每条行道宽应不大于4m .故选A .点睛;本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.由题意可知,直接把y=3代入解析式求解即可.6.B【解析】【分析】设利润为y ,售价定为每件x 元,根据:利润=每件利润×销售量,列方程求解,然后利用配方法求二次函数取最大值时x 的值即可.【详解】设利润为y ,售价定为每件x 元,由题意得,y=(x-18)×[100-10(x-20)], 整理得:y=-10x 2+480x-5400=-10(x-24)2+360,∴开口向下,故当x=24时,y有最大值.故选B.【点睛】本题考查了二次函数的应用,难度适中,解答本题的关键是根据题意列出二次函数,要求同学们掌握求二次函数最大值的方法.7.C【解析】【分析】由函数y=x2+bx+c与x轴无交点,可得b2-4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【详解】①由图象可知:抛物线与x轴无交点,即△<0,∴△=b2-4ac<0,故此选项错误;②由图象可知:抛物线过点(1,1)即当x=1时,y=a+b+c=1,a+b+c+1=2>0,故此选项正确;③由点(3,3)在抛物线上,得到9a+3b+c=3,∴9a+3b+c+3=6>0,正确;④由图象可知,当1<x<3时,抛物线在直线y=kx的下方,即当1<x<3时,x2+bx+c<kx,∴x2+(b-k)x+c<0,故此选项正确.故选C.【点睛】主要考查了二次函数与一元二次方程的关系,二次函数图像上点的坐标特征,利用函数图像解不等式.此题难度适中,注意掌握数形结合思想的应用.8.A【解析】【分析】每件利润为(x-8)元,销售量为(100-10×102x),根据利润=每件利润×销售量,得出销售利润y (元)与售单价x (元)之间的函数关系;再根据函数关系式,利用二次函数的性质求最大利润.【详解】解:(1)依题意,得y=(x-8)•(100-10×102x -)=-5x 2+190x-1200=-5(x-19)2+605, -5<0,∴抛物线开口向下,函数有最大值,即当x=19时,y 的最大值为605,∵售价为偶数,∴x 为18或20,当x=18时,y=600,当x=20时,y=600,∴x 为18或20时y 的值相同,∴商品提高了18-10=8(元)或20-10=10(元)故选A .【点睛】本题考查了二次函数的应用.此题为数学建模题,借助二次函数解决实际问题.9.300【解析】由题意可得:DC ∥AF ,则△EDC ∽△EAF , 故30,3040ED DC AD x AE AF -==则, 解得12034x AD -=, 故S=AD•AB=22120333•30(20)300444x x x x x -=-+=--+, 所以当x=20时,即y 的最大值为300m 2.故答案是:300m 2.10.y=1574x x π-- S=-3.5x 2+7.5x 1.07 4.02 【解析】因为半圆的半径AB =x m,矩形的宽BC =y m,材料的总长为15m,所以4y +7x +πx =15,所以1574x x y π--=, 所以窗户的面积2215712 3.57.542x x S x r x x ππ--=⨯+=-+, 所以当7.5152 3.514x =-=⨯≈1.07时,()()27.5 4.024 3.5S -=≈⨯-最大, 故答案为:1574x x y π--=,2 3.57.5S x x =-+, 1.07, 4.02. 11.y=12(20-2t )2 【解析】A M =20-2t ,则重叠部分面积y =12×AM 2= 12(20-2t )2 12.147【解析】分析:设中间隔开的墙EF 的长为xm,建成的储藏室总占地面积为sm²,根据题意可知AD 的长度等于BC 的长度,列出式子AD-2+3X=28,得出用x 的代数式表示AD 的长,再根据矩形的面积=AD·AB 得出S 关于x 的解析式,再利用二次函数的性质即可求解. 详解:设中间隔开的墙EF 的长为xm,建成的储藏室总占地面积为sm²,根据题意得AD+3x=42,解得AD=42-3x,则S=x(42-3x)= -3x²+42x=-3(x-7)²+147,故这两间长方形储藏室的总占地面积的最大值为:147m²,故答案为147. 点睛:本题考查了二次函数的应用,配方法,矩形的面积,有一定的难度,解答本题的关键是得到建成的储藏室的总占地面积的解析式.13.−2017.【解析】【分析】因为二次函数y=x 2+bx-2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,所以x 1+x 2=-b ,当x =x 1+x 2=−b 时,y =(−b )2+b ⋅(−b )−2017=−2017,由此即可解决问题.【详解】∵二次函数y =x 2+bx −2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,∴x 1+x 2=−b ,∴当x =x 1+x 2=−b 时,y =(−b )2+b ⋅(−b )−2017=−2017.故答案为:−2017.【点睛】考查二次函与x轴的交点问题,熟练掌握根与系数的关系是解题的关键.14.a≥-【解析】【分析】二次函数与x轴的交点个数,即令y=0时,方程的解个数即为与x轴的交点个数;当有交点时,则方程的判别式≥0,代入相应的数据求解即可.【详解】令y=0,则ax2+3x-1=0,因为函数y=ax2+3x-1的图像与x轴有交点,所以=9+4a≥0,解得a≥-.故答案为:a≥-.【点睛】本题考查了二次函数图像与x轴的交点问题,熟知二次函数图像与x轴的交点与的关系是解决本题的关键.15.1s.【解析】小球的高度h与小球运动时间t的函数关系式是:h=9.8t﹣4.9t2.把h=4.9代入得4.9=9.8t﹣4.9t2,解得t=1s,故答案为1s.16.①②③⑤【解析】分析:根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.详解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,故②正确;∵△OCM≌△OBN∴∠COM=∠BON∴∠COM+∠BOM=∠BON+∠BOM=90°∴ON⊥OM故③正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2-x,∴△MNB的面积=12x(2-x)=-12x2+x,∴当x=1时,△MNB的面积有最大值12,此时S△OMN的最小值是1-12=12,故④不正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故⑤正确;点睛:本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.17.(1)当每件衬衣定价为120元或130元时,服装店每星期的利润最大,最大利润为2 800元.(2)每件衬衣的定价在110~140元之间时(定价为10元的正整数倍),每星期的销售利润不低于2 700元.【解析】试题分析:(1)设每件衬衣定价为x元,服装店每星期的利润为W元,利用每一件的利润乘卖出的件数列出二次函数,利用二次函数的性质即可解决问题;(2)根据(2)中求出的二次函数,建立一元二次方程求出方程的解,确定出涨价最少时的x的值,根据二次函数的性质即可求得x的取值范围.试题解析:(1)设每件衬衣定价为x元,服装店每星期的利润为W元.由题意得,W=(x-50)=-x2+125x-5 000=-(x-125)2+2 812.5.∵60≤x≤150,且x是10的正整数倍,∴当x取120或130时,W有最大值2 800.因此,当每件衬衣定价为120元或130元时,服装店每星期的利润最大,最大利润为2 800元.(2)令W=2 700,即-x2+125x-5 000=2 700,解得x1=110,x2=140.∴每件衬衣的定价在110~140元之间时(定价为10元的正整数倍),每星期的销售利润不低于2 700元.18.(1)y=30060xx⎛⎫+⎪⎝⎭,(0<x≤20);(2)利用旧墙壁的总长度为16 m.【解析】【分析】(1)根据题意可得AB=x,AB·BC=60,所以BC=60x.求得y与x的函数解析式;(2)把y=4800代入函数解析式整理,可解得x的值.【详解】解:(1)根据题意,AB=x,AB·BC=60,所以BC=60x,y=20×360xx⎛⎫+⎪⎝⎭+80×360xx⎛⎫+⎪⎝⎭,即y=30060xx⎛⎫+⎪⎝⎭(0<x≤20)(2)把y=4800代入y=30060xx⎛⎫+⎪⎝⎭,得4800=30060xx⎛⎫+⎪⎝⎭,整理得x2-16x+60=0,解得x1=6,x2=10经检验x1=6,x2=10都是原方程的根.由8≤x≤12,只取x=10所以利用旧墙壁的总长度10+6010=16 m.【点睛】本题考查的是二次函数的实际应用, 同时也考查了矩形的面积计算公式, 关键是熟练掌握二次函数的性质和公式,并能用其解决一些基本的有关二次函数的题目.19.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,∴当x=45时,W 取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元;综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.20.(1)A,0),B (,0);(2)当时,S 最大;(3)满足条件的点P 的坐标为G(﹣2,﹣14),H(2,﹣14)或G(2,﹣154),H(2,﹣154)或G(﹣2,14),H(2,14). 【解析】【分析】(1)令y=0,则2120,2x x -+=解得x =x =A ,B 两点坐标.(2)点P 作PQ ⊥x 轴于Q ,P 的横坐标为t ,设P (t ,p ),则21222p t =-++,PQ p BQ t OQ t ===,,, 根据S=S △AOC +S 梯形OCPQ +S △PQB 列出S 与t 的函数关系式,根据二次函数的性质t 为何值时,S 最大.(3)抛物线的对称轴为:2,x =分别画出示意图,根据平行四边形的性质即可求出G ,H 的坐标.【详解】解:(1)针对于抛物线212222y x x =-++, 令y=0,则21220,22x x -++= 解得2x =-或22x =∴()()20220A B -,,,; (2)针对于抛物线212222y x x =-++令x=0,∴y=2,∴C (0,2),如图1,点P 作PQ ⊥x 轴于Q ,∵P 的横坐标为t ,∴设P (t ,p ),∴21222p t =-++,22PQ p BQ t OQ t ===,,, ∴S=S △AOC +S 梯形OCPQ +S △PQB()()11122222222p t t p =++⨯+⨯⨯,11,22t pt pt =+-t =++21222t t t ⎫=-++++⎪⎪⎭2t =-+(0t <<,∴当t =时,S 最大=(3)满足条件的点的坐标为G ,﹣14),H 14)或G 154),H 154)或G ,14),H ,14). 【点睛】属于二次函数的综合题,会求二次函数与x 轴的交点坐标,二次函数的最值,以及平行四边形的性质,综合性比较强,难度较大.21.(1)y=﹣x 2+2x+3;(2)当t=32时,l 有最大值,l 最大=94;(3)t=32时,△PAD 的面积的最大值为278;(4)t=12+. 【解析】 试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD 解析式为y=-x+3,设M 点横坐标为m ,则P (t ,-t 2+2t+3),M (t ,-t+3),可得l=-t 2+2t+3-(-t+3)=-t 2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题; (3)由S △PAD =12×PM×(x D -x A )=32PM ,推出PM 的值最大时,△PAD 的面积最大; (4)如图设AD 的中点为K ,设P (t ,-t 2+2t+3).由△PAD 是直角三角形,推出PK=12AD ,可得(t-32)2+(-t 2+2t+3-32)2=14×18,解方程即可解决问题; 试题解析:(1)把点 B (﹣1,0),C (2,3)代入y=ax 2+bx+3,则有304233a b a b -+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△PAD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△PAD的面积中点,最大值=32×94=278.∴t=32时,△PAD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD 是直角三角形,∴PK=12AD , ∴(t ﹣32)2+(﹣t 2+2t+3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0,解得t=0或3, ∵点P 在第一象限,∴22.(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键. 23.(1)2.9;(2)答案见解析;(3)2.3.【解析】试题分析:(1)通过取点、画图、测量,可得到结果;(2)通过描点,连线即可作出函数的图象;(3)根据题意可得当DB=AE 时,AE 的长度约为2.3cm .试题解析:(1)2.9(2)如图所示:(3)2.3 24.(1)当点E 在边AC 上时,44CE t =-,当点E 在边BC 上时,44CE t =-;(2)t 的值为58;(3)当508t <≤时,292S t =,当8111t ≤<时,218246S t t =-+-;(4)1019t =或1013t =或1913t =. 【解析】分析:(1)分当点E 在边AC 上时和当点E 在边BC 上时两种情况进行讨论.(2)当点M 落在边BC 上时,画出示意图,4AE t =,3FE MF t ==.根据,FMB B ∠=∠ 3BF MF t ==.根据BF AF AB +=,列出方程求解即可.(3)分当508t <≤时和当8111t ≤<时两种情况进行讨论. 详解:(1)当点E 在边AC 上时,44CE t =-.当点E 在边BC 上时,44CE t =-.(2)如图①,当点M 落在边BC 上时,3BF MF t ==.∵BF AF AB +=,∴355t t +=.∴58t =. ∴点M 落到边BC 上时t 的值为58.(3)当508t <≤时,如图②.2113934222242S t t t t t =⋅⋅-⋅⋅⋅=. 当8111t ≤<时,如图③.()()2163344182462S t t t t t =-+-=-+-. 点睛:属于图形的运动题,涉及知识点较多,综合性比较强,难度较大,注意分类讨论思想在数学中的应用.。
人教版初中数学中考复习 一轮复习 二次函数及其应用2(课件)
解方程,得 m1=-2,m2=3(不符合题意,舍去) ∴m=-2
典型例题——二次函数与方程、不等式的关系
9. (2021•泸州)直线 l 过点(0,4)且与 y 轴垂直,若二次函数 y=(x﹣a)2+(x﹣2a)2+
(x﹣3a)2﹣2a2+a(其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴
解方程,得 m1= 41-1 ,m2= - 41+1 (不符合题意,舍去)
4
4
∴m= 41-1 , 4
1 - m>3,即 m<-3,当 x=3 时,y=6.∴9来自6m+2m2-m=6,
解方程,得 m1=-1,m2= - 3 (均不符合题意,舍去). 2
综上所述,m=-2 或 m=
41-1
.
4
2 1<- m≤3,即-3≤m<-1,当 x=-m 时,y=6. ∴m2-m=6
bx+c=0有 两个不相等的 实数根;
②如果抛物线y=ax2+bx+c(a≠0)与x轴 只有一个 交点,则一元二次方
程ax2+bx+c=0有两个 相等 的实数根;
③如果抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则一元二次方程ax2+bx
+c=0 没有 实数根.
知识点梳理——知识点4:二次函数与一元二次方程及不等式的关系
A(1,0),B(m,0)(-2<m<-1),下列结论①2b+c>0;②2a+c<0;
③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等实数根,
A 则4ac-b2<4a;其中正确结论的个数是(
)
A.4
B.3
C.2
D.1
典型例题——二次函数与方程、不等式的关系
二次函数的应用案例总结
二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。
在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。
本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。
案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。
设物体初始高度为H,加速度为g,时间为t。
根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。
这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。
案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。
二次函数可以用于建立销售收入与定价策略之间的模型。
设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。
我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。
案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。
二次函数可以用来描述桥梁的曲线形状。
设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。
通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。
案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。
设市场需求量为D,价格为p。
根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。
通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。
综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。
通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。
初中数学中的二次函数
二次函数:了解它的定义、性质和应用在初中数学中,我们学习了很多关于函数的知识。
其中,二次函数是一种非常常见的函数形式,被广泛应用于各个领域,例如经济学、物理学等。
本文将为您详细介绍二次函数的定义、性质和应用。
1. 什么是二次函数?二次函数是指形如$y=ax^2+bx+c$ 的函数,其中$a,b,c$ 都是实数且$a\neq0$。
其中,$a$ 控制着二次函数的开口方向和大小,$b$ 控制着二次函数的平移位置,$c$ 则是二次函数的纵截距。
2. 二次函数的性质(1)对称性二次函数的图像关于其顶点对称。
当$a>0$ 时,二次函数开口朝上,顶点为最小值点;当$a<0$ 时,二次函数开口朝下,顶点为最大值点。
(2)零点二次函数的零点是指函数图像与 $x$ 轴相交的点。
当 $b^2-4ac>0$ 时,二次函数有两个不同的实根;当$b^2-4ac=0$ 时,二次函数有一个重根;当$b^2-4ac<0$ 时,二次函数没有实根。
(3)最值当 $a>0$ 时,二次函数的最小值等于其顶点的纵坐标;当 $a<0$ 时,二次函数的最大值等于其顶点的纵坐标。
3. 二次函数的应用(1)物理学在物理学中,二次函数常被用于描述抛物线运动。
例如,一个运动物体在重力作用下的运动轨迹就可以用二次函数来表示。
(2)经济学在经济学中,二次函数常被用于分析成本和收益之间的关系。
例如,一家企业的生产成本可以用二次函数来表示,通过求导可以得到该企业的最优生产量。
(3)统计学在统计学中,二次函数常被用于拟合散点图。
例如,通过将散点图拟合成二次函数,可以预测出未来的趋势和表现。
总结在本文中,我们详细介绍了二次函数的定义、性质和应用。
二次函数在数学和其他学科中都有着广泛的应用,是我们必须掌握的一种函数形式。
希望本文对您学习二次函数有所帮助。
二次函数的应用
二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。
一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。
假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。
通过解二次方程可以求解物体落地的时间以及落地时的位置。
2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。
弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。
二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。
通常情况下,成本和收入之间存在二次函数关系。
通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。
2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。
通常情况下,售价和需求量之间存在二次函数关系。
通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。
三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。
由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。
2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。
由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。
四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。
二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。
2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。
例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。
2022九年级数学上册第三章二次函数6二次函数的应用2利用二次函数求实际中应用问题课件鲁教版五四制4
8 【2020·十堰】某企业接到生产一批设备的订单,要求不超过 12天完成.这种设备的出厂价为1 200元/台,该企业第一天生 产22台设备,第二天开始,每天比前一天多生产2台.若干天 后,每台设备的生产成本将会增加,设第x天(x为整数)的生 产成本为m(元/台),m与x的关系如图所示. (1)若第x天可以生产这种设备y台,则y与x的函 数关系式为__y_=__2_x_+__2_0,x的取值范围为 __1_≤_x_≤_1_2_.
5 【2020·丹东】某服装批发市场销售一种衬衫,衬衫 每件进货价为50元.规定每件售价不低于进货价,经 市场调查,每月的销售量y(件)与每件的售价x(元)满 足一次函数关系,部分数据如下表:
(1)求出y与x之间的函数表达式(不需要求自变量x的取 值范围).
解:设 y 与 x 之间的函数表达式为 y=kx+b, 则有6605kk+ +bb= =11 430000, ,解得kb= =- 2 62000,, 即 y 与 x 之间的函数表达式是 y=-20x+2 600;
(3)求当天销售利润低于10 800元的天数. 解:由(2)可得,1≤x≤6时,800x+8 000<10 800, 解得x<3.5. 则第1~3天当天销售利润低于10 800元, 当6<x≤12时,-100(x-2)2+14 400<10 800, 解得x<-4(舍去)或x>8, ∴第9~12天当天销售利润低于10 800元, 故当天销售利润低于10 800元的天数有7天.
(2)该批发市场每月想从这种衬衫销售中获 利24 000元,又想尽量给客户实惠,该如何 给这种衬衫定价?
2021年九年级数学中考复习——函数专题:二次函数实际应用(二)
2021年九年级数学中考复习——函数专题:二次函数实际应用(二)1.为确保贫困人口到2020年底如期脱贫,习总书记提出扶贫开发“贵在精准,重在精准,成败之举在于精准”,近年来扶贫工作小组对果农进行精准扶贫,帮助果农因地制宜种植一种有机生态水果并拓宽了市场,有机生态水果产量呈逐年上升,去年这种水果的产量是亩产约1000千克.(1)预计明年这种水果产量要达到亩产1440千克,求这种水果亩产量去年到明年平均每年的增长率为多少?(2)某水果店从果农处直接以每千克30元批发,专营这种水果.调查发现,若每千克的平均销售价为40元,则每天可售出200千克,若每千克的平均销售价每降低1元,每天可多卖出50千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时.该水果店一天的利润最大,最大利润是多少?2.一种工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件.(1)当每件售价130元时,获得的利润为多少元?(2)每天获得利润为W元,求每天获得的利润W与降价x元之间的函数关系式?要使每天获得的利润最大,每件需降价多少元?最大利润为多少元?3.某商品的成本为20元,市场调查发现:当售价为180元时,每周可售出50件,每涨价10元每周少售出1件.现要求每周至少售出35件,且售价不低于180元.(1)设售价为x元(x为10的整数倍),每周利润为y元,求y与x之间的函数关系式,并直接写出x的取值范围;(2)当售价为多少时,(销售这种商品)每周的利润最大?最大利润是多少?(3)若希望每周利润不得低于10400元,则售价x的范围为.4.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式;(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.求OD的长.5.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?6.如图,某隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系.(1)求该抛物线的解析式;(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?7.某品牌钢笔进价为每支20元,经销商小周在销售中发现,每月销售量y(支)与销售单价x(元)之间满足一次函数y=﹣10x+500的关系,在销售中销售单价不低于进价,而每支钢笔的利润不高于进价的60%,设小周每月获得利润为w(元).(1)当销售单价定为每支多少元时,每月可获得最大利润?每月的最大利润是多少?(2)如果小周想要每月获得的利润不低于2000元,那么小周每月的成本最少需要多少元?(成本=进价×销售量).8.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?9.李师傅承包了一片池塘养鱼,他用总长为120m的围网围成如图所示的6个矩形区域,其中除矩形AEFJ外,其它5个矩形的面积都相等.若AE=xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)当x为何值时,y取得最大值,最大值是多少?10.陆臻同学善于总结改进学习方法,他发现每解题1分钟学习收益量为2;对解题过程进行回顾反思效果会更好,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点).某一天他共有30分钟进行学习,且用于回顾反思的时间不能超过用于解题的时间.(1)求陆臻回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(2)陆臻如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量=解题的学习收益量+回顾反思的学习收益量)参考答案1.解:(1)设这种水果去年到明年每亩产量平均每年的增长率为x,由题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年的增长率为20%.(2)设每千克的平均销售价为m元,由题意得:w=(m﹣30)[200+50×(40﹣m)]=﹣50(m﹣37)2+2450,∵﹣50<0,∴当m=37时,w取得最大值为2450.答:当每千克平均销售价为37元时,一天的利润最大,最大利润是2450元.2.解:(1)当每件售价130元时,135﹣130=5(元),即降价5元,由题意得:(130﹣100)(100+4×5)=30×(100+20)=30×120=3600(元),∴当每件售价130元时,获得的利润为3600元.(2)由题意得:W=(135﹣x﹣100)(100+4x)=﹣4x2+40x+3500=﹣4(x﹣5)2+3600,∴当x=5时,每天获得的利润最大,最大利润为3600元.∴每天获得的利润W与降价x元之间的函数关系式为:W=﹣4x2+40x+3500,要使每天获得的利润最大,每件需降价5元,最大利润为3600元.3.解:(1)由题意得:y=(x﹣20)(50﹣)=﹣x2+70x﹣1360,∵要求每周至少售出35件,∴50﹣≥35,解得:x≤330,又∵售价不低于180元,∴180≤x≤330.∴y与x之间的函数关系式为y=﹣x2+70x﹣1360(180≤x≤330,且x为10的整数倍);(2)∵y=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵二次项系数为负,当x≤350时,y随x的增大而增大,又∵180≤x≤330,∴当x=330时,y=10850,最大值∴当售价为330元时,(销售这种商品)每周的利润最大,最大利润是10850元;(3)∵每周利润不得低于10400元,∴﹣(x﹣350)2+10890≥10400,∴(x﹣350)2≤4900,解得:280≤x≤420,又∵180≤x≤330,∴280≤x≤330.故答案为:280≤x≤330,且x为10的整数倍.4.解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入上式得,3=a(0﹣0.4)2+3.32,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.5.解:(1)由题意得:w=(x﹣20)•y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000.∵每件的利润不高于成本价的60%.∴20≤x≤20(1+60%),∴20≤x≤32,∴w=﹣10x2+700x﹣10000(20≤x≤32).(2)∵w=﹣10x2+700x﹣10000(20≤x≤32),∴对称轴为直线x=﹣=35,又∵a=﹣10<0,∴抛物线开口向下,∴当20≤x≤32时,w随x的增大而增大,∴当x=32时,w有最大值,最大值为﹣10×322+700×32﹣10000=2160(元).∴当销售单价定为32元时,每月可获得最大利润,每月的最大利润是2160元.6.解:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=a(x﹣6)2+10,将点B(0,4)代入,得:36a+10=4,解得:a=﹣,故该抛物线解析式为y=﹣(x﹣6)2+10;(2)根据题意,当x=6+4=10时,y=﹣×16+10=>6,∴这辆货车能安全通过.7.解:(1)由题意得:w=(x﹣20)y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵a=﹣10<0,20≤x≤20(1+60%),∴当20≤x≤32时,w随x的增大而增大,=﹣10(32﹣35)2+2250=2160.∴当x=32时,w最大答:当销售单价定为每支32元时,每月可获得最大利润,每月的最大利润是2160元.(2)设小周每月的成本需要p(元),根据题意得:p=20(﹣10x+500)=﹣200x+10000,∵w=﹣10x2+700x﹣10000≥2000,∴30≤x≤40,又∵20≤x≤32,﹣200<0,∴当30≤x≤32时,w≥2000,p随x的增大而减小,=﹣200×32+10000=3600.∴当x=32时,p的值最小,p最小值答:想要每月获得的利润不低于2000元,小周每月的成本最少需要3600元.8.解:(1)根据题意,得:y=100+10x,由60﹣x≥36得x≤24,∴1≤x≤24,且x为整数;(2)设所获利润为W,则W=(60﹣x﹣36)(10x+100)=﹣10x2+140x+2400=﹣10(x﹣7)2+2890,∵a<0∴函数开口向下,有最大值,∴当x=7时,W取得最大值,最大值为2890,答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.9.解:(1)∵除矩形AEFJ外,其它5个矩形的面积都相等,且AE=xm,∴IC=3ID=3xm,3AE+3AD+5IC=120,∴3x+3AD+5×3x=120,∴AD=(40﹣6x)m,∴y=4x(40﹣6x)=﹣24x2+160x,∵AD>0,40﹣6x>0,∴0<x<,∴y=﹣24x2+160x(0<x<);(2)y=﹣24x2+160x=﹣24+,∵﹣24<0,∴x=时,y取得最大值,最大值是.10.解:(1)当0≤x≤5时,设y=a(x﹣5)2+25,把(0,0)代入,得:0=25a+25,解得:a=﹣1,∴y=﹣(x﹣5)2+25=﹣x2+10x;当5<x≤15时,y=25.综上,y=;(2)设陆臻用于回顾反思的时间为x(0≤x≤15)分钟,学习收益总量为Z,则他用于解题的时间为(30﹣x)分钟.当0≤x≤5时,Z=﹣x2+10x+2(30﹣x)=﹣x2+8x+60=﹣(x﹣4)2+76.=76.∴当x=4时,Z最大当5<x≤15时,Z=25+2(30﹣x)=﹣2x+85.∵Z随x的增大而减小,∴Z<﹣2×5+85=75.综上所述,当x=4时,Z=76,此时30﹣x=26.最大∴陆臻用于回顾反思的时间为4分钟,用于解题的时间为26分钟时,才能使这30分钟的学习收益总量最大.。
九年级数学 第二章 二次函数 2.4 二次函数的应用 第2课时 用二次函数解决问题(2)
解:( 1 )设工厂每千度电产生利润 y( 元/千度 )与电价 x( 元/千度 )
的函数表达式为 y=kx+b.
∵该函数图象过点( 0,300 ),( 500,200 ),
1
200 = 500 + ,
= -5,
∴
解得
300 = ,
= 300,
1
∴y=-5x+300(
x≥0 ),
当电价 x=600 元/千度时,该工厂消耗每千度电产生利润 y=1
的月份是( C )
A.1月,2月,3月
B.2月,3月,4月
C.1月,2月,12月
D.1月,11月,12月
8.某玩具厂计划(jìhuà)生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品
全部售出.已知生产x只玩具熊猫的成本为R( 元 ),售价为每只P( 元 ),且R,P与x
的关系式分别为R=30x+500,P=170-2x,若可获得最大利润为1950元,则日产量
为( C )
A.25只
B.30只 C.35只 D.40只
12/7/2021
第七页,共十八页。
9.某产品每件成本10元,试销(shìxiāo)阶段每件产品的销售价x( 元 )与产品的日
销售量y( 件 )之间的关系如下表,且日销售量y是销售价x的一次函数.要使每
日的销售利润最大,每件产品的销售价应定为
( 2 )为了实现节能减排目标,有关部门规定,该厂电价x( 元/千度 )与每天用电量
m( 千度 )的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,
12/7/2021
为了(wèi le)获得最大利润,工厂每天应安排使用多少千度电?工厂每天消耗电产
中考专项复习:二次函数的应用---题型总结解析版
即 W 与 x 之间的函数表达式是 w=﹣2x2+280x—8000
(3) W=﹣2x2+280x—8000=—2(x—70)2+1800,其中40≤x≤80 ,∵﹣2<0,
∴当40≤x≤70时,W 随 x 的增大而增大,当70≤x≤80时,w 随 x 的增大而减小,当售价为 70元时,获得最大利润,这时最大利润为1800元.
【答案】2(x﹣8)(x+2)
【解析】50−x
试题分析:(1)∵y=x·⋅
=−1/2(x−25)2+625/2,
∴当 x=25 时,占地面积最大, 即饲养室长 x 为 25m 时,占地面积 y 最大;
(2)∵y=x·
=−12(x−26)2+338,
∴当 x=26 时,占地面积最大, 即饲养室长 x 为 26m 时,占地面积 y 最大;
考点:A:应用二次函数求最大利润 ,B:求一次函数的解析式 例3.(2017山东潍坊)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方 体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折 痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
当 4<x≤14 时,设 P=kx+b,
4k+b=40
k=1
将(4,40)、(14,50)代入, 可得: 14k+b=50 ,解得: b=36 ,
∴P=x+36;
①当 0≤x≤4 时,W=(60−40)·7.5x=150x,
∵W 随 x 的增大而增大, ∴当 x=4 时,W 最大=600 元; ②当 4<x≤14 时,W=(60−x−36)(5x+10)=−5x2+110x+240=−5(x−11)2+845,
二次函数的应用
二次函数的应用二次函数是一种常见的数学函数,它的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
二次函数在各个领域都有广泛的应用,下面将介绍几个常见的二次函数应用场景。
1. 物理学中的自由落体运动自由落体是物理学中常见的运动形式,它的运动规律可以用二次函数来描述。
当一个物体在重力作用下自由下落时,其位移和时间的关系可以通过二次函数来表示。
假设物体的下落轨迹为 y = -4.9t^2 + v0t + h0,其中 t 表示时间,v0 表示初始速度,h0 表示初始高度。
通过二次函数的图像,我们可以计算物体的落地时间、最大高度等物理量,进一步分析自由落体运动的特性。
2. 金融学中的收益率曲线在金融学中,收益率曲线常用来描述不同期限的债券收益率之间的关系。
假设某个债券的收益率与到期期限的关系可以用二次函数表示,那么我们可以通过该二次函数的图像来预测不同期限的债券的收益率。
另外,通过对收益率曲线进行分析,可以评估利率的变动趋势、市场风险等重要的金融指标。
3. 经济学中的成本函数在经济学中,成本函数是描述企业生产成本与产量之间关系的数学函数。
对于某些生产过程,成本函数常常具有二次函数的形式。
例如,某企业的总成本可以表示为 C(q) = aq^2 + bq + c,其中 q 表示产量,a、b、c 是常数。
通过分析该二次函数,可以找到最小成本对应的产量,从而在生产决策中进行合理的成本控制。
4. 工程学中的抛物线天桥设计在工程设计中,抛物线天桥是一种常见的设计形式。
抛物线为二次函数的图像,因此可以通过二次函数来描述天桥的形状和结构。
工程师可以利用二次函数的性质来计算天桥的高度、跨度等参数,确保天桥的结构稳定性和安全性。
总结起来,二次函数的应用十分广泛,涵盖了物理学、金融学、经济学、工程学等多个领域。
通过对二次函数图像的分析和计算,我们可以探索和解决实际问题,提高问题的解决效率和准确性。
5.8二次函数的应用--冯耀进
第四届全国中小学“教学中的互联网搜索”优秀教学案例评选昌乐外国语学校冯耀进全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计一、教学课题:5.8二次函数的应用二、教学背景:1、面向学生:初中九年级2、学科:数学3、课时:第1课时4、学生课前准备:利用百度搜索引擎在搜索关键词“二次函数”进行全方面了解并把一些自己认为和这节课联系比较大的资料记录下来以便上课一起分享5、上课地点:多媒体教室三、教材分析:1、教学内容:青岛教育出版社义务教育课程标准试验教科书《数学》九年级下册学情分析:本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
2、学情分析:学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
四、教学目标1、知识与技能:使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y =ax的关系式。
2、过程与方法:使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3、情感、态度、价值观:让学生体验二次函数的函数关系式的应用,提高学生用数学意识。
教学重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是教学的重点。
教学难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。
教学策略与手段1、学法:探究式、讨论法。
2、教法:创设情境,网络教学、启发引导、分析。
五、教学准备教学之前用百度在网上搜索《5.8二次函数的应用》的相关教学材料,找了很多教案教学设计、课件参考,了解到教学的重点、难点,确定课堂教学形式和方法,根据课堂教学需要,下载相关图片、PPT演示课件,同时利用百度搜索找到相关的图片和视频。
数学北师大九年级下册(2014年新编)《二次函数的应用(2)》教案2
《二次函数的应用(2)》教案2一、学生知识状况分析通过本章前三节的学习,学生已对二次函数的概念、二次函数的图像及其性质、如何确定二次函数的解析式等问题有了明确的认识.二次函数应用的第一课时是“何时面积最大”,学生初步感受到数学模型思想及数学的应用价值.本节课将进一步利用二次函数解决实际问题.二、教学任务分析“何时获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴.二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.教学目标(一)知识与技能1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.(二)过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.(三)情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程分析本节课以探究活动一、探究活动二及议一议这三个环节为主体,展开对二次函数应用的研究与探讨.第一环节 探究活动一活动内容:(有关利润的问题)服装厂生产某品牌的T 恤衫成本是每件10元,根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示每件降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?回顾:在学习一元二次方程的应用时遇到过有关销售利润的问题,常用相等关系是:销售利润=单件利润×销售量若设批发单价为x 元,则:单件利润为 ; 降价后的销售量为 ; 销售利润用y 元表示,则)14024(5000-2+-=x x20000)12(50002+--=x∵-5000<0∴抛物线有最高点,函数有最大值.当x =12元时,y 最大= 20000元.答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元.若设每件T 恤衫降a 元,则:单件利润为 ;降价后的销售量为 ; 销售利润用y 元表示,则)32(5000-2--=a a20000)1(50002+--=a∵-5000<0∴抛物线有最高点,函数有最大值.当x =1元时,即批发单价是12元时,y 最大= 20000元.答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元.想一想:解决了上述关于服装销售的问题,请你谈一谈怎样设因变量更好?活动目的:)元(10-x 件)5001.0-135000(⨯+x )5001.0135000)(10(⨯-+-=x x y )元(1013--a 件)5001.05000(⨯+a )(5001.05000)(1013⨯+--=a a y通过这个实际问题,让学生感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值.在这里帮助学生分析和表示实际问题中变量之间的关系,帮助学生领会有效的思考和解决问题的方法,学会思考、学会分析,是教学的一个重要内容.第二环节 探究活动二活动内容:某旅社有客房120间,每间房的日租金为160元时,每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?分 析:相等关系是客房日租金的总收入=每间客房日租金×每天客房出租数解:设每间客房的日租金提高x 个10元,则每天客房出租数会减少6x 间,若客房日租金的总收入为y 元,则:=19440)260-2+-x (∵06-120,0>≥x x 且∴200<≤x当x =2时,y 有最大值 19440.这时每间客房的日租金为180210160=⨯+元,客房总收入最高为19440元.随堂练习:课本P49随堂练习某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设销售单价提高x 元,销售利润为y 元,则y=(30-20+x)(400-20x)=-20x 2+200x+4000=-20(x-5)2+4500.答:当销售单价提高5元时,可在半月内获得最大利润4500元.第三环节 议一议活动内容:解决本章伊始,提出的“橙子树问题”本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y =(600-5x)(100+x)=-5x 2+100x+60000.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?(要求学生画出二次函数的图象,并根据图象回答问题))6120)(10160(x x y -+=实际教学效果:学生可以顺利解决这个问题,答案如下(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.课堂小结:请你结合本节课的内容谈谈你对二次函数应用的认识.。
中考数学复习 二次函数 第19讲 二次函数的应用(2)试题(含解析)
—————————— 教育资源共享 步入知识海洋 ————————第19讲 二次函数的应用(2)1. (2012,河北,导学号5892921)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1)(2)已知出厂一张边长为40 cm 的薄板,获得的利润是26元(利润=出厂价-成本价). ①求一张薄板的利润与边长之间满足的函数解析式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?【思路分析】 (1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .利用待定系数法求一次函数的解析式即可.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2,进而得出m 的值,求出函数解析式即可.②利用二次函数的最值公式求出二次函数的最值即可.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .由表格中的数据,得⎩⎪⎨⎪⎧50=20k +n ,70=30k +n .解得⎩⎪⎨⎪⎧k =2,n =10.所以一张薄板的出厂价与边长之间满足的函数解析式为y =2x +10.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2=2x +10-mx 2.将x =40,p =26代入p =2x +10-mx 2,得26=2×40+10-m ·402. 解得m =125.所以一张薄板的利润与边长之间满足的函数解析式为p =-125x 2+2x +10.②因为a =-125<0,所以当x =-b 2a=-22×⎝ ⎛⎭⎪⎫-125=25(在5~50之间)时,p 最大=4ac -b 24a =4×⎝ ⎛⎭⎪⎫-125×10-224×⎝ ⎛⎭⎪⎫-125=35.所以出厂一张边长为25 cm 的薄板,获得的利润最大,最大利润是35元.利润问题例 1 (2018,扬州节选,导学号5892921)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?例1题图【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)先由题意得出x 的取值范围,再根据总利润=销售量×单件的利润,将(1)中的函数关系式代入,得到总利润与销售单价之间的函数关系式,最后根据其性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧40k +b =300,55k +b =150.解得⎩⎪⎨⎪⎧k =-10,b =700.故y 与x 之间的函数关系式为y =-10x +700.(2)由题意,得-10x +700≥240. 解得x ≤46.设每天获取的利润为w 元, 则w =(x -30)·y=(x -30)(-10x +700)=-10x 2+1 000x -21 000=-10(x -50)2+4 000. ∵-10<0,∴当x <50时,w 随x 的增大而增大.∴当x =46时,w 最大,w 最大=-10×(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840元.针对训练1 (2018,深圳模拟)某商场试销一种成本为50元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于50%.经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数关系,试销数据如下表:(1)求y 与x 之间的函数关系式;(2)若该商场获得的利润为w 元,试写出利润w 与销售单价x 之间的函数关系式.当销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)根据利润=销售量×(销售单价-单件成本),将(1)中的函数关系式代入,得到利润w 与销售单价x 之间的函数关系式,再根据x 的取值范围和二次函数的性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧55k +b =75,60k +b =70.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y =-x +130.(2)w =(x -50)(130-x )=-x 2+180x -6 500=-(x -90)2+1 600.由题意,得x ≤50×(1+50%),即x ≤75. ∴50≤x ≤75.∵当x <90时,w 随x 的增大而增大, ∴当x =75时,w 取得最大值,为1 375.所以当销售单价定为75元时,商场可以获得最大利润,最大利润是1 375元.二次函数与几何图形的综合例2 (2018,保定模拟)如图,已知矩形ABCD 的边AB =2,BC =3,P 是AD 边上的一动点(点P 异于点A ,D ),Q 是BC 边上的任意一点,连接AQ ,DQ ,过点P 作PE ∥DQ 交AQ 于点E ,作PF ∥AQ 交DQ 于点F .(1)求证:△APE ∽△PDF ;(2)设AP =x ,求四边形EQDP 的面积S (用含x 的代数式表示出来);当四边形EQDP 的面积等于214时,说明PE 与DQ 的数量关系.例2题图【思路分析】 (1)根据PE ∥DQ ,PF ∥AQ 得出同位角相等即可证得两三角形相似.(2)由PE ∥DQ ,得到△APE ∽△ADQ .根据相似三角形的性质得到S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29.求出S △ADQ =12S 矩形ABCD =3,于是得到S =S △ADQ -S △APE =-13x 2+3.根据四边形EQDP 的面积等于214,列方程即可得到结论.(1)证明:∵PE ∥DQ , ∴∠APE =∠PDF . ∵PF ∥AQ ,∴∠DPF =∠PAE . ∴△APE ∽△PDF . (2)解:∵PE ∥DQ , ∴△APE ∽△ADQ .∴S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29,AP AD =PE DQ. ∵S △ADQ =12S 矩形ABCD =3,∴S △APE =13x 2.∴S =S △ADQ -S △APE =-13x 2+3.当四边形EQDP 的面积等于214时,214=-13x 2+3.解得x =32.∴AP =32=12AD .∴PE =12DQ .针对训练2(2018,揭阳一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,动点P 在AD 上,从点A 出发,沿A →D 方向运动.设AP =x ,△ABP 的面积为S 1,矩形PDFE 的面积为S 2,y =S 1+S 2,则y 与x 之间的关系式是 y =-x 2+3x .训练2题图【解析】 ∵在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°.∴BD =AD =2.∴PE =AP =x ,PD =AD -AP =2-x .∴y =S 1+S 2=x ·22+(2-x )·x =-x 2+3x .一、 选择题1. (2018,马鞍山二模)某农产品市场经销一种成本为每千克40元的农产品.据市场分析,若按每千克50元销售,一个月能售出500 kg ;销售单价每涨1元,月销售量就减少10 kg.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 之间的函数关系式为(C )A. y =(x -40)(500-10x )B. y =(x -40)(10x -500)C. y =(x -40)[500-10(x -50)]D. y =(x -40)[500-10(50-x )]【解析】 因为销售单价为每千克x 元,月销售利润为y 元,所以y 与x 之间的函数关系式为y =(x -40)[500-10(x -50)].2. (2018,芜湖繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y =-4x +440,要使销售该商品获得的月利润最大,该商品的售价应定为(C )A. 60元/件B. 70元/件C. 80元/件D. 90元/件【解析】 设销售该商品每月所获总利润为w 元,则w =(x -50)(-4x +440)=-4x 2+640x-22 000=-4(x -80)2+3 600.∴当x =80时,w 取得最大值,最大值为3 600.所以当售价为80元/件时,销售该商品所获月利润最大.3. 如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与点B ,C 不重合),连接AP ,作PE ⊥AP 交外角∠DCF 的平分线于点E .设BP =x ,△PCE 的面积为y ,则y 与x 之间的函数关系式是(C )第3题图A. y =2x +1B. y =12x -2x 2C. y =2x -12x 2D. y =2x【解析】 如答图,过点E 作EH ⊥BC 于点H .∵四边形ABCD 是正方形,∴∠DCH = 90°.∵CE 平分∠DCH ,∴∠ECH =12∠DCH =45°.∵∠CHE =90°,∴∠CEH =∠ECH =45°.∴EH =CH .∵四边形ABCD 是正方形,AP ⊥EP ,∴∠B =∠CHE =∠APE =90°.∴∠BAP +∠APB =90°,∠APB +∠EPH =90°.∴∠BAP =∠EPH .∴△BAP ∽△HPE .∴AB PH=BP EH .∴44-x +EH =x EH .∴EH =x .∴y =12·CP ·EH =12·(4-x )·x =2x -12x 2.第3题答图4. (2018,淄博模拟)如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果点P ,Q 分别从点A ,B 同时出发,那么四边形APQC 的面积最小时,经过(C )第4题图A. 1 sB. 2 sC. 3 sD. 4 s【解析】 设点P ,Q 同时出发t s 时,四边形APQC 的面积为S mm 2,则S =S △ABC -S △PBQ =12×12×24-12·4t ·(12-2t )=4t 2-24t +144=4(t -3)2+108.∵4>0,∴当t =3时,S 取得最小值.5. (2018,天津武清区模拟)某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800,要想获得日最大利润,则销售单价为(B )A. 30元B. 35元C. 40元D. 45元【解析】 ∵y =-x 2+70x -800=-(x -35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,日销售利润最大.6. (2018,广州南沙区模拟)如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm.点P 从点A 出发,沿AB 方向以2 cm/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ 的面积最大是(C )第6题图A. 10 cm 2B. 8 cm 2C. 16 cm 2D. 24 cm 2【解析】 设运动时间为t s .根据题意,得AP =2t ,AQ =t ,∴S △APQ =t 2.易知0<t ≤4,∴△APQ 的面积最大是16 cm 2.7. 如图,正方形ABCD 的边长为1,E ,F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管点E ,F 怎样运动,始终保持AE ⊥EF .设BE =x ,DF =y ,则y 关于x 的函数解析式是(C )第7题图A. y =x +1B. y =x -1C. y =x 2-x +1D. y =x 2-x -1【解析】 ∵四边形ABCD 为正方形,∴∠B =∠C =90°.∴∠BAE +∠AEB =90°.∵AE ⊥EF ,∴∠AEB +∠FEC =90°.∴∠BAE =∠FEC .∴△ABE ∽△ECF .∴AB ∶EC =BE ∶CF .∴AB ·CF=EC ·BE .∵AB =1,BE =x ,EC =1-x ,CF =1-y ,∴1·(1-y )=(1-x )·x .化简得y =x 2-x +1.二、 填空题8. (导学号5892921)如图,在矩形ABCD 中,AD =16,AB =12,E ,F 分别是边BC ,DC 上的点,且EC +CF =8.设BE 的长为x ,△AEF 的面积为y ,则y 关于x 的函数解析式是( y =12x 2-10x +96 ).第8题图【解析】 ∵BE =x ,∴CE =16-x .∵CE +CF =8,∴CF =x -8.∴DF =20-x .∴y =S 矩形ABCD-S △ABE -S △CEF -S △ADF =12x 2-10x +96.9. (2018,天津和平区一模)某旅行社组团去外地旅游,30人起组团,每人的费用是800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加1人,每人的费用就降低10元.当一个旅行团有 55 人时,这个旅行社可以获得最大的营业额.【解析】设一个旅行团有x人,营业额为y元.根据题意,得y=x[800-10(x-30)]=-10x2+1 100x=-10(x-55)2+30 250.故当一个旅行团有55人时,这个旅行社可以获得最大的营业额.三、解答题10. (2018,盘锦节选)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本为30元.设该款童装每件售价为x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(不求自变量的取值范围)(2)当每件童装售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)当每件童装售价定为多少元时,该店销售该款童装一星期可获得3 910元的利润?【思路分析】 (1)每星期的销售量等于100件加上因降价而多销售的销售量,由此得到函数关系式.(2)设每星期的销售利润为W元,构建二次函数,利用二次函数的性质解决问题.(3)根据题意列方程即可解决问题.解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元.根据题意,得W=(x-30)(-10x+700)=-10x2+1 000x-21 000=-10(x-50)2+4 000.∴当x=50时,W最大,W最大=4 000.所以当每件童装售价定为50元时,每星期的销售利润最大,最大利润是4 000元.(3)由题意,得-10(x-50)2+4 000=3 910.解得x=53或x=47.所以当每件童装售价定为53元或47元时,该店销售该款童装一星期可获得3 910元的利润.11. (2018,承德一模,导学号5892921)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y1与y2关于投资成本的函数解析式;(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利润W万元,求出W关于m的函数解析式,并求他至少获得多少利润,他能获取的最大利润是多少.【思路分析】 (1)根据题意设y1=kx,y2=px2,将表格中的数据分别代入求解可得.(2)由投入种植花卉金额m万元,则投入种植树木金额(8-m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可.解:(1)设y1=kx.由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2.解得k=2.故种植树木的利润y1关于投资成本x的函数解析式是y1=2x(x≥0).设y2=px2.由表格数据可知,函数y2=px2的图象过(2,2).∴2=p ·22. 解得p =12.故种植花卉的利润y 2关于投资成本x 的函数解析式是y 2=12x 2(x ≥0).(2)因为投入种植花卉金额m 万元,则投入种植树木金额(8-m )万元. 根据题意,得W =2(8-m )+12m 2=12m 2-2m +16 =12(m -2)2+14. ∵a =12>0,0≤m ≤8,∴当m =2时,W 取得最小值,为14. ∵a =12>0,∴当0≤m <2时,W 随m 的增大而减小;当2<m ≤8时,W 随m 的增大而增大. 在对称轴左侧,当m =0时,W 取得最大值,为16. 在对称轴右侧,当m =8时,W 取得最大值,为32. ∵16<32,∴当m =8时,W 取得最大值,为32.故他至少获得14万元的利润,他能获取的最大利润是32万元.12. 如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从点A ,B 同时出发,点P 在边AB 上沿AB 方向以2 cm/s 的速度匀速运动,点Q 在边BC 上沿BC 方向以1 cm/s 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.第12题图【思路分析】 (1)用x 分别表示出PB ,BQ 的长,然后根据三角形的面积公式列式整理即可得解.(2)把函数解析式整理成顶点式,然后结合实际求二次函数的最值即可.解:(1)∵S △PBQ =12PB ·BQ ,BQ =x ,PB =AB -AP =18-2x ,∴y =12(18-2x )x ,即y =-x 2+9x (0≤x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-⎝ ⎛⎭⎪⎫x -922+814.∵当x ≤92时,y 随x 的增大而增大,而0≤x ≤4,∴当x =4时,y 最大,y 最大=20.所以△PBQ 的面积的最大值是20 cm 2.1. 某旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则会相应地减少10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是(C )A. 140元B. 150元C. 160元D. 180元【解析】 设每张床位收费提高x 个20元,每天收入为y 元.根据题意,得y =(100+20x )(100-10x )=-200x 2+1 000x +10 000.当x =-b 2a =1 000200×2=2.5时,可使y 有最大值.又x 为整数,则x =2时,y =11 200;x =3时,y =11 200.所以为使租出的床位少且租金高,每张床位每天最合适的收费是100+3×20=160(元).2. (2017,湖州,导学号5892921)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20 000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值; (2)设这批淡水鱼放养t 天后的质量为m kg ,销售单价为y 元/kg.根据以往经验可知m 与t 的函数关系为m =⎩⎪⎨⎪⎧20 000(0≤t ≤50),100t +15 000(50<t ≤100),y 与t 之间的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 关于t 的函数解析式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大,并求出最大值.(利润=销售总额-总成本)第2题图【思路分析】 (1)由放养10天的总成本为30.4万元,放养20天的总成本为30.8万元可列出方程组进而求得答案.(2)①分0≤t ≤50,50<t ≤100两种情况,结合函数图象利用待定系数法求解可得.②就以上两种情况,根据“利润=销售总额-总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.解:(1)由题意,得⎩⎪⎨⎪⎧10a +b =30.4,20a +b =30.8.解得⎩⎪⎨⎪⎧a =0.04,b =30.(2)①当0≤t ≤50时,设y 关于t 的函数解析式为y =k 1t +n 1.将(0,15),(50,25)分别代入,得⎩⎪⎨⎪⎧n 1=15,50k 1+n 1=25.解得⎩⎪⎨⎪⎧k 1=15,n 1=15.∴此时y 关于t 的函数解析式为y =15t +15.当50<t ≤100时,设y 关于t 的函数解析式为y =k 2t +n 2.将(50,25),(100,20)分别代入,得⎩⎪⎨⎪⎧50k 2+n 2=25,100k 2+n 2=20.解得⎩⎪⎨⎪⎧k 2=-110,n 2=30.∴此时y 关于t 的函数解析式为y =-110t +30.②当0≤t ≤50时,W =20 000⎝ ⎛⎭⎪⎫15t +15-(400t +300 000)=3 600t .∵3 600>0,∴当t =50时,W 最大,W 最大=180 000. 当50<t ≤100时,W =(100t +15 000)⎝ ⎛⎭⎪⎫-110t +30-(400t +300 000)=-10t 2+1 100t +150 000 =-10(t -55)2+180 250. ∵-10<0,∴当t =55时,W 最大,W 最大=180 250.综上所述,当t =55时,W 最大,最大值为180 250.。
初中数学二次函数应用题型分类——抛物线形物体问题2(附答案)
初中数学二次函数应用题型分类——抛物线形物体问题2(附答案)1.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m2.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s3.某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面403m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m4.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米B.1130米C.1330米D.0.4米5.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A .2.5米B .3米C .3.5米D .4米6.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是()236042y x x x =-+≤≤,那么水珠的高度达到最大时,水珠与喷头的水平距离是( )A .1米B .2米C .5米D .6米 7.同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a =﹣118.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH =12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q 到直线DH 的水平距离为3cm ,若学校组织学生去南京进行研学实践活动,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是( )cm .A .3B .2C .3D .2 8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米9.某公园有一个圆形喷水池,喷出的水流的高度h (单位:m)与水流运动时间t (单位:s)之间的关系式为2305h t t =-,那么水流从喷出至回落到地面所需要的时间是( ) A .6 s B .4 s C .3 s D .2 s10.某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣x 2+2x+1.25,则水池在喷水过程中水流的最大高度为( )A .1.25米B .2.25米C .2.5米D .3米11.市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x 轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分.则水喷出的最大高度是____米.12.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取A 点为坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点时的抛物线表达式为______,水管AB 的长为______m .13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O________米以内.14.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h (单位:m )与水流喷出时间t (单位:s )之间的关系式为2305h t t =-,那么水流从喷出至回落到水池所需要的时间是__________s .15.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA =1.25m ,A 处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O ,直径为线段CB .建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x 轴的距离为2.25m ,到y 轴的距离为1m ,则水落地后形成的圆的直径CB =_____m .16.如图,公园里喷水池中的水柱的形状可以看成是抛物线,小明想知道水柱的最大高度,于是画出示意图,并测出了一些数据:水柱上的点C,D 到地面的距离都是1.6米,即 1.6BC OD ==米,1AB =米,5AO =米,则水柱的最大高度是______米.17.消防员的水枪喷出的水流可以用抛物线212y x bx =-+来描述,已知水流的最大高度为20m ,则b 的值为________. 18.某体育公园的圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y =-x 2+4x +94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.19.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线是抛物线y =﹣x 2+4x (单位:米)的一部分.则水喷出的最大高度是_____米.20.两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F . 若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了____m ,恰好把水喷到F 处进行灭火.21.要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷头,使喷出的抛物线形水柱在与水池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离中心3m.(1)在给定的坐标系中画出示意图;(2)求出水管的长度.22.如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度v x和纵向初始速度v y,θ是水龙头的仰角,且v02=v x2+v y2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=v y t-5t2;M与A 的水平距离为v x t米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x和纵向初始速度v y;(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x 的取值范围);(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)23.如图,斜坡AB长10米,按图中的直角坐标系可用y=3+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y =13-x 2+bx +c 表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树? 24.游乐园新建的一种新型水上滑道如图,其中线段PA 表示距离水面(x 轴)高度为5m 的平台(点P 在y 轴上).滑道AB 可以看作反比例函数图象的一部分,滑道BCD 可以看作是二次函数图象的一部分,两滑道的连接点B 为二次函数BCD 的顶点,且点B 到水面的距离2BE m =,点B 到y 轴的距离是5m.当小明从上而下滑到点C 时,与水面的距离3m 2CG =,与点B 的水平距离2m CF =.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道ABCD 的水平距离;(3)若小明站在平台上相距y 轴1m 的点M 处,用水枪朝正前方向下“扫射”,水枪出水口N 距离平台3m 2,喷出的水流成抛物线形,设这条抛物线的二次项系数为p ,若水流最终落在滑道BCD 上(包括B 、D 两点),直接写出p 的取值范围.25.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.26.某小区有一半径为8m 的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m 处达到最高,高度为5m ,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x 轴,喷水池中心为原点建立如图所示的平面直角坐标系.(1)求水柱所在抛物线对应的函数关系式;(2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m 的王师傅站立时必须在离水池中心多少米以内?27.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子OA ,点O 恰好在水面中心,安装在柱子顶端A 处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任意平面上,水流喷出的高度()y m 与水平距离()x m 之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为2y x 2x 3=-++.请完成下列问题:(1)将2y x 2x 3=-++化为()2y a x h k =-+的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米? 28.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64 m 的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m 处达到最高,高度为1 m .(1)求喷灌出的圆形区域的半径;(2)在边长为16 m 的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)29.某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y (m )与喷出水流喷嘴的水平距离x (m )之间满足2122y x x =-+ (l )喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?30.图1是一个倾斜角为α的斜坡的横截面,1tan 2α=.斜坡顶端B 与地面的距离BC 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),y 与x 之间近似满足函数关系2y ax bx =+(a ,b 是常数,0a ≠),图2记录了x 与y 的相关数据.(1)求y关于x的函数关系式;(2)斜坡上有一棵高1.8米的树,它与喷头A的水平距离为2米,通过计算判断从A 喷出的水珠能否越过这棵树.参考答案1.D【解析】【分析】设抛物线的解析式为y= a(x-1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】解:由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x-1)2+3(0≤x≤3),代入(3,0)得,0=a×(3-1)2+3,求得:a=34.将a值代入得到抛物线的解析式为:y=-34(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.则水管长为2.25m,故选:D.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.2.C【解析】【分析】将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【详解】解:∵h=﹣2t2+20t+1=﹣2(t﹣5)2+51,∴当t=5时,礼炮升到最高点.故选:C.【点睛】本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.3.B【解析】【分析】以OB为x轴,OA为y轴建立平面直角坐标系,A点坐标为(0,10),M点的坐标为(1,403),设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y=a(x﹣1)2+403,把点A(0,10)代入a(x﹣1)2+403,得a(0﹣1)2+403=10,解得a=﹣103,因此抛物线解析式为y=﹣103(x﹣1)2+403,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.4.B【解析】【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=54,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=54,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴9305240.8a b cbac++=⎧⎪⎪-=⎨⎪=⎪⎩,解得:8154345abc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以解析式为:y=815-x2+43x+45,当x=2.75时,y=13 30,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣1330=1130,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键5.B【解析】【分析】由题意可以知道M(1,3),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+3,把A(0,2.25)代入,得2.25=a+3,a=-0.75.∴抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x1=-1(舍去),x2=3.OB=3米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.6.B【解析】【分析】先把函数关系式配方,即可求出函数取最大值时自变量的值.【详解】解:∵y=-32x2+6x=-32(x2-4x)=-32[(x-2)2-4]=-32(x-2)2+6,∴当x=2时,y有最大值,∴水珠的高度达到最大时,水珠与喷头的水平距离是2.故选B.【点睛】本题考查了二次函数的实际应用,关键是把二次函数变形,求出当函数取最大值时自变量的值,此题为数学建模题,借助二次函数解决实际问题.7.B【解析】【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【详解】解:如图:根据题意,得Q (9,15.5),B (6,16),OH =6,设抛物线解析式为y =﹣118x 2+bx +c , 12×81915.5,,183114.×36616,18b c b c b c ⎧-++=⎧⎪=⎪⎪⎨⎨⎪⎪=-++=⎩⎪⎩解得, 所以抛物线解析式为y =﹣118x 2+23x +14. 当y =0时,即0=﹣118x 2+23x +14, 解得:x =2(负值舍去),又OH=6, 所以洗手液落在台面的位置距DH 的水平距离是2cm .故选:B .【点睛】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.8.A【解析】)∵y=-x 2+4x=2x-24-+(),∴当x=2时,y 有最大值4,∴最大高度为4m9.A【解析】由于水流从抛出至回落到地面时高度h 为0,把h =0代入h =30t -5t 2即可求出t ,也就求出了水流从抛出至回落到地面所需要的时间.解:水流从抛出至回落到地面时高度h 为0,把h =0代入h =30t −5t 2得:5t 2−30t =0,解得:t 1=0(舍去),t 2=6.故水流从抛出至回落到地面所需要的时间6s.故选A.10.B【解析】试题分析:直接利用二次函数解析式得出水流离地面的最大高度.解:∵y=﹣x 2+2x+1.25=﹣(x ﹣1)2+2.25,∴水池在喷水过程中水流的最大高度为2.25米.故选B .考点:二次函数的应用.11.4【解析】【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线24y x x =-+的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【详解】水在空中划出的曲线是抛物线24y x x =-+, ∴喷水的最大高度就是水在空中划出的抛物线24y x x =-+的顶点坐标的纵坐标, ∴()22424y x x x =-+=--+,∴顶点坐标为:()2,4, ∴喷水的最大高度为4米.故答案为:4.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.12.()()2323304y x x =-++-≤≤ 2.25. 【解析】【分析】直接利用二次函数的平移规律进而得出答案,再由题意可得,3x =-时得到的y 值即为水管的长.【详解】以喷水池中心A 为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系. 抛物线的解析式为:()23134y x =--+, 当选取点D 为坐标原点时,相当于将原图象向左平移3个单位, 故平移后的抛物线表达式为:()()2323304y x x =-++-≤≤; 令3x =-,则33 2.254y =-+=. 故水管AB 的长为2.25m . 故答案为:()()2323304y x x =-++-≤≤;2.25. 【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.13.7【解析】【分析】根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a 值,求出函数解析式,利用二次函数图象上点的坐标特征,求出当y=1.8时x 的值,由此即可得出结论;【详解】设水柱所在抛物线(第一象限部分)的函数表达式为y=a (x -3)2+5(a≠0),将(8,0)代入y=a (x -3)2+5,得:25a+5=0,解得:a=-15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=-15(x-3)2+5(0<x<8).当y=1.8时,有-15(x-3)2+5=1.8,解得:x1=-1(舍去),x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.故答案为:7【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:根据点的坐标,用利用待定系数法求出二次函数表达式并利用二次函数图象上点的坐标特征求出当y=1.8时x的值.14.6【解析】【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2得:5t2-30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s.故答案为:6【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.15.5【解析】【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.25,将A(0,1.25)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B 坐标,从而可得CB 的长.【详解】解:设y 轴右侧的抛物线解析式为:y =a (x ﹣1)2+2.25∵点A (0,1.25)在抛物线上∴1.25=a (0﹣1)2+2.25解得:a =﹣1∴抛物线的解析式为:y =﹣(x ﹣1)2+2.25令y =0得:0=﹣(x ﹣1)2+2.25解得:x =2.5或x =﹣0.5(舍去)∴点B 坐标为(﹣2.5,0)∴OB =OC =2.5∴CB =5故答案为:5.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.16.7225【解析】【分析】设解析式为2y ax bx c =++,由题意可知点D 为(0,1.6),点C 为(4,1.6),点A 为(5,0),代入后得到三元一次方程组,解方程组即可求出抛物线解析式,再求顶点坐标即可.【详解】解:设解析式为2y ax bx c =++,由题意可知点D 为(0,1.6),点C 为(4,1.6),点A 为(5,0), ∴ 1.6164 1.62550c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得825322585a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩, ∴解析式为:2832825255y x x =-++, ∴当3225282()25x =-=⨯-时,y 有最大值为7225. ∴水柱的最大高度是7225米. 【点睛】此题主要考查了二次函数的应用,用待定系数法求出二次函数的解析式是解题关键. 17.±【解析】【分析】利用二次函数的性质列出关于b 的方程,求出方程的解即可得到b 的值.【详解】解:抛物线y =12-x 2+bx , 根据题意得: 2b a - =122b -⎛⎫⨯- ⎪⎝⎭=b ,当x =b 时,取得最大值为20,21202b b b -+=, 12b 2=20, b =±. 故答案为:b =±. 【点睛】本题主要考查了二次函数的应用,解决本题的关键是要熟练掌握二次函数的性质. 18.92【解析】【详解】当y=0时,即-x2+4x+94=0,解得x1=92,x2=-12(舍去).答:水池的半径至少92米时,才能使喷出的水流不落在水池外.故答案是:92.19.4米【解析】【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点睛】考点:二次函数的应用.理解二次函数性质是关键.2010【解析】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y =-0.6x +21.2. 把y =6.2代入得, -0.6x +21.2=6.2, ∴x =25, ∴F (25,6.2).设抛物线解析式为:y=ax 2+bx +1.2, 把E (20,9.2), F (25,6.2)代入得,40020 1.29.262525 1.2 6.2a b a b ++=⎧⎨++=⎩解之得0.041.2a b =-⎧⎨=⎩ , ∴y =-0.04x 2+1.2x +1.2,设向上平移0.4m ,向左后退了h m, 恰好把水喷到F 处进行灭火由题意得 y =-0.04(x +h )2+1.2(x+h )+1.2+0.4, 把F (25,6.2)代入得,6.2=-0.04×(25+h )2+1.2(25+h )+1.2+0.4, 整理得 h 2+20h -10=0, 解之得110x =-,210x =-(舍去).∴向后退了10)m点睛:本题考查了二次函数和一次函数的实际应用,设直线AE 的解析式为:y =kx +21.2. 把E (20,9.2)代入求出直线解析式,从而求出点F 的坐标.把E (20,9.2), F (25,6.2)代入y=ax 2+bx +1.2求出二次函数解析式.设向左平移了h m ,表示出平移后的解析式,把点F 的坐标代入可求出k 的值.21.(1)详见解析;(2)水管长为2.25m . 【解析】 【分析】(1)以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系; (2)设抛物线的解析式为y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x =0时得的y 值即为水管的长. 【详解】解:(1)建立以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系;(2)由于在距池中心的水平距离为1m 时达到最高,高度为3m , 则设抛物线的解析式为: y =a (x ﹣1)2+3(0≤x ≤3), 代入(3,0)求得:a =﹣34. 将a 值代入得到抛物线的解析式为: y =﹣34(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 故水管长为2.25m .【点睛】此题主要考查二次函数的应用,解题的关键是根据图形建立合适的直角坐标系. 22.(1)水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒;(2)y=-2581x +43x+15;(3)水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB 方向移动610 【解析】【分析】(1)根据题意利用θ的正弦和余弦定义可得结论;(2)由(1)的表示出v x 表示出x ,OA 已知,利用y=d+OA ,代入OA 的值和d 与t 的函数关系式,可以得解;(3)先求得点A 和点B 的坐标,进而写出其直线解析式,再将其与(2)中抛物线解析式联立,从而求得落点C 的坐标,再利用平移知识及勾股定理可以求解. 【详解】解:(1)∵v 0为15米/秒,水龙头的仰角θ为53°,∴cosθ=0xv v ,sinθ=0y v v ,∴v x =15cos53°=15×35=9,v y =15sin53°=15×45=12;答:水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒; (2)x=v x t=9t , ∴t=9x , 又M 与A 的高度之差d (米)与喷出时间t (秒)的关系为d=v y t-5t 2∴y=d+OA=12t-5t 2+15=-5×2()9x +12×9x +15=-2581x +43x+15;∴y 与x 的关系式为:y=-2581x +43x+15.(3)∵坡顶的铅直高度OA 为15米,山坡的坡比为13,∴OB=45米,点A (0,15)点B (45,0)∴直线AB 的解析式为:y=13x -+15,将其与抛物线解析式联立得:254158131153y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩, 解得015x y =⎧⎨=⎩(舍)或276x y =⎧⎨=⎩,∴水流在山坡上的落点C 坐标为(27,6),喷射点A 沿坡面AB 方向移动的距离等于BC 的距离,而答:水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB 方向移动 【点睛】本题考查了二次函数的应用以及坡度问题和解直角三角形的应用等知识,正确构造出直角三角形是解题关键. 23.(1)y =-13x 2+3x +5;(2)当x=2时,水柱离坡面的距离最大,最大距离为254;(3)水柱能越过树,理由见解析 【解析】 【分析】(1)根据题意先求出A,B 的坐标,再把其代入解析式即可 (2)由(1)即可解答(3)过点C 作CD ⊥OA 于点D ,求出ODOD 代入解析式即可 【详解】(1)∵AB =10、∠OAB =30°, ∴OB =12AB =5、OA则A (0)、B (0,5),将A 、B 坐标代入y =-13x 2+bx +c,得:175035c c ⎧-⨯++=⎪⎨⎪=⎩,解得:5b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为y =-13x 2+5; (2)水柱离坡面的距离d =-13x 2+3x +5-(-3x +5)=-13x 2+533x =-13(x 2-53x ) =-13(x -532)2+254, ∴当x =532时,水柱离坡面的距离最大,最大距离为254; (3)如图,过点C 作CD ⊥OA 于点D ,∵AC =2、∠OAB =30°, ∴CD =1、AD 3 则OD 3, 当x 3时,y =-13×(32+33×3>1+3.5, 所以水柱能越过树. 【点睛】此题考查二次函数的应用,解题关键在于求出A,B 的坐标 24.(1)10y x=,25x ≤≤;(2)7m ;(3)91332128p -≤≤-. 【解析】 【分析】(1)在题中,BE=2,B 到y 轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k ;(2)根据B ,C 的坐标求出二次函数解析式,得到点D 坐标,即OD 长度再减去AP 长度,可得滑道ABCD 的水平距离;(3)由题意可知点N 为抛物线的顶点,设水流所成抛物线的表达式为213(1)2y p x =-+,通过计算水流分别落到点B 和点D 可以得出p 的取值范围.。
初三数学培优第二讲 二次函数的应用
初三数学培优第二讲二次函数的应用一、用二次函数解决最值问题例1 (2006年旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4)易知CN=4-x,EM=4-y.且有NP BC BFCN AF-=(作辅助线构造相似三角形),即34yx--=12∴y=-12x+5,S=xy=-12x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,•函数的值是随x的增大而增大,对2≤x≤4来说,当x=4时,S有最大值S最大=-12×42+5×4=12.例2 某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?【解析】(1)设此一次函数表达式为y=kx+b.则1525,220k bk b+=⎧⎨+=⎩解得k=-1,b=40,•即一次函数表达式为y=-x+40.(2)设每件产品的销售价应定为x元,所获销售利润为w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.产品的销售价应定为25元,此时每日获得最大销售利润为225元.例3 (2006年南京市)如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,•分别以EM、MF 为一边作矩形EMNH、矩形MFGN,使矩形MFGN~矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?解:∵矩形MFGN∽矩形ABCD,∴MN MF AD AB=,∵AB=2AD,MN=x,∴MF=2x,∴EM=EF-MF=10-2x,∴S=x(10-2x)=-2x2+10x=-2(x-52)2+252,∴当x=52时,S有最大值为252.例4、(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)•与销售单价x(元)(x≥30)存在如下图所示的一次函数关系式.(1)试求出y与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(•直接写出答案).解:(1)设y=kx+b由图象可知,3040020,: 402001000k b kk b b+==-⎧⎧⎨⎨+==⎩⎩解之得,∴y=-20x+1000(30≤x≤50)(2)P=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000.∵a=-20<0,∴P有最大值.当x=-14002(20)⨯-=•35时,P最大值=4500.即当销售单价为35元/千克时,每天可获得最大利润4500元.(3)31≤x•≤34或36≤x≤39.例5、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.解:(1)M(12,0),P(6,6).(2)设这条抛物线的函数解析式为:y=a(x-6)2+6,∵抛物线过O(0,0),∴a(0-6)2+6=0,解得a=16,∴这条抛物线的函数解析式为y=-16(x-6)2+6,即y=-16x2+2x.(3)设点A的坐标为(m,-16m2+2m),∴OB=m,AB=DC=-16m2+2m,根据抛物线的轴对称,可得:OB=CM=m,∴BC=12-2m,即AD=12-2m,∴L=AB+AD+DC=-16m2+2m+12-2m-16m2+2m=-13m2+2m+12=-13(m-3)2+15.∴当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米例6、(2006年泉州市)一条隧道的截面如图所示,它的上部是一个以AD•为直径的半圆O,下部是一个矩形ABCD.(1)当AD=4米时,求隧道截面上部半圆O的面积;(2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米.①求隧道截面的面积S(米)关于半径r(米)的函数关系式(不要求写出r的取值范围);②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值(π取3.14,结果精确到0.1米)(1)当AD=4米时,S半圆=12π×(2AD)2=12π×22=2π(米2).(2)①∵AD=2r,AD+CD=8,∴CD=8-AD=8-2r,∴S=12πr2+AD·CD=12πr2+2r(8-2r)=(12π-4)r2+16r,②由①知CD=8-2r,又∵2米≤CD≤3米,∴2≤8-2r≤3,∴2.5≤r≤3,由①知S=(12π-4)r2+16r=(12×3.14-4)r2+16r=-2.43r2+16r=-2.43(r-82.43)2+642.43,∵-2.43<0,∴函数图象为开口向下的抛物线,∵函数图象对称轴r=82.43≈3.3.又2.5≤r≤3<3.3,由函数图象知,在对称轴左侧S随r的增大而增大,故当r=3时,S有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).答:隧道截面面积S的最大值约为26.1米2.例7、如图,一块三角形铁片的一边BC=8cm,AH=6cm,在铁片上画一个内接矩形DEFG,使它的边FG 与BC重合,其它两个顶点D和E分别在边AC和AB上,如果设矩形边长EF= x cm, 矩形面积为y2cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二次函数的应用(二)二次函数的应用◆目标指引1.运用二次函数的知识去分析问题、解决问题,•并在运用中体会二次函数的实际意义.2.体会利用二次函数的最值方面的性质解决一些实际问题.3.经历把实际问题的解决转化为数学问题的解决的过程,•学会运用这种“转化”的数学思想方法.◆要点讲解1.在具体问题中经历数量关系的变化规律的过程,•运用二次函数的相关知识解决简单的实际问题,体会二次函数是刻画现实世界的一个有效的数学模型.2.运用函数思想求最值和数形结合的思想方法研究问题.◆学法指导1.当涉及最值问题时,应运用二次函数的性2345t 2-12t+36的最小值,就可以求P ,Q 的最短距离. 【解】(1)设经过ts 后P ,Q 的距离最短,则: ∵22BP BQ +22(6)(2)t t -+251236t t -+261445()55t -+∴经过65s 后,P ,Q 的距离最短. (2)设△PBQ 的面积为S ,则S=12BP·BQ=12(6-t )·2t=6t -t 2=9-(t -3)2∴当t=3时,S 取得最大值,最大值为9. 即经过3s 后,△PBQ 的面积最大,最大面积为9cm 2.【注意】对于动点问题,一般采用“以静制动”的方法,抓住某个静止状态,寻找等量关系.在求最值时,可用配方法或公式法,同时取值时要注意自变量的取值范围.【例2】某高科技发展公司投资1500万元,成功研制出一种市场需求较大的高科技替代产品,并投入资金500万元进行批量生产.已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价若增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利额(年获利额=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围);(2)试写出z与x之间的函数关系式(不必写出x的取值范围);(3)计算销售单价为160元时的年获利额,并说明:得到同样的年获利额,•销售单价还可以定为多少元?相应的年销量分别为多少万件?(4)公司计划:在第一年按年获利额最大时确定的销售单价进行销售;•第二年的年获利额不低于1130万元,请你借助函数的大致图象说明,第二年的销售单价x(元)•应确定在什么范围?【分析】本题以传统的经济活动中的利润、销售决策问题为背景,设计成数学应用题,引导学生5主动关心和参与日常生活中的经济活动,把实际问题抽象成数学问题,运用函数性质和方程知识来解题.【解】(1)依题意知:当销售单价定为x元时,年销量减少110(x-100)万件.∴y=20-110(x-100)=-110x+30.即y与x之间的函数关系式是y=-110x+30.(2)由题意可得:z=(30-110x)(x-40)-500-1500=-110x2+34x-3200.即z与x之间的函数关系式为z=-110x2+34x-3200.(3)∵当x=160时,z=-110×1602+34×160-3200=-320,∴-320=-110x2+34x-3200,即x2-340x+28800=0.6由x1+x2=-ba得,160+x=340,∴x=180.即得到同样的年获利额,销售单价还可以定为180元.当x=160时,y=-110×160+30=14,当x=180时,y=-110×180+30=12.所以相应的年销售量分别为14万件和12万件.(4)∵z=-110x2+34x-3200=-110(x-170)2-310,∴当x=170时,z取得最大值为-310.即当销售单价为170元时,年获利额最大,并且到第一年底公司还差310万元就可以收回全部投资.第二年的销售单价定为x元时,则年获利额为:z′=(30-110x)(x-40)-310=-110x2+34x-1510.7当z′=1130时,即1130=-110x2+34x-1510,解得x1=120,x2=220.∴函数z′=-110x2+34x-1510的大致图象如图所示.由图象可看出:当120≤x≤220时,z≥1130.∴第二年的销售单价应确定在不低于120元且不高于220元的范围内.◆练习提升一、基础训练1.函数2245x x++______.2.炮弹从炮口射出后飞行的高度h(米)与飞行的时间t(秒)之间的函数关系式为h=v0tsinα-5t2,其中v是发射的初速度,α是炮弹的发射角,当v0=300米/秒,α=30°时,炮弹飞行的最大高度为_______米,该炮弹在空中飞行了89______秒落到地面上.3.如图,某涵洞呈抛物线形,现测得水面宽AB=1.6米时,涵洞顶点O 到水面的距离为2.4米,在图中的直角坐标系中,涵洞所在抛物线的函数关系式为______.4.如图,直角三角形AOB 中,AB ⊥OB ,且AB=OB=3,设直线x=t•截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为( )5.如图,某工厂大门是抛物线形水泥建筑,大门地面宽4米,顶部距地面的高度为4.4米,现有一辆满载货物的汽车欲通过大门,其装货宽度为2.4米,•该车要想通过此门,装货后的最大高度应小于()A.2.80米B.2.816米C.2.82米D.2.826米6.如图,今有网球从斜坡OA的点O处抛出,•网球的抛物路线的函数关系是y=4x-12x2,斜坡的函数关系是y=12x2,其中y是垂直高度,x是与点O的水平距离.(1)求网球到达的最高点的坐标;(2)网球落在斜坡上的点A处,写出点A的坐标.7.某水果批发商销售每箱进价为40元的苹果,•10物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润W(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?8.如图所示,一位运动员在距篮圈4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问球出手时,他跳离地面的高度是多少?二、提高训练9.如图,图中四个函数的图象分别对应的解析式是①y=ax2;②y=bx2;•③y=cx2;④y=dx2.则a,b,c,d的大小关系为()A.a>b>c>d B.a<c<b<d C.a>c>b>d D.d>c>b>a10.为备战世界杯,中国足球队在某次训练中,一队员在距离球门12m处挑射,•正好射中了2.4m高的球门横梁,若足球运行的路线是抛物线y=ax2+bx+c(如图).•有下列结论:<a<0;③a-b+c>0;④0<b<①a+b+c>0;②-160-12a.其中正确的结论是()A.①②B.①④C.②③D.②④11.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC向点C 以2cm/s的速度移动,回答下列问题:(1)设运动后开始第t秒时,五边形APQCD 的面积为S(单位:厘米2),写出S与t•之间的函数关系式,并求出自变量t的取值范围;(2)t为何值时S最小?并求出S的最小值.12.如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B,C,Q,R在同一直线L上,当C,Q两点重合时,等腰△PQR以1cm/s的速度沿直线L•按箭头方向开始匀速运动,t秒后正方形ABCD与等腰△PQR•重合部分的面积为S(单位:cm2).(1)当t=3s时,求S的值;(2)当t=5s时,求S的值;(3)当5≤t≤8时,求S与t之间的函数关系式,并求出S的最大值.13.如图,甲船位于乙船的正西方向26km处,现甲、乙两船同时出发,甲船以每小时12km的速度朝正北方向行驶,乙船以每小时5km的速度朝正西方向行驶,•何时两船相距最近?最近距离是多少?三、拓展训练14.如图,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:(1)四边形CGEF的面积S关于x的函数关系式和x的取值范围;(2)面积S是否存在最小值?若存在,求出最小值;若不存在,请说明理由;(3)当x为何值时,S的数值等于x的4倍?答案:1.32.1125,30 3.y=-3.75x24.D 5.B 6.(1)(4,8)(2)A(7,7)27.(1)y=-3x+240 (2)W=-3x2+360x-9600 (3)当每箱定价为55元时,可获利大利润为1125•元8.(1)y=-0.2x2+3.5 (2)0.2m 9.C 10.B 11.(1)S=t2-6t+72(0≤t≤6)(2)t=3时,S最小=6312.(1)278cm2(2)698cm2(3)S=-34(t-132)2+16516,S最大=16516cm213.当行驶1013小时时,两船相距最近,最近距离为24km14.(1)S=x2-7x+18(0<x<3)(2)不存在,理由略(3)2。