常用铸造合金的熔炼及其铸件的生产
铸造概述
砂型铸造
机 器 造 型 原 理 图
砂型铸造
造(制)芯 用途:当制作空心铸件,或铸件的外壁内凹,或铸件 具有影响起模的外凸时,经常要用到型芯,制作型芯 的工艺过程称为造芯。型芯可用手工制造,也可用机 器制造。形状复杂的型芯可分块制造,然后粘合成形。 泥芯之间的相互连接也有多种方式: 胶水连接(丰田V6缸体) 螺栓连接(华泰V6缸体) Key-core连接(华泰V6缸体)
一、低压铸造
低压铸造设备 低压铸造设备一般由保温炉及其附属装置,铸型开合 系统和供气系统三部分组成。按铸型和保温炉的连接方 式,可分为顶铸式低压铸造机和侧铸式低压铸造机两种 类型。 (1)保温炉及附属装置 它由炉体、熔池、密封盖和升液管等所组成,是低压 铸造机的基本部分。保温炉的炉型很多,如焦炭炉,煤 气炉,电阻炉,感应炉等。但目前广泛使用的是电阻加 热炉,其次是电热反射炉。 (2)供气系统 在低压铸造中,正确控制对铸型的充型和增压是获得 良好铸件的关键,这个控制完全由供气系统来实现。根 据不同铸件,不同铸件的要求,供气系统应可以任意调 节,工作要稳定可靠,结构要使维修方便
二、压力铸造
压铸工艺:将定量金属液浇入压室,柱塞向前推进,金属液经浇道 压铸工艺: 压入压铸模型腔中,经冷凝后开型,由推杆将铸件推出。冷压室压 铸机,可用于压铸熔点较高的非铁金属,如铜、铝和镁合金等。
二、压力铸造
压力铸造的特点及其应用 压铸有如下特点: (1)压铸件尺寸精度高,表面质量好,可不经机械加工直接使用, 而且互换性好。 (2)可以压铸壁薄、形状复杂以及具有很小孔和螺纹的铸件,如 锌合金的压铸件最小壁厚可达0.8mm,最小铸出孔径可达0.8mm、 最小可铸螺距达0.75mm。还能压铸镶嵌件。 (3)压铸件的强度和表面硬度较高。压力下结晶,加上冷却速度 快,铸件表层晶粒细密,其抗拉强度比砂型铸件高25%~40%。 (4)生产率高,可实现半自动化及自动化生产。 不足:气体难以排出,压铸件易产生皮下气孔,压铸件不能进行热 处理,也不宜在高温下工作;金属液凝固快,厚壁处来不及补缩, 易产生缩孔和缩松;设备投资大,铸型制造周期长、造价高,不宜 小批量生产。
铸造铝合金的熔炼工艺
铸造铝合金的熔炼工艺
铸造铝合金的熔炼工艺一般包括以下几个步骤:
1. 材料准备:选择适合铸造铝合金的原材料,通常包括铝、合金元素和其他附加剂。
铝的纯度要求较高,合金元素根据合金配方进行选择。
2. 熔炼:将准备好的材料放入熔炉中进行熔炼。
熔炼温度根据不同的合金类型和铸造要求而变化,一般在600C至800C之间。
熔炼过程中,需要注意材料的均匀加热,搅拌破碎氧化层,并控制好熔炼温度和时间。
3. 清炼:熔炼完成后,需要进行清炼以去除杂质。
清炼一般包括除渣、除气等步骤,利用氮气等惰性气体进行喷吹,将杂质和气泡从熔液中排出。
4. 合金调质:铝合金需要进行合金调质以提高其力学性能。
合金调质一般包括固溶处理和时效处理两个步骤。
固溶处理是将合金加热至固溶温度,保持一定时间,使合金元素均匀溶解在铝中。
时效处理是在固溶处理后,将合金冷却到室温,在一定的温度下保持一定时间,使合金元素重新分布和形成细小的析出相,从而提高合金的强度和韧性。
5. 浇注:将熔融的合金倒入预先准备的铸型中。
在浇注过程中,需要控制好铸态温度、浇注速度和浇注压力,以确保铸件的质量。
6. 冷却:浇注后,铸件需要进行冷却。
冷却速度会影响铸件的晶粒大小和组织结构,因此需要根据不同的合金性能要求,选择合适的冷却方式。
7. 修磨和表面处理:冷却后的铸件需要进行去毛刺、修磨和表面处理等工艺,以提高铸件的表面质量和精度。
以上是铸造铝合金的一般熔炼工艺流程,具体操作步骤和参数设置会根据不同的铝合金材料和铸造要求而有所差异。
铸造合金及其熔炼(铸钢及其熔练)ppt课件
6
断面收缩率 ψ
( %) 35 35 35 35 30 25 22 20
铸造工(高级)
第三章 铸造合金及其熔炼
常用的一些特殊铸造高合金钢有不锈耐
酸钢(如ZG1Cr17、ZG1Cr18Ni9Ti)、 耐磨高锰钢 (如ZGMn13-1)、耐热钢 (如ZG35Cr26Ni12)等。
铸造工(高级)
第三章 铸造合金及其熔炼
铸造工(高级)
第三章 铸造合金及其熔炼
2)装料 补炉完毕,即可装料。一 般小容量电弧炉由人工进行装料,3t以 上的电弧炉用料罐从炉顶装料。在往料 罐中装料时,需要合理地布置炉料。原 则是尽量多装料并使炉料熔化快,炉料 要装得紧密,以利于导电和电热。
3)熔化期 熔化期的任务是将固体 炉料熔化成钢液,并进行脱磷。
锡青铜不易形成集中缩孔,所以不用很大的补缩冒口。其线 收缩率不大,铸件变形、缩裂的倾向较小。
为了进一步改善锡青铜的性能,常加入一些锌、铅、磷、 镍等元素。
铸造锡青铜的牌号、成分及性能见表2-11。
铸造工(高级)
第三章 铸造合金及其熔炼
表2-11 铸造锡青铜
牌号 ZCuS n3Zn8Pb6Ni1 ZCuS n3Zn11Pb4 ZCuS n5Pb5Zn5 ZCuS n10P1 ZCuS n10Pb5 ZCuS n10Zn2
1)补炉 一般每炼完一炉钢以后, 在装料前,照例要进行补炉。目的是修 补侵蚀和损坏的炉衬。补炉材料用卤水 镁砂。补炉工具和方法一般为大铲贴补、 铁锹投补或用机械化设备补炉。出钢后 打开炉门,升起电极,立即扒净残钢、 残渣,迅速进行补炉操作。补炉操作的 要点是:炉温高、操作快、补层薄,以 利于补炉材料的烧结。
0.9
ZG310-570 0.5 0.6
铸造合金及其熔炼 第十三章 铸造铝合金的熔炼
浇注过程中生成的氧化夹杂称为二次氧化夹杂,多分 布在铸件壁的转角处及最后凝固的部位。
一次氧化夹杂按形态可分为二类。 第一类是分布不均匀的大块夹杂物,它的危害性很大, 使合金基体不连续,引起铸件渗漏或成为腐蚀的根源,明 显降低铸件的力学性能。
五、合金元素对铝液吸氢的影响
1、对溶解度的影响 在pH2 =0. 1MPa的条件下,测得硅、铜、镁对溶解
度影响,按公式(13-21)算得常数A、B值列于表13-3中。 从表中可见、含镁量越高,氢的溶解度越高;反之,
硅、铜含量越高,氢的溶解度越低。
2、对氧化膜性能的影响
Mg、Na、Ca等氧的亲和力比铝大,是表面活性元 素,密度又比铝小,富集于铝液表面,熔炼时,优先被炉 气氧化。铝液中含镁量高于1%,表面氧化膜即全部由 MgO所组成,这层MgO组织疏松,对铝液不起保护作用, 故Al-Mg类合金必须在熔剂覆盖下进行熔炼。
点状针孔由铸件凝固时析出的气泡所形成,多发生于 结晶温度范围小、补缩能力良好的铸件中,如ZL102合金 铸件中。当凝固速度较快时,离共晶成分较远的ZL105合 金铸件中也会出现点状针孔。
(2) 网状针孔 此类针孔在低倍显微组织中呈密集相 联成网状,伴有少数较大的孔洞,不易清点针孔数目,难 以测量针孔的直径,往往带有末梢,俗称“苍蝇脚”。
库应保持清洁,干燥,以防生成铝锈。对已生成铝锈的铝
锭,投入熔炉前应彻底清除铝锈,否则即使熔炼工艺操作
很严格,也不易获得高质量的铝液。
各种油污都是由复杂结构的碳氢化合物所组成,与铝 液接触后都会发生下列反应,生成氢气
4/3mAl+CmHn=1/3mAl4C3+1/2nH2
《铸造合金及其熔炼》总结
《铸造合金及其熔炼》总结前言:全书一共有三部分组成第一篇铸造及其熔炼主要讲的是几种铸铁和铸铁的熔炼重点在第一章,主要内容为铸铁的凝固剂组织形成的基本理论;熔炼部分重点为冲天炉熔炼。
第二篇铸钢及其熔炼,主要讲的是各种铸钢和铸钢的熔炼重点为铸造低合金钢、电弧刚及钢液的炉外精炼。
第三篇铸造非铁合金及其熔炼主要的内容是铝铜等其他非铁合金的性能及其熔炼方法,重点为铸造铝合金及其变质、精炼。
第一篇铸造及其熔炼合金相图是分析合金相组织的有用工具。
通过铁碳合金相图可以知道各种相得相变温度,合金成分含量,为热加工等工艺提供基础2。
铸铁的生产主要讲解了灰铸铁、强韧铸铁、以及其他特种性能铸铁(减摩铸铁,冷硬铸铁,抗磨铸铁,耐热的铸铁,耐腐蚀铸铁)的力学性能特点机械性能特点,金相组织的性能特点,以及铸铁的生产、分类和牌号。
(1)影响铸态组织的因素冷却速度的影响化学成分的影响铁液的过热和高温静止的影响孕育的影响炉料的影响3 铸铁的熔炼--- 冲天炉熔炼1 、冲天炉熔炼基本原理(1)底焦燃烧:冲天炉底焦燃烧可以划分为两个区带:A 、氧化带:从主排风口到自由氧基本耗尽,二氧化碳浓度达到最大值的区域。
B 、还原带:从氧化带顶面到炉气中[CO2]/[CO] 浓度基本不变的区域,从风口引入的风容易趋向炉壁,形成炉壁效应,形成一个下凹的氧化带和还原带,对熔化造成不利影响。
①不易形成一个集中的高温区,不利于铁水过热;②加速了炉壁的侵蚀;③铁料熔化不均匀,铁液不易稳定下降, 影响化学成分。
解决方法:①采用较大焦炭块度,使风均匀送入;②采用插入式风嘴;③采用曲线炉膛;④采用中央送风系统;⑤熔炼过程中为使焦炭不易损耗,送风量要与焦炭损耗相适应。
根据炉气、炉料、铁水浓度和温度,炉身分为4 个区域:(1)预热区(2)熔化区(3)过热区4)炉缸区。
:冲天炉熔炼过程在熔化过程中底焦燃烧而消耗,为了保证整个熔炼过程连续正常进行就必须及时得补充底焦,以此来始终保持底焦的高度。
铸造合金及其熔炼---教学大纲
《铸造合金及其熔炼》课程教学大纲课程代码:050141002课程英文名称:Casting Alloy and Smelting课程总学时:56讲课:48实验:8上机:0适用专业:材料成型及控制工程专业大纲编写(修订)时间:2017、7一、大纲使用说明(一)课程的地位及教学目标《铸造合金及其熔炼》课试材料加工及控制工程专业的骨干课之一,本课程的教学目的是使学生掌握常用铸铁的成分、组织、性能及其内在联系,掌握铸铁结晶凝固的基本原理及结晶凝固过程对组织形成的影响,掌握铸铁熔炼的基本原理,了解各种铸铁的生产方法及冲天炉的操作工艺,为获得合格的铸铁件奠定合金及熔炼方面的基础。
掌握铸造碳钢、低合金钢、高合金钢的化学成分、金相组织、力学性能的关系,掌握铸钢结晶凝固的基本原理及结晶凝固过程对组织形成的影响,掌握合金元素在铸钢中的作用,掌握炼钢工艺特点,了解炼钢设备的基本构造。
掌握常用的铸造铝合金、铸造铜合金的成分、组织、性能及应用的关系,掌握合金的铸造性能及熔炼工艺原理的基础知识,常用合金及其典型熔炼工艺。
了解铸造镁合金、钛合金的基本知识。
(二)知识、能力及技能方面的基本要求(1).掌握常用铸铁的成分、组织、性能及其内在联系的规律性,掌握铸铁结晶凝固的基本原理及结晶凝固过程对组织形成的影响,掌握常用合金元素的作用。
(2).了解孕育机理、球化机理及固态石墨化机理,了解各种铸铁的生产方法。
(3).掌握冲天炉熔炼的基本原理和获得高温优质铁水的途径。
(4).了解冲天炉的结构、操作工艺和熔炼过程的控制方法。
(5).全面、系统的讲授常用的铸造碳钢及铸造合金钢的牌号、化学成分、组织与性能,掌握铸铁结晶凝固的基本原理及结晶凝固过程对组织形成的影响,阐明铸态组织的形成机理和热处理方法。
(6).介绍国内外在铸钢材料方面的研究成果、发展方向及动态,以扩大思路,开阔眼界。
(7).讲授电弧炉炼钢及感应炉炼钢的工艺过程,阐明炼钢过程中各期主要的物理化学反应,对钢水质量和铸件质量的影响。
铸造合金熔炼工艺及组织
(五)、实验报告要求
1. 简述实验目的、实验内容和实验过程; 2. 阐述去气精炼的目的和原理以及铝硅合金的变质 机理; 3. 比较铸造铝硅合金去气精炼前后组织及性能的变 化并分析其变化规律; 4. 分析铝合金在不同的冷却速度(凝固条件)下组 织的变化规律及其对性能的影响。
四、实验内容
1. ZAlSi13合金的熔炼、性能检测及组织观 察
2. 铸造铝合金的凝固过程控制
1、ZAlSi13合金的熔炼、性能检测及组织观察
(1)化学成分的选择
ZAlSi13合金,共晶型合金源自(2)配料计算 ZASi28
ZASi13
(3)ZAlSi13合金的熔炼过程
装料、熔化
C2Cl6
不精炼
浇注试样(3个) 浇注试样(3个)
2、铸造铝合金的凝固过程控制
(1)铸型的准备 砂型 金属型 (2)试样准备 将上述熔炼好的ZAlSi13经去气精炼和变质处 理后分别浇注到准备好的两种不同的铸型中, 成型后加工成标准试样。
⑶ 性能检测 将加工后的试样进行硬度测定,比较两种不 同的凝固条件下性能的变化情况。 ⑷ 金相组织观察 制成金相试样,观察两种不同的凝固条件下 组织变化的情况。
铸造合金熔炼工艺及组织 性能检验实验
指导教师:艾秀兰
一、实验概述
影响铸件性能最直接的因素是其金相组织和 显微结构,而影响组织结构最重要的因素是 合金的成分和凝固条件。本实验以铝合金为 例,观察其熔炼工艺,并对其熔炼后得到的 组织进行观察,检测合金的铸造性能、金相 组织和力学性能。通过本次实验可以学习实 际生产中的主要工艺过程,增进对铸造生产 各工序特点及相互间联系的理解。
二、实验要求
初步掌握铝合金的熔炼工艺过程,观察精 炼前、后浇铸试样的凝固液面变化; 分析铸造铝硅合金组织与性能的关系以及 铝硅合金变质前、后的金相组织变化和对 机械性能的影响; 分析铝合金在金属型铸造和砂型铸造条件 下的组织和性能。
铸造合金原理及熔炼
铸造合金原理及熔炼一、名词解释l.铸铁:的铁碳合金。
2.白口铸铁:少数C固溶于铁素体,其他以碳化物存在。
3.灰口铸铁:c主要结晶成石墨,并呈片状形式存在于铸铁中,断口为暗灰色。
4.球墨铸铁:铁水在浇注前经球化和孕育处理,C主要以球状形式存在于铸铁中。
5.球化处理:向铁水中加入稀土镁合金(球化剂)。
(其中镁是具有很强球化能力的元素)。
球化剂的作用是使石墨呈球状析出。
我国应用最广的球化剂是稀土镁合金。
6.孕育处理:向铁水中加入硅铁合金(孕育剂)颗粒。
孕育剂的作用是促进铸铁石墨化,防止产生白口,细化石墨。
常用的孕育剂为硅的质量分数75%硅铁。
7.蠕墨铸铁;是液态铁水经蠕化处理和孕育处理得到的.由金属基体和蠕虫状石墨构成。
8.可锻铸铁:是由白口铁经过退火而制得的一种高强度铸铁,白口铸铁中的渗碳体分解成团絮状石墨的灰口铸铁,性能优于灰铸铁,耐磨性和减震性优于普通碳索钢,可部分代替碳钢,合金钢和有色金属。
9.奥氏体(A或γ):碳溶于γ-Fe中所形成的间隙固溶体。
晶格结构:面心立方晶格fcc。
10.铁素体(F或α):碳溶于α-Fe中所形成的间隙固溶体,晶格结构:体心立方晶格bcc。
11.δ-铁素体:碳溶于δ-Fe中所形成的间隙固溶体。
12.碳当量定义:将合金元素对共晶点碳量的影响折算成铸铁碳量的增减,折算后的值称之为碳当量,以CE表示。
碳当量:CE=C+1/3(Si+p) 13.共晶度:铁液实际含碳量和共晶点的实际碳量的比值为共晶度,以sc表示。
共晶度:Sc=C/[%-(Si+p)l/3l 14.钢的腐蚀金属表面在周围介质的作用下逐渐被破坏的现象称为金属的腐蚀。
15.化学腐蚀是指金属表面与周围介质发生化学反应而引起的破坏,如高温下金属的氧化等。
16.电化学腐蚀是指金属与电解质溶液发生电化学作用而使金属破坏的现象。
17.耐热钢是指在高温下对氧化性气体具有抗氧化性的钢种。
18.黑色金属:在工业生产中,通常把铁及其合金称为黑色金属。
铸造工程学-铸造合金及熔炼
在铸造过程中,由于合金的收缩特性以及模具结构设计不当等原因,容易导致铸件出现缩孔与缩松缺 陷。这些缺陷会导致铸件局部强度和致密度下降,影响其机械性能和耐腐蚀性。
裂纹与变形
总结词
裂纹与变形是铸造合金冷却和加工过程中常见的问题,会导致铸件报废。
详细描述
在铸造过程中,由于冷却速度过快、模具设计不合理、浇注系统不当等因素,容易导致 铸件出现裂纹与变形缺陷。裂纹会导致铸件强度下降,变形则会使铸件无法满足精度要
熔炼的基本原理
熔炼是指将金属材料加热至熔点以上,使其成为液态,并加入所需的合金元素,通 过搅拌和化学反应等手段,使合金成分均匀混合的过程。
熔炼过程中,金属材料的熔点、密度、粘度等物理性质和化学性质都会发生变化, 这些变化对熔炼过程和产品质量产生重要影响。
熔炼过程中需要控制温度、压力、气氛等工艺参数,以确保合金成分的准确性和均 匀性,以及避免金属氧化、吸气等不良现象。
熔炼温度控制
严格控制熔炼温度,以保 证合金成分的均匀性和避 免烧损。
合金的熔炼与搅拌
通过搅拌和合金化处理, 确保合金成分均匀分布, 提高合金性能。
精炼与除渣
精炼
通过除气、去除非金属夹杂物等手段,提高合金的纯净度。
除渣
去除熔融金属中的熔渣和杂质,以保证铸件的质量和性能。
浇注与冷却
浇注
将熔融金属浇注入铸型中,形成符合要求的铸件。
熔炼技术的创新与改进
真空熔炼技术
利用真空技术进行合金熔炼,可 去除有害气体和杂质,提高合金
的纯净度和质量。
电渣重熔技术
通过电流作用下的熔渣进行二次熔 炼,使金属更加纯净和致密,提高 材料的机械性能。
定向凝固技术
使合金在凝固过程中保持一定的结 晶方向,提高材料的定向性能和机 械强度。
铸造合金及其熔炼
铁-碳双重相图
0.68
2.08
1154℃
738℃
L+G
A+G
F+G
E’
C’
4.26
S’
A
B
C
D
F
G
H
J
N
K
P
P
S
Q
L
E
L+
+
+
L+
+ Fe3C
+ Fe3C
L+Fe3CI
*
为了便于比较,习惯上把两个相图画在一起。此种合二为一的相图称铁-碳双重相图
0.68
2.08
1154℃
738℃
L+G
A+G
工艺
快速冷却——按 Fe-Fe3C相图转变 缓慢冷却——按 Fe-G 相图转变,石墨化充分 温度:高温长时间保温有利于石墨化
冷却速度:
*
影响石墨化程度的主要因素
碳以石墨形式析出的现象称为石墨化。
(1)、化学成分
1
碳是形成石墨的元素,也是促进石墨化的元素。含碳愈高,析出的石墨愈多、石墨片愈粗大。 硅是强烈促进石墨化的元素,随着含硅量的增加,石墨显著增多。 所以:当铸铁中碳、硅含量均高 时,析出的石墨就愈多、愈粗大,而金属基体中铁素体增多,珠光体减少。
G 抗拉强度约为20MPa 、 伸长率和韧性几乎为零, 硬度仅为3HB。 铸铁的力学性能主要取决于基体组织及石墨的数量、形状、大小和分布。 分布于基体上的石墨可视为空洞或裂纹.
*
⑸ 切削性能好。
⑴ 力学性能低。
G → 分布于基体中 → 空洞、裂纹→ 有效承载面积降低 、受力时石墨尖端处产生应力集中→ 力学性比碳钢↓
铸造合金及其熔炼教案
铸造合金及其熔炼教案教案标题:铸造合金及其熔炼教学目标:1. 了解铸造合金的基本概念和应用领域。
2. 掌握铸造合金的熔炼原理和常用熔炼方法。
3. 学习铸造合金的工艺流程和注意事项。
4. 培养学生的实践操作能力和团队合作精神。
教学步骤:引入活动:1. 引导学生思考:你们是否知道铸造合金是什么?它在哪些领域中被广泛应用?2. 展示一些铸造合金的实际应用例子,如汽车发动机零部件、航空航天器件等,激发学生的学习兴趣。
知识讲解:3. 介绍铸造合金的定义和分类,包括铸铁、铸钢、铝合金等。
4. 解释铸造合金的优点和缺点,以及不同合金在不同领域中的应用特点。
5. 详细讲解铸造合金的熔炼原理和常用熔炼方法,如电弧炉、感应炉等。
案例分析:6. 分组讨论:学生分成小组,选择一个具体的铸造合金案例进行分析,包括该合金的成分、熔炼方法和应用领域等。
7. 每个小组向全班展示他们的分析结果,并进行讨论和分享。
实践操作:8. 组织学生进行铸造合金的实践操作,可以是简化的模拟实验或观察真实的铸造过程。
9. 引导学生记录实践操作中的关键步骤和注意事项,并进行反思和总结。
评估与反馈:10. 设计一份针对学生学习情况的评估问卷,了解他们对铸造合金及其熔炼知识的掌握程度。
11. 根据学生的表现和问卷结果,给予针对性的反馈和指导,帮助他们进一步提高。
拓展延伸:12. 鼓励学生进一步探索铸造合金领域的前沿技术和研究方向,如新型合金材料、绿色铸造等。
13. 提供相关的学习资源和阅读材料,引导学生进行个人或小组的拓展研究。
教学资源:- 铸造合金的实际应用例子图片或视频- PowerPoint演示文稿- 实验室或工作室设备和材料- 评估问卷教学方法:- 启发式教学法:通过引导学生思考和讨论,激发他们的学习兴趣和主动性。
- 合作学习法:通过小组讨论和分享,促进学生之间的合作和交流。
- 实践操作:通过实际操作,帮助学生巩固所学知识,培养实践能力。
教学时长:根据教学计划和学生实际情况,可灵活安排教学时长,建议2-3个课时。
《金属工艺学》工程材料及机械制造基础(铸造)
4) 铸件结构: 壁太薄、大水平面,流动困难
§2 铸件的凝固与收缩Freezing and Shrinkage
液态收缩和凝固收缩得不到补偿,将产生缩孔或缩松
1. 铸件的三种凝固方式 the wideness of paste zone
P36 图2-3 (a)逐层凝固 Freezing layer by layer (c)糊状凝固 Paste freezing (b)中间凝固 Middle freezing
2. 铸造合金的收缩 Shrinkage of the Casting Alloys
合金从浇注、凝固、直至冷却到室温,其体积和尺寸缩减 现象(p36)
液态收缩liquid Contraction 体收缩
凝固收缩freezing contraction 体收缩
固态收缩solid contraction 线收缩
Especially for the production of articles with
complicate shape and structure
铸
例如:机箱、阀体、汽缸等
造
各种材料
的
广泛
Suit for almost all kinds of alloy
特
wide-ranging 大小:g~t
白口铸铁→高温退火→石墨呈团絮状 成分:低碳、低硅;2.4~2.8%C,0.4~1.4%Si 适用范围:中压阀门
形状复杂的薄壁小件:大件容易产生麻口 受一定冲击的零件 大批量生产: 单件成本高 牌号KTH300-06
第二篇 铸造 Foundry
什么叫铸造 Casting? (p33) The production of shaped articles by pouring molten metal into the mould
常用铸造合金的生产
小结:本章讨论了常用合金的生产,重点是铸铁件生产,
要熟知生产工艺特点,并会简单应用;铸钢生产、铜铝合
金生产要熟记常用牌号。
18
课后练习的讨论 (P54-9)
⑼下列铸件适宜选用哪类铸造合金?请阐述理由。 火车轮:按GB8061-88规定: “ 铁路用辗(nian)钢整体车轮”有专门钢号:
CL60 (Wc=0.55~0.65)
铸铁好。但不能锻造。
9
4.牌号 GB9440—88
K T H(或Z) — —A= %
Rm≥ Mpa 黑心或P 可锻铸铁(可铁)
如:KTH300—06;建筑脚手架扣件、三 通管件、阀门。
KTZ550—04;用于;载荷较高的耐磨损 、凸轮轴,齿轮等。
见P48 表2-4。
10
三、球墨铸铁 nodular graphite cast--iron
15
§3铜铝合金铸件生产
有色合金熔融性质:熔点低;流动性好;收缩大 ;易吸气、易氧化。 一、铸造特点:容易铸造、注重熔炼、防止氧化 。
二、铸造铜合金
纯铜-紫铜,玫瑰红色,表面氧化膜后呈紫色。
白铜 - Cu—Ni合金;精密件,仪表;如 B19 等
青铜 - Cu—Sn 合金常称锡青铜。如Z CuSn10Pb1 (俗称:10-1锡青铜)
黄铜- Cu—Zn 合金 颜色随Zn↑,由黄红色→淡黄
色;如:ZCuZn38(含38%的锌,余为铜)
16
三、铸造铝合金
1.纯铝 Al aluminium
—银白色,熔点660℃,面心立方晶格,没有同素异构转变。
2.铝合金的分类: 变形铝合金 ;铸造铝合金 (1)变形铝合金
厂家直接按加工成各种规格的型材、板材、带材、 管材、线材等 。
机械工程材料与热加工第九章_铸造生产
(3)中间凝固方式 大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方 式。中碳钢、高锰钢、白口铸铁等具有中间凝固方式。
图9-5 铸件的凝固方式
2. 凝固方式的影响因素 (1)合金凝固温度范围的影响 合金的液相线和固相交叉在一起,或间距很小,则金属趋于 逐层凝固;如两条相线之间的距离很大,则趋于糊状凝固; 如两条相线间距离较小,则趋于中间凝固方式。 (2)铸件温度梯度的影响 增大温度梯度,可以使合金的凝固方式向逐层凝固转化;反 之,铸件的凝固方式向糊状凝固转化。
(4)铸件的裂纹及防止 a) 铸件裂纹的分类及其形貌 铸件一般有热裂和冷裂两种开裂方式。当固态合金的线收缩受到 阻碍,产生的应力若超过该温度下合金的强度,即产生热裂;而 冷裂是铸件处于弹性状态时,铸造应力超过合金的强度极限而产 生的。热裂裂纹一般沿晶界产生和发展,其外形曲折短小,裂纹 缝内表面呈氧化色;冷裂裂纹常常是穿晶断裂,裂纹细小,外形 呈连续直线状或圆滑曲线状,裂纹缝内干净,有时呈轻微氧化色。 b)铸件裂纹的防止 为有效地防止铸件裂纹的发生,应尽可能采取措施减小铸造应力; 同时金属在熔炼过程中,应严格控制有可能扩大金属凝固温度范 围元素的加入量及钢铁中的硫、磷含量。
2. 铸件中的气孔和合金的吸气 (1)侵入性气孔 侵入性气孔是由于铸型表面聚集的气体侵入 金属液中而形成的孔洞。多位于铸件的上表面附近,尺寸较大, 呈椭圆形或梨形,孔壁光滑,表面有光泽或有轻微氧化色。 (2)析出性气孔 析出性气孔是溶解在金属液中的气体,在凝 固时由金属液中析出而未能逸出铸件所产生的气孔。其特征是 尺寸细小,多而分散,形状多为圆形、椭圆形或针状,往往分 布于整个铸件断面内。 (3)反应性气孔 浇入铸型中的金属液与铸型材料、型芯撑、 冷铁或溶渣之间,因化学反应产生气体而形成的气孔,统称反 应性气孔。这种气孔经常出现在铸件表面层下1mm-2mm处,孔内 表面光滑,孔径1mm-3mm。
铸造合金及其熔炼
铸造合金及其熔炼铸造合金是指由两种或两种以上的金属混合而成的材料,通常用于制造复杂形状的零件。
铸造合金具有较高的强度、韧性和耐磨性,同时还具有一定的耐腐蚀性和抗氧化性能。
它们通常用于制造高负荷运行的机械部件、汽车和航空航天零件、医疗设备和通信设备等领域。
铸造合金通常是通过熔炼过程制造的。
熔炼是将金属加热到其熔点以上,使其融化成为液态的过程。
在熔炼过程中,金属经历了一系列化学反应,例如氧化、还原、溶解和合金化等反应。
这些反应是产生所需铸造合金的关键。
在熔炼过程中,金属通常被加入到熔炉中。
熔炉是一种大容量的设备,用于加热和融化金属。
熔炉可以分为燃气熔炉、电弧炉和感应炉等几种类型。
其中,电弧炉是最常用的类型,它通过电极放电产生高温,将金属加热到液态。
熔炼时必须控制热量和化学成分,以产生所需的铸造合金。
在熔炼过程中,需要添加一些合金元素以改善铸造合金的性能。
例如,铝可以用于提高铸造合金的强度和耐腐蚀性,钛可以用于提高铸造合金的高温性能,铜可以用于提高铸造合金的导热性等。
这些合金元素通常以块状添加到熔炉中,随着金属的融化,它们逐渐溶解并与其他金属元素形成一种均匀的合金混合物。
一旦合金达到了所需的化学成分和温度,就可以进行铸造过程。
铸造是将液态合金倒入模具中,并使其冷却硬化的过程。
在铸造过程中,有两个关键的因素:一是铸造温度,二是冷却速度。
控制这两个因素可以获得所需的铸造合金性能。
铸造合金的性能取决于其化学成分、铸造温度和冷却速度等因素。
高强度和高耐磨性的合金通常需要较高的铸造温度和较快的冷却速度。
然而,在某些情况下,较慢的冷却速度可能会导致更优良的铸造合金性能,例如抗腐蚀性能和高温氧化性能等。
因此,在生产铸造合金时必须进行适当的试验和分析,以确保所产生的合金具有所需的性能。
第二篇 第二章 常用合金铸件的生产
思考:某产品上的灰铸铁件壁厚有5mm、25mm两种,力学 性能全部要求抗拉强度为220MPa,若全部选用HT200,是否 正确?
二、可锻铸铁
可锻铸铁又称玛铁(钢)。它是将白口铸铁经石墨化 退火而成的一种铸铁。抗拉强度得到显著提高,且有着相 当高的塑性与韧性(但不可锻)。
(3)缺口敏感性小 由于石墨已使金属基体形成了大量缺口, 因此,外来缺口对灰铸铁的疲劳强度影响甚微,从而增加了
零件工作的可靠性。
(4)铸造性能优良,切削加工性好 灰铸铁的含碳量近于共 晶,流动性好。由于铸铁在结晶过程中伴有石墨析出,石墨 的析出所产生的体积膨胀抵消了部分铁的收缩,故收缩率甚 小。
2.影响铸铁组织和性能的因素
铸铁中的碳以石墨形式析出的过程称为石墨化。在铁碳合金中 ,碳有两种存在形式:其一是渗碳体,其中w(C)=6.69% ;其二是石墨,用符号G表示,其w(C)=100%。石墨具有特 殊的简单六方晶格,如图所示。
一、灰铸铁
金属基体+片状石墨
(1)灰铸铁的化学成分 灰铸铁的化学成分大致是: w(C)=2.5%~4.0%,w(Si)=1.0%~2.5%,w(Mn)=0.5%~1.4%, w(S)≤0.15%,w(P)≤0.3%。 (2)灰铸铁的显微组织 由于化学成分和冷却条件的综合影 响,灰铸铁在室温下的显微组织有三种类型:铁素体(F)+ 片状石墨(G);铁素体(F)+珠光体(P)+片状石墨(G);珠光 体(P)+片状石墨(G)。
灰铸铁的抗压强度受石墨的影响较小,并与钢相近。
图 2-12 灰铸铁的显微组织
铸造性能好,价格低、 生产简单,强度低, 减磨,耐磨,减振, 石墨膨胀,作承受压 力的机床底座,床身 和不重要的构件、零 件如:端盖、凸轮等 导轨、缸体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•★普通灰口铸铁的孕育处理 • 应用:静载下要求较高强度、高耐磨性或高气密性的铸
件,特别是厚大铸件。
•180
•硬度HB
•170
•160
•150
16
抗拉 强度 b
MPa
300 330
350
370 450
550
650 700
延伸 率 %
硬度 HB
应用举例
6
弯头、三通等管件
8
螺丝扳手等,犁刀、犁柱
、车轮壳等
≤150
10
汽车拖拉机前后轮壳、减
速器
12
壳、转向节壳、制动器等
6 150~200 曲轴、凸轮轴、连杆、齿 轮、
4 180~230 活塞环、轴套、万向接头 、
•
•F+G片
F F+P + P+ G+ G 片G片
•F片+P+G片
•P+G片
•
•★普通灰口铸铁的性能
•※机械性能:σb:125~250MPa
•
δ、ψ、αk 趋于零。
•※工艺性能:不能锻造和冲压;焊接性很差;
•
良好的铸造性;切削加工性好。
•※其它性能:良好的减震性、耐磨性;缺口敏
•
感性低于钢。
•
重型机床件、大型齿轮箱体、 盖、刹车鼓、玻璃模具、飞轮
等
活塞环、气缸套、制动盘、 玻璃模具、刹车鼓、钢珠研磨
盘吸泥泵体等
•
2铸钢件的生产
1)铸钢的分类、性能及应用
•铸造碳钢 •分类: •铸钢 •铸造合金钢
性能:具有高的强度及塑韧性,焊接性好 应用:制造承受较大载荷及冲击载荷的重要机件,如
火车轮、车箱车钩、高压阀门。
型砂。 ◇一般不需热处理,或仅需时效处理
•
3)可锻铸铁件的生产 ★组织:钢基体上分布有团絮状石墨
•P+G团絮
•F+G团絮
•
★性能(与普通灰口铁比) 具有较高的韧性δ ≤12% αk≤30J/cm2
★牌号:※黑心可锻铸铁 KTH300-06 ※珠光体可锻铸铁KTZ450-06
★应用:结构复杂,承受冲击载荷的薄壁零 件,如水管弯头,农机具,阀门等。
2)牌号(GB11352-89)
ZG200-400 ZGMn13 ZG1Cr18Ni9Ti
•
3)铸钢的铸造性能及铸造工艺特点
★铸造性能
※铸钢的熔点高,铸件 易产生粘砂缺陷
※钢液易氧化、渣较多 ※铸钢的流动性差 ※铸钢的收缩大 ※易产生热裂或变形
★铸造工艺
※一般用水玻璃砂造型
※浇注系统多采用底注开放式 ,使液流尽量平缓
★应用
代替灰铸铁生产较 高要求的铸件,如 液压阀,钢锭模等
•★牌号
• RuT420 •★生产特点 • ※成分:高碳、高硅、低 • P、S • ※球化处理 • ※孕育处理 •★铸造工艺 • 与灰口铁接近
•
•蠕墨铸铁的牌号和机械性能
牌号 RuT420 RuT380 RuT340 RuT300 RuT260
汽车、拖拉机传动齿 轮
•
•球化处理工艺有冲入法和型内球化法
•铁 水
•出铁 槽
•铁水 包 •草木 •硅灰铁 •粉合金球化 剂
•冲入法
•冒口 •积渣 包
•铸件
•反应 室
•型内球化法
•
★铸造工艺
※高的出炉铁水温度 ※浇注系统的截面积>灰铸铁 ※采用半封闭或开放式浇注系统(球铁易氧
化) ※增加铸型刚度,安放冒口、冷铁以防止缩
•
•灰铸铁的壁厚与强度的关系
牌号
铸件壁厚/mm σb/MPa
2.5~10
130
10~20
100
HT100
20~30
90
30~50
80
2.5~10
175
10~20
145
HT150
20~30
130
30~50
120
•
•灰铸铁的用途
牌号 HT100 HT150 HT200 HT250 HT300 HT350
孔,缩松。 ※严格控制型砂中的水分及原铁水的碳、硅
含量,降低铁水中含硫量和残余镁量,防 止产生气孔 Mg+H2O=MgO+H2 MgS+H2O=MgO+H2S
•
5)蠕墨铸铁件的生产 ★组织 钢基体上分布有蠕虫状石墨
•
★性能
※强度、塑性、韧 性、耐磨性优于灰 铸铁
※铸造性能优于球 墨铸铁
※具有良好的热疲 劳性及导热性
基体 铁素体 铁素体
bMPa 400 400
机械性能 0.2MPa 5%
250 18 250 15
QT450-10 铁素体 450
310 10
QT500-7 铁素体 500
320
7
+
珠光体
QT600-3 珠光体 600
370
3
+铁素
体
QT700-2 珠光体 700
420
2
QT800-2 珠光体 800
※变质处理:Al-Si合金熔炼时 ,加变质剂,以细化晶粒。
•
2)铝合金的铸造工艺特点
★铸造性能
极易吸气、氧化;收缩 大;易产生缩孔、缩松、 夹渣、变形、甚至开裂等 缺陷。
★铸造工艺
※充型:十分平稳,不产生 涡流、飞溅和冲击现象, 尽快充满铸型
※型砂:SiO2含量低的硅砂 ,粒度应较细100/200目
抗拉强度 屈服强度 延伸率 硬度值范 蠕化率
bMPa 0.2MPa
% 围
VG%
不小于
HB
不小于
420
335
0.75 200~280
380
300
0.75 193~274
340
270
1.0 170~249 50
300
240
1.5 140~217
260
195
3 121~197
组织
珠光体+ 石墨
珠光体+ 石墨
2 210~260 棘轮、扳手、传动链条
2 240~290
•
•★生产特点
• ※先铸出白口铸铁坯料 • ※再进行长时间的石墨化退火
•
•可锻铸铁的石墨化退火工艺
•T℃
•920 ℃~980 ℃
•Fe3C共
晶
•720 ℃
• A+G团
• Fe3C共析
•P+G团
•650
F+G团 ℃
•F+ G
团
•t
•石墨化退火的总周期一般为40~70小 时 •高温阶段的石墨化退火时间需10~20小时
组织 F+G片 F+P+G片 F+P+G片 P+G片 P细+G细片 P细+G细片
用途举例
盖、外罩、油盘、手轮、支架、底板、镶导轨的 机床底座等对强度无要求的零件
底座、床身、与HT200相配的溜板、工作台;泵 壳、容器、法兰盘;工作压力不太大的管件
要求高的强度和一定耐蚀能力的泵壳、容器、塔 器、法兰、硝化塔 机床床身、立柱、平尺、划线平板、汽缸、齿轮 、活塞、刹车轮、联轴器盘、水平仪框架 压力为80Mpa以下的油缸、泵体、阀门
珠光体 +铁素体 +石墨 铁素体 +珠光体 +石墨 铁素体+
石墨
•
•蠕墨铸铁的牌号及应用
牌号 RuT260 RuT300
RuT340 RuT380 RuT420
组织 F+G蠕 F+P+G蠕
F+P+G蠕 P+G蠕 P+ G蠕
用途举 例
汽车、拖拉机底盘类零件、驱 动桥壳、阀体等
排气管、变速箱体、汽缸盖 、纺织零件、液压件等
金属锭作炉料,其余元素 以中间合金形式加入。 ※合金锭重熔法:直接按牌 号购买铸造铝合金锭重熔 ※一次熔炼法:大部分合金 元素以纯金属锭加入。
★熔炼工艺:
※熔剂(覆盖剂)KCl、NaCl
※精炼除气,熔炼后期通入氯 气或压入氯盐、氯化物,如 氯化锌、六氯乙烷等,以除 去合金液内的气体和氧化夹 杂。
※细化晶粒:Al-Mg、Al-Cu中 加入Ti、B、Zr 等元素或其 盐类,使晶粒细化。
•
★铸造性能(与普通灰口铁比)及铸造工艺特点
※铸造性能
◇熔点高,流动性差、 收缩大 ◇易产生冷隔、浇不足,缩孔,缩松、裂纹等
缺陷。
※铸造工艺
◇高的铁水温度; ◇顺序凝固原则设计浇冒口; ◇浇注系统截面加大,以缩短充型时间; ◇提高型砂的退让性,设计适当的铸筋以减少裂纹。
•
4)球墨铸铁件的生产 ★组织:钢基体上分布有球状石墨
若采用单一的生铁锭或回炉铁为原料,铸出的产品品质 如何?若采用单一的废钢来熔炼,铸出的产品属于铸钢 还是铸铁? 5 分析比较灰口铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁的 组织、性能、生产特点、铸造性能及铸造工艺。
雨淋式 压力式 带滤网或滤片式
应用范围
大型长筒式铸件
矮小圆盘、圆套 、轴瓦类 中大型复杂件
铝青铜 铅青铜 黄铜
凝固结晶 温度范围 窄,易氧 化,易形 成集中缩 孔
采用顺序凝 固方式,要 设大的冒口 补缩或配合 使用冷铁
底注开放式
牛角式底注开放 式
带滤网和集渣包 的浇口
各类铸件
•
课堂讨论题
1 从石墨的存在和影响分析灰口铸铁的性能特点。 2为什么灰铸铁件的截面增大其强度反而降低? 3 孕育铸铁与普通铸铁有何区别?如何获得孕育铸铁? 4 冲天炉熔炼时,加入废钢、硅铁、锰铁的作用是什么?