-机械手电气控制系统设计.doc
机械手的控制设计

机械手的控制设计随着制造业的发展,机械手已经成为不可或缺的自动化生产设备之一。
机械手的控制设计是机械手能够准确、灵活地完成生产任务的关键。
本文将介绍机械手控制系统的基本原理、常见控制技术和未来的发展趋势。
一、机械手控制系统的基本原理机械手控制系统的基本原理是将指令传输到机械手的控制器中,然后控制器将指令转化为控制信号并送达电机,从而控制机械手的运动。
通常,机械手控制系统包括以下几个方面:1. 传感器:用于测量机械手的位置、速度、力量、方向等参数,并将这些参数转化为电信号送到控制器中。
2. 控制器:用于接收传感器的信号,并通过计算、判断等操作,生成电气信号,控制机械手的运动,从而实现自动化操作。
3. 电机:用于驱动机械手的运动,根据控制器的信号控制机械手的运动速度、方向、力量等参数。
二、机械手控制技术机械手控制技术是实现机械手自动化操作的重要技术手段,常见的机械手控制技术主要包括以下几种:1. 点位控制技术:点位控制技术是指通过控制机械手的每个关节的运动来确定机械手的末端位置。
在点位控制技术中,通常采用PID控制器控制机械手的角度位置。
2. 轨迹控制技术:轨迹控制技术是指通过控制机械手沿一定的参考轨迹运动,从而实现特定的操作。
在轨迹控制技术中,通常需要根据轨迹规划算法生成参考轨迹,并采用开环或闭环控制策略进行控制。
3. 力控制技术:在一些质量检测和装配操作中,需要对机械手施加一定的力来完成操作。
在力控制技术中,需要通过力传感器或压力传感器等器件测量机械手的施力情况,然后采用适当的控制策略来控制机械手的力量,从而实现一定的装配和调整操作。
三、机械手控制系统的未来发展趋势随着自动化技术的迅速发展,机械手控制系统也在不断发展和完善,针对未来机械手控制系统的发展趋势可以从以下几个方面进行展望:1. 智能化:未来的机械手控制系统将更加智能化,增加复杂任务的规划和执行能力,实现更加快捷高效的生产操作。
在智能化方面,主要应用机器人视觉等先进技术。
电气自动化毕业设计--机械手

基于PLC的机械手控制设计2. 机械手模型设计2.1机械手控制系统构件概述机械手实物教学模型的机械结构采用滚珠丝杆、滑杆、气缸、气夹等机械部件组成;电气方面有步进电机、直流电机、步进电机驱动器、传感器、开关电源、电磁阀等电子器件组成。
本设计中采用的机械手,可在三维空间内运动。
水平(X)轴、垂直(Y)轴采用步进电机控制,底盘的旋转采用直流电机控制,抓取物体的电磁阀采用气动形式。
步进电机的控制,由对应的步进电机驱动器电路完成。
完成本设计需要的实验设备有:1)机械手模型2)计算机3)导线4)气泵5)晶体管输出型可编程控制器(带编程电缆)机械手的控制面板分以下几个模块(1)步进电机驱动及步进电机驱动器电流设定为0.63A,细分设定为8细分。
将24V电源接入驱动器,此时驱动器的电源指示灯应点亮。
将24V与OPTO端(驱动器使能端)连接起来。
PUL端是脉冲输入端。
DIR是方向控制输入端。
(2)直流电机本模型用的气夹电机和底座电机均是24V直流电机,PLC控制两个直流继电器的吸合来控制电机的正转和反转。
(3)旋转编码盘在本模型底座上有一个旋转编码盘,在底座旋转时,在此产生一个V P-P为24V的方波信号,可以提供给PLC的高速计数器,用于机械手的定位控制。
(4)接近开关在本模型中底座和气夹的限位通过4个电感式接近开关来完成。
接近开关与触头接近时接近指示灯点亮、输出低电平,否则为高电平。
(5)行程开关在本模型中两个滚珠丝杆的限位通过4个滚轴式行程开关来完成。
当行程开关压下时,常开触点闭合,给PLC一个控制信号。
(6)电磁阀与平行气夹本模型使用的电磁阀动作时平行气夹夹紧,动作则张开。
2.1.1步进电机用二相八拍混合式步进电机,主要特点:体积小,具有较高的起动和运行频率,有定位转矩等优点。
本模型中采用串联型接法,其电气图如图2.1所示:2.1步进电机电气图步进电机驱动器步进电机驱动器主要有电源输入部分、信号输入部分、输出部分等。
基于PLC机械手控制系统设计

基于PLC机械手控制系统设计工业机械手是一种高科技自动化生产设备,也是工业机器人的一个重要分支。
它通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和在各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
通用机械手是一种能够独立按程序控制实现重复操作的机械手,适用范围比较广。
由于通用机械手能够很快地改变工作程序,适应性较强,因此在不断变换生产品种的中小批量生产中得到了广泛的应用。
机械手的发展得益于其积极作用:一方面,它能够部分代替人工操作;另一方面,它能够按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;还能够操作必要的机具进行焊接和装配,从而改善了工人的劳动条件,显著提高了劳动生产率,加快了实现工业生产机械化和自动化的步伐。
因此,机械手受到了很多国家的重视,投入了大量的人力物力来研究和应用。
尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,机械手的应用更为广泛。
近年来,在我国也有较快的发展,并取得了一定的效果,受到了机械工业的关注。
机械手是一种能够自动控制并可重新编程以变动的多功能机器,具有多个自由度,可以搬运物体以完成在不同环境中的工作。
随着工业技术的发展,机械手的结构形式开始比较简单,专用性较强。
但现在,制成了能够独立按程序控制实现重复操作,适用范围比较广的通用机械手。
本文介绍了机械手的分类和应用,其中第一类是通用机械手,可以根据任务需要编制程序完成各项规定工作。
本项目要求设计的机械手模型也属于这一类,通过设计可以增强对工业机械手的认识,并熟悉掌握PLC技术、位置控制技术、气动技术等工业控制常用的技术。
机械手控制系统的设计步骤包括确定被控系统必须完成的动作和它们之间的关系、分配输入输出设备、设计PLC用户程序、对程序进行调试和修改,最后保存已完成的程序。
(完整word版)PLC机械手臂课程设计原稿

气动机械手控制系统1 课程设计的任务与要求1。
1 课程设计的任务1。
熟悉三菱FX2N PLC的机构及使用。
2.掌握相关的PLC的编程操作并实现所要求的功能。
3。
具备PLC的硬件设计。
4.熟悉PLC仿真软件的操作和仿真。
通过本次论文,进一步加强自己对机械手和PLC的认识,以及它们在生活中广泛应用.1.2 课程设计的要求气动机械手动作示意图如下图所示,气动机械手的功能是将工件从A点搬运到B点,控制要求为:(1)气动机械手的升降和左右移动分别由不同的双线圈电磁阀实现,电磁阀线圈失电时能保持原来的状态,必须驱动反向的线圈才能反向运动;(2)上升、下降的电磁阀线圈分别为MB2、MB1;右行、左行的电磁阀线圈为MB3、MB4;(3)机械手的夹钳由单线圈电磁阀MB5来实现,线圈通电夹紧,断电松开;(4)机械手的夹钳的松开,夹紧通过延时2s实现;(5)机械手下降、上升、右行、左行的限位由行程开关BG1、BG2、BG3、BG4来实现。
图1 气动机械手动作示意图2气动机械手控制系统设计方案制定本设计采用三菱系列PLC设计下图为一个将工件由A处传送到B处的机械手,上升/下降和左移/右移的执行用双线圈二位电磁阀推动气缸完成.当某个电磁阀线圈通电,就一直保持现有的机械动作,例如一旦下降的电磁阀线圈通电,机械手下降,即使线圈再断电,仍保持现有的下降动作状态,直到相反方向的线圈通电为止.另外,夹紧/放松由单线圈二位电磁阀推动气缸完成,线圈通电执行夹紧动作,线圈断电时执行放松动作。
设备装有上、下限位开关和左、右限位开关,它的工作过程如图所示,有八个动作,即为:原位下降夹紧上升右移左移上升放松下降图2 机械手的动作周期3气动机械手控制系统设计方案实施3.1气动机械手控制系统电路元器件选择为实现设计目的,本设计需用到两台三相电机,4个接触器,4个继电器.其中M1三相电机控制机械手臂的上下移动(KM1闭合M1电动机正转,机械手臂下降;KM2闭合M1电动机反转,机械手臂上升);M2三相电机控制机械手臂的左右移动(KM3闭合M2电动机正转,机械手臂右移;KM4闭合M2电动机反转,机械手臂左移)。
机械手的控制方式及控制系统设计

AUTO TIME109AUTOMOBILE DESIGN | 汽车设计时代汽车 1 引言机械手在工业科技中的应用时间较长,随着工业生产的不断发展进步,机械手的控制技术也得到了较为快速的发展。
人们在很早以前就希望能够借助其他的工具替代人类自身的手去从事重复性的工作,或者具有一定危险性的工作,从而提高工业的生产效率,同时也能规避人们在生产实际生产中碰到的危险情况。
此外,在一些特殊的场合中,必须要依靠机械手才能加以完成[1]。
未来机械手在工业生产中将发挥更大的作用,本文主要对机械手的控制方式及控制系统设计方法进行了较为详细的分析。
2 机械手原理概述机械手具有很多的优点,比如机械手比人的手具有更大的力气,能够干很多人手所无法干的事情,这样也能提高工业生产中的效率,同时采用机械手进行工业生产时的成本相对而言也会得到一定程度上的降低。
机械手通常由三部分组成,即机械部分,传感部分和控制部分。
其中,手部安装在手臂的前端,用来抓持物件,这是执行机构的主体,可根据被抓持物件的形状、重量、材料以及作业要求不同而具有多种结构形式。
控制部分包括控制系统和人机交互系统[2]。
对于机器机械手的控制方式及控制系统设计王建亮 刘瑞芬 李聪山西航天清华装备有限责任公司 山西省长治市 046000摘 要: 随着机械控制技术的不断发展进步,机械手在工业生产领域中的应用逐渐广泛,对于推动工业生产发挥了重要的作用。
机械手具有不同的控制方式,本文对机械手不同的控制方式进行了分析,之后对机械手的控制系统的设计方法及需要注意的关键环节进行了分析。
关键词:机械手;控制方式;控制系统人基本部件的控制系统,控制系统的任务是控制机械手的实际运动方式。
机械手的控制系统有开环和闭环两种控制方式,如果工业机械手没有信息反馈功能,那么它就是一个开环控制系统。
如果有信息反馈功能,它是一个闭环控制系统。
对于机器人基本组成的人机交互系统,人机交互系统是允许操作员参与机器人控制并与机器人通信的装置。
-机械手电气控制系统设计

机械手电气控制系统设计目录一、机械手设计任务书………………………………。
11机械手结构、动作与控制要求 (1)2设计任务 (1)二、电器控制部分…………………………………。
..。
21.电器元件目录表……………………………………。
22.机械手主电路接线图 (3)3。
继电器控制电路 (4)4.接线图 (4)5.电器板元件布置图 (5)6。
控制面板...。
....................................。
(5)三、PLC控制部分 (6)1.PLC的选型..........................。
.. (6)2.PLC I/O图 (6)3。
状态转移图……………………。
……………………。
74.梯形图.................................。
. (7)5。
指令表 (10)四、参考文献 (14)一、机械手设计任务书1机械手结构、动作与控制要求机械手在专用机床及自动生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产的自动化。
本设计中的机械手采用关节式结构。
各动作由液压驱动,并由电磁阀控制。
动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统,动作时间需要可调。
以镗孔专用机床加工零件的上料、下料为例,机械手的动作顺序是:由原始位置将以加工好的工件卸下,放回料架,等待料架转过一定角度后,再将未加工零件拿起,送到加工位置,等待镗孔加工结束,再将加工完毕工件放回料架,如此重复循环。
设计要求1.1加工中上料和下料各动作采用自动循环。
1。
2各动作之间应有一定的延时(由时间继电器调定)1.3机械手各部分应单独动作,以便调整及维修。
1.4液压泵电动机(Y100L2—4.3KW)及各电磁阀运行状态应有指示。
1。
5应有必要的电气保护与联锁环节。
2设计任务:2。
1绘制电气控制原理线路图,选用电器元件,制订元件目录表。
2.2设计并绘制以下工艺图样中的一种:电器板元件布置图与底板加工零件图;电器板接线图;控制面板元件布置图、接线图及面板加工图;电气箱及系统总接线图.2。
工业机械手的自动化控制系统设计

103工业机械手的自动化控制系统设计尹智龙(九江职业大学机电工程学院,江西九江332009)摘要:文章介绍了工业机械手控制系统的动作流程,根据动作流程编写程序。
控制器采用西门子S7-200smart 型PLC ;文章设计了有动态效果的上位组态界面,来实时显示当前系统的运行状态以及工业机械手的运行位置。
关键词:工业机械手;S7-200smart ;MCGS 中图分类号:TP241文献标识码:A 文章编号:1673-1131(2019)01-0103-030引言工业机械手是一种能够通过编程软件实现不同工艺过程,灵活度很高的机械设备。
本文主要是应用西门子S7-200smart 系列PLC ,对机械手的上下、左右及抓取运动进行控制,利用可编程技术,结合相应的硬件装置,控制机械手完成各种动作,利用上位组态界面实时地反映工业机械手目前的工作状态。
S7-200smart 系列PLC 是近几年西门子公司才生产出来的产品,已逐渐取代S7-200系列。
目前200系列的西门子PLC 已经停产。
S7-200smart 带有以太网通讯口,相较于200系列而言,其通讯速度快很多,且更稳定,只需要普通的网线即可下载。
两者应用的编程软件虽不同,但两个系列的PLC 窗口界面较为相似,因此不需要重新学习。
两者存在较大区别在于:步进电机或伺服电机的控制不同、向导过程不一样,生成的子程序不一样,因此用法也不一样。
但200smart 的控制方式更具多样化,子程序更多、拓展性更好。
本文采用新型产品S7-200smart 系列PLC 对机械手进行控制,运行结果显示该系统更稳定。
1机械手的控制要求本系统的工业机械手有上下移动、左右移动和手抓夹紧松开的动作[2]。
动作流程如下:一开始在原点位置,当在现场按下启动按钮或者上位界面点击启动按钮时,机械手先下降,下降到位后,机械手爪夹紧,抓取工件;抓完后上升,到上限后停止上升,右移,右移到位后停止右移,下降,下降到位后松开,放工件;再上升,上升到位后停止上升,左移,左移到位后停止。
机械手模型的PLC控制系统设计

机械手模型的PLC控制系统设计摘要:利用S7-300系列PLC对机械手进行控制,详细阐述了系统的主回路和控制回路工作原理以及接线图。
关键词:机械手PLC S7-300 主回路控制回路机械手是随着工业机械化、自动化而发展起来的一种装置,具有结构简单、运动迅速、可靠性高、节能环保的特点,目前已经在各行业得到了广泛应用[1]。
应用PLC控制机械手能实现各种规定的工序动作,不仅可以提高产品的生产效率,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低成本,有着十分重要的意义[2]。
本文中,我们提出了一种简单、可靠的基于S7-300系列的PLC机械手控制系统,实现了物件的取放、上下、左右、旋转过程。
PLC简单易学,相对于C语言易于掌握,对技术人员的要求也一般。
本文介绍的基于德国西门子S7-300系列PLC设计的机械手控制系统。
1 机械手的工作过程开始运行后,机械手如果不在初始位置上,单相异步电动机开始运转(横轴向手抓方向移动,竖轴向上移动),归位后首先横轴电动机工作,横轴前伸;前伸到位后,手爪电动机得电带动手爪转动;当传感器检测到限位磁头时,电动机停止,PLC控制电磁阀动作,手张开;延时一段时间,竖轴电动机工作,竖轴下降;下降到位后,电磁阀复位,手爪夹紧;延时过后,竖轴上升,同时横轴缩回,地盘电动机带动地盘旋转;当横轴、竖轴、地盘都到位后,横轴前伸;到位后手爪旋转,然后竖轴下降,电磁阀动作,手爪张开;延时后竖轴上升复位,然后开始下一周动作。
2 主回路工作原理及接线图本文中总共用到了四台电机,他们分别完成机械手横轴的左右移动,机械手竖轴的上下移动,机械手爪的180度旋转运动,以及机械手立柱的270度旋转运动,在此都选用单相交流异步电动机。
并且由于机械手无论是横轴的运动,竖轴的运动,手爪的旋转以及立柱的旋转都用到了往复运动,因此每台电机都能很好的实现正反转功能。
电机1控制机械手的左/右移动;电机2控制机械手的上/下移动;电机3控制手爪的旋转;电机4控制机械手立柱的旋转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械手电气控制系统设计
目录
一、机械手设计任务书 (1)
1机械手结构、动作与控制要求 (1)
2设计任务 (1)
二、电器控制部分 (2)
1.电器元件目录表 (2)
2.机械手主电路接线图 (3)
3.继电器控制电路 (4)
4.接线图 (4)
5.电器板元件布置图 (5)
6.控制面板 (5)
三、PLC控制部分 (6)
1.PLC的选型 (6)
2.PLC I/O图 (6)
3.状态转移图 (7)
4.梯形图 (7)
5.指令表 (10)
四、参考文献 (14)
一、机械手设计任务书
1机械手结构、动作与控制要求
机械手在专用机床及自动生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产的自动化。
本设计中的机械手采用关节式结构。
各动作由液压驱动,并由电磁阀控制。
动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统,动作时间需要可调。
以镗孔专用机床加工零件的上料、下料为例,机械手的动作顺序是:由原始位置将以加工好的工件卸下,放回料架,等待料架转过一定角度后,再将未加工零件拿起,送到加工位置,等待镗孔加工结束,再将加工完毕工件放回料架,如此重复循环。
设计要求
1.1加工中上料和下料各动作采用自动循环。
1.2各动作之间应有一定的延时(由时间继电器调定)
1.3机械手各部分应单独动作,以便调整及维修。
1.4液压泵电动机(Y100L2-4.3KW)及各电磁阀运行状态应有指
示。
1.5应有必要的电气保护与联锁环节。
2设计任务:
2.1绘制电气控制原理线路图,选用电器元件,制订元件目录表。
2.2设计并绘制以下工艺图样中的一种:
电器板元件布置图与底板加工零件图;电器板接线图;控制面
板元件布置图、接线图及面板加工图;电气箱及系统总接线图。
2.3编制设计,使用说明书,设计小结,列出设计参数资料目录。
二、继电器控制部分
1.电器元件目录表
2.机械手主电路接线图
3.继电器控制电路
4.电器板接线图
5.电器板元件布置图
6.控制面板元件排列图
三、PLC控制部分
1.PLC的选型
设计图中PLC的输入点26个,输出点14个,考虑到实际应用情况所以选用型号为FX1N-60MR-001的三菱PLC(输入点36,24点继电器输出)。
2.PLC I/O图
3.状态转移图
4.梯形图
5.指令表
四、参考文献:1.《机械设计手册》徐灏机械工业出版社
2.《工厂电气控制技术》方承远机械工业出版社。