随机变量的几种收敛及其相互关系

合集下载

概率论四种收敛性

概率论四种收敛性

x
x
r r

-
dF ( x )
r
1
r

x dF ( x )
=
E X
r
r
引理的特殊情况: 取r=2,并以X-E(X)代替X得车贝晓夫不等式
P( X )
E X
r
r
2
【定理】(车贝晓夫不等式)设随机变量X有2阶中心矩,E X-E(X) , 则对任意 0有
解:设每毫升白细胞数为X 依题意,E(X)=7300,D(X)=7002 所求为 P(5200 X
9400) = P(-2100 X-E(X) 2100)
= P{ |X-E(X)|
P(5200 X
9400)

2100}
由车贝晓夫不等式
D( X ) P{ |X-E(X)| 2100} 1 (2100)2 1 8 700 2 1 ( ) 1 9 9 2100
主要内容
车贝晓夫不等式-阶收敛
一、车贝晓夫不等式
【引理】(马尔可夫不等式)设随机变量X有r阶绝对矩, E X ,
则对任意 0有
r
P( X )
E X
r
r
【证明】设X的分布函数为F ( x ), 则有:
P( X )
x
dF ( x )
1 n 1 n K X i E ( X i ) lim lim P ( 1 ) 1 2 n n i 1 n n i 1 n
又由概率性质P 1
1 n 1 n lim P X i E ( X i ) 1 n n i 1 n i 1
P Yn Y ; P Yn Y ;

随机变量序列的两种收敛

随机变量序列的两种收敛

概率论与数理统计
2)、设 n ,n 是两个随机变量序列, a,b为常数,
若 n P a,n Pb 且在g(x,y)在点(a,b)处连续, 则 g(n ,n ) P g(a,b), (n ). 证明略,方法类似于1) 3)、若 n P ,n P,
则n n P , (n )
nn P , (n )
1)、若 n P ,n P, 则P ( ) 1
证: n n
0
,由
则 n
2

n
2
中至
少有一个成立,即
n
2
n
2
于是
P(
) P(n
2
)
P(
n
) 0(n )
2
即 0,有P( ) 1,从而P( ) 1
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。
概率论与数理统计
定理5.6 随机变量序列 n P c(c为常数)
的充要条件为 Fn (x) W F (x)
这里 F(x)是 c 的分布函数,也就是退化分布
1, x c F(x) 0, x c

n P c
Fn (x) W F (x)
在F(x)的连续点.
当n P, (n ) 时,它们的分布函数之间就有
lim
n
Fn
(
x)
F
(
x)
成立.
1.定义
定义5.3
概率论与数理统计
设 Fx, F1(x), F2 (x), 是一列分布函数,如果对
F(x)的每一个连续点x,
都有
lim
n
Fn (x)
F ( x)
成立,
则称分布函数列 Fn (x) 弱收敛于分布函数F(x),

随机变量序列的两种收敛性

随机变量序列的两种收敛性

§4.2随机变量序列的两种收敛性在上一节中,我们从频率的稳定性出发,引入了n η=∑=n i i n 11ξ−→−p a (n ∞→) 即随机变量序列{}n η依概率收敛于常数a 这么一个概念。

我们自然可以把所讨论的问题推广到a 不是一个常数,而是一个随机变量这样的情形,于是需要引入下面的定义。

定义4.2 设有一列随机变量1η,2η,3η,…,n η,如果对任意的ε>0,都有 lim ∞→n P ()εηη<-n (4.6)则称随机变量序列{}n η依概率收敛于η,并记作lim ∞→n r η−→−p η 或n η−→−p η (n ∞→) 由此可知,前一节中讨论过的大数定律只是上述依概率收敛的一种特殊情况。

我们已经知道分布函数全面地描述了随机变量的统计规律,如果已知n η−→−p η(n ∞→),那么它们相应的分布函数n F (x )与F (x )之间的关系会有什么样的关系呢?一个猜测是,对所有的x ,都有n F (x )→ F (x )(n ∞→)成立,这个猜测对不对呢?让我们看一个很简单的例子。

例4.2 设η,n η都是服从退化分布的随机变量,且P (η=0)=1,P (n η=-n 1)=1,n=1,2,… 于是对任给的ε>0,当n>ε1时有 P (ηη-n ≥ε)=P (n η≥ε)=0所以n η−→−p η (n ∞→) 成立。

又设η,n η的分布函数分别为F (x ),n F (x ),则F (x )=⎩⎨⎧≤>0,20,1x xF (x )=⎪⎩⎪⎨⎧-≤->n x n x 1,21,1 显然,当x ≠0时,lim ∞→n n F (x )= F (x )成立,当x=0时,lim ∞→n n F (0)=lim ∞→n 1=1≠0= F (0) 这个简单的例子表明,一个随机变量序列依概率收敛于某一个随机变量,相应的分布函数列不一定是在每一点上都收敛于这个随机变量的分布函数的。

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b

1 / 167
圣才电子书

十万种考研考证电子书、题库视频学习平台
P
X n Yn a b

P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果

依概率收敛

依概率收敛

2:定理, X n P X X n L X (或 Fn x W F (x) )
证明:往证
F
x
0
lim
n
Fn
(x)
lim
n
Fn
(x)
F
x
0

先令 x' x
X x' X x',X n x X n x X x',X n x X x',X n x
因此 PX x' PX x',X n x X x',X n x
对于随机变量序列X i ,i 1,2,...和某个随机变量 X ,假定 X 的 cdf 为 Fx ,
若,对于 Fx 得任何连续点 x ,都成立 PX i x n PX x,即
Fi x n F x ,则称随机变量序列 X i ,i 1,2,...依分布收敛到随机变量 X 。
也可以说,cdfs Fi x,i 1,2,....弱收敛到 Fx
P Xn 1 1, n
则他的分布函数:
n=1,2,3........
Fn
x
0
1
x1 n
x1 n
在点点都收敛的情况下 Fnx 的极限函数是:
注意极限函数后面限制中的 x 与分布函数是同等地位的 第一段:当n 时,即极限函数中x lim 1 0,而分布函数中的第一段
n n x 1 , (n 1,2) 包含了x 0的情形,所以:
F(x') PX x' PX x',X n x PX x',X n x Fn (x) PX x',X n x
Fn (x) PX n X x x' Fn (x) P X n X x x'

§4.3随机变量序列的两种收敛性

§4.3随机变量序列的两种收敛性

n
再令x ' x F ( x 0) lim Fn ( x )
n
8
同理可证: 当 x " x时,F ( x ") limFn ( x ),
n
再令x " x, F ( x 0) limFn ( x ) .
n
即有 F ( x 0) lim Fn ( x ) lim Fn ( x ) F ( x 0) . n
0, x c; 有 Fn (c / 2) F (c / 2) 1, F ( x ) 1 , x c . Fn (c ) F (c ) = 0 .
从而 P ( X n c ) (n ) 0
且 Fn ( x ) F ( x ) , 所以当 n 时,
n
若x是F ( x )的连续点,
则 Fn ( x ) F ( x ), 即X n X .
W L
TH2表明:依概率收敛是弱收敛的充分不必要条件,
由弱收敛不能得出依概率收敛。见下面的例子。
9
例2 设X
X P
1 1 2
1 1 2
令 Xn X ,
L
当然有 X n X . 则 X n 与X 同分布,
P P P X n a ,Yn b X n Yn a b; P P X n Yn a b , X n Yn a b(b 0). 证明: ( X n Yn ) (a b ) X n a Yn b ( X n Yn ) (a b ) X n a Yn b 2 2
0 P X Y

均方收敛依概率收敛依分布收敛

均方收敛依概率收敛依分布收敛

均方收敛依概率收敛依分布收敛《均方收敛依概率收敛依分布收敛:概念与应用》一、引言均方收敛、概率收敛和分布收敛是概率论和数理统计中的重要概念,它们在各种领域都有着广泛的应用。

本文将分别介绍这三种收敛方式,并探讨它们的异同点及其在实际问题中的应用。

二、均方收敛的定义及性质1. 均方收敛的定义均方收敛是指在均方意义下的收敛,即对于随机变量序列{X_n}和X,当n趋于无穷大时,有E[(X_n - X)^2]趋于0,则称{X_n}在均方意义下收敛于X。

2. 均方收敛的性质(1)均方收敛蕴含概率收敛。

(2)均方有界序列有子列在概率意义下收敛。

三、概率收敛的定义及定理1. 概率收敛的定义概率收敛是指对于随机变量序列{X_n}和X,当n趋于无穷大时,有P(|X_n - X| > ε)收敛于0(其中ε为任意小的正数),则称{X_n}在概率意义下收敛于X。

2. 概率收敛的定理切比雪夫不等式、依概率收敛的夹逼定理等。

四、分布收敛的定义及特性1. 分布收敛的定义分布收敛是指对于随机变量序列{X_n}和X,当n趋于无穷大时,有F_n(x)收敛于F(x),则称{X_n}在分布意义下收敛于X。

2. 分布收敛的特性(1)随机变量序列的分布收敛与其对应的分布函数的收敛。

(2)分布收敛蕴含概率收敛,但一般不蕴含均方收敛。

五、均方收敛、概率收敛和分布收敛的关系1. 关系概述均方收敛比概率收敛更强,概率收敛比分布收敛更弱。

2. 举例说明以随机变量序列的不同收敛方式为例,比如正态分布的中心极限定理,可以辅助理解三种收敛方式之间的关系。

六、应用举例通过一些实际问题的案例,如大数定律、中心极限定理等,展示均方收敛、概率收敛和分布收敛在实际问题中的应用。

七、结语总结三种收敛方式的特点和应用场景,强调在实际问题中选择合适的收敛方式的重要性。

以上是本文对于均方收敛、概率收敛以及分布收敛的深入探讨,通过对三种收敛方式的逐一介绍以及它们的相互关系和应用举例,希望读者能对这一概念有一个更深入的理解,并能在实际问题中灵活运用。

2-4随机过程的积分和积分-文档资料

2-4随机过程的积分和积分-文档资料

• X(t)是一个随机过程,它的连续是均方连续 • RX(t1,t2)在区域 t1 , t2 T上关于(t1, t2 )的二元普
通函数,它的连续是多元函数的连续。

§2.5 随机过程的微分和积分
数学期望均方连续
如果随机过程X(t)是连续的(均方连续),则它 的数学期望也是连续的。即
t 0
n
lim P{ X (n) X } 0
n
P X (n) X
4)依分布收敛
5)均方收敛
lim Fn ( x) F ( x)
n
X (n) X
d
M .S X (n) X
lim E{ X (n) X } 0
n
2
§2.5 随机过程的微分和积分
§2.5 随机过程的微分和积分
均方可微的定义
如果随机过程X(t)在区域 tT 上满足
X (t t ) X (t ) lim E{[ X (t )]2 } 0 t 0 t X (t t ) X (t ) 或 l i m X (t ) t 0 t
则称随机过程X(t)在区域tT上均方可微。 以后讲随机过程可微就是指随机过程均方可微。 符号用函数可微的符号。但意义上不同,其对象是随 机过程,不是普通函数。 其求导结果是随机过程。
§2.5 随机过程的微分和积分
导数X'(t)的性质
自相关函数和互相关函数间的关系
RY (t1 , t2 ) E[Y (t1 )Y (t2 )] E[ X (t1 )Y (t2 )]
X (t1 t1 ) X (t1 ) E l i m Y (t2 ) t1 t1 0
随机过程的处处可微
如果对于随机过程X(t)的每一条样本函数X(t,i)在区域 tT上可微,则称随机过程 X(t)在区域T上处处可微。

概率论课件 第4章第2讲随机变量序列的两种收敛性

概率论课件  第4章第2讲随机变量序列的两种收敛性
证明:因f ( x, y)在点(a, b)连续, 故对 >0
0,当( x a)2 ( y b)2 2时有
| f ( x, y) f (a, b) |
于是 {| f (k ,k ) f (a, b) | } {( a)2 ( b)2 2 }
辛钦k 1n Nhomakorabeak
a | } 1
证明: {n } 同分布, 它们有相同的特征函数, 这个相同的特征函数记为 (t )
1 n 记 n k n k 1
a E ( k )
(0)
i
(t ) (0) (0)t o(t ) 1 iat o(t )
的分布函数Fn ( x) F ( x).
显然有 lim Fn ( x) F ( x)
n
L Xn Y
但对任意的0<ε<2,恒有
P{| n | } P{2 | | } 1
即不可能有{n }依概率收敛于
所以:依分布收敛依概率收敛不真
定理:随机变量序列依概率收敛于常数C 的充要条件是依分布收敛于常数C 证明:必要性已证,下面只证充分性
§4.2 随机变量序列的两种收敛性 上一节我们由大数定理可得,在贝努里试验中, 事件发生的频率稳定于概率,即
lim P{
n
n
n
P } 1
自然想到的是, 随机变量序列是否依 这种方式能稳定于一个随机变量呢 ?
这就是我们要讲的依概率收敛问题.
1
依概率收敛 定义:设{ n }是随机变量序列,若存在随机 变量 (或常数),对于任意ε>0,有
x x
令y x, z x,由x为F ( x)的连续点, 有

5.2随机变量序列的两种收敛

5.2随机变量序列的两种收敛

即 n P (n )
证明 :略。
Fn ( x) W F ( x)(n )
注意:这个定理的逆命题不一定成立,即不能从分布 函数列的弱收敛肯定相应的随机变量序列依概率收敛, 但在特殊情况下,它却是成立的。
概率论与数理统计
定理5.6 随机变量序列 n c(c为常数)
趋于0,是指当n无限增大时,
随机变量序列依概率收敛与函数序列收敛也不一样.
0, lim P(n ) 1 n n
概率论与数理统计 P
n
有了依概率收敛的概念,随机变量序列 n 服从大 1 n 1 n 数定律就可以表达为 0, lim P( i Ei ) 1 n n n
概率论与数理统计
2)、设 n , n 是两个随机变量序列, a,b为常数,
g (n ,n ) P g (a, b), (n ). 则
n P a,n P b 且在g(x,y)在点(a,b)处连续, 若
证明略,方法类似于1) 3)、若
n P ,n P ,
是否对 x R 都有
Fn ( x) F ( x)(n ) 成立。
这个猜测对不对?
概率论与数理统计
例2、设 , n 都是服从退化分布的随机变量,且
P 0 1
1 Pn 1, n 1,2, n
于是对 0, 当n 时有
于是
n 2 2 P( ) P( n ) P( n ) 0(n ) 2 2
即 0, 有P( ) 1,从而P( ) 1
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。

随机变量序列的几种收敛性和关系毕业论文

随机变量序列的几种收敛性和关系毕业论文
然而 不趋于0.
由上面四种收敛性间的关系可得:
几乎处处收敛 依概率收敛 依分布收敛.
阶收敛 依概率收敛 依分布收敛.
3.
因为随机变量取值的统计规律可由它的分布函数完全确定,所以自然会考虑利用分布函数的收敛性来定义随机变量的收敛性,又分布函数和特征函数一一对应,而判断一个分布函数的序列的收敛是否弱收敛有时是很麻烦的,但判断相应的特征函数序列的收敛性却往往比较容易,下面给出弱收敛的充要条件,首先做一些准备:
后来我们引入了伯努利概型来刻画独立重复试验.将一成功(即A发生)概率为p的试验独立重复n次,其中成功 次,则 是二项分布随机变量.
因此成功的频率 也是随机变量.其期望为p与n无关,且方差 当 时趋于0.熟知,方差为0的随机变量恒等于它的期望,所以当 时频率 应以概率p为极限.另一方面,可以写 ,其中 相互独立,具有一样的伯努利分布,至此,问题转化为研究 时 的平均值序列 的极限行为.鉴于已在上面讨论过随机变量列的各种收敛性,因此我们可以给出大数定律的严格定义.
注:由于 连续,如 广义均匀收敛到 ,则 必定是连续函数.
系1设分布函数列 对应的特征函数列为 ,则下列四条件等价:
(1) 弱收敛于某分布函数 ,
(2) 收敛到某函数 , 在点0连续,
(3) 收敛到某连续函数 ,
(4) 广义均匀收敛到某函数 .
当任一条件满足时, 是 的特征函数.
下面说明系1中等价条件(2)中“ 在 的连续性”是不可缺少的条件.
则对任意的 ,有 成立.
证明:因为 有一样分布,所以也有一样的特征函数,记这个特征函数为 ,又因为 存在,从而特征函数 有展开式:
=
再由独立性知 的特征函数为
对任意取定的t,有
而 是退化分布的特征函数,相应的分布函数为

随机变量的几种收敛及其相互关系

随机变量的几种收敛及其相互关系

论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。

概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。

主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。

给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。

本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。

关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。

AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

(完整版)8-第五章大数定律和中心极限定理解析

(完整版)8-第五章大数定律和中心极限定理解析

(完整版)8-第五章⼤数定律和中⼼极限定理解析第五章⼤数定律和中⼼极限定理⼤数定律和中⼼极限定理是概率论中两类极限定理的统称,前者是从理论上证明随机现象的“频率稳定性”,并进⼀步推⼴到“算术平均值法则”;⽽后者证明了独⽴随机变量标准化和的极限分布是正态分布或近似正态分布问题,这两类极限定理揭⽰了随机现象的重要统计规律,在理论和应⽤上都有很重要的意义。

§5.1 ⼤数定律设ΛΛ,,,,21n X X X 是互相独⽴的⼀列随机变量,每个随机变量取值于⼆元集合{0,1},并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=易计算它们的数学期望和⽅差为 (),()j j E X p D X pq ==如果取这些j X 的部分和 n n X X X S +++=Λ21并考虑它们的平均值∑==n j j n n Xn S 1/)(/,易知它的数学期望和⽅差为;nnS S pq E p D n n n == ? ?利⽤定理4.2.13给出的切⽐雪夫不等式可知:对任何⼀个正数t 有2n S pq P p t n t n-≥≤ ? 令∞→n ,有2lim lim 0n n n S pq P p t n t n→∞→∞??-≥≤= 即lim 0n n S P p t n →∞??-≥=(5.1.1) 可见当n 很⼤时,部分和的平均值/n S n 与p 相距超过任何⼀个数0>t 的概率都很⼩,⽽当∞→n 时, 这个概率趋于0。

(5.1.1)式的结果称为弱⼤数定律,也称伯努利⼤数定律, 因为这个定律是伯努利在1713年⾸先证明的,是从理论上证明随机现象的频率具有稳定性的第⼀个定律。

注意式(5.1.1)等价于lim 1n n S P p t n →∞??-≤=(5.1.2) 把它完整地叙述如以下定理:定理5.1.1(伯努利⼤数定律)设ΛΛ,,,,21n X X X 是互相独⽴的取值于⼆元集合{0,1}的⼀列随机变量,并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=⼜设 n n X X X S +++=Λ21则 lim 0n n S P p t n →∞??-≥=或等价地lim 1n n S P p t n →∞??-≤=。

严加安测度论的答案

严加安测度论的答案
就共同防御而言,我们认为国家安全与国家理想的只能选其一的排他选择是错的。面对我们几乎无法想像的危险,我们的先辈们起草了确保法治和个人权利的宪章。一代代人民的鲜血夯实了这一宪章。宪章中的理想依然照亮着世界,我们不能以经验之谈放弃这些理想。因此我想对正在观看这一仪式的其他国家的人民和政府说,不论他们现在各国伟大的首府还是在如同我父亲出生地一般的小村落,我想让他们知道:对于每个追求和平和自尊的国家和个人而言,美国都是朋友,我们愿意再次领导大家踏上追寻之旅。估计
1、slutsky定理;
2、替代原理、矩方法;
3、影响曲线、稳健估计;
4、估计的标准差、delta方法、jackknife、bootstrap
(Ⅲ)基于似然方法估计
1、mles与似然方程、似然原理、kullback-leibler距离;
2、一维mles渐近理论;
(Ⅶ)假设检验
1、基本概念、检验函数、检验的功效与水平、两类错误、一致最优检验(ump检验);
2、neyman-pearson引理、单调似然比的ump检验、一致最优无偏检验(umpu检验);
3、单参数指数族的umpu检验、多参数指数族的umpu检验;
4、大样本检验、似然比检验、wilks现象、wald检验、score检验、经验似然比检验
cooperation and understanding between nations. we will begin to responsibly leave iraq to its people, and forge a hard-earned peace in afghanistan. with old friends and former foes, we will work tirelessly to lessen the nuclear threat, and roll back the specter of a warming planet. we will not apologise for our way of life, nor will we waver in its defence, and for those who seek to advance their aims by inducing terror and slaughtering innocents, we say to you now that our spirit is stronger and cannot be broken; you cannot outlast us, and we will defeat you.

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

第10页
特征函数的定理
定理4.1.1 一致连续性.
定理4.1.2 非负定性.
定理4.1.3 逆转公式.
定理4.1.4 定理4.1.5
分布函数的唯一性.
连续场合,求p(密x)度函21数. eitx(t)dt
第11页
定理4.1.5 设X为连续型随机变量,密度函数
为p(x),若 | (t) | dt ,则 p(x) 1 eitx(t)dt 2
二、给定 n 和概率,求 y
例4 P237 15 设一家有500间客房的大旅馆的每间 客房装有一台2kw的空调机.若开房率为80%, 问需要多少kw的电力才能有99%的可能性保证 有足够的电力使用空调机?
第53页
三、给定 y 和概率,求 n
例5 用调查对象中的收看比例 作为某电
视节目的收视率 p 的估计 pˆ . 要有 90% 的把握,使调查所得收视率 pˆ与实际收
第44页
练习 P238 6 某汽车销售点每天出售的汽车数服 从参数为λ=2的泊松分布,若一年365天都经 营汽车销售,且每天出售的汽车数相互独立, 求一年中售出700辆以上汽车的概率.
第45页
例2 P238 4 掷一颗骰子100次,记第i次掷出的点
数为Xi , i=1,2,…,100,试求概率
å P{3 # 1
性质4.1.1 |(t)| (0)=1
性质4.1.2 (t) (t)
性质4.1.3 aX b(t) eibtX (at)
第7页
性质4.1.4 若 X 与 Y 独立,则
X Y (t) X (t)Y (t)
性质4.1.5 若 E(X l )存在,则对0≤k≤l有
(k)(0) ik E(X k )

§4.1随机变量序列的两种收敛性§4.2特征函数§4.3大数定律

§4.1随机变量序列的两种收敛性§4.2特征函数§4.3大数定律

第8页
方法一:利用大数定律 例1 P215 18. 设随机变量序列{Xn }独立同分布, 2 期望、方差均存在,且 E( X n ) = 0,Var( X n ) = s
1 n P 2 2 X 揪 ? s 求证: å i n i= 1
思考题:P215 19
第9页
方法二:利用切比雪夫不等式 例2 P215 17. 设随机变量序列{Xn }独立同分布, 期望、方差均存在,且 E( X n ) = m.
注意:i 1 是虚数单位.
第20页
注 意 点(1)
(t ) e (1) 当X为离散随机变量时,
k 1


itxk
pk
itx ( t ) e (2) 当X为连续随机变量时, p( x)dx
这是 p(x) 的傅里叶变 换
第21页
注 意 点(2)
特征函数的计算中用到复变函数,为此注意: (1) 欧拉公式: eitx cos(tx) i sin(tx) (2) 复数的共轭: a bi a bi (3) 复数的模: a bi a2 b2
P
c 其中c为常数,并求c的值.
作业:习题4.1第12、15题
第13页
引例 设随机变量序列{ Xn } 服从以下的退化分布 1 P ( X n = ) = 1, n = 1, 2, L n 求{Xn }的分布函数,并求其极限函数. 它还是一个分布函数吗?
第14页
4.1.2
按分布收敛、弱Leabharlann 敛 lim P X X 若对任意的 >0,有 n n 0
则称随机变量序列{Xn}依概率收敛于X, 记为
Xn
P X
第4页

连续分布函数的弱收敛和以概率收敛的关系

连续分布函数的弱收敛和以概率收敛的关系

连续分布函数的弱收敛和以概率收敛的关系连续分布函数的弱收敛和以概率收敛的关系是概率论中一个比较重要的概念。

在这篇文章中,我将解释这个概念并探讨这两种收敛方式之间的联系和区别。

为了更好地了解弱收敛和以概率收敛的定义,我们需要先了解一些基本的概念。

连续随机变量是指一个随机变量X的取值可以是整个实数范围内的任意一个数,即它的概率密度函数在整个实数轴上都存在定义。

而连续分布函数F(x)是指X≤x 时的概率值,即P(X≤x),也可以看作是 X 的一个函数。

弱收敛是指随着样本量的增加,一组概率分布函数F_n(x)的较弱概率收敛于概率分布函数F(x)。

具体来说,若对于任意的x∈R,有:lim_n→∞ F_n(x) = F(x)则称F_n(x)弱收敛于F(x)。

弱收敛的限制条件比较弱,也就是说,即使在一些情况下F_n(x)不趋近于F(x),它仍然可以被看作是弱收敛的。

与此相反,以概率收敛是指随着样本量的增加,一组概率分布函数F_n(x)的较强概率收敛于概率分布函数F(x)。

具体来说,若对于任意的δ>0,有:lim_n→∞ P{|F_n(x)−F(x)|>δ} = 0则称F_n(x)以概率收敛于F(x)。

这种类型的收敛要求更严格,因为它需要确保收敛的概率趋近于1。

接下来我们来看两种收敛方式的关系。

实际上,可以证明在很多情况下,弱收敛和以概率收敛实际上是等价的。

也就是说,如果一个概率分布函数F_n(x)弱收敛于F(x),那么它也必定以概率收敛于F(x)。

反之亦然。

为了更好地理解这两种收敛方式之间的关系和区别,以下是一个简单的例子:假设一个连续随机变量X的概率密度函数如下所示:f(x) = { 2x, 0≤x≤1 0,其他情况 }然后定义一组随机变量S_n=X_1+X_2+...+X_n,其中X_i是独立同分布的随机变量,其概率密度函数与X相同。

现在,让我们仔细观察一下这组随机变量的弱收敛和以概率收敛情况。

严加安测度论的答案

严加安测度论的答案
严加安测度论的答案
【篇一:数理统计】
>考试大纲
二级学科:概率论与数理统计考试科目:数理统计考试时间:180分钟
------------------------------------------------------
考试形式:数理统计专业硕转博资格考试综卷由两部分组成,总分为150分,其中概率论部分满分50分,数理统计部分满分100分。
to do as we please. instead, they knew that our power grows through its
prudent use; our security emanates from the justness of our cause, the force of our example, the tempering qualities of humility and restraint.
recall that earlier generations faced down fascism and communism not just with missiles and tanks, but with sturdy alliances and enduring convictions. they understood that our power alonecannot protect us, nor does it entitle us
as for our common defence, we reject as false the choice between our safety and our ideals. our founding fathers, faced with perils we can scarcely imagine, drafted a charter to assure the rule of law and the rights of man, a charter expanded by the blood of generations. those ideals still light the world, and we will not give them up for expediences sake. and so to all other peoples and governments who are watching today, from the grandest capitals to the small village where my father was born: know that america is a friend of each nation and every man, woman and child who seeks a future of peace and dignity, and that we are ready to lead once more.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。

概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。

主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。

给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。

本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。

关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。

AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

然而其公理体系只在20世纪的20至30年代才建立起来并得到迅速发展,在过去的半个世纪里概率论在越来越多的新兴领域显示了它的应用性和实用性。

概率论是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。

特别值得一提的是,概率论是今天数理统计的基础,其结果被用做问卷调查的分析资料或者对经济前景进行预测。

概率论中的重要概念——概率的收敛性,寻找概率收敛中的随机变量序列收敛性的相互性质以及收敛性之间的相互关系,弄清楚它们之间的关系在理论和应用上都是很有意义的。

1 几种收敛性定义定义1.1 (r 阶收敛)设对随机变量n X ,及X 有||,||r r n E X E X <+∞<+∞,其中0r >为常数,如果lim 0rn n E X X →∞-= 则称{n X }r 阶收敛于X ,并记为r n X X −−→. 当2p =是,2lim 0n n E X X →∞-=,称{,1}n X n ≥均方收敛到X 。

记为..m s n X X −−→. 例 1.1 设{,1k X k n ≤≤}相互独立,且满足1(1)n P X n==,1(0)(1)n n P X n n -==≥,()0X ω≡。

则21(0)0n E X n-=→,故2lim 00n n E X →∞-=,即..0m s n X −−→. 定义1.2 (几乎处处收敛)如果(lim )1n n P X X →∞== 则称{n X }以概率1收敛于X ,又称{n X }必乎处处收敛于X ,并记为..a s n X X −−→.例1.2 设{n X ,1n ≥},,X Y 是定义在[0,1]上博雷尔概率空间(,,)F P Ω= ([0,1],[0,1],)F P 上的随机变量,满足:[0,1]ω∀∈,()1Y ω=。

而()1X ω=,若B ω∈={[0,1]上理点};()0X ω=,若B ω∈={[0,1]上有理点全体}。

而()1X ω=,若1,12ω⎛⎤∈ ⎥⎝⎦;()0n X ω=,若10,2n ω⎡⎤∈⎢⎥⎣⎦。

则易知(:()())()0P X Y P B ωωω≠==。

(:lim ()())n n X Y ωωω→∞==Ω;(:lim ()())n n X X B ωωω→∞==≠Ω,但1B =,故..a s n X X −−→。

定义1.3 (依分布收敛)设随机变量n X ,X 的分布函数分别为()n F x 及()F x 。

若对()n F x 的每个连续点x 有lim ()(),n n F x F x →∞=则称{n X }依分布函数收敛于X (()n F x 弱收敛到()F x )。

记为L n X X −−→,或者()()W n F x F x −−→。

例 1.3 n Z ,n Y 的记号同林德伯格-莱维(Lindeberg-Levy )定理,令Z ~2(0,1)N ,则L n Z Z −−→,即x R ∀∈,有lim ()()n n P Z x x →∞≤=Φ。

定义1.4 (依概率收敛)如果对于任意ε>0,lim (||)0n n P X X ε→∞-≥= 则称{X n }依概率收敛于X ,并记为P n X X −−→或lim n n p X X →∞=. 例 1.4 设{,1k Y k n ≤≤}独立同分布,且1Y ~[0,1]U ,令1/nn k k X Y n ==∑,则由大数定律可知1()2P n X n −−→→∞. 2 依概率收敛与依分布收敛的关系随机变量序列依概率收敛和依分布收敛是概率论中两种较重要的收敛形式,弄清楚它们之间的关系是本节要讨论的.本节约定所涉及定义1.3,定义1.4。

定理2.1 若随机变量序列{}n X 依概率收敛于某随机变量X ,则{}n X 依分布收敛于X .但定理2.1的逆不成立。

证明 设x x '<,则{n X x '≤}={n X x ≤,X x '≤}{n X x >,X x '≤}⊂{}{,}n n n X x X x X x '≤>≤从而 ()()(,)n n n F x F x P X x X x ''≤+>≤设P n X X −−→,则 (,)(||)0n n n P X x X x P X X x x ''>≤≤-≥-→因而有()lim ()n n n F x F x →∞'≤ 同理可证,对x x ''<,有lim ()()n n n F x F x →∞''≤ 所以对x x x '''<<,有()lim ()lim ()()n n n n n n F x F x F x F x →∞→∞'''≤≤≤ 如果x 是()F x 的连续点,则令x ',x ''趋于x ,得()lim ()n n F x F x →∞= 即L n X X −−→. 反之不然,例如,若样本空间12{,}ωωΩ=,12()()1/2P P ωω==,定义随机变量()X ω如下:12()1,()1X X ωω=-=,则()X ω的分布律为(())1/2P X k ω==,1k =-,1,如果对一切n ,令()()n X X ωω=-,则显然()()L n X X ωω−−→。

相关文档
最新文档