理学数值分析Gauss消去法
数值分析Gauss消去法课件
高斯消元法的代码实现
初始化矩阵
将系数矩阵A进行初始化,并存储在二维数 组中。
消元过程
通过一系列行变换,将系数矩阵变为上三角 矩阵。
主元选择
选择主元,即系数矩阵中所在行和列的最大 元素。
回带求解
利用上三角矩阵的元素,求解线性方程组的 解。
选主元的优化策略
1 2
自然主元
选择系数矩阵中绝对值最大的元素作为主元。
病态问题
对于一些病态问题,高斯 消元法可能无法得到准确 解,需要采用其他方法进 行求解。
01
Gauss消去法的应 用实例
应用领域与案例介绍
线性方程组求解
01
Gauss消去法是求解线性方程组的一种常用方法,适用于大ห้องสมุดไป่ตู้模
、稀疏矩阵的求解。
矩阵求逆
02
通过Gauss消去法可以计算矩阵的逆,这在许多科学计算和工程
最小二乘主元
选择使所在行和列的绝对值之和最小的元素作为 主元。
3
随机主元
随机选择一个元素作为主元,可以避免某些数值 问题。
数值稳定性与误差控制
01
02
03
数值稳定性
高斯消元法在某些情况下 可能产生数值不稳定性, 如主元接近零或数值误差 累积。
误差控制
在消元过程中,可以通过 一些技巧来控制误差,如 预处理、选主元策略和舍 入误差控制。
领域中都有应用。
特征值和特征向量计算
03
Gauss消去法可以用于计算矩阵的特征值和特征向量,这在物理
、工程和经济学等领域有广泛的应用。
实际应用中的问题与挑战
数值稳定性
Gauss消去法在处理病态问题或 接近奇异矩阵时可能会出现数值 不稳定性,导致计算结果误差较 大。
研究生数值分析第四版第二章2.1Gauss消去法
2.1 Gauss消去法
一 、三角形方程组的解法 1.下三角形方程组 2.上三角形方程组
a11 x1 a12 x2 a1n xn b1 a22 x2 a2n xn b2 ann xn bn
b1 a11 x1 a x a x b2 21 1 22 2 an1 x1 an 2 x2 ann xn bn
a11(1) (1) a21 (1) ( A b) a31 an1(1)
a11(1) 0 0 0
a12
(1)
a13
(1)
a1n1(1)来自a1n(1)b1
a22 a32 an 2
(1) ( 2) ( 2)
第二章 线性方程组的解法
2.1 Gauss消去法
2.2 直接三角分解法 2.3 矩阵的条件数与病态方程组 2.4 迭代法
第二章 线性方程组的解法
2.1 Gauss消去法
一 、三角形方程组的解法 二、Gauss消去法
2.1 Gauss消去法
一 、三角形方程组的解法 1.下三角形方程组 2.上三角形方程组
求解线性方程组的方法可分为两大类: 直接法和迭代法 直接法(精确法):指在没有舍入误差的情况下经过 有限次运算就能得到精确解。 迭代法(逐次逼近法):从一个初始向量出发,按照一 定的计算格式,构造一个向量的无穷序列,其极限才是 所求问题的精确解,只经过有限次运算得不到精确解。 Cramer(克莱姆)法则是直接方法中的一种,根据 此法则,方程组(2.1)的解为
前代法
x1 b1 / a11
xi (bi aij x j ) / aii ,
数值分析1顺序消去法、列主元、列主元Gauss-Jordan消去法
数值分析1顺序消去法、列主元、列主元Gauss-Jordan消去法function x = Gauss (A, b)% 求解方程组的Gauss消去法,调用方法为% x = Gauss (A, b)% 其中% A 为方程组的系数矩阵,b为方程组的右端项% x 为方程组的解[n,m] = size (A); nb = length (b);if n~=merror ('% 系数矩阵必须为方的!');endif m~=nberror ('% b 的维数与方程组的行数不匹配!'); endfor k = 1:n-1% 消元过程for i = k+1:nm = A (i,k)/A(k,k);for j = k+1:nA (i,j) = A (i,j)-m*A (k,j);endb (i) = b (i)-m*b (k);endendx=zeros (size (b));for k = n:-1:1for j = k+1:nb (k) = b (k)-A (k,j)*x (j);endx (k) = b (k)/A(k,k);endendfunction x = Gauss_Elim (A, b)% 求解方程组的列主元Gauss消去法,调用方法为% x = Gauss_Elim (A, b)% 其中% A 为方程组的系数矩阵,b为方程组的右端项% x 为方程组的解[n,m] = size (A); nb = length (b);error ('% 系数矩阵必须为方的!');endif m~=nberror ('% b 的维数与方程组的行数不匹配!');endfor k = 1:n-1% 选主元a_max = 0;for i = k:nif abs (A (i,k))>a_maxa_max = A (i,k); r=i;endendif abs(a_max)<1e-15error ('% 系数矩阵奇异,无法求解方程组!');end% 交换两行if r>kfor j = k:nz=A (k,j); A (k,j)=A (r,j);A (r,j)=z;endz=b (k);b (k)=b (r);b (r)=z;end% 消元过程for i = k+1:nm = A (i,k)/A(k,k);for j = k+1:nA (i,j) = A (i,j)-m*A (k,j);endb (i) = b (i)-m*b (k);endend% 回代过程if abs (A (n,n))<1e-15error ('% 系数矩阵奇异,无法求解方程组!'); endx=zeros (size (b));for k = n:-1:1for j = k+1:nb (k) = b (k)-A (k,j)*x (j);endx (k) = b (k)/A(k,k);endendfunction x = Gauss_Jordan (A, b)% 求解方程组的列主元Gauss-Jordan消去法,调用方法为% x = Gauss_Jordan (A, b)% 其中% A 为方程组的系数矩阵,b为方程组的右端项% x 为方程组的解[n,m] = size (A); nb = length (b);error ('% 系数矩阵必须为方的!');endif m~=nberror ('% b 的维数与方程组的行数不匹配!'); endfor k = 1:n% 选主元a_max = 0;for i = k:nif abs (A (i,k))>a_maxa_max = A (i,k); r=i;endendif abs(a_max)<1e-15error ('% 系数矩阵奇异,无法求解方程组!'); end% 交换两行if r>kfor j = k:nz=A (k,j); A (k,j)=A (r,j);A (r,j)=z;endz=b (k);b (k)=b (r);b (r)=z;end% 消元计算b (k) = b (k)/A(k,k);for j = k+1:nA (k,j) = A (k,j)/A(k,k);endfor i=1:nfor j=k+1:nA (i,j) = A (i,j)-A (i,k)*A (k,j); endb (i)=b (i)-A (i,k)*b (k); endendendx = b; % 输出bend。
数值分析课件ch05高斯消去法
( ) n
xi
b(i) i
a(i) ij
x
j
a(i) ii
(
i
=
k+1,
…,
n
)
j i 1
顺序Gauss 消去法的乘除运算量为:n3 n2 n
3
3
14
顺序高斯消去法的计算步骤
1 . 顺序消元
k 1,L , n 1
i k 1,L , n
(1)mik
a (k) ik
/ akk(k )
end
16
MATLAB For Gaussian Elimination
X(n)=b(n)/A(n,n); for i=n-1:-1:1
X(i)=(b(i)-A(i,i+1:n)* X(i+1:n))/A(i,i); end
A的第i行、第i+1到n列元素
构成的行向量
xn bn / ann
n
xi (bi aik xk ) / aii k i 1 i n 1, ,1
[n,n]=size(A);
% 确定A的维数
X=zeros(n,1); for k=1:n-1
for i=k+1:n
% 消元过程
m=A(i,k)/ A(k,k); % A(k,k) ≠0
A(i,k+1:n)= A(i,k+1:n)-m*A(k,k+1:n);
b(i)= b(i)-m*b(k);
end
for i=k+1:n
r=k;
det=abs(aug(k,k)); for j=k+1:n
%选主元
if det<abs(aug(j,k))
数值分析列主元高斯消去法
实验四:列组元消去法一、目的1)熟悉列主元高斯消元法解线性方程组的算法2)掌握列主元高斯消去法的编程二、实验原理列主元素消去法是为控制舍入误差而提出来的一种算法,在Gauss消去法的消元过程中,若出现a=0,则消元无法进行,即使其不为0,但很小,把它作为除数,就会导致其他元素量级的巨大增长和舍入误差的扩散,最后使计算结果不可靠.使用列主元素消去法计算,基本上能控制舍入误差的影响,并且选主元素比较方便.三、运行结果四、代码using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace高斯{class Program{static double[] Gause(double[,] a, int n){int i, j, k;int rank, columm;double temp, l, s, mx;double[] x = new double[n];for (i = 0; i <= n - 2; i++){mx = Math.Abs(a[i, i]);rank = i;columm = i;for (j = i + 1; j <= n - 1; j++) //选主元if (Math.Abs(a[j, i]) > mx){mx = Math.Abs(a[j, i]);rank = j;columm = i;}for (k = 0; k <= n; k++) //主元行变换{temp = a[i, k];a[i, k] = a[rank, k];a[rank, k] = temp;} //消元for (j = i + 1; j <= n - 1; j++){l = a[j, i] / a[i, i];for (k = i; k <= n; k++)a[j, k] = a[j, k] - l * a[i, k];}}x[n - 1] = a[n - 1, n] / a[n - 1, n - 1]; //回代方程求解x for (i = n - 2; i >= 0; i--){s = 0;for (j = i + 1; j <= n - 1; j++)s = s + a[i, j] * x[j];x[i] = (a[i, n] - s) / a[i, i];}return x;}static void Main(string[] args){double[,] a = new double[4, 5] { { 10, -7, 0, 1, 8 }, { -3, 2.099999, 6, 2, 5.900001 }, { 5, -1, 5, -1, 5 }, { 2, 1, 0, 2, 1 } };int n = 4;double[] x = new double[n];x = Gause(a, n);Console.WriteLine("高斯消去法方程:");for (int i = 0; i < n; i++){for (int j = 0; j < n; j++)Console.Write(a[i, j].ToString() + " ");Console.WriteLine();}Console.WriteLine("线性方程组的解:");for (int i = 0; i <= n - 1; i++)Console.Write("x" + (i + 1).ToString() + "=" +x[i].ToString() + " ");Console.WriteLine();Console.ReadLine();}}}四、分析通过本次实验的学习,学会根据算法编写基本的相关程序,虽然此次程序模板由老师给予,但认真阅读理解程序有助于今后的学习,再利用计算机中的C语言对高斯列主元消去法可以快速得到线性方程组的解,由简单的线性方程组可以推广到一般n阶线性方程组,这对如何利用高斯列主元消去法解决实际问题有了一定的经验。
数值分析高斯顺序消去法、列主元消去法LU分解法
数值分析实验报告(1)学院:信息学院班级:计算机0903班姓名:***学号:********课题一A.问题提出给定下列几个不同类型的线性方程组,请用适当的方法求解线性方程组1、设线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------1368243810041202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 x *= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )T2、设对称正定阵系数阵线方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------19243360021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515229232060 x * = ( 1, -1, 0, 2, 1, -1, 0, 2 )T3、三对角形线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 x *= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )TB.(1)对上述三个方程组分别用Gauss 顺序消去法与Gauss 列主元消去法;平方根 与改进平方根法;追赶法求解(选择其一) (2)编写算法通用程序(3)在应用Gauss 消去时,尽可能利用相应程序输出系数矩阵的三角分解式C.(1)通过该课题的程序编制,掌握模块化结构程序设计方法 (2)掌握求解各类线性方程组的直接方法,了解各种方法的特点 (3)体会高斯消去法选主元的必要性 实验步骤:(高斯消去法,列主元,LU )1顺序高斯消去法2.LU 分解法3.列主元高斯消去法(如下图)(1)高斯消去法运行结果如下(2)对方程的系数矩阵进行LU分解并求出方程组的解(3)列主元高斯消去法实验体会总结:利用gauss消去法解线性方程组的时候,如果没有经过选主元,可能会出现数值不稳定的现象,使得方程组的解偏离精确解。
Gauss列主元消去法
贵州师范大学数学与计算机科学学院学生实验报告课程名称: 数值分析 班级: 实验日期: 年 月 日 学 号: 姓名: 指导教师: 实验成绩:一、实验名称实验五:线性方程组的数值解法二、实验目的及要求1. 让学生掌握用列主元gauss 消去法、超松弛迭代法求解线性方程组.2. 培养Matlab 编程与上机调试能力.三、实验环境每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0).四、实验内容1. 编制逐次超松弛迭代(SOR 迭代)函数(子程序),并用于求解方程组⎪⎪⎩⎪⎪⎨⎧=-++=+-+=++-=+++-141414144321432143214321x x x x x x x x x x x x x x x x取初始向量T x )1,1,1,1()0(=,迭代控制条件为 5)1()(1021||||--⨯≤-k k x x 请绘制出迭代次数与松弛因子关系的函数曲线,给出最佳松弛因子.SOR 迭代的收敛速度是否一定比Gauss-Seidel 迭代快?2. 编制列主元 Gauss 消去法函数(子程序),并用于解 ⎪⎩⎪⎨⎧=++-=-+-=+-615318153312321321321x x x x x x x x x要求输出方程组的解和消元后的增广矩阵. 注:题2必须写实验报告五、算法描述及实验步骤Gauss 消去法:功能 解方程组b Ax = .输入 n ,n n ij a A ⨯=)(,T n b b b b ),,,(21 =.输出 方程组的解T n x x x x ),,,(21 =或失败信息.步1 对1,,2,1-=n k 执行步2→步4 .步2 调选列主元模块 .步3 若0=kk a ,则=x “消去法失败”,结束 .步4 对n k k i ,,2,1 ++=执行步5→步6 .步5 对n k k j ,,2,1 ++=执行ij kj kk ik ij a a a a a +⨯-⇐/ .步6 i k kk ik i b b a a b +⨯-⇐/ .步7 nn n n a b x /⇐ .步8 对1,,2,1 --=n n i 执行ii n i j j ij i i a x a b x /)(1∑+=-⇐ .步9 输出T n x x x x ),,,(21 = .选列主元模块:功能 选列主元 .输入 n k k i b n k k j i a i ij ,,1,,;,,1,,, +=+= .输出 n k k i b n k k j i a i ij ,,1,,;,,1,,, +=+= .步1 kk a m ⇐;k l ⇐ .步2 对n k k i ,,2,1 ++=执行若m a ik >则ik a m ⇐;i l ⇐ .步3 若k l ≠,则交换kj a 和lj a ,n k k j ,,1, +=;交换k b 和l b .步4 返回主模块 .六、调试过程及实验结果>> A=[12,-3,3;-18,3,-1;1,1,1];>> b=[15;-15;6];>> x=Gauss1(A,b)Ab =-18.0000 3.0000 -1.0000 -15.00000 1.1667 0.9444 5.16670 0 3.1429 9.4286 index = 1x = 1.0000 2.0000 3.0000七、总结由于数)1(-k kka 在Gauss 消去法中有着突出的作用,第k 步消元时,要用)1(-k kk a 作除数,如果)1(-k kk a =0消元会失败,即使主元)1(-k kk a ≠0,但很小时,舍入误差也会使计算结果面目全非,避免这种缺陷的基本方法就是选主元。
数值分析_lec3_解线性方程组_Gauss消去法_1011
,1
如果能把系数矩阵A做同解变换,变换成上三角或下三角矩阵, 便可求出原方程组解!
2.1.1 顺序Gauss消去法
第1步:消元k 1, i 2
(线性方程组写成增广矩阵形式) 乘数
2.1.1 顺序Gauss消去法
第1步:消元k 1, i 3, 4, n
2.1.1 顺序Gauss消去法
(1) a11 [ Ak , b k ]
(k ) (k ) akk 0, 但 | akk |
(1) a1, n
( k 1) ak 1k 1
( k 1) ak 1k (k ) akk
( k 1) ak 1n (k ) ak n
(2) 因此a22 0。
依次类推,可证明充分性。
2.1.1 顺序Gauss消去法
(伪代码)
(1.消元过程)
2.1.1 顺序Gauss消去法
(伪代码)
(2.回带过程)
2.1.1 顺序Gauss消去法
备注:
1. 使用顺序Gauss消去法求解线性方程组前提条件: (1)系数矩阵前n-1个顺序主子式非0 (保证消元) (2)A非奇异(保证回带过程可执行)
下三角矩阵的向前迭代法:
Lx b : x1 b1 / l11 i 1 xi (bi lij x j ) / lii , i 2,3, j 1
,n
2.1.1 顺序Gauss消去法
上三角矩阵的向后迭代法:
Ux b : xn bn / unn n xi (bi uij x j ) / uii , i n 1, n 2, j i 1
2.1.3* 全主元Gauss消去法(补充)
数值分析-Gauss消去法
数值分析上机报告1. 考虑方程组⎪⎪⎩⎪⎪⎨⎧-=+++=+++=+++=+++2557.03927.02786.04002.01784.04240.00643.03781.01920.03645.01550.01129.04015.03872..02246.04043.02943.03678.01234.04069.04.3214.3214.3214.321x x x x x x x x x x x x x x x x (1) 用Gauss 消去法解所给方程组(用四位小数计算);(2) 用列主元素消去法解所给方程组并且与(1)比较结果。
1. Matlab 程序>> clearA=input('输入系数矩阵A :');b=input('输入b 向量(按行向量):');B=[A b'];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.\n')returnendif RA==RBif RA==nfprintf('请注意:因为RA=RB=%d ,所以此方程组有唯一解.\n',n) X=zeros(n,1);for p=1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endend%把方程组系数矩阵A 化为同解的上三角矩阵b=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);end%从xn 至x1逐个求解上三角方程组elsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')returnendenddisp('方程组的解为:');X运行后输入系数矩阵A:[0.4096 0.1234 0.3678 0.2943;0.2246,0.3872,0.4015,0.1129;0.3645 0.1920 0.3781 0.0643;0.1784 0.4002 0.2786 0.3927]输入b向量(按行向量):[0.4043 0.1550 0.4240 -0.2667]请注意:因为RA=RB=4,所以此方程组有唯一解.方程组的解为:X =-0.2603-1.73242.3280-0.44712.Matlab程序>> clearA=input('输入系数矩阵A:');b=input('输入b向量(按行向量):');B=[A b'];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.\n')endif RA==RBif RA==nfprintf('请注意:因为RA=RB=%d,所以此方程组有唯一解.\n',n)X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endend%把方程组系数矩阵A化为同解的上三角矩阵b=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);end%从xn至x1逐个求解上三角方程组elsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')returnendenddisp('方程组的解为:');X运行结果输入系数矩阵A:[0.4096 0.1234 0.3678 0.2943;0.2246,0.3872,0.4015,0.1129;0.3645 0.1920 0.3781 0.0643;0.1784 0.4002 0.2786 0.3927]输入b向量(按行向量):[0.4043 0.1550 0.4240 -0.2667]请注意:因为RA=RB=4,所以此方程组有唯一解.方程组的解为:X =-1.7324 2.3280 -0.4471。
数值分析实验报告---高斯消去法 LU分解法
数值分析实验报告---高斯消去法 LU分解法实验一:高斯消去法一、实验目的1. 掌握高斯消去法的原理2. 用高斯消去法解线性方程组3. 分析误差二、实验原理高斯消去法(又称为高斯-约旦消去法)是一种利用矩阵消元的方法,将线性方程组化为改进的阶梯形式,从而解出线性方程组的解的方法。
具体而言,高斯消去法将线性方程组的系数矩阵化为一个上三角矩阵,再利用回带法求解线性方程组的解。
三、实验内容1.1、用高斯消去法解线性方程组在具体实验中,我们将使用高斯消去法来解决下述的线性方程组。
5x+2y+z=102x+6y+2z=14x-y+10z=25为了使用高斯消去法来解这个方程组,首先需要将系数矩阵A进行变换,消除A矩阵中第一列中的下角元素,如下所示:1, 2/5, 1/50, 28/5, 18/50, 0, 49/28接着使用回代法来计算该方程组的解。
回代法的过程是从下往上进行的,具体步骤如下:第三个方程的解:z=49/28;第二个方程的解: y=(14-2z-2x)/6;第一个方程的解: x=(10-2y-z)/5。
1.2、分析误差在使用高斯消去法求解线性方程组时,一般会出现截断误差,导致得到的解与真实解之间存在一些误差。
截断误差的大小和矩阵的维数有关。
为了估计截断误差,我们使用矩阵B来生成误差,在具体实验中,我们将使用下面的矩阵:我们来计算该矩阵的行列式,如果方程组有唯一解,则行列性不为0。
本例中,行列式的值是 -1,因此方程组有唯一解。
然后我们计算真实解和高斯消去法得到的解之间的误差,具体公式如下所示:误差 = 真实解的范数 - 高斯消去法得到的解的范数其中,范数的定义如下:||x||1=max{|xi|}; ||x||2=sqrt{(|x1|^2 + |x2|^2 + ... + |xn|^2)}四、实验步骤1、将高斯消去法的每一个步骤翻译成代码,并保存为一个独立的函数。
2、将代码上传至 Python 交互式环境,并使用高斯消去法来解线性方程组。
数值分析实验二(列主元Gauss消去法)
《数值分析》实验报告实验编号:实验二课题名称:列主元Gauss消去法一、算法介绍1、输入矩阵的阶数n,方程组的增广矩阵A;2、对k=0,1,…,n-2,循环:选取列中绝对值最大的元素,将主元所在的行的元素保存在数组temp[n+1]中。
若主元为零,则系数矩阵奇异,计算停止;否则,顺序进行。
如果绝对值最大的元素就在矩阵的对角线上,则进行普通高斯消元法的第一大步,否则将方程组系数换行之后再进行普通高斯消元法的第一大步;3、然后利用回代法求解线性方程组。
二、程序代码#include<iostream>#include<cmath>#include<iomanip>using namespace std;int main(){int n=0,k=0,i=0,j=0,h=0,g=0,flag=0,i1,j1;double max=0,m=0;cout<<"***利用列主元Gauss消元法求解线性方程组***"<<endl;cout<<"请输入矩阵的阶数:"<<endl;cin>>n;double a[n][n+1];double t[n+1];double x[n];memset(a,0,sizeof(a));memset(x,0,sizeof(x));cout<<"请输入方程组的增广矩阵:"<<endl;for(i=0;i<n;i++){for(j=0;j<n+1;j++){cin>>a[i][j];}}for(k=0;k<n-1;k++){max=0;j1=0;for(i=k;i<n;i++){if(fabs(a[i][k])>max){max=fabs(a[i][k]);i1=i;j1=k;}}if(max==0){cout<<"该系数矩阵为奇异矩阵,计算停止"<<endl;flag=1;break;}else{cout<<"第"<<j1+1<<"列中绝对值最大的元素是"<<a[i1][j1]<<",在线性方程组的第"<<i1+1<<"行"<<endl;if(i1!=k){for(j=0;j<=n;j++){t[j]=a[i1][j];a[i1][j]=a[k][j];a[k][j]=t[j];}}for(i=k+1;i<=n-1;i++){m=a[i][k]/a[k][k];for(j=k;j<=n;j++)a[i][j]=a[i][j]-m*a[k][j];for(g=0;g<n;g++){for(h=0;h<n+1;h++)cout<<setiosflags(ios::fixed)<<setprecision(2)<<a[g][h]<<" ";cout<<endl;}cout<<endl;}}}if(flag==0){x[n-1]=a[n-1][n]/a[n-1][n-1] ;double sum=0;for(k=n-2;k>=0;k--){sum=0;for(i=n-1;i>=k;i--)sum+=a[k][i]*x[i];x[k]=(a[k][n]-sum)/a[k][k];}cout<<"该线性方程组的解为:"<<endl;for(i=0;i<n;i++)cout<<"x"<<i+1<<"="<<setiosflags(ios::fixed)<<setprecision(2)<<x[i]<<endl;}system("pause");return 0;}三、运算结果截屏四、算法分析列主元Gauss消元法避免了普通高斯消元法中出现的问题:遇到某个主元为零或者当主元绝对值很小时,计算将会停止或求出的结果将与其实际结果相差很远。
数值分析实验作业-gauss消去法的数值稳定性分析
实验3.1 Gauss 消去法的数值稳定性试验实验目的:观察和理解Gauss 消元过程中出现小主元(即)(k kka 很小)时引起的方程组解的数值不稳定性。
实验内容:求解方程组b Ax =,其中(1)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯=11212592.1121-130.6-291.51314.59103.015-1A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2178.4617.591b ; (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=2010151526990999999999.23107102A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=15019000000000.582b . 实验要求:(1) 计算矩阵的条件数,判断系数矩阵是良态的还是病态的。
(2) 用Gauss 列主元消去法求得L 和U 及解向量421,R x x ∈.(3) 用不选主元的Gauss 消去法求得L ~和U ~及解向量421~,~R x x ∈.(4) 观察小主元并分析其对计算结果的影响. 程序如下:计算矩阵条件数及Gauss 列主元消去法: format longengA1=[0.3e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1];b1=[59.17;46.78;1;2]; n=4;k2=cond(A1) %k2为矩阵的条件数;for k=1:n-1a=max(abs(A1(k:n,k))); [p,k]=find(A1==a); B=A1(k,:);c=b1(k);A1(k,:)=A1(p,:);b1(k)=b1(p); A1(p,:)=B;b1(p)=c; if A1(k,k)~=0A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n); elsebreak end endL1=tril(A1,0); for i=1:nL1(i,i)=1; end L=L1U=triu(A1,0) for j=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j); endb1(n)=b1(n)/L(n,n); for j=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j); endb1(1)=b1(1)/U(1,1); x1=b1运行结果如下: K2=68.43;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯=-14929.00202.00893.0011755.04724.00011079.2600118L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=801.0000231.1835.2001314.5902592.11U 1x =[18.9882;3.3378;-34.747;-33.9865]不选主元的Gauss 消去法程序: clearformat longengA1=[0.3e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; b1=[59.17;46.78;1;2]; n=4;for k=1:n-1A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n); endL1=tril(A1,0); for i=1:nL1(i,i)=1; end L=L1U=triu(A1,0) for j=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j); endb1(n)=b1(n)/L(n,n); for j=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j); endb1(1)=b1(1)/U(1,1); x1=b1程序运行结果如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯⨯=10189.010333.3011168.21033.3700110637.170001~151515L ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⨯-⨯-⨯-⨯=-5.000816010637.171091.5210043.101314.59103.0~15151815U ]0;0;0005.1;6848.23[~1=x同理可得2A 对应的系数矩阵条件数及Gauss 列主元消去法求解结果: K2=8.994;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯=1333.04.0001104.0-3.0-0015.0000112-L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=36667.300030.26005.155.2010710U ]0.1;;0.1;0.1;10444.0[152-⨯=-x不选主元的Gauss 消去法结果:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯=1400.0109999.0-001104998.2-5.00013.0-0001~1212L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯⨯--=-3667.3000107495.5109987.14003.26100.1010710~121212U ]000145.1;99994.0;000.1;1045.1[~52-⨯-=-x实验4.5 三次样条插值函数的收敛性问题提出:多项式插值不一定收敛的,即插值的节点多,效果不一定就好。
数值分析3 Gauss消去法
§1 Gauss 消去法它是以行初等变换为基础,整理而成的计算机算法。
由它改进和变形得到的高斯选主元消去法及三角分解法,仍然是目前计算机上常用的解低阶稠密矩阵的线性方程组的有效方法。
一、 引例:解方程组:⎪⎩⎪⎨⎧-=-+-=+-=+-4336425294321321321x x x x x x x x x用Matlab 先画出空间三个平面,并找出三平面的交点clear,clf,x=[-9 –9 9 9 -9];y=[-9 9 9 –9 -9];z=5-4*x+9*y;plot3(x,y,z),hold on,grid on z=3-2*x+4*y;plot3(x,y,z) z=-4+x-y;plot3(x,y,z)A=[4 –9 2;2 –4 6;-1 1 –3];b=[5 3 –4]';x=A\b; plot3(x(1),x(2),x(3),'r*')解:方程组的增广矩阵是[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=431136425294b A消元运算:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−→−-----5.110005.055.00529475.25.225.105.055.0052942313125.025.14142r r r r r r b A回代求解:0.15,1.5/103-=-=x [],5.25.0/)15.0(55.0x 2=-⨯-=95.64/)15.025.295(x 1=⨯+⨯+=。
【注】Gauss 消元的基本思想:用初等行变换方法化一般的方程组为上三角方程组,然后求解;Gauss 消去法步骤:先消元计算,再回代求解二、Gauss 消去法设n阶线性代数方程组为Ax=b (1)其中系数矩阵A(n 阶非奇异矩阵)和右端列向量b 分别为A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 , b=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 (一)上三角方程组的回代求解:⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n b x u b x u x u b x u x u x u 2222211212111 ………………(2) 假设u ii ≠0(i=1,2,…,n ),则回代解得:⎪⎩⎪⎨⎧-==∑+=ii ni j j ij i innn n u x u b x u b x /)(/11,2,2,1 --=n n i ………………(3) (二)GAUSS消元过程:(行变换)记方程组(1)为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++)1()1(2)1(21)1(1)1(2)1(22)1(221)1(21)1(1)1(12)1(121)1(11nn nn n n n n n n b x a xa x ab x a x a x a b x a x a x a (4)对应的增广矩阵为[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)1()1()1(2)1(1)1(2)1(2)1(22)1(21)1(1)1(1)1(12)1(11)1()1(,n nn n n nn b a a a b a a a b a a a bA…………………(5) 第一轮消元:若)1(11a ≠0,利用)1(11a 消下面的)1(1i a (i=2,3,…n), 消元因子:)1(11)1(11/a a l i i = (i=2,3,…n)[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)2()2()2(2)2(2)2(2)2(22)1(1)1(1)1(12)1(11)2()2(00,n nn n nnb a a b a a b a a a bA………………(6) 其中)1(11)1()2(j i ij ij a l a a -= n j i ,,3,2, =)1(11)1()2(b l b b i i i -= n i ,,3,2 = (7)第二轮消元:若0)2(22≠a ,用第i 行减去第二行的)2(22)2(22/a a l i i =(i=3,4,…n)倍,得到[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=)3()3()3(3)3(3)3(3)3(33)2(2)2(2)2(23)2(22)1(1)1(1)1(13)1(12)1(11)3()3(00000,n nnn nn nb a a b a a b a a a b a a a a b A……………(8) 其中n j i b l b b a l a a i i ij i ij ij ,,4,3,,,)2(22)2()3()2(22)2()3( =-=-= …………(9) 已进行k-1轮消元后,得[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=)()()()()()()2(2)2(2)2(2)2(22)1(1)1(1)1(1)1(12)1(11)()(,k n k nnk nk k k k knk kk nkn k k K b a a b a a b a a a b a a a a b A……………(10) 第k 轮消元:若)(k kk a ≠0,用第i 行元素减去第k 行元素的)()(/k kk k ik ik a a l = (i=k+1,k+2,…,n)倍,得[]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=++++++++++++++++)1()1()1(111)1(1)1(11)()()(1)()2(2)2(2)2(12)2(2)2(22)1(1)1(1)1(11)1(1)1(12)1(11)1()1(,k n k nnk nk k k k nk k k k k k kn knk kk k kknk kn k kk K b a a b a a b a a a b a a a a b a a a a a b A…(11) 其中⎪⎩⎪⎨⎧-=-=++,)()()1()()()1(k k ik k i k ik kjik k ij k ij b l b b a l a a ,,,1,n k j i += (12)最后,得[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()()2(2)2(2)2(22)1(1)1(1)1(12)1(11)()(,n n n nnnnn n b a b a a b a a a bA消元过程:[][][][])()()()()2()2()1()1(,,,,n n k k b A b A b A b A−→−−→−−→−−→−−→− (三)算法公式消元公式:对k=1,2,…,n-1若)(k kk a ≠0 )()(/k kk k ik ik a a l =⎪⎩⎪⎨⎧-=-=++,)()()1()()()1(k k ik k i k ik kj ik k ij k ij b l b b a l a a ,,,1,n k j i +=回代公式:)(n nn a ≠0⎪⎩⎪⎨⎧-==∑+=)(1)()()()(/)(/i ii n i j j i ij i i in nn n n n a x a b x a b x1,2,2,1 --=n n i三、GAUSS 消去法得以实现的前提(可行性分析)1、0a )()2(22(1)11≠n nn a a 或 2、,0,,0,,0,02122221112112221121111≠≠=≠≠A a a a aa a a a a D a a a a a kkk k k kk (13)这是因为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡)()2(2)2(22)1(1)1(12)1(11212222111211k kk n k kk k k k k a a a a a a a a a a a a a a a 行变换 k i a D n k i ii k ,,2,1,0,0,,,2,1)( =≠≠=则有若令【如】对称正定矩阵、严格对角占优矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡632351214 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-103131021310四、Gauss 消去法的运算量消元过程乘法:[])1(31)()1(211-=-⨯+-∑-=n n k n k n n k 除法:)1(2)(11-=-∑-=n nk n n k 回代过程乘除法总运算量:),1(221+=+++n nnGauss 消去法的总运算量为:3)3(31)1(2)1(2)1(313232n n n n n n n n n n ≈-+=++-+- 对比克莱姆法则的总运算量为(n+1)!【注】对比:当n=10时,克莱姆法则(n+1)!=39916800,而Gauss 消去法,运算430次五、算法及例子步1,定义数组A,B,x ; 步2,输入A,B,Eps ;步3,对k=1到n-1进行消元:⎪⎩⎪⎨⎧++=-⇐>-⇐n k k j i a b a b b Eps a a a a a a kkk ik i i kk kk kj ik ij ij ,,2,1,/,,/ 步4,nn n n a b x /=;对i=n-1到1回代解ij ni j j iji i a x ab x /)(1∑+=-=步5,输出n i x i ,,2,1, =; 步6,结束。
数值分析实验(Gauss消元法)
end
%这里采用增广矩阵行变换的方式求解
c=n+1;
A(:,c)=b;
%%消元过程
for k=1:n-1
A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c);
end
%%回代结果
x=zeros(length(b),1);
x(n)=A(n,c)/A(n,n);
教师签名
年月日
重庆大学
学生实验报告
实验课程名称数值计算
开课实验室DS1421
学院2009年级土木专业班11班
学生姓名周波学号********
开课时间2010至2011学年第一学期
总成绩
教师签名
课程
名称
数值计算
实验项目
名称
Gauss消元法
实验项目类型
验证
演示
综合
设计
其他
指导
教师
何光辉
成绩
√
实验目的、实验原理
通过高斯消元法的实践环节,达到加深对高斯消元法理解和培养学生程序设计能力的目的。
在Matlab命令窗口中输入Gauss得出结果如下:
>> Gauss
x=
2.0000
1.0000
-1.0000
实验中遇到的问题及解决办法
消元过程要求a(ii)≠0,(i=1,2,…,n-1),回代过程则进一步要求a(nn)≠0。
Matlab求解线性方程的几种命令如下(方程组的一般形式可用矩阵和向量表示成: ,但运用下列方法的前提必须保证所求解的方程为恰定方程,即方程组存在唯一的一组解) :
运用求逆思想 : 或 ;
高斯消去法的功能
高斯消去法的功能高斯消去法(Gaussian elimination),也叫高斯消元法,是数学中一种求解线性方程组的方法。
它通过将线性方程组化为阶梯形式,从而简化求解过程。
高斯消去法广泛应用于科学、工程、经济和计算机科学等领域,是解决实际问题中常用的方法之一。
高斯消去法的基本思想是通过一系列的行变换将线性方程组化为简化的形式,即阶梯形矩阵。
在该过程中,每一步都是为了让某一行的某个未知数(列元素)为0。
通过不断的行变换,最终将方程组转化为上三角形式。
接着可以通过回代求解得到方程组的解。
高斯消去法求解线性方程组的基本步骤如下:1.首先,将线性方程组写成增广矩阵的形式,即将系数矩阵与常数矩阵合并为一个增广矩阵。
2.选择一个主元素,可以是任意一个非零元素(通常选取第一行第一列的元素),并通过行变换将该主元素上方的元素全部化为0。
3.重复步骤2,选取下一个主元素,并通过行变换将该主元素上方的元素全部化为0。
依次进行,直到将矩阵化简为上三角形式。
4.通过回代求解得到方程组的解。
从最后一行开始,将代入答案的解依次回代到前面的行中,直到得到所有未知数的解。
高斯消去法的优点在于它能够有效地求解一般的线性方程组,并且求解过程相对简单。
它可以用于求解大规模的线性方程组,适用于各种类型的线性方程组,甚至包括有多个未知数和方程组数目大于未知数个数的时候。
此外,高斯消去法的计算量相对较小,时间复杂度为O(n^3)。
因此,它被广泛用于实际问题的求解中。
高斯消去法的应用非常广泛,下面列举一些常见的应用场景:1.线性代数:高斯消去法可以用来求解线性方程组,解决线性代数中的一些基本问题,如求解向量组的线性相关性、子空间、特征值和特征向量等。
2.物理学:高斯消去法可以用于解决物理学中的一些问题,如力学、电磁学、热力学等领域的方程组求解。
3.金融学:高斯消去法可以用于金融学中的风险管理和金融衍生品估值等问题,如Black-Scholes模型的求解。
数值分析实验作业,gauss消去法的数值稳定性分析
实验3.1 Gauss 消去法的数值稳定性试验实验目的:观察和理解Gauss 消元过程中出现小主元(即)(k kka 很小)时引起的方程组解的数值不稳定性。
实验内容:求解方程组b Ax =,其中(1)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯=11212592.1121-130.6-291.51314.59103.015-1A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2178.4617.591b ; (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=2010151526990999999999.23107102A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=15019000000000.582b .实验要求:(1) 计算矩阵的条件数,判断系数矩阵是良态的还是病态的。
(2) 用Gauss 列主元消去法求得L 和U 及解向量421,R x x ∈.(3) 用不选主元的Gauss 消去法求得L ~和U ~及解向量421~,~R x x ∈.(4) 观察小主元并分析其对计算结果的影响.程序如下:计算矩阵条件数及Gauss 列主元消去法:format longengA1=[0.3e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; b1=[59.17;46.78;1;2]; n=4;k2=cond(A1) %k2为矩阵的条件数;for k=1:n-1a=max(abs(A1(k:n,k))); [p,k]=find(A1==a); B=A1(k,:);c=b1(k);A1(k,:)=A1(p,:);b1(k)=b1(p); A1(p,:)=B;b1(p)=c; if A1(k,k)~=0A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n); else break end endL1=tril(A1,0); for i=1:n L1(i,i)=1; end L=L1U=triu(A1,0) for j=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j); endb1(n)=b1(n)/L(n,n); for j=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j); endb1(1)=b1(1)/U(1,1); x1=b1运行结果如下: K2=68.43;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯=-14929.00202.00893.0011755.04724.00011079.2600118L⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=801.0000231.1835.2001314.5902592.11U 1x =[18.9882;3.3378;-34.747;-33.9865] 不选主元的Gauss 消去法程序:clearformat longengA1=[0.3e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; b1=[59.17;46.78;1;2]; n=4;for k=1:n-1A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n); endL1=tril(A1,0); for i=1:n L1(i,i)=1; end L=L1U=triu(A1,0) for j=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j); endb1(n)=b1(n)/L(n,n); for j=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j); endb1(1)=b1(1)/U(1,1); x1=b1程序运行结果如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯⨯=10189.010333.3011168.21033.3700110637.170001~151515L⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⨯-⨯-⨯-⨯=-5.000816010637.171091.5210043.101314.59103.0~15151815U ]0;0;0005.1;6848.23[~1=x同理可得2A 对应的系数矩阵条件数及Gauss 列主元消去法求解结果: K2=8.994;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯=1333.04.0001104.0-3.0-0015.0000112-L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=36667.300030.26005.155.2010710U ]0.1;;0.1;0.1;10444.0[152-⨯=-x不选主元的Gauss 消去法结果:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯=1400.0109999.0-001104998.2-5.00013.0-0001~1212L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯⨯--=-3667.3000107495.5109987.14003.26100.1010710~121212U ]000145.1;99994.0;000.1;1045.1[~52-⨯-=-x实验4.5 三次样条插值函数的收敛性问题提出:多项式插值不一定收敛的,即插值的节点多,效果不一定就好。
数值分析5-2(高斯消去法)
M M ... (3) xn bn (3) ann
…
( 1 0 ... 0 x1 b1n) 0 1 ... 0 x b(n) • 2 = 2 O M M 0 0 ... 1 x (n) n bn
高斯-约当消去法的应用 高斯 约当消去法的应用
1.同时求解系数矩阵相同的多个方程组 同时求解系数矩阵相同的多个方程组 用高斯-约当消去法求解两个方程 例 用高斯 约当消去法求解两个方程 组 AX=b1 和AX=b2 ,其中
3 4 6 2 4 5 A= 1 2 3
3 b1 = 4 1
(1 a11) ≠ 0
第一次 消元
(2 a22) ≠ 0
(2 (2 ( 1 a12) ... a1n) x1 b12) b(2) (2) (2) 0 a22 ... a2n x2 2 • = ... M M (2) (2) (2) 0 an2 ... ann xn bn
1 1 1 A = 0 4 − 1 2 − 2 1 1 0 0 1 1 1 ∆ = 0 1 0 • 0 4 − 1 = LU ห้องสมุดไป่ตู้ 2 − 1 1 0 0 − 2
则求解原方程组可转化为如下两个三角形方 程组: 程组:
第五章 解线性方程组的直接法 §2 高斯消去法
一、高斯消去法 二、矩阵的三角分解 三、高斯消去法的计算量 四、高斯—约当消去法 高斯 约当消去法
一、高斯消去法
1. 高斯消去法的基本思想 举例 用消去法解方程组
基本思想:用逐次消去未知数的方法把 x1 + x2 + x3 = 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L a(1)
kn
a(1) k 1,n L a(1) nn
a (1) 1,n1
a(1) 2,n1
L
a(1) k ,n1
a (1) k 1,n
1
L
a (1) n,n1
消元过程(1)
a(1) 11
0
a(1) 12
a(2) 22
L L
L
A(2)
0
LL
a(2) k2
L
0
a L (2) k 1,2
lik
a(k) ik
/
a(k kk
)
(i k 1, ..., n)
a1(11)
a(1) 12
a(2) 22
... ... ...
a(1) 1n
a(2) 2n ...
a(n) nn
x1
x2 ... xn
bb12((12))
...
bn(n)
Gauss消去法
L
a(2) 2,k
L
M
a a L (k 1) k 1,k 1
(k 1) k 1,k
0
a(k) kk
L
0
a L (k ) k 1,k
MM
0
a(k) nk
L
a (1) 1n
a(2) 2n M
a(k 1) k 1,n
a(k) kn
a(k) k 1,n M
a(k) nn
a (1) 1,n1
a(2) 2,n1
L L L
0
a(2) n2
L
a(1) 1n
a(2) 2n
L a(2)
kn
a(2) k 1,n L
a(2) nn
a(1) 1,n1
a(2) 2,n1
L
a(2) k ,n1
a(2) k 1,n
1
L
a(2) n,n1
消元过程(1)
a(1) 11
0
a(1) 12
a(2) 22
L L
L
A(2)
)
a(k) k 1,n1 M
uukuu1uuiuunu,ukuu1uuujunuuu1ur
a(k) n,n1
消元过程(2)
a(1) 11
0
a(1) 12
a(2) 22
L L
M
A(k )
0 0
M 0L 0L
0 0 L
M
M
0 0 L
a(1) 1,k 1
a(2) 2,k 1 M
a(1) 1,k
L
a(2) 2,k
L
M
a a L (k 1) k 1,k 1
a(2) 2n M
a(k 1) k 1,n
a(k) kn
a(k) k 1,n M
a(k) nn
a (1) 1,n1
a(2) 2,n1
M (k 1) a k 1,n1
lik
a(k) ik
/
a(k kk
)
ri lik rk ri
a(k) k ,n1
a(k ij
1)
a(k) ij
lik
a(k kj
M (k 1) a k 1,n1
lik
a(k) ik
/
a(k kk
)
ri lik rk ri
a(k) k ,n1
a(k ij
1)
a(k) ij
lik
a(k kj
)
a(k) k 1,n1 M
uukuu1uuiuunu,ukuu1uuujunuuu1ur
a(k) n,n1
消元过程(2)
=
消元
记 A(1) A (ai(j1) )nn ,
b(1) 1
v b (1)
v b
. .
.
b(1) n
Step
1:设
a (1) 11
, 0计算因子
li1
a (1) i1
/
a (1) 11
(i 2, ..., n)
将增广矩阵/* augmented matrix */ 第 i 行 li1 第1行,
Ax b
a11
a21
a12 L a22 L
L L L
ak1
ak 2 L
ak
1,1
ak 1,2
L
L L L
an1
an2 L
a1n a2n L
b1 b2 L
aij
a(1) ij
a(1) 11
a(1) 21
L
a(1) 12
L
a(1) 22
L
LL
akn
bk
bi
a (1) i , n 1
解线性方程组的直接法
/* Direct Method for Solving Linear Systems */
求解
A
xv
v b
§1 高斯消元法 /* Gaussian Elimination */
➢ 高斯消去法 :
思 首先将A化为上三角阵 /* upper-triangular matrix */, 路 再回代求解 /* backward substitution */。
0
LL
a(2) k2
L
0
a L (2) k 1,2
L L L
0
a(2) n2
L
a(1) 1n
a(2) 2n
L a(2)
kn
a(2) k 1,n L
a(2) nn
a(1) 1,n1
a(2) 2,n1
L
a(2) k ,n1
a(2) k 1,n
1
L
a(2) n,n1
消元过程(1)
li1
a (1) i1
得到
a (1) 11
a (1) 12
...
a (1) 1n
A(2)
vb(1) 1
b (2)
Step
k:设
a(k) kk
, 0计算因子
且计算
a(k 1) ij
b(k 1) i
a(k) ij
b(k ) i
lik
a(k kj
)
lik bk(k )
(i, j k 1, ..., n)
共进行 n? 步1
/
a (1) 11
ri li1r1 ri
a(2) ij
a(1) ij
li1a1(1j)
2in,2 jn1消元过程(2)a(1) 110
a(1) 12
a(2) 22
L L
M
A(k )
0 0
M 0L 0L
0 0 L
M
M
0 0 L
a(1) 1,k 1
a(2) 2,k 1 M
a(1) 1,k
a(1) k1
a(1) k2
L
ak 1,n
bk
1
u1uuiu,ujuunuur
a(1) k 1,1
a (1) k 1,2
L
L L
L L L
ann bn
a(1) n1
a(1) n2
L
a(1) 1n
a(1) 2n
L a(1)
kn
a (1) k 1,n L a(1) nn
a(1) 1,n1
a(1) 2,n1
L
a(1) k ,n1
a (1) k 1,n
1
L
a(1) n,n1
A
A(1)
消元过程(1)
a(1) 11
a(1) 21
a(1) 12
L
a(1) 22
L
L
A(1)
a(1) k1
LL
a(1) k2
L
a(1) k 1,1
a(1) k 1,2
L
L L L
a(1) n1
a(1) n2
L
a(1) 1n
a(1) 11
0
a(1) 12
a(2) 22
L L
M
A(k )
0 0
M 0L 0L
0 0 L
M
M
0 0 L
a(1) 1,k 1
a(2) 2,k 1 M
a(1) 1,k
L
a(2) 2,k
L
M
a a L (k 1) k 1,k 1
(k 1) k 1,k
0
a(k) kk
L
0
0L
MM
0
0L
a (1) 1n