matlab自适应遗传算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function [xv,fv]=AdapGA(fitness,a,b,NP,NG,Pc1,Pc2,Pm1,Pm2,eps) %×ÔÊÊÓ¦ÒÅ´«Ëã·¨
L = ceil(log2((b-a)/eps+1));
x = zeros(NP,L);
for i=1:NP
x(i,:) = Initial(L);
fx(i) = fitness(Dec(a,b,x(i,:),L));
end
for k=1:NG
sumfx = sum(fx);
Px = fx/sumfx;
PPx = 0;
PPx(1) = Px(1);
for i=2:NP
PPx(i) = PPx(i-1) + Px(i);
end
for i=1:NP
sita = rand();
for n=1:NP
if sita <= PPx(n)
SelFather = n;
break;
end
end
Selmother = round(rand()*(NP-1))+1;
posCut = round(rand()*(L-2)) + 1;
favg = sumfx/NP;
fmax = max(fx);
Fitness_f = fx(SelFather);
Fitness_m = fx(Selmother);
Fm = max(Fitness_f,Fitness_m);
if Fm>=favg
Pc = Pc1*(fmax - Fm)/(fmax - favg);
else
Pc = Pc2;
end
r1 = rand();
if r1<=Pc
nx(i,1:posCut) = x(SelFather,1:posCut);
nx(i,(posCut+1):L) = x(Selmother,(posCut+1):L); fmu = fitness(Dec(a,b,nx(i,:),L));
if fmu>=favg
Pm = Pm1*(fmax - fmu)/(fmax - favg);
else
Pm = Pm2;
end
r2 = rand();
if r2 <= Pm
posMut = round(rand()*(L-1) + 1); nx(i,posMut) = ~nx(i,posMut);
end
else
nx(i,:) = x(SelFather,:);
end
end
x = nx;
for i=1:NP
fx(i) = fitness(Dec(a,b,x(i,:),L));
end
end
fv = -inf;
for i=1:NP
fitx = fitness(Dec(a,b,x(i,:),L));
if fitx > fv
fv = fitx;
xv = Dec(a,b,x(i,:),L);
end
end
function result = Initial(length) for i=1:length
r = rand();
result(i) = round(r);
end
function y = Dec(a,b,x,L)
base = 2.^((L-1):-1:0);
y = dot(base,x);
y = a + y*(b-a)/(2^L-1);