零件失效分析方案设计
失效分析方案

失效分析方案一、引言失效分析是指通过对失效部件或系统的实物、历史数据、现场情况等进行研究和分析,找出失效原因和规律,以制定相应的解决方案。
失效分析在工程技术和产品开发中起着重要的作用,能够帮助我们定位问题、改进设计和提高可靠性。
本文将针对失效分析的具体步骤和相关工具进行详细介绍。
二、失效分析步骤失效分析一般包括以下几个步骤:2.1 收集信息在进行失效分析之前,需要收集相关信息,包括失效部件或系统的历史数据、技术规格、工作环境等。
这些信息对于分析失效原因和制定解决方案非常重要。
可以通过调查问卷、现场观察和采集资料等方式获取所需信息。
2.2 确定失效目标失效目标是指要分析的失效部件或系统。
根据收集到的信息,确定需要进行失效分析的具体对象。
例如,如果是对某个机械零部件的失效进行分析,则失效目标可以是这个零部件的某个具体型号或批次。
2.3 进行失效模式分析失效模式分析是寻找失效原因的重要方法。
通过对失效部件或系统的实物进行观察和测试,确定其失效模式。
失效模式可能是由于材料疲劳、设计缺陷、制造问题等引起。
通过分析失效模式,可以初步判断可能的失效原因。
2.4 进行实验和测试为了进一步验证失效模式和找出具体的失效原因,需要进行实验和测试。
可以通过对失效部件进行实验加载、材料结构分析、金相测试等方式,找出可能的失效原因。
同时,还需要记录实验和测试过程中的数据和观察结果,为后续的分析提供依据。
2.5 分析失效原因在收集到足够的信息和实验数据后,可以进行失效原因分析。
根据实际情况,可以采用多种方法进行分析,如质量分析、故障树分析、因果分析等。
通过分析失效原因,找出导致失效的根本原因,并制定相应的解决方案。
2.6 制定解决方案最后,根据对失效原因的分析,制定解决方案。
解决方案应该针对具体的失效原因,从材料、设计、制造等方面进行改进或优化。
制定解决方案时应注意可行性和经济性,并进行风险评估。
同时,还需要考虑后续的执行和跟踪,确保解决方案的有效性。
汽车零件失效分析

6、能谱成分分析
对壳体材料和组织中的条状物进行成分分析。
成分分析结果:
元素 Al Si Fe Cu
合金
83.63
13.69 1.24 1.45
38.97 0.35 0.89
条状物 59.78
合金的成分接近于铸造铝合金ZL102(ZL102 成分: 90~87%Al, 10~13%Si)。 含有Fe, 生成有害相细针状的Al-Si-Fe化 合物, 降低了该合金的韧性。 条状物的Si含量很高, 确定其为Si晶体。
裂纹的起始位置均在壳体侧面下方的交界处。 壳体侧面的内表面呈135°和90°夹角, 无 明显的过渡园角。 裂纹扩展方向与该处所受拉应力的方向垂直。
2、现场调研
离合器安装情况:离合器左边与发动机相 联, 右边与变速器相联。 离合器壳体受到较大弯矩作用。发动机工 作时, 壳体受到强烈振动。 壳体下部受到瞬时大的拉应力作用, 在应 力集中处容易产生裂纹造成开裂或破断。
7、硬度测定 (1) 布氏硬度测定 硬度为54~61HB。该壳体的硬度值与铸造铝 合金ZL102的硬度相近。 (2) 显微硬度测定 白色块状物 65HV0.02
条状物
75HV0.02
合金的硬度较低, 反映该合金的强度 也较低, 只能用于对强度要求不高的铸件。
8、断裂原因分析 (1) 所用材料强度低, 气孔多。合金含铁 量高, 出现较多的针状Al-Si-Fe化合物, 使韧 性大大降低。 (2) 壳体两侧面的内表面无明显的过渡园 角, 导致应力集中。 (3) 安装结构不甚合理, 导致壳体承受弯 矩过大, 振动厉害。易于开裂。 (4) 壳体受弯矩作用, 同时受到强烈振动, 迭加了扭矩, 在壳体应力集中处产生微裂纹, 裂纹扩展, 导致开裂、破断。
机械零件的失效分析

失效分析方法和技术
1
外部检查
通过外部观察和测量,我们可以找到外部因素对失效的影响。
2
内部检查
通过内部切割和断面观察,我们可以了解零件的内部结构和缺陷情况。
3
材料分析
使用材料分析技术,如金相显微镜、扫描电镜等,可以帮助我们研究材料性质和 缺陷。
实例:钢件的疲劳失效分析
失效模式分析
通过分析钢件的疲劳失效形态, 我们可以确定失效模式和机制。
老化特征
通过观察塑料件的颜色变化、表面开裂等现象, 可以判断是否发生老化。
替代材料
通过寻找抗老化性能更好的材料,可以延长塑料 件的使用寿命。
结论和总结
机械零件的失效分析是提高产品可靠性和寿命的重要工具。通过深入研究失 效模式和原因,并采取相应的改进措施,我们可以更好地理解和应对机械零 件失效问题。
通过了解失效原因,我们可以改进设计、材料和制造过程,提高机械零件的可靠性和寿 命。
失效分析的基本原理
1 失效模式与机理
了解失效模式和机理可以帮助我们快速定位和识别失效的根本原因。
2 数据收集与分析
通过收集和分析失效数据,我们可以找到共同点和规律,帮助我们预测和预防将来的失 效。
3 实验与测试
通过实验和测试,我们可以验证我们对失效原因和机制的假设,从而得到更可靠的结论。
断口分析
观察钢件的断口形态,可以帮助 我们了Байду номын сангаас失效的根本原因。
金相分析
通过金相显微镜观察钢件的显微 组织,可以揭示材料的缺陷和组 织性质。
实例:塑料件的老化失效分析
老化机制
塑料件的老化失效通常由紫外线辐射、热氧化、 水解等因素引起。
老化测试
金属零件失效分析

未及时发现和修复金属零件的损伤,可能使其在使用过程中发生突 然失效。
其他原因分析
材料缺陷
金属材料本身存在的缺陷,如夹杂物 、偏析等,可能导致其在使用过程中 发生失效。
外力损伤
金属零件在使用过程中受到外力损伤 ,如撞击、挤压等,可能导致其发生 变形或断裂。
04
金属零件失效预防措施
研究展望
• 针对新型金属材料(如高强度轻质合金、非晶合金等)的失效问题,需要深入 研究其失效机制和规律,建立更加完善的失效分析方法。
• 随着无损检测技术的发展,未来可以利用更加先进的检测手段(如超声检测、 X射线检测等)对金属零件进行早期预警和实时监测,提高失效预测的准确性 和及时性。
• 在失效分析过程中,应加强计算机模拟技术的应用,通过建立数值模型和仿真 分析,对金属零件的失效过程进行模拟和预测,为实际应用提供更加可靠的依 据。
目的和意义
通过对金属零件失效的分析,可以找 出失效原因,预防类似失效的再次发 生,提高机械装备的可靠性和安全性 。
同时,失效分析还可以为新材料的开 发和现有材料的改进提供理论依据和 实践指导,促进材料科学的发展。
02
金属零件失效类型
断裂失效
总结词
断裂失效是金属零件最常见的失效形式之一,表现为零件在应力作用下发生的 断裂现象。
磨损和腐蚀失效分析涉及对金 属零件表面形貌、成分、硬度 等方面的检测,以确定磨损和 腐蚀的原因和程度,并提出相 应的防护措施。
某化工设备中的金属管道在使 用过程中发生严重磨损和腐蚀 ,导致介质泄漏。通过失效分 析发现,管道内壁存在介质冲 刷和腐蚀性物质的共同作用, 导致表面损伤。
建议加强管道内壁防腐涂层保 护;同时优化介质输送方式, 减少对管道内壁的冲刷磨损。
机械零件失效分析

机械零件失效分析机械零件是构成机械设备的基本组成部分,其质量和性能的好坏直接关系到整个机械设备的可靠性和安全性。
然而,在机械设备的长期运行中,由于各种原因,机械零件可能会出现失效现象。
失效分析是一种通过分析失败机械零件的失效原因来帮助我们改进设计、制造和维修策略的方法。
一、失效类型机械零件的失效类型多种多样,常见的包括疲劳失效、磨损失效、腐蚀失效、断裂失效等。
疲劳失效是指材料在交变载荷作用下的长期疲劳过程中逐渐出现的损伤。
磨损失效是指机械零件在运行过程中由于与其他零件或外界环境的摩擦而造成的表面磨损。
腐蚀失效是指机械零件由于环境中的化学腐蚀而失效。
断裂失效是指机械零件由于超过其承载能力而发生断裂。
二、失效原因机械零件失效的原因也是多种多样的,常见的有材料问题、设计问题、制造问题、装配问题、使用问题等。
材料问题是指机械零件材料的质量或性能不达标,如含气体、夹杂物、晶粒非均匀等。
设计问题是指机械零件在设计过程中存在结构强度不足、刚度不够的问题。
制造问题是指机械零件在加工过程中存在加工质量不合格、工艺控制不严等问题。
装配问题是指机械零件在装配过程中存在装配不当、配合间隙设计不合理等问题。
使用问题是指机械零件在使用过程中存在操作不当、润滑不足等问题。
三、失效分析方法失效分析是通过分析失效零件的失效样品、现场情况以及相关维修记录来查找失效原因。
常用的失效分析方法包括物理分析、化学分析、力学分析、金相分析等。
物理分析是通过观察失效零件的外部形态和内部结构来判断失效形式。
化学分析是通过对失效零件进行化学成分分析以及腐蚀产物分析来判断失效原因。
力学分析是通过对失效零件进行力学性能测试以及有限元分析等方法来判断失效原因。
金相分析是通过对失效零件进行金相组织观察以及晶体学分析等方法来判断失效原因。
四、失效分析结果的应用失效分析的最终目的是为了指导我们改进机械零件的设计、制造和维修策略,提高机械设备的可靠性和安全性。
DFMEA设计失效模式及后果分析

设计评审
3
设计评审
中间开口、 开孔或边沿 无尖角、无
尖边缘
中间开口、开孔 或边沿有尖角、
尖边缘
外观不良,易产生飞边,并导致 后期修整困难
6
圆柱、卡扣 座、安装筋 等结构强度
足够
圆柱、卡扣座、 安装筋等结构强 加强筋少、矮,壁厚太薄 度不够,易断裂
6
安装方便
安装困难 效率低、拆卸不方便
8 SC 材料不合格 2
耐高温性 不耐高温性 性能下降、强度下降发粘异臭味 8 SC 材料不合格 2
耐热循环性 能良好
耐热循环性能差 易变形、早期失效
耐振动性性 能良好
耐振动性性能差
易变形、断裂、脱落
振动性耐久 振动性耐久性能
性能良好
差
易断裂、早期失效
耐气候老化 耐气候老化性能
性能良好
差
变色、早期失效
试验验证
3
将窄、细、薄等部位加强
设计评审
3
将要求明确的告知造粒车间
试验验证
4
增加定位点
设计评审
3
将要求明确的告知造粒车间
试验验证
4
设计定位面、槽、柱等结构
设计评审
5
图样评审、数模验证
2
设计评审
2
设计评审
2
在三维数模进行面分析
设计评审
壁厚不能超过本体壁厚的1/3,最大不 3 能超过1/2。必须超过时,须对根部进
6
产品易于涂 装
产品难涂装 外观不良
6
尽量避免嵌 件结构 嵌件数量多
效率低、不安全、易损伤模具或 产品
6
嵌件不脱落 、不转动
机械零件的失效分析

u : 弹性能
u
1
2
e e
1
2 e
2E
4. 塑性 是指材料断裂前发生塑性变形的能力。常用
断后伸长率和断面收缩率来衡量材料的塑性。
断后伸长率 LL0 100%
L0
断面收缩率 A0 A100%
A0
显然,断后伸长率和断面收缩率越大,材料的 塑性越好。
5. 硬度 表征材料软硬程度的性能,具体来说是指材
其他材料的应力-应变曲线 1–纯金属, 2–脆性材料, 3–高弹性材料
二、静载性能指标
1. 刚度 —零(构)件受力时抵抗弹性变形的能力,它
等于材料弹性模量与零(构)件横截面积的乘积。
单向拉伸(或压缩):
E F A EA F
纯剪切:
G F A G A F
第一章机械零件的失效分析
FAILURE ANALYSIS OF MACHINE ELEMENTS
2. 零件失效的原因:为了预防零件失效,必须做到设 计正确,选材恰当和工艺合理。为此,我们不仅要 熟悉零件的工作条件,掌握零件的受力和运动规律, 还要把它们和材料的性能结合起来,即从零件的工 作条件中找出其对材料的性能要求,然后才能做到 正确选择材料和合理制定冷、热加工的技术条件及 工艺路线。 而研究零件各种形式的失效是深刻了解零件工作 条件的基础。
FAILURE ANALYSIS OF MACHINE ELEMENTS
3. 常见的失效方式
过量变形 Excessive deformation 断裂 Fracture 疲劳 Fatigue 磨损 Wear 高温蠕变 High temperature creep 腐蚀 Corr形
失效分析实例

材料失效分析
材料失效分析
2、实验过程
• 图7 .58是两个断口表面的低倍放大照 片,图7. 59 和这两个端口表面的位 置和方向。在照片中分辨出两个明显 的区域:外表面,即承受载荷时的最 大纤维应力区,没有发生尺寸改变的 迹象,而在中心区域则看到一些尺寸 改变。此外在表面上有一些明显的塑 性变形,应该是发生最后断裂的地点。 • 将钳柄上的塑料套剥掉以曝露钳柄的 区域。钳的前部镀铬,直至塑料套的 边缘。钳柄的表面上有一层乌黑的物 质,该钳必定是要装塑料套后再进行 电镀的。表面上的乌黑层或是塑料套 留下的,或是一种热处理造成的。 • 目视检查后,分三步进行分析以决定 失效的原因。首先评价对改签剪线操 作的设计应力水平,之后对所用材料 及热处理工艺进行金相检验,最后利 用扫SEM对断口进行仔细的检验
材料失效分析
3、实验结果
• 断口形貌
低倍放大的断口形貌如图7.28所示,没有宏观塑性变形的迹 象。裂纹从左边缘向内扩展通过厚度1/4左右,断裂表面粗糙无 规律,而其余的断口表面是光滑的,在光滑的表面上可以看到贝 壳状花纹,故断裂模式是疲劳。粗糙的断口表面显示出这是最后 因超载而分离的区域并向前扩展到一个孔的边缘,表明疲劳裂纹 不是起源于此孔的边缘,而是沿着右边缘的。这一点在观察断口 表面时也就是在切开试样之后得到证实。贝壳状条纹的弯曲部分 表明疲劳裂纹直接起源于另一螺栓孔的下面(图7 .29),与围绕 该螺栓孔的同心圆槽重合 • 在接近末端处偏离开其中之一螺棒孔的断口表面已严重研 磨(但仍能看到有贝壳状花纹)(图7. 28)而另一端则很少的 磨损伤,并发现有疲劳条纹(图7.31)(疲劳条纹在显微组织复 杂的钢中不常出现。本案例中的显微组织主要是晶粒尺寸均匀的 单相铁素体。)试块切开后产生的断口表面如图7 .32所示,且 有韧窝状的形貌,表面这个区域是因空洞聚集而产生的 •
金属零件失效分析及实例 (DEMO)

金属零件失效分析及实例一、轴的失效分析1.1 轴的失效类型轴是用来支承旋转,并传递动力和运动的部件。
轴可以承受各种类型的载荷,如拉伸、压缩、弯曲或扭转及各种复合载荷。
有时还承受振动应力。
在这些载荷作用下,使轴失效的最常见的类型是轴的疲劳断裂。
疲劳破坏起始于局部应力最高的部位,有些机械由于设计、制造、装配和使用不合理,也造成轴过早地发生疲劳断裂。
轴的疲劳通常可分为3种基本类型:弯曲疲劳、扭转疲劳和轴向疲劳。
弯曲疲劳可由下面几种类型的弯曲载荷造成:单向的、交变的和旋转的。
在单向弯曲时,任一点的应力都是变动的,变动应力只改变大小而不改变方向。
在交变弯曲和旋转弯曲时,任意一点的应力都是交变的,即应力在方向相反的应力之间循环变化。
扭转疲劳常因施加变动或交变的扭转力矩产生。
轴向疲劳则由于施加交变或变动的拉伸—压缩载荷的结果。
承受了变应力的轴,由于机械的或冶金的因素,或两者综合的结果导致轴的疲劳断裂。
机械影响因素包括了小圆角、尖角、凹槽、键槽、刻痕及紧配合处。
冶金影响因素包括了淬火裂纹、腐蚀凹坑、粗大的金属夹杂物及焊接缺陷等。
疲劳破坏占失效轴的50%以上。
在低温环境中或是在冲击及快速施加过载时,将会使轴发生脆性断裂。
脆性断裂的特征是裂纹以极高的扩展速度(大约1800m/s或更大)发生突然断裂,而在断裂源处只有小的变形迹象。
这种类型的断裂特征是断裂表面上存在着鱼骨状或人字形花样的标志,人字形的顶点指向断裂源。
一些表面处理能使氢溶解入高强度钢中,使轴脆化而断裂,例如,电镀金属会引起高强度钢的失效。
轴的韧性断裂(显微空穴聚合的结果)在断裂表面上呈现有塑性变形的迹象,类似在普通拉伸试验或扭转试验试样中所观察到的情况。
对拉伸断裂的轴这种变形,用目视检验是容易见到的,但是,当轴扭转断裂时,则变形是不明显的。
在正常工作条件下轴很少发生韧性断裂。
但是,如果对工作要求条件估计过低,或者所用材料强度达不到预定数值,或者轴受到单一过负载,也可能发生韧性断裂。
设计失效分析DFMEA经典案例剖析-图文

CC(关键性特性) 9-10级 SC(重要特性) 5-8级
5级以上均要措施对策,5级以下可以考虑 。
五:DFMEA应用与表格制作实战第1步 ——填写表头
注意时间是随 时更新的!
五:DFMEA应用与表格制作实战第2步
——寻找失效点
•用尽可能简明的方字来说明被分析项目要满足 设计意图的功能,包括该系统运行的环境信息( 如说明温度、压力、湿度范围)。如果该项目有 多种功能,且有不同的失效模式,应把所有功能 单独列出 1
什么叫失效?
五:DFMEA应用与表格制作实战第2步
——找失效点之2-失效模式
失效的定义 在失效分析中,首先要明确产品的失效是什么,否 则产品的数据分析和可靠度评估结果将不一样,一般 而言,失效是指:
容部分,这里是正文内 容部分,这里是正文
五:DFMEA应用与制作实战
DFMEA一般制作流程:
1.DFMEA的准备工作
2.制作DFMEA
a)成立小组(一般以3~4 人)可作为多方论证小组 中的子组
b)资料准备: •QFD设计要求 •可靠性、质量目标 •明确产品的使用环境 •类似产品的FMA/FTA资料 •工程标准 特殊特性明细表
* 检测失效的能力?
Detection
* 风险优先指数?
Risk Priority Number (RPN)
* 改善方案?
Recommended action
3.推行DFMEA的理由
•FMEA是一种用来评估系统、设计、过程或服务等所有可能会发生 的故障的方法,所以,推行它的理由往往有:
•产品责任法的要求---谁对产品的缺陷而造成的损害负责? •ISO/TS 16949 等质量体系的要求 •提高产品或服务的质量、可靠性和安全性 •提高企业的形象和竞争力 •减少产品的开发时间和成本 •协助对新的生产和组装过程进行分析 •确定和预防故障 •加强通过团队合作解决问题的文化 •形成企业内持续改进文化的有力工具
电感零件常见失效模式及分析手法

(1)不良品外观检查确认(非破坏)
(2)不良品/良品电气特性比对确认(非破坏)
经过电气测试确认:2pcs 不良品电感值都小于规格要求的 33uH±20% 的范围,DCR 明显小于规格值 0.35(Ω)max.基本判断不良品为短路失 效。
3.不良品进一步 Wire 拆解分析(破坏)
4. Core 验证分析(破坏) Core 外观检查 OK,不良品与库存新品拆解进行对比分析将拆解后的库 存新品的 Wire 绕制上在不良品的 Core 上,感值恢复为 29.8uH;将拆 解后的不良品的 Wire 绕制上在库存新品的 Core 上,感值为 17.1uH, 同样出现感值偏低现象。因此初步排除 Core 不良的原因,不良的问题 点是出现在 Wire 方面。4
电子零件失效分析之电感
对于电子品质工程师来说电子元器件失效是非常麻烦的事情,比如 某个半导体器件外表完好但实际上已经半失效或者完全失效会在硬件 电路调试上面花费大把的时间,有时甚至炸机。所以掌握各类电子元器 件的实效机理与特性是工程师必不可少的知识。
电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁 通,导线的磁通量与产生此磁通量的电流成之比。
1 .芯片电感机械/外力异常分析---本体 Crack 裂痕或破损:
电气异常分析---内电极熔化 Crack 裂痕开路:
总结:
1.熟知零件的组成结构,材料,制程和特性 2.FA 一般流程
例如:不良率,异常现象,零件 DateCode, 发生不良的流程,PCB 上发生异常的位置,终端产品及客户等
磨损/异物附着、产品底部平整度不佳/底部料片偏移等,对此改善和应 对的措施为原材料厂商提供电镀报告,可焊性测试验证。
机械零件失效形式及简要分析

I断裂脆性断裂是一种构件未经明显的变形而发生的断裂,当零件在外载荷作用下,由于某一危险截面上的应力超过零件的抗拉强度时将会发生脆性断裂,发生脆性断裂时,零件几乎没有发生过塑性变形。
如杆件脆断时没有明显的伸长或弯曲,更无缩颈,容器破裂时没有直径的增大及壁厚的减薄。
图1. 脆性断裂实例分析:传统力学把材料看成是没有缺陷的、没有裂纹的、均匀的和连续的理想固体,但是,实际工程材料在制备、加工(冶炼、铸造、锻造、焊接、热处理、冷加工等)及使用中(疲劳、冲击、环境温度等)都会产生各种缺陷(白点、气孔、渣、未焊透、热裂、冷裂、缺口等)。
如上图所示的齿轮,由于其内部的缺陷和裂纹会在零件使用过程中产生应力集中,该处所受拉应力为平均应力的数倍。
过分集中的拉应力如果超过该齿轮材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。
图2. 韧性断裂实例分析:韧性断裂又称延性断裂。
断裂前发生过明显的塑性变形的断裂,是塑性变形的终结。
消耗较高能量,以金属撕裂为特征的一种断裂,是与脆性断裂相对应的一种断裂模式。
物体受力时其最危险截面或区域,从弹性变形逐渐转入塑性变形状态,这时截面的某一邻域内力学参量的某一组合达到临界点,断裂口附近出现明显的宏观塑性变形, 微观断口表面呈韧窝状。
图3. 疲劳断裂实例分析:零件在交变载荷下经过较长时间的工作而发生断裂的现象就叫作疲劳断裂。
一开始,疲劳微裂纹在零件应力最高强度最低的基体上产生,之后裂纹会稳定扩展,但扩展速度较低,最后,当裂纹尺寸足够大结构有效受力截面小到不足以承受所加载荷时,零件即发生断裂,如图所示。
II磨损磨擦副表面的材料微粒,由于机械力与化学腐蚀的作用而脱离母体,使零件尺寸和表面状态改变,最终导致功能丧失,称为磨损失效。
磨损是机械的重要失效形式,它包括复杂的化学过程和物理过程,其主要形式有:粘着磨损(材料从一个磨擦表面移到另一个表面)、磨料磨损(硬磨料在摩擦表面犁出沟槽或道痕,使材料从零件表面脱落)、腐蚀磨损(化学腐蚀参与作用下的磨料磨损)和疲劳磨损(接触应力作用使材料表面疲劳剥落)等。
机械零件的失效分析

如机床主轴、大型立式车床横梁、镗 床镗杆,机床导轨等。为了保证加工精度,要 求立式车床横梁因刀架重力产生的弹性变形要 小。若横梁刚度不够,则会造成车削的工件端 面中间凸的平面度误差,外圆有锥度。
接触疲劳磨损是零件表面在接触压应力的长期不断 反复作用下引起的一种表面疲劳剥落破坏现象。表现为在 接触表面上出现许多针状或痘状的凹坑称麻点。如长期工 作的齿轮的齿表面产生大量麻点后其啮合情况恶化,引起 噪声增大,振动增加,甚至齿根折断。
1.1 机械零件常见的失效形式
高温下工作零件的失效
对于许多在高温下工作的零件,只考虑室温下的 力学性能是不够的,因为高温下材料的强度随温度升高和 加载时间的延长而降低。
1.1 机械零件常见的失效形式
断裂失效
韧性断裂1.1 机械零件常见的失效形式
断裂失效
脆性断裂
脆性断裂实物
河流花样
1.1 机械零件常见的失效形式
断裂失效
疲劳断裂
疲劳断裂实物
疲劳断裂显微形貌
1.1 机械零件常见的失效形式
断裂失效
断裂是最危险的一种失效形式,在 机械零件设计时,认真考虑如何防止断裂 事故发生是非常重要的。
1.2 机械零件失效的原因
•零件选材
选材错误或不合理会造成成批 零件报废,另外,材料的杂质、组织 状态对零件性能有显著的影响,因此 选材时应充分考虑并做认真检查。
1.2 机械零件失效的原因
•零件加工与装配
因零件的冷热加工或热处理不当 而产生的质量缺陷,也会构成引发零件 失效的危险源。机器装配或安装过程中, 由于装配不良,对中性较差等问题,使 机器在运转时产生附加应力及振动,就 会使零件过早失去应有功能。
机械零部件失效机理与分析

机械零部件失效机理与分析引言机械零部件是构成机械设备重要组成部分,其失效可能导致设备无法正常运行,给生产和工作带来不利影响。
因此,理解机械零部件失效的机理并能进行合理的分析和预防措施对于保障设备的稳定运行至关重要。
本文将探讨机械零部件失效的机理和分析方法。
一、机械零部件失效的机理机械零部件失效的机理主要包括以下几个方面。
1.疲劳失效在机械装置中,通常会不断受到交变的载荷作用,使得零部件产生应力和应变的变化。
长时间内反复交替的应力作用会导致疲劳失效。
疲劳裂纹的产生和扩展是疲劳失效的重要原因。
2.磨损失效磨损失效是机械零部件常见的一种失效形式,主要包括磨粒磨损、磨磨损和疲劳磨损等。
机械零部件由于长时间的摩擦会出现表面变得粗糙,导致零部件之间的相互接触面积增大,从而加速磨损过程。
3.材料腐蚀机械零部件在工作过程中,可能会受到一些介质的侵蚀,导致材料表面的腐蚀和损害。
腐蚀会使材料表面产生裂纹和孔隙,降低其强度和耐久性,最终导致失效。
4.过载失效过载失效是指机械零部件在超出其正常工作范围的载荷作用下发生力学性能的突然变化,从而导致零部件失常甚至破裂。
过载失效通常发生在突发事件或设计错误等情况下。
二、机械零部件失效的分析为了准确分析机械零部件失效的原因,可以采取以下方法。
1.外观检查首先进行外观检查,检查零部件的外观是否有裂纹、变形或腐蚀等情况。
通过观察表面痕迹和形貌,可以初步判断零部件可能的失效原因。
2.材料分析通过对零部件材料的成分分析和显微组织观察,可以判断材料的性能是否符合要求,是否有明显的缺陷或异物存在。
这对于进一步了解零部件失效的原因非常重要。
3.断裂分析如果零部件发生断裂,可以进行断裂分析,分析其断口的形貌和特征。
通过断口分析,可以了解断裂发生的形式,如韧性断裂、脆性断裂等,从而进一步判断失效原因。
4.力学性能测试针对机械零部件的失效,可以通过力学性能测试来检测零部件的强度、硬度和韧性等参数。
设备关键部件失效原因分析与预测方案总结

设备关键部件失效原因分析与预测方案总结概述设备关键部件的失效会给企业生产和效益带来严重影响。
因此,对设备关键部件的失效原因进行分析并提出预测方案具有重要意义。
本文将从常见的设备关键部件失效原因出发,进行详细分析,并提出一系列预测方案,以帮助企业有效减少设备关键部件的失效率。
一、设备关键部件失效原因分析1. 设备老化设备在长时间的工作中,会产生疲劳、磨损和老化等问题,导致关键部件失效。
2. 材料质量问题关键部件使用的材料质量问题是导致失效的主要原因之一。
例如,材料的强度、耐磨性、耐腐蚀性等性能不达标或存在缺陷,会直接导致关键部件失效。
3. 错误操作错误操作是导致设备关键部件失效的常见原因之一。
操作人员对设备的误操作、忽视维护和保养等问题会加速关键部件的失效。
4. 环境因素环境因素也会对设备关键部件的失效产生一定的影响。
如温度、湿度、腐蚀性气体等因素,都可能导致关键部件失效。
5. 设计缺陷设备关键部件的设计缺陷也是导致失效的重要原因之一。
设计上的缺陷可能会使得关键部件承受超负荷工作,加速失效过程。
二、设备关键部件失效预测方案1. 实施定期检测定期对设备关键部件进行检测,包括材料性能、磨损程度、疲劳情况等方面。
通过定期检测,可以预测关键部件的失效趋势,及时采取措施进行维护和更换。
2. 建立监测系统建立设备关键部件的监测系统,通过在线监测设备的工作状态,实时获取关键部件的工作状况,捕捉潜在问题的信号。
同时结合数据分析技术,进行故障预警和失效预测。
3. 引入智能化技术利用智能化技术,对设备关键部件进行远程监控、故障诊断和预测分析等。
通过引入人工智能、大数据和物联网等技术,实现对关键部件的精准检测和失效预测,进一步提高设备的使用效率和稳定性。
4. 加强人员培训加强操作人员的培训,提高其对设备关键部件的认识和理解。
培养操作人员的关键部件维护和保养意识,加强其操作技能和知识储备,减少误操作导致的关键部件失效。
5. 不断优化设计持续优化设备关键部件的设计,提高其可靠性和耐久性。
设计失效分析DFMEA经典案例剖析

优质的产品是企业赢得市场 份额的关键因素之一。通过 DFMEA分析优化产品设计, 可以提高产品的竞争力,帮
助企业抢占市场份额。
增加企业收益
提高产品质量、降低生产成 本和增强市场竞争力都可以 为企业带来更多的收益。
07
总结与展望
DFMEA应用现状及挑战
01
应用现状
02 广泛应用于产品设计阶段,以预防潜在的设计缺 陷。
根据风险等级划分结果,优先处 理高风险失效模式,制定相应的 改进措施。
02
改进措施实施与验 证
实施改进措施后,对产品进行重 新评估,确保改进措施的有效性。
03Βιβλιοθήκη 持续改进在产品生命周期中持续进行 DFMEA分析,不断优化产品设 计,提高产品质量和可靠性。
03
经典案例一:汽车零部件设计 失效分析
案例背景介绍
改进措施实施及效果验证
改进措施
针对识别出的失效模式和原因,采取了相应的改进措施,如优化散热设计、改进电源管理模块、修复软件编码错误和 内存泄漏等。
效果验证
在实施改进措施后,对设备进行了重新测试和验证。结果显示,电池温度明显降低,屏幕闪烁问题得到解决,应用程 序运行稳定且不再崩溃。
经验教训
该案例表明,在设计阶段充分考虑潜在失效模式和影响至关重要。通过DFMEA等方法进行预防性分析, 可以及早发现并解决潜在问题,提高产品的可靠性和安全性。同时,持续改进和优化设计也是提升产品 质量和用户满意度的关键所在。
探测度评估
评估现有控制措施在多大程度上能够探测到失效模式的发生。
风险优先数计算
计算风险优先数(RPN)
将严重度、频度、探测度的评估结果相乘,得到每种失效模式的风险优先数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零件失效分析方案设计
实验目的
⑴了解失效分析的基本方法与基本技术;
⑵了解断裂零件断口的宏观形貌特征与失效模式、失效原因之间的关系;
⑶分析材料组织、性能对零件加工及使用过程中失效的影响;
⑷通过分析,提出预防和改进的措施。
实验仪器设备、失效零件
照相机、放大镜;
切割机、砂轮机、镶嵌机、抛光机;
洛氏硬度计;
金相显微镜、CCD数码成像系统。
失效零件选择60Si2CrA弹条。
实验原理
1.材料常见的失效形式及其判断方法;
2.材料典型断裂失效断口的形貌及其特征;
3. 断口分析技术;
4.裂源及裂纹扩展方向的判别;
5. 力学性能测试技术。
失效分析
⑴选择失效零部件,进行宏观外形与尺寸的观察和测量,拍照留据,确定重点分析的部位。
⑵调查零部件的服役条件和失效过程。
⑶查阅失效零部件的有关资料,包括零部件的设计、加工、安装、使用维护等方面的资料。
3.5:收集资料:该零件在相同\不同工作条件下的实效形式,观察断口情况,统计相关信息;对本零件的实效可能性做出几种假设,在以后实验中留意相关证据,验证假设是否正确。
(PS:有点类似人工智能的推理模式)
⑷试验研究
实验方法与步骤
1、对整个零件进行检查,包括
(1)断裂形式、部位及塑性变形情况,并注意裂纹源区;
(2)有无腐蚀痕迹;
(3)有无磨损迹象;
(4)表面状况(有无机械损伤,颜色变化,氧化及脱碳现象);
(5)原材料质量,加工缺陷等。
(6)注意与假设对比:看是否有假设相同的,相同则进一步验证其他的,不同则做更多的假设.PS:一定要在假设中做一条我们最后要得出的。
2、断口宏观分析
用放大镜观察断口表面,主要内容有
1.裂纹源与终止点;
2.断裂面、裂纹扩展方向;
3.断口附近的塑性变形情况;
4.断口是否清洁光亮;
5.断口结构特点、贝纹特征及终端区大小,
6.注意与假设对比:看是否有假设相同的,相同则进一步验证其他的,不同则做更多
的假设.PS:一定要在假设中做一条我们最后要得出的。
并拍照留据。
3、断口硬度检测
在断口附近取若干个样本检测点,用洛氏硬度计进行硬度检测并与标准硬度值进行比较。
4.金相检测
在断裂件上截取金相试样,经镶嵌、打磨和抛光,再用3%硝酸酒精溶液侵蚀后在金相显微镜下进行显微组织观察。
5、下结论:通过以上实验得出一个结论:
对预防该类零件的实效提出建议:
对本实验做一个总结:缺点和优点,值得改进与发扬的地方。
PS:我觉得该有这样一个过程,然后你加上大家讨论,开会得出步骤:。