第九章 电磁感应 电磁场(一)作业答案
大学物理_第九章_课后答案
∫L B
�
外
� ⋅ dl = µ 0 ∑ I = 0 ,与
∫L
� � � B外 ⋅ dl = ∫ 0 ⋅ dl = 0 是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实 �
际上以上假设并不真实存在,所以使得穿过 L 的电流为 I ,因此实际螺线管若是无限长时, 只是 B外 的轴向分量为零,而垂直于轴的圆周方向分量 B⊥ = 的距离.
b ),(3)导体圆筒内( b < r < c )以及(4)电缆外( r > c )各点处磁感应强度的大小 � � 解: ∫ B ⋅ dl = µ 0 ∑ I
L
(1) r < a
Ir 2 B 2πr = µ 0 2 R B= µ 0 Ir 2πR 2
(2) a < r < b
B 2πr = µ 0 I B= µ0 I 2πr
(3) b < r < c
B 2πr = − µ 0 I
r 2 − b2 + µ0 I c2 − b2 µ 0 I (c 2 − r 2 ) B= 2πr (c 2 − b 2 )
(4) r > c
B 2πr = 0 B=0
题 9-16 图
题 9-17 图
9-17 在半径为 R 的长直圆柱形导体内部,与轴线平行地挖成一半径为 r 的长直圆柱形空 腔,两轴间距离为 a ,且 a > r ,横截面如题9-17图所示.现在电流I沿导体管流动,电流均 匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 解:空间各点磁场可看作半径为 R ,电流 I 1 均匀分布在横截面上的圆柱导体和半径为 r 电 流 − I 2 均匀分布在横截面上的圆柱导体磁场之和. (1)圆柱轴线上的 O 点 B 的大小: 电流 I 1 产生的 B1 = 0 ,电流 − I 2 产生的磁场
大学物理试卷答案(15及以后)
第九章 电磁场理论(一)电介质和导体学号 姓名 专业、班级 课程班序号一 选择题[ C ]1. 如图所示,一封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是 (A) C A B U U U == (B) C A B U U U => (C) U U U A C B >> (D) C A B U U U >>[ D ]2. 一个未带电的空腔导体球壳内半径为R 。
在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为(A) 0 (B) d q 04πε (C) R q04πε (D) )11(40Rd q-πε[ D ]3. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则(A) 0 U >U A B ≠ (B) 0 U >U A B = (C) A B U U = (D) A B U U <[ A ]4. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源。
再将一块与极板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板位置无关 (B) 储能减少,但与金属板位置有关 (C) 储能增加,但与金属板位置无关 (D) 储能增加,但与金属板位置有关[ C ]5. C 1和C 2两空气电容器并联以后接电源充电,在电源保持联接的情况下,在C 1中插入一电介质板,则 (A) C 1极板上电量增加,C 2极板上电量减少 (B) C 1极板上电量减少,C 2极板上电量增加 (C) C 1极板上电量增加,C 2极板上电量不变(D) C 1极板上电量减少,C 2极板上电量不变二 填空题1. 一半径r 1 = 5cm 的金属球A ,带电量为q 1 =2.0×10-8C; 另一内半径为 r 2 = 10cm 、 外半径为 r 3 = 15cm 的金属球壳B , 带电量为 q 2 = 4.0×10-8C , 两球同心放置,如图所示。
第九章 电磁感应参考答案
第九章 电磁感应参考答案学 生 用 书§9.1 电磁感应电流条件 楞次定律【典型例题】[例1]1.根据感应电流的产生条件可知,BC 有感应电流,AD没有感应电流.[例2]磁铁向下运动时,穿过线圈的磁通量增加;根据楞次定律可知,线圈中产生感应电流的磁场方向与原磁场方向相反(向上),与原磁场相互排斥;再由安培定则可判定感应电流的方向(即图中箭头方向相同),故本题应选B .[例3]BC (要产生B 环中所示的电流,感应磁场方向为垂直纸面向外,由楞次定律知A 环内的磁场应向里增强或向外减弱,由安培定则可知BC 正确.)[例4]D (金属线框进入磁场时,由于穿过线框的磁通量增加,产生感应电流,根据楞次定律判断电流的方向为a b c d a →→→→.金属线框离开磁场时,由于穿过线框的磁通量减小,产生感应电流,根据楞次定律判断电流的方向为a d c b a →→→→.根据能量转化和守恒定律可知,金属线框的机械能将逐渐减小,转化为电能,如此往复摆动,最终金属线框在匀强磁场内摆动,由于d 0 L ,满足单摆运动的条件,所以,最终为往复运动.) 【当堂反馈】1.当滑动变阻器滑动触头左右滑动时,通电线圈在铁芯内部产生磁场的磁通量发生变化,故a 、b 两环中有感应电流,而穿过c 环的合磁通总为零,故c 环中无感应电流,本题选A .2.AD (据楞次定律,当S 闭合时,穿过B 线圈的磁场方向向上且在增大,B 线圈中的感应电流产生的磁场方向与之相反,进而判断出通过电流表的电流方向自左向右,根据楞次定律用同样方法可判断D 正确. )3.电键S 从位置1拨到位置2的过程中,通过左边线圈的电流先减小到零、再增加到原来值,穿过右边线圈向右的磁通量先增大后减小,由楞次定律和安培定则可得电流计中的电流方向.故本题选C .§9.2 法拉第电磁感应定律【典型例题】[例1]A (螺旋桨叶片在磁场中垂直旋转切割产生的感应电动势===ω221Bl v Bl E πfl 2B ,再由右手定则可知a 点电势低于b 点电势.)[例2]A (设开始时导轨d 与Ob 的距离为x 1,导轨c 与Oa 的距离为x 2,由法拉第电磁感应定律知,移动c 或d 时产生的感应电动势E==,通过导体R 的电量为Q=IΔt=Δt=.由上式可知,通过导体R 的电量与导轨d 或c 移动的速度无关,由于B 与R 是定值,其电量取决于所围面积的变化.由于ΔS 1=ΔS 2=ΔS 3=ΔS 4,则通过电阻R 的电量是相等的,即Q 1=Q 2=Q 3=Q 4.[例3](1)感应电动势E=ΔΦ/Δt =SΔB/Δt =k L1L2感应电流I=E/R=kL 1L 2/R ,方向从f 到e(2)因棒处于平衡,外力与安培力大小相等,方向水平向右, RL kL kt B BIL F 22101)(+==(3)为使棒中无感应电流,就要保持穿过abef 闭合回路的磁通量不变.即Φ=BS=BL1(L2+vt )=B0L1L2 得022B vtL L B +=,即B随t 按此规律减小.【当堂反馈】1.C (导体棒切割磁感线运动产生感应电动势BLv E =,R 1、R 2为相互并联的外电路,再由欧姆定律可得出本题应选C .)2.B (U =BLv )3.A (导体棒ab 在框架上向右匀速滑动切割磁感线,产生的感应电动势E =BLv 不变,而I =E /R 总,则回路中产生的感应电流逐渐减小.由t I Q =可知Q 1>Q 2.)4.A (由i=E/R=S B R t∆∆·∝Bt ∆∆=k 可知,在0—4T和2T—34T时间内i 的大小相等.在0—4T和2T—34T时磁场分别是垂直纸面向里减小和向外减小,现由楞次定律和安培定则可知其方向分别为顺时针和逆时针.)§9.3 互感和自感 电磁感应中的电路问题【典型例题】[例1]AD [(1)在图(a )中,设开关S 闭合时,上、下两支路电流分别为I 1、I 2,依题意知:I 1<I 2.在开关S 断开时,通过电阻R 的电流I 2立即消失;但由于线圈中产生自感现象,通过线圈电流不能突变,其大小只从I 1开始逐渐减小.因此开关断开前,通过灯泡的电流为I 1,断开后灯泡电流从I 1开始逐渐减小,所以灯泡D 在断开开关后逐渐变暗.(2)在图(b )中,设开关闭合时,上、下两支电路的电流分别为I 1′、I 2′,依题意知,I 1′>I 2′.当开关S 断开后,通过灯泡原电流I 2′立即消失;但线圈中产生自感现象,线圈中电流大小、方向不发生突变,在L 、R 、D 回路中,电流均从线圈中原电流I 1′开始逐渐减小.因此,开关闭合时,灯泡电流为I 2′;断开后,灯泡中电流突然增加为I 1′,并从I 1′开始逐渐减小,故开关断开时灯泡先闪亮,后逐渐变暗.][例2]只有左边有匀强磁场,金属板在穿越磁场边界时(无论是进入还是穿出),由于磁通量发生变化,板内产生涡流.根据楞次定律,涡流将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象.还可以用能量守恒来解释:有电流产生,就一定有机械能向电能转化,摆的机械能将不断减小.若空间都有匀强磁场,穿过金属板的磁通量不变化,无感应电流,不会阻碍相对运动,摆动就不会很快停下来.[例3]MN 滑过的距离为l /3时,它与bc 的接触点为P ,如图所示.由几何关系可知MP 长度为l /3,MP 中的感应电动势E =31Blv ,MP 段的电阻r =31R ,MacP 和MbP 两电路的并联电阻为r 并=32313231+⨯R =92R .由欧姆定律,PM 中的电流I =并r r E +,ac 中的电流I ac =32I ,解得I ac =RBlv 52.根据右手定则,MP 中的感应电流的方向由P 流向M ,所以电流I 的方向由a 流向c .R R 2【当堂反馈】 1.AC2.C3.D (导体棒转至竖直位置时,感应电动势E=B·2a·v/2=Bav 电路中总电阻R 总=+=R ,总电流I==,AB 两端的电压U=E-I·=Bav .)4.BCD (合上S 时,电感线圈产生自感电动势阻碍通过其电流的增加,电流只能逐渐增大,故A 、B 同时亮,以后A 灯逐渐变亮、B 灯逐渐变暗,由于线圈直流电阻为零,电路稳定时B 熄灭;断开S 时,A 灯电流为零立即熄灭,线圈产生自感电动势阻碍通过其电流的减小,与B 灯形成闭合电路,B 灯先闪亮、后熄灭.)§9.4 电磁感应中的力学问题【典型例题】[例1]A (给ef 一个向右的初速度,则ef 产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef 受到一个向左的安培力的作用而减速,随着ef 的速度减小,ef 产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.)[例2](1)受到竖直向下的重力,垂直斜面向上的支持力,和平行于斜面向上的安培力. (2)当ab 杆速度为v 时,感应电动势E =BL v ,此时电路中的电流I =E /R =BL v /R ,而ab 杆受到的安培力F =BIL =B 2L 2v /R .由牛顿第二定律,有mg sin θ-F =ma ,即a =g sin θ-B 2L 2v /mR .(3)当mg sin θ=B 2L 2v m /R 时,ab 杆达到最大速度v m ,则v m =mgR sin θ /B 2L 2. [例3](1)感应电动势E =Blv ,E I R= 所以 I =0时,v =0则: 22vx a==1m(2)最大电流 0m Blv I R= 022m I Blv I R'==安培力 2202B l v f I Bl R'===0.02N向右运动时 F +f =maF =ma -f =0.18N 方向与x 正向相反 向左运动时 F -f =maF =ma +f =0.22N 方向与x 正向相反 (3)开始时 v =v 0, 22m B l v f I B l R==F f m a += 22B l v F m a f m a R=-=-当v 0<22m aR B l =10m/s 时,F >0 方向与x 正向相反 当v 0>22m aRB l=10m/s 时,F <0 方向与x 正向相同[例4](1)在金属棒棒未进磁场,电路中总电阻:R 总=R L +R/2=4+ 2/2 = 5Ω线框中感应电动势:V V t BS t E 5.025.0241=⨯⨯=∆∆=∆∆=φ 灯泡中的电流强度 :A A R EI L 1.055.0===总(2)因灯泡中亮度不变,故在4秒末金属棒棒刚好进入磁场,且作匀速直线运动,此时金属棒棒中的电流强度:0.14(0.1)0.32L LL R L I R I I I I A A R⨯=+=+=+=恒力F 的大小:F = F A = BId= 2×0.3×0.5 N = 0.3 N(3)金属棒产生感应电动势:V V RR RR R I E L L 1)42422(3.0)(2=+⨯+⨯=++=金属棒在磁场中的速度:s m s m BdE v /1/5.0212=⨯==金属棒的加速度:2/41s m t v a ==据牛顿第二定律,金属棒的质量:kg kg a F m 2.125.03.0===【当堂反馈】1.BC (当金属杆所受合力为零时速度最大,则有22sin /m m g B L v R α=,22sin m m gR v B Lα=.)2.D (由楞次定律可知G 中电流向下,导体棒在外力和安培力作用下作加速度减小的加速运动,穿过左边回路的磁通量增加越来越慢,最后CD 匀速运动时,G 中无感应电流.) 3.D (在II 位置,没有磁通量变化,所以没有感应电流,也不存在安培力,线框只受重力,所以加速度为g .在I 位置和III 位置有磁通量变化,有感应电流,也就存在安培力.在位置III 时速度大,所以在位置III 的安培力大,合力小了,所以加速度小了.即a 3<a 1.)4.(1)金属棒开始下滑的初速度为零,根据牛顿第二定律mg sin θ-μmg cos θ=ma ①由①式解得: a =4m/s 2 ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡 mg sin θ-μmg cos θ-F =0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率 Fv =P ④由③④两式解得 10P v F==m/s ⑤(3)设电路中电流为I ,两导轨间金属棒长为l ,磁场的磁感应强度为B B l v I R=⑥P =I 2R ⑦由⑥⑦两式解得 0.4B vl==T ,磁场方向垂直导轨平面向上.§9.5 电磁感应中的能量转化和图象问题【典型例题】[例1]ABD (2EQ R=,而E t∆φ∆=,随交变电流的电压、频率的增大而增大.)[例2]B [由(甲)图可知在0—1 s 内磁感应强度均匀增大,产生恒定的感应电流,根据楞次定律可判断感应电流的方向为逆时针,导体棒受到的安培力的方向是水平向左,棒静止不动,摩擦力方向水平向右,为正方向.同理,分析以后几秒内摩擦力的方向,从而得出f —t 图象为B 图.][例3](1)由右手定则可知:棒切割磁感线运动产生感应电流I 感方向由a→b ,棒受力的右侧视图如图示.当棒速稳定时棒受力平衡.设此时棒速为v .则有: P=Fv ① 由平衡条件得到:F=mgsinθ+F 安 ② F 安=BIL ③ I= E/R ④ E=BLv ⑤由①—⑤得到:v 2+v-6=0 v=2 m/s(负值舍去) (2)由动能定理得:W F -W 安-mgh=mv 2 ⑥W F =Pt ⑦ h=Ssin30°=2.8sin30° m=1.4 m ⑧ 联立得到:t=代入数据得t=1.5 s【当堂反馈】1.AD (剪断细线后,弹簧的作用使两棒分离,穿过回路的磁通量增大,回路中产生感应电流,但两棒运动方向相反,安培力的方向也相反,由于有感应电流的产生,系统的机械能减小,向电能转化.)2.C (通电螺线管内部产生的是匀强磁场,外部的磁场和条形磁铁的磁场相似,故B 从O 点进入螺线管时通过B 的磁通量是增加的;进入螺线管内部后,由于是匀强磁场,通过B 的磁通量不再变化,因而B 中没有感应电流;当B 从螺线管内部出来的过程,通过B 的磁通量则是减小的,所以在B 中会产生一个和进入时方向相反的感应电流.)3.(1)ab 边产生的感应电动势为E =BLv ① 线框中的感应电流为I =E /R ②ab 边所受的安培力F =BIL ③ 由①、②、③式代入数据解得 F =5×10-2N (2)线框中产生感应电流的时间 t =2s /v ④整个过程中线框所产生的焦耳热Q =I 2Rt ⑤由②、④、⑤式代入数据解得 Q =0.01J(3)在0~5×10-2s 时间内,ab 两端的电势差为15.0431=⋅=R I U V在5×10-2s ~1×10-1s 时间内,ab 两端的电势差为 U 2=E =0.2V在1×10-1s ~1.5×10-1s 时间内,ab 两端的电势差为05.0411=⋅=R I UVU ab /V t/s0.050.10 0.15 0.20 0.05 0.10 0.200.15电势差U随时间t变化的图线如图所示ab作业本§9.1 电磁感应电流条件楞次定律1.D2.B3.C(AB不动而CD右滑时,I≠0,但方向是逆时针,故A错.AB向左、CD向右滑动时,回路磁通量增加,I≠0,故B错.AB、CD向右等速滑动时,回路磁通量不变,I=0,故C对.AB、CD都向右滑但AB速度大于CD速度时,回路磁通量变化,I≠0,但方向是顺时针,故D错.)4.D(根据楞次定律的“阻碍”思想,安培力与重力总是相反的,所以D正确.)5.B(线圈C向右摆动,由楞次定律可知,线圈中电流产生的磁场减小,故导线ab应减速切割磁感线运动.)6.B(穿过回路的磁通量先增大后减小,由楞次定律可知,感应电流方向先是b→a,后变为a→b;再由左手定则可得,所受磁场力方向与ab垂直,开始为图中箭头所示反方向,后来变为箭头所示方向.)7.D(由楞次定律的推广含义判断.)8.B(线框中的合磁通量先是向纸外减小,后是向纸内增大,由楞次定律可得线框中感应电流的方向始终沿dcbad方向.)9.BC(若是匀强磁场,,则不产生感应电流,机械能守恒;若是非匀强磁场,则产生感应电流,由能量守恒定律可知,机械能能转化为电能.)10.D(由楞次定律可确定在t1—t2时间内A中电流为逆时针(此时B中电流为顺时针),异向电流相斥. )11.BC[a盘在外力作用下逆时针转动,其半径切割磁感线产生感应电动势,两圆盘中心与边缘通过导线构成闭合回路有感应电流.a盘受安培力为阻力,b盘中受安培力为动力,由右手定则得出电流流向,由左手定则判定b盘中安培力的方向,故B选项正确.b盘被动转动,其角速度一定小于a盘的角速度(若相等则无电流,b不会受安培力.]12.BC(本题可采用逆向推导,由果寻因,由左手定则、安培定则可得铁芯中感应电流的磁场方向向上,再由楞次定律和安培定则进行分析判断.)13.BD(认为超导体不消耗电能,由状态分析受力情况,从而确定磁极与电流的方向关系. )14.(1)如图所示(2)相反(3)相同§9.2 法拉第电磁感应定律1.D2.D (将磁铁缓慢或迅速插到闭合线圈的同一位置,磁通量的变化率不同,感应电流I= =N ,感应电流的大小不同,流过线圈横截面的电荷量q=I·Δt=N ·Δt=N,两次磁通量的变化量相同,电阻不变,所以q 与磁铁插入线圈的快慢无关.)3.D (横杆匀速滑动时,由于E =BLv 不变,故I 2=0,I 1≠0.加速滑动时,由于E =BIv 逐渐增大,电容器不断充电,故I 2≠0,I 1≠0.)4.D (电压表为理想电压表,故V 表读数为M 金属杆转动切割磁感线时产生的感应电动势的大小. U 0=B 0ω0r 2,mU 0=nB 0ω′r 2(r 为M 的长度),则ω′=ω0. )5.ABD (由E N B Lv =,04LN R S ρ=,2EP R=分析得出.)6.32Bd v /(3R ),自上向下7.E =N ΔΦ/t =10⨯0.2sin ︒30⨯0.2⨯0.2/0.1=0.4(V)8.线框受竖直向下的重力和安培力及竖直向上的拉力作用,由平衡条件,有2mg =mg +BIL ,由法拉第电磁感应定律,得感应电动势E =Δφ /Δt =ΔB /Δt ·S =kL 2/2,有闭合电路欧姆定律,得I =E /R ,据题意有B =kt .联立以上各式,有t =322Lk mgR .9.(1)E =BLv =0.1v (2) =-=m Rv l B F a /)(22 4.5 m/s2(3) 达到的最大速度时合力为零,022=-Rv l B F m,代入数据解得v m =10 m/s .10.(1)不管粒子带何种电荷,匀速运动必有Eq qB v =0 ①,即MN 板带正电,棒AB 向左运动,设AB 棒以速度v 向左运动,产生感应电动势为E vlB = ②,∴ q lvlB qB v =0 ③得 v =v 0(2)当AB 棒停止运动后,两扳通过AB 放电板间电场消失,仅受磁场力作圆周运动,位移为R qB mv =/0时转过圆心角60o.∴qBm T t 36π==④11.本题在流量计中产生的感应电动势可等效为长为c 的导体以流体速度v 切割磁感线产生的电动势,故E =Bcv ,所以I =Rr E +,r =ρabc ,而流量Q =vS =vbc ,联立以上各式解得Q =BI (bR +ρac ).§9.3 互感和自感 电磁感应中的电路问题1.A (由右手定则可得感应电流的方向,而122B lv U IR R vB l R==⋅=.)2.BC (在断开电键时,L 中原电流减小,由于自感作用,产生与原电流方向相同的自感电流流经灯泡,故灯不会立即熄灭,A 错;自感现象中阻碍L 中电流的减小,但阻止不了电流的减小,该减小是在原电流大小基础上减小的.原来L 中电流大于灯中电流,故自感电流通过灯泡的初始阶段,灯中的电流大于原来的电流,故灯应比原来更亮一下最后熄灭,B 正确;当用电阻代替L 时,断开K 不存在自感,A 应立即熄灭,则C 对,D 错.)3.B 4.B (在四个图中,产生的电动势大小均相等(E ),回路电阻均为4r ,则电路中电流亦相等(I ).B 图中,ab 为电源,U ab =I ·3r =3E /4,其他情况下,U ab =I ·r =E /4.)5.A (油滴恰好处于静止状态时 /mg qU d =,而22E n U t ∆φ∆==,解得t∆φ∆=2mgd /(nq ).) 6.BC (电路接通时,两个支路中的电流都要增大,自感线圈要产生自感电动势,左正右负,阻碍电流的增大;而电阻没有这样的性质,因此B 对,但阻碍并不阻止,电流还是增大了,因此最后两灯一样亮.在开关断开时,两个支路中的电流都要减小,L 中产生的自感电动势左负右正,阻碍电流的减小,两个支路形成了闭合回路,线圈中的能量通过闭合回路使A 、B 灯亮一会儿才熄灭.)7.C (导体圆环受到向上的磁场作用力,说明穿过它的磁通量减小.)8.D9.对油滴,qE =mg ,电场力向上.又因为油滴带负电,故场强向下,电容器上极板带正电,下极板带负电,线圈N 感应电动势正极在上端,负极在下端.由楞次定律知ab 向右减速运动或向左加速运动.10.(1)a 、b 杆上产生的感应电动势为E =BLv =0.50 V .根据闭合电路欧姆定律,通过R 0的电流I =RR E +0=0.25 A.(2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力F 大小相等,即 F 拉=F =BIL =0.025 N.(3)根据欧姆定律,ab 杆两端的电势差U ab =0R R ER+=R R BLvR+=0.375 V .11.(1)0043BLv R RBLv IR U adcb adcb AB ====;(2)Rv L B v L R I Q 03202=⋅=12.(1)粒子带负电. AB 棒向右运动,由右手定则可知,棒内产生的感应电流方向由B 到A ,所以金属板的a 板电势高,板间有由a 指向b 的匀强电场.由于粒子所受的重力mg 和电场力qE 都是恒力,所以必有重力和电场力相平衡,而洛伦兹力提供向心力,即电场力必为竖直向上,故粒子必带负电.(2)AB 棒中的感应电动势为:E =BLv电容器极板a 、b 上的电压就是电阻R 0上的电压U =重力和电场力平衡,有:mg=q粒子在极板间做匀速圆周运动,洛伦兹力提供向心力,有:qvB =m粒子的轨道半径满足:R≤,解得:v ≤1.0 m/s§9.4 电磁感应中的力学问题1.ABD (由于电磁感应现象总是起到阻碍作用,安培力的大小与运动速度有关F=B 2L 2v/R ,根据牛顿第二定律可知,线圈可能做匀速运动、加速度减小的加速或减减速运动.)2.AC (此过程中回路产生的感应电流不变,导体棒受到的安培力先沿斜面向上逐渐减小到零后反向增大,由平衡方程可知本题有两种可能.)3.A (杆在重力和安培力作用下运动,若安培力大于重力的两倍,则加速度大于重力加速度;由二力平衡可得,杆最终匀速运动的速度相同;杆整个运动过程能量守恒.) 4.A (根据E=BLv ,E=IR ,R=ρL/S ,m=DSL ,F 安=BIL ,a=(mg-F 安)/m ,推出2B va g Dρ=-,可见加速度与导线的粗线无关.)5.AD (ab 棒切割磁感线产生感应电动势,cd 棒不切割磁感线,整个回路中的感应电动势 E 感=BL ab v 1=BLv 1,回路中感应电流 I=,选项 C 错误.ab 棒受到的安培力为 F 安=BIL=B=,ab 棒沿导轨匀速运动,受力平衡.ab 棒受到的拉力为 F=F 摩+F 安=μmg+,选项 A 正确.cd 棒所受摩擦力为 f=μF 安=μ,选项 B 错误.cd 棒也匀速直线运动,受力平衡,mg=f ,mg=μ,μ=,选项 D 正确.)6.设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 E =B l (v 0-v )感应电流 21R R E I +=杆2作匀速运动,它受到的安培力等于它受到的摩擦力, B l I =μm 2g导体杆2克服摩擦力做功的功率: P =μm 2gv 解得:⎥⎦⎤⎢⎣⎡+-=)(2122202R R lB gm v g m P μμ7.(1)感应电动势2Eklt∆Φ==∆,感应电流2E kl Irr==,方向为逆时针方向a d e b a →→→→ (2)t =t 1(s )时,B =B 0+kt 1,F =BIl 所以301()kl FB kt r=+(3)要棒中不产生感应电流,则总磁通量不变20()Bl l vt B l+=,所以0B l Bl vt=+8.(1)刚进入磁场时,线框的速度v =12gh =10 m/s ,产生的感应电动势E =Bd v ,受到的安培力F =BId =B 2d 2v /R ,有线框匀速运动,得mg =F ,解得B =0.4 T .(2)线框匀速下落l 用时t 1=l /v =0.05 s ,剩下的时间t 2=Δt -t 1=0.1 s 内做初速度为v ,加速度为g 的匀加速运动,运动的位移s =v t 2+21gt 22=1.05 m ,则磁场区域的高度h 2=s +l =1.55 m .9.杆ef 受重力mg 、拉力F 、安培力f 做匀加速运动,有 F -mg -f =ma其中安培力222B d v f R=它的运动速度v =at ,拉力F 的功率P 随时间变化2222()2B d a t P Fv m g a at R==++杆bc 受两根平行导轨的拉力F 杆(方向向上)和重力及安培力(方向向上),处于静止. 拉力:222222B d v B d at F m g m g RR=-=-杆.开始时,安培力较小,拉力F 杆>0,方向向上;某时刻(222mgR tB d a=),F 杆=0,随时间推移,安培力增大,F 杆<0,方向变为向下.10.以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离221at L =,此时杆的速度at v =,这时,杆与导轨构成的回路的面积S =Ll ,回路中的感应电动势 Blv tBS E +∆∆= 而:B =kt ,()B k t t ktk tt∆+∆-==∆∆回路的总电阻R =2Lr 0,回路中的感应电流RE i =作用于杆的安培力Bli F = 解得 t r l k F 022123=,代入数据为N F 31044.1-⨯=§9.5 电磁感应中的能量转化和图象问题1.D (匀速即拉力等于安培力,拉力所做的功大小等于安培力所做的功的大小.根据公式E=BLV ,E=IR ,F=BIL ,W=FS ,可以推出W 2=2W 1,电流做功都用来发热,所以Q 2=2Q 1.)2.A (线圈在进入和转出磁场的过程中磁通量才发生变化,故在这样的两个过程中才有感应电流.进入磁场的过程是磁通量增加,由楞次定律可知电流的方向为逆时针,符合题目要求.由于线框是扇形的且匀速转动,可知磁通量的变化是均匀的,故得到的感应电流是稳定的,所以选项A 是正确. )3.BCD (导体棒ab 充当电源,由闭合电路欧姆定律和功、功率的的公式可解得本题答案) 4.AD (t 1时刻Q 的磁场增强,通过P 的Φ增加,P 有向下运动的趋势,故F N >G .而t 2、t 4时刻Q 的磁场不变,P 中无感应电流,故Q 对P 无磁场力作用,有F N =G.t 3时刻P 中虽有感应电流,但Q 中电流为零,P 、Q 无相互作用力,故t 3时刻F N =G .)5.A (由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小tS B t∆∙∆=∆∆Φ=ε,Rt S B RE I ∙∆∙∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误.)6.(1) cd 棒静止时 θsin g m BIL cd = cd 棒两端电压为 Ir U =代入数据解得:1=U V(2)ab 棒向上匀速运动时θsin g m BIL F ab +=回路中电流为rBL I 2υ=则:)/(10sin 222s m LB gr m cd ==θυ代入数据解拉力功率 )(15W F P ==υ7.(1)在从图甲位置开始(t =0)转过60o 的过程中,经t ∆,转角t ∆=∆ωθ,回路的磁通量为:B l 221θ∆=∆Φ;由法拉第电磁感应定律,感应电动势为:tE ∆∆Φ=因匀速转动,这就是最大的感应电动势,由闭合欧姆定律可求得:2021Bl RI ω=,前半圈和后半圈I (t )相同,故感应电流频率等于旋转频率的2倍: ωπ=f ;(2)图线如图丙所示:8.(1)加速度越来越小的加速直线运动; (2)感应电动势 E =Blv ,感应电流 E I R=安培力 22m B L v F B IL R==由图线可知金属杆受拉力、安培力和阻力作用,匀速时,合力为零,22B L v F f R=+ ∴ 2222R Rf v F B LB L=-由图线可以得到直线的斜率 k =2,而 22R k B L=,即:1B ==T(3)由图线的直线方程:2222R Rf v F B LB L=-可知直线的截距为 224Rf B L-=-m/s∴ 可以求出金属杆所受到的阻力f ,代入数据可得:f =2N9.(1)线框在下落阶段匀速进入磁场的瞬间222B a v m g f R=+解得: 222()m g f R v B a-=(2)线框从离开磁场至上升到最高点的过程211()2m g f h m v +=线框从最高点回落至进入磁场瞬间221()2m g f h m v -=解得:1222)R v B a==(3)线框在向上通过磁场过程中220111()()22m v m v Q m g f a b -=+++v 0=2v 1所以: 222443[()]()()2RQ m m g f m g f a b B a=--++10.(1)由图可知,在t =1.0s 后,导体杆做匀速运动,且运动速度大小为:s m ts v /2=∆∆=此时,对导体AC 和物体D 受力分析,有:F T T +'=,Mg T ='; 对电动机,由能量关系,有:rI Tv IU 2+=由以上三式,可得:N T 5.3=,NF 5.0=再由BILF=、RE I=及BLvE=,得:m vFR BL 0.11==(或由REr I Mgv UI 22++=及BLvE=求解)(2)对于导体AC 从静止到开始匀速运动这一阶段,由能量守恒关系对整个系统,有:FW rt I v m M Mgh UIt ++++=22)(21则FW Q==3.8J单元测试卷第九章测试题 电磁感应一、 单选题1.C (导体棒AB 运动的加速度mRv L B F a /22-=,故开始阶段作加速度减小的的加速运动,而v RBLv I ∝=.)2.ABC (将图中铜盘A 所在的一组装置作为发电机模型,铜盘B 所在的一组装置作为电动机模型,这样就可以简单地把铜盘等效为由圆心到圆周的一系列“辐条”,处在磁场中的每一根“辐条”都在做切割磁感线运动,产生感应电动势,进而分析可得.)3.A (当导线中的电流突然增大时,可判断线框整体向外的磁通量增大,由楞次定律可判断线框中将产生顺时针方向的电流,根据左手定则可判断cd 边和ab 受到导线的安培力向右,而ad 、bc 两边整体所受安培力为零,因此,整个线框所受安培力向右,即x 轴正向.)4.A (磁性小球通过塑料管时不产生感应电流,做自由落体运动;但通过金属管时将产生感应电流,受到安培力作用,阻碍其相对运动.)5.D (电子将向M 板偏转,上部线圈中应产生上正下负的感应电动势,再对由楞次定律判断.) 6.B (图a 中,ab 棒以v 0向右运动的过程中,电容器开始充电,充电后ab 棒就减速,ab 棒上的感应电动势减小,当ab 棒上的感应电动势与电容器两端电压相等时,ab 棒上无电流,从而做匀速运动;图b 中,由于R 消耗能量,所以ab 棒做减速运动,直至停止;图c 中,当ab 棒向右运动时,产生的感应电动势与原电动势同向,因此作用在ab 棒上的安培力使ab 棒做减速运动,速度减为零后,在安培力作用下向左加速运动,向左加速过程中,ab 棒产生的感应电动势与原电动势反向,当ab 棒产生的感应电动势与原电动势大小相等时,ab 棒上无电流,从而向左匀速运动,所以B 正确.) 二、 多选题7.A D (由动能定理可得A 选项正确、BC 选项错误;由于各力做总功为零,则恒力F 与重力的合力所做的功等于等于克服安培力做的功,即等于电阻R 上发出的焦耳热.)8.CD (从能量的角度考虑,导轨光滑时,金属棒的动能全部转化为电能,最终以焦耳热的形式释放出来;导轨粗糙时,金属棒的动能一部分转化为电能,另一部分通过摩擦转化为热能,而安培力做功可以用机械能与电能之间的转化来量度,因此产生的电能不相同,所以A 错;电流做功可产生焦耳热,因此可以比较电流做功不同,B 错;但两个过程中,机械能都全部转化为热量,所以C 对;两个过程中,第二种种情况运动时间较小.)9.BD (产生感应电流后,两导体滑杆中的电流相等,受到磁场的作用力大小相等,感应电流的磁场阻碍原磁通量的增大,故两杆同时向右加速运动,因F 为恒力,磁场对杆的作用力为变力,随速度的增大而增大,因而开始时两杆做变加速运动(ab 加速度减小,cd 加速度增大),当两杆具有相同加速度时,它们以共同的加速度运动.)10.BCD (电流I 增大的过程中,穿过金属环C 的磁通量增大,环中出现逆时针的感应电流,可以将环等效成一个正方形线框,利用“同向电流相互吸引,异向电流相互排斥”得出环将受到向下的斥力且无转动,所以悬挂金属环C 的竖直拉力变大,环仍能保持静止状态.) 11.BD (等离子气流由左方连续以v 0射入两板间的匀强磁场中,正电荷向上偏转、负电荷向下偏转,通过ab 直导线的电流向下,由楞次定律可分时间段判断cd 导线中的电流方向,再由同向电流相互吸引、反向电流相互排斥分析得出.) 三、 填空题12.由题意可知,A 环的面积是B 环的4倍,所以A 环产生的感应电动势是B 环的4倍,A 环的电阻是B 环的2倍.磁场只穿过A 环时,A 环视为电源,B 环为外电路,此时有BA A R R E +RB =U ;磁场只穿过B环时,B 环是电源,A 环为外电路,此时有BA B R R E +R A =U ′.由以上关系可求得U ′=U /2.13.(1)S 闭合时:A 灯的电流从0一直增大到0.15A ;B 灯的电流从0到0.2A 然后到0.15A ,(2)S 断开时;A 灯的电流从0.15A 瞬间变为0,B 灯的电流从0.15A 慢慢得变到0.14.根据U=Bdv 得v = 流量Q=πd 2v =.四、 论述与计算题15.推导证明略16.该同学的结论是正确的.设转轮的角速度、转速分别为ω和n ,轮子转过θ角所需时间为⊿t ,通过线圈的磁通量的变化量为。
大学物理(少学时)第9章电磁感应与电磁场课后习题答案
9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。
已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。
若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。
解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。
当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。
大学物理(少学时)第9章电磁感应与电磁场课后习题答案
大学物理(少学时)第9章电磁感应与电磁场课后习题答案9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小.解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ?的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ?与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ?不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=?=?,θtg x y ?=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。
已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。
若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。
解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。
当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBv ?02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=??v v v其方向沿BA 方向。
大学物理课后习题答案第九章
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。
大学物理第九章习题答案
B
A
O
C O
B
(A)A 点比 B 点电势高。 (B)A 点与 B 点电势相等。 (C)A 点比 B 点电势低。 (D)有稳恒电流从 A 点流向 B 点。 3、一根长为 L 的铜棒,在均匀磁场 B 中以匀角速度 旋转着, B 的方向垂直铜棒转动的 平面,如图。设 t 0 时,铜棒与 Ob 成 角,则在任一时刻 t 这根铜棒两端之间的感应电动势是:[ (A) L B cos(t ) (B)
0 I I b ldx 0 In 2 x 2 a
0 I 2 x
2、如图所示,矩形导体框架置于通有电流 I 的长直导线旁,且两者共面, ad 边与长直导 线平行, dc 段可沿框架移平动。设导体框架的总电阻 R 始终保持不变,现 dc 以速度 v 沿 ,穿过 abcd 回路 框架向下作匀速运动,试求(1)当 dc 段运动到图示位置(与 ab 相距 x ) 的磁通量; (2)回路中的感应电流 I i ;
B a b
2
大学物理习题集
10、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内, 且线圈中两条边与导线平行, 当线圈以相同的速率作如图所示的三种不同方向的平动时, 线圈中的感应电流:[ B ]
是由通有电流 I 的线圈所产生,且 B KI ( K 为常量) ,则旋转线圈相对于产生磁场的线 圈最大互感系数为 6、 。
无限长密绕直螺线管通以电流 I 、内部充满均匀、各向同性的磁介质,磁导率为 。 , 磁能密度 。
设管内部的磁感应强度大小为 B ,则内部的磁场强度为 为 。 设螺线管体积为 V, 则存储在螺线管内部的总磁能为
ch9+电磁感应和电磁场+习题及答案Word版
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
大学物理第9章 电磁感应和电磁场 课后习题及答案
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
高考教参一轮:第9章《电磁感应》教学指南(含答案)
第1讲电磁感应现象楞次定律考纲下载:1.电磁感应现象(Ⅰ) 2.磁通量(Ⅰ) 3.楞次定律(Ⅱ)主干知识·练中回扣——忆教材夯基提能1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
(2)公式:Φ=BS。
(3)单位:1 Wb=1_T·m2。
(4)公式的适用条件①匀强磁场;②磁感线的方向与平面垂直,即B⊥S。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化;②特例:闭合电路的一部分导体在磁场中做切割磁感线运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流。
3.楞次定律(1)楞次定律①内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化;②适用范围:适用于一切回路磁通量变化的情况。
(2)右手定则①使用方法让磁感线穿入右手手心,大拇指指向导体运动的方向,其余四指指向感应电流的方向。
②适用范围:适用于部分导体切割磁感线的情况。
巩固小练1.判断正误(1)穿过线圈的磁通量与线圈的匝数无关。
(√)(2)闭合电路内只要有磁通量,就有感应电流产生。
(×)(3)穿过电路的磁通量发生变化,电路中不一定有感应电流产生。
(√)(4)当导体切割磁感线运动时,导体中一定产生感应电流。
(×)(5)由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反。
(×)(6)感应电流的磁场一定阻碍引起感应电流的磁场的磁通量的变化。
(√)(7)回路不闭合,穿过回路的磁通量变化时,也会产生“阻碍”作用。
(×)[产生感应电流的条件]2.如图所示,矩形线框在磁场内做的各种运动中,能够产生感应电流的是()解析:选B A中线框的磁通量没有变化,因此没有感应电流,但有感应电动势,也可以理解为左右两边切割磁感线产生的感应电动势相反。
第九章 磁 场带答案完整版
第九章 磁 场一、.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:二、磁感应强度ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。
磁感应强度是矢量。
单位是特斯拉,符号为T 。
三、磁通量:Φ=BS ⊥可以认为穿过某个面的磁感线条数就是磁通量。
四、安培力 (磁场对电流的作用力)F=BIL (L ⊥B )。
9-1.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?9-2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为___。
9-3. 如图所示,光滑导轨与水平面成α角,导轨宽L。
匀强磁场磁感应强度为B。
金属杆长也为L,质量为m,水平放在导轨上。
当回路总电流为I1时,金属杆正好能静止。
求:⑴B至少多大?这时B的方向如何?⑵若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?9-4.如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后的水平位移为s。
求闭合电键后通过铜棒的电荷量Q。
hs αα洛伦兹力 带电粒子在磁场中的运动一、洛伦兹力:F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向)。
9-5.磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?二、带电粒子在匀强磁场中的运动 洛伦兹力充当向心力,推得:Bq m T Bq mv r π2,== 1、带电粒子在半无界磁场中的运动9-6.如图直线MN 上方有磁感应强度为B 的匀强磁场。
第九章电磁感应电磁场(一)答案
一.选择题[ D ]1.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解答】 dt dI L L -=ε,在每一段都是常量。
dtdI[ D ]2. (基础训练5)在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于导线中的电动势 【解答】连接oa 与ob ,ob ab ob oab εεεε++=。
因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=⋅==⎰→→l d E ob ob εεoab ob d dB S dt dtφεε==-=- o ab oabd d dtdtϕϕ∴<[ B ]3.(基础训练6)如图12-16所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为 (A) 0ε= 221l B U U ca ω=- (B) 0ε= 221l B U U c a ω-=- (C)2B l εω=221l B U U ca ω=- (D) 2B l εω= 221l B U U c a ω-=- 【解答】ab 边以匀速转动时 0=-=dtd abc φε 22l B l d B v U U U U L c b c a ω-=∙⎪⎭⎫⎝⎛⨯=-=-⎰→→→ [ B ]4.(自测提高2)真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间t t tt t (b)(a)Bab cl ω图12-16某点处的磁能密度为(A)200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21a I μμ 【解答】距离为a 的空间该点的磁感应强度大小为:aIB πμ20=磁能密度为 200022212⎪⎭⎫⎝⎛==a I B w m πμμμ[ B ]5.(自测提高5)用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图12-26所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向? 【解答】根据公式S dt B d l E S L d d ⋅-=⋅⎰⎰⎰感,因为0<dtBd且磁场方向垂直图面向里,所以感应电流为顺时针方向,再由于感应电流是涡电流,故选B 图。
2019年物理大复习江苏专版文档第九章 电磁感应 第1讲 含答案
考试内容范围及要求高考统计高考命题解读内容要求说明2015201620171.考查方式高考对本章内容考查命题频率较高,以选择题和计算题形式出题,难度一般在中档或中档以下.2.命题趋势(1)楞次定律、右手定则、左手定41.电磁感应现象Ⅰ42。
感应电流的产生条件Ⅱ43.法拉第Ⅱ限于导线方向第13题第6题、第13题电磁感应定律楞次定律与磁场方向、运动方向垂直的情况第13题则的应用.(2)与图象结合考查电磁感应现象.(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。
44.自感涡流Ⅰ第1讲电磁感应现象楞次定律一、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积.2.公式:Φ=BS。
3.适用条件:(1)匀强磁场.(2)S为垂直磁场的有效面积.4.磁通量是标量(填“标量”或“矢量").5.物理意义:相当于穿过某一面积的磁感线的条数.如图1所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B 与平面a′b′cd垂直,则图1(1)通过矩形abcd的磁通量为BS1cos θ或BS3.(2)通过矩形a′b′cd的磁通量为BS3.(3)通过矩形abb′a′的磁通量为0。
6.磁通量变化:ΔΦ=Φ2-Φ1.二、电磁感应现象1.定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.2.条件:穿过闭合电路的磁通量发生变化.例如:闭合电路的一部分导体在磁场内做切割磁感线的运动.3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流.自测1(多选)下列说法正确的是()A.闭合电路内只要有磁通量,就有感应电流产生B.穿过闭合电路的磁通量发生变化,电路中不一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生D.当导体切割磁感线时,一定产生感应电动势答案CD三、感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用范围:一切电磁感应现象.2.右手定则(1)内容:如图2,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内:让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.图2(2)适用情况:导线切割磁感线产生感应电流.自测2如图3所示,一圆形金属线圈放置在水平桌面上,匀强磁场垂直桌面竖直向下,过线圈上A点作切线OO′,OO′与线圈在同一平面上.在线圈以OO′为轴翻转180°的过程中,线圈中电流流向()图3A.始终为A→B→C→AB.始终为A→C→B→AC.先为A→C→B→A,再为A→B→C→AD.先为A→B→C→A,再为A→C→B→A答案A解析在线圈以OO′为轴翻转90°的过程中,穿过线圈正面向里的磁通量逐渐减小,则感应电流产生的磁场向下,由右手螺旋定则可知感应电流方向为A→B→C→A;线圈以OO′为轴由90°翻转到180°的过程中,穿过线圈反面向里的磁通量逐渐增加,则感应电流产生的磁场垂直桌面向上,由右手螺旋定则可知感应电流方向仍然为A→B→C→A,A正确.命题点一对磁通量的理解1.面积S的含义S不一定是某个线圈的真正面积,而是线圈在磁场范围内的有效面积.如图4所示,S应为线圈面积的一半.图42.多匝线圈的磁通量多匝线圈的磁通量的大小与线圈匝数无关,因为不论线圈匝数多少,穿过线圈的磁感线条数相同.3.合磁通量的求法若某个平面内有两个或多个不同方向和强弱的磁场共同存在,当计算穿过此平面的磁通量时,先规定某个方向的磁通量为正,反方向的磁通量为负,平面内各个方向的磁通量的代数和等于这个平面内的合磁通量.(1)磁通量是标量,其正、负值仅表示磁感线是正向还是反向穿过线圈平面.(2)对于Φ=BS cos θ,可理解为Φ=B(S cos θ),即Φ等于B与S 在垂直于B方向上分量的乘积;也可理解为Φ=(B cos θ)S,即Φ等于B在垂直于S方向上的分量与S的乘积.例1(2017·江苏单科·1)如图5所示,两个单匝线圈a、b的半径分别为r和2r。
第9章 作业答案(最新修改)
第9章 电磁场9-6 如图9-40所示,一截面积26S cm=的密绕线圈,共有50匝,置于0.25BT=的均匀磁场中,B 的方向与线圈的轴线平行。
如使磁场B 在0.25s 内线性地降为零,求线圈中产生的感应电动势iε。
分析:因B 随t 改变,故穿过密绕线圈的Φ也随t 改变,根据法拉第电磁感应定律要产生感应运动势。
解:由题可知B 随时间变化的关系是:0.25B t =-+,则磁通量为:46.010(0.25)BS t Φ-==⨯-+由法拉第电磁感应定律可得:0.03()i d NV dtεΦ=-=感应电动势的方向为:b a →。
9-7 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为58.010sin 100t Φπ-=⨯(SI 制),求在21.010t s-=⨯时,线圈中的感应电动势。
分析:线圈中有N 匝相同的回路,其感应电动势等于各匝回路的感应电动势之和。
解:由N ψΦ=和法拉第电磁感应定律i d dtψε=-得:2.51cos100()i d Nt V dtΦεπ=-=-当21.010t s -=⨯时,2.51()i V ε=9-8 如图9-41所示,用一根硬导线弯成一半径为r 的半圆,使这根半圆形导线在磁感应强度为B 的匀强磁场中以频率f 旋转,整个电路的电阻为R ,求感应电流的表达式和最大值。
分析:由题可知,闭合回路的面积为212S r π=,穿过它的磁通量cos B S Φθ=在不断变化,因此可先由法拉第电磁感应定律i d dtΦε=-求出感应电动势,再由欧姆定律iI Rε=求出感应电流,据此再讨论最大值。
解:设在初始时刻,半圆形导线平面的法线与B 之间的夹角0θ=,则在任意时刻穿过回路的磁通量为:21cos cos 22B S Br ft Φθππ==根据法拉第电磁感应定律,有:22sin 2i d r fB ft dtΦεππ=-=由欧姆定律可得回路中的电流为:22sin 2i r fB I ft RRεππ==故感应电流的最大值为22m r fB I Rπ=9-9 有两根相距为a 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以d I d t 的变化率增长。
ch9电磁感应和电磁场习题及答案.docx
第9章电稳感应和电磁场习题及答案1. 通过某冋路的磁场与线圈平而垂立指向纸面内,磁通量按以下关系变化: O = (r 2+6z + 5)xl0_3W/?o 求t = 2s 吋,冋路中感应电动势的大小和方向。
d ①o解:^ = -—= -(2r + 6)xW 3 dt 当 t = 2s 时,6: = -0.0 IV由楞次定律知,感应电动势方向为逆吋针方向2. 长度为/的金属杆必以速率u 在导电轨道abed 上平行移动。
已知导轨处于均匀磁场鸟中,B 的方向与冋路的法线成60°角,如图所示,B 的大小为B = kt(k 为正常数)。
设t = 0时杆位于cd 处,求:任一时刻f 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过冋路而积的磁通量为① == B/wcos60° =丄 klut 12导线回路中感应电动势为方向沿abeda 方向。
3. 如图所示,一•边长为a,总电阻为R 的止方形导体框固定于一空间非均匀磁场中,磁场方向 垂直于纸面向外,其大小沿兀方向变化,且B = k(l + x), k>0。
求:(1)穿过止方形线框的磁通量:(2)当P 随时间/按k ⑴=如(灯为止值常量)变化时,线框中感生电流的大小和方向。
解(1)通过正方形线框的磁通量为①二 -dS - J Badx = akf (1 + x)dx(2)当k=k o t 时,通过正方形线框的磁通量为①=u~ + — 6/)正方形线框中感应电动势的大小为正方形线框线框中电流大小为a? k 1I=~ = — (1+-6Z ),方向:顺时针方向 R R 24.如图所示,一矩形线圈与载有电流/ = /()coscw 长直导线共面。
设线圈的长为b,宽为a ;(=0吋,线圈的AD 边与长直导线重合;线圈以匀速度0垂直离开导线。
求任一吋刻线圈中的感应电动势的大小。
解:建立图示坐标系,长宜导线在右边产生的磁感应强度 大小为B 卫2mt 时刻通过线圈平血的磁通量为①訂0・d4广如皿=必In 出 几 」川2加 2龙 Dt=-kl vt“Job 1 vt +a = cos cot In --------------- 2/r vt任一时刻线圈屮的感应电动势为d ① r ci cos cot • t vt + a y= ------- = 0| ------------ ^cosmcotln ---------- ]dt 17i (vt + d)t vt5. 如图所示,在两平行载流的无限长直导线的平而内有一矩形线圈。
大学物理吉林大学第9章 电磁感应作业及答案
行于ab边,bc的长度为l。当金属框架绕ab边以匀角速度w 转动时,
aUbcc=回__路__中__-的_1_感_B_应_w_l电_2_动__势。 = 0
2
,a、c两点间的电势差Ua –
B
解:任意时刻通过三角形磁通量为零,所以 回路的感应电动势为零。
b
l c
ab bc ca 0
w
- ca
5.载有电流的I长直导线附近,放一导体半圆环MeN与
长直导线共面,且端点MN的连线与长直导线垂直。半 圆环的半径为b,环心O与导线相距a。设半圆环以速度
平行导线平移,求半圆环内感应电动势的大小和方向以
及MN两端的电压UM -UN。
解(1) 弧MN 直NM 0
弧MN 直MN ab Bdx ab 0 I ln a b 2π a b
边重合。求:(1)任意时刻矩形线框内的动生电动
势;(2)任意时刻矩形线框内的感应电动势。
dΦ B dS Bldx
ab
Bldx
ab 0I (t ) ldx
a
a
0I
(
t2)πxt
ln
a
b
I (t )
a
b
l
动
dΦ dt
0I (t)2πln a b
2π
a
a
18
5.如图所示,真空中一长直导线通有电流I=I(t),
3.两根无限长平行直导线载有大小相等方向相 反的电流I,I 以 dI/dt 的变化率增长,一矩形线 圈位于导线平面内(如图),则
A. 线圈中无感应电流; B. 线圈中感应电流为顺时针方向; C. 线圈中感应电流为逆时针方向; D.线圈中感应电流方向不确定。
I
I
4.在无限长的载流直导线附近放置一矩形闭合线圈, 开始时线圈与导线在同一平面内,且线圈中两条边与导 线平行,当线圈以相同的速率作如图所示的三种不同方 向的平动时,线圈中的感应电流( )
程守洙《普通物理学》(第5版)(上册)课后习题-电磁感应 电磁场理论(圣才出品)
第9章电磁感应电磁场理论9-1如图9-1所示,通过回路的磁感应线与线圈平面垂直,且指向图面,设磁通量依如下关系变化:φ=6t2+7t+1式中φ的单位为mWb,t的单位为s.求t=2时,回路中的感生电动势的量值和方向.图9-1解:由题意可知,回路中的感生电动势为:当时,电动势为:,方向为逆时针方向(即与设定的回路绕行t s2方向相反).9-2在两平行导线的平面内,有一矩形线圈,如图9-2所示.如导线中电流,随时间变化,试计算线圈中的感生电动势.图9-2解:根据题意建立坐标系,取坐标轴Ox,如图9-3所示.图9-3两电流在x处的磁感应强度大小为:,方向垂直纸面向里.取顺时针为回路的绕行方向,通过面元dS=l1dx的磁通量为:通过矩形线圈的磁通量为:矩形线圈中的感生电动势为:.9-3如图9-4所示,具有相同轴线的两个导线回路,小的回路在大的回路上面距离y 处,y远大于回路的半径R,因此当大回路中有电流,按图示方向流过时,小回路所围面积πr2之内的磁场几乎是均匀的.现假定y以匀速v=dy/dt而变化.(1)试确定穿过小回路的磁通量φ和y之间的关系;(2)当y=NR时(N为整数),小回路内产生的感生电动势;(3)若v>0,确定小回路内感应电流的方向.图9-4解:(1)根据导电线圈轴线上的磁感应强度分布,可得大回路在小回路处产生的磁感应强度:.由题意知,因此在距离大线圈平面y处的磁场可近似为均匀磁场,其次感应强度,则穿过小回路中的磁通量和y之间的关系为:.(2)小回路内产生的感生电动势为:.(3)由榜次定律可判定,当从上向下看时小回路的感应电流为逆时针方向.9-4PM和MN两段导线,其长均为10cm,在M处相接成30°角,若使导线在均匀磁场中以速度v=15m/s运动,方向如图9-5所示,磁场方向垂直纸面向内,磁感应强度为B=25×10-2T,问P、N两端之间的电势差为多少?哪一端电势高?图9-5解:由题意可知,P、N两端之间产生的动生电动势为:即运动导线上P端的电势高,N端电势低.9-5一均匀磁场与矩形导体回路面法线单位矢量e n间的夹角为θ=π/3(如图9-6),已知磁感应强度B随时间线性增加,即B=kt(k>0),回路的MN边长为l,以速度V向右运动,设t=0时,MN边在x=0处.求任意时刻回路中感应电动势的大小和方向.图9-6解:如图9-6所示,回路的面法线e n表明,回路的绕行方向为逆时针,则回路中感应电动势为:.又由题意知:则回路中感应电动势:方向由M指向N,即沿顺时针方向.9-6如图9-7所示,一长直导线通有电流,I=0.5A,在与其相距d=5.0cm处放有一矩形线圈,共1000匝.线圈以速度v=3.0m/s沿垂直于长导线的方向向右运动时,线圈中的动生电动势是多少?(设线圈长l=4.0cm,宽b=2.0cm.)图9-7解:由题意可知,线圈中的动生电动势为:.9-7如图9-8所示,导线MN在导线架上以速度V向右滑动.已知导线MN的长为50cm,V=4.0m/s,R=0.20Ω,磁感应强度B=0.50T,方向垂直于回路平面.试求:(1)MN运动时所产生的动生电动势;(2)电阻R上所消耗的功率;(3)磁场作用在MN上的力.图9-8解:(1)导线上产生的电动势为:.(2)电阻R上所消耗的功率为:.(3)由安培定理,可得回路中电流:导线MN上的安培力:,方向向左.9-8如图9-9所示,PQ和MN为两根金属棒,各长1m,电阻都是R=4Ω,放置在均匀磁场中,已知B=2T,方向垂直纸面向里.当两根金属棒在导轨上分别以v1=4m/s 和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求:(1)两棒中动生电动势的大小和方向,并在图上标出;(2)金属棒两端的电势差;(3)两金属棒中点O1和O2之间的电势差.。
高中物理 第09章 电磁感应 典型例题(含答案)【经典】
第九章电磁感应知识点一:磁通量、感应电流产生条件、电流方向(楞次定律)1.(单选)如图所示,ab是水平面上一个圆的直径,在过ab的竖直面内有一根通电直导线ef,且ef平行于ab,当ef竖直向上平移时,穿过圆面积的磁通量将().答案 CA.逐渐变大B.逐渐减小C.始终为零D.不为零,但始终保持不变2.(单选)现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键如图所示连接.下列说法中正确的是().答案AA.电键闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,电键闭合和断开的瞬间电流计指针均不会偏转C.电键闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.电键闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转3.(单选)某实验小组用如图所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是().答案DA.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b4.(单选)如图,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则().答案CA.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向电流出现5.(单选)如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B 的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是().答案AA.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)6.(单选)如图所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环中的感应电流(自左向右看)().A.沿顺时针方向答案CB.先沿顺时针方向后沿逆时针方向C.沿逆时针方向D.先沿逆时针方向后沿顺时针方向7.(单选)如图所示,一圆形金属线圈放置在水平桌面上,匀强磁场垂直桌面竖直向下,过线圈上A点做切线OO′,OO′与线圈在同一平面上.在线圈以OO′为轴翻转180°的过程中,线圈中电流流向().A.始终由A→B→C→A 答案AB.始终由A→C→B→AC.先由A→C→B→A再由A→B→C→AD.先由A→B→C→A再由A→C→B→A知识点二:楞次定律的推广1.(单选)如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时().答案AA.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度大于g2.(单选)如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将().答案CA.静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向3.(多选)如图所示,在条形磁铁的中央位置的正上方水平固定一铜质圆环.以下判断中正确的是().A.释放圆环,环下落时产生感应电流答案BCB.释放圆环,环下落时无感应电流C.释放圆环,环下落时环的机械能守恒D.释放圆环,环下落时环的机械能不守恒4.(单选)如图所示,通电螺线管左侧和内部分别静止吊一导体环a和b,当滑动变阻器R的滑动触头c向左滑动时().答案CA.a向左摆,b向右摆B.a向右摆,b向左摆C.a向左摆,b不动D.a向右摆,b不动5.(单选)如图所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则().答案AA.T1>mg,T2>mg B.T1<mg,T2<mgC.T1>mg,T2<mg D.T1<mg,T2>mg6.(单选)如图,圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成闭合回路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是().A.线圈a中将产生俯视顺时针方向的感应电流答案DB.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大7.(多选)如图所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间().A.两小线圈会有相互靠拢的趋势答案BCB.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿顺时针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向8.(单选)如图所示,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内.当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,下列有关圆环的说法正确的是().答案CA.圆环内产生变大的感应电流,圆环有收缩的趋势B.圆环内产生变大的感应电流,圆环有扩张的趋势C.圆环内产生变小的感应电流,圆环有收缩的趋势D.圆环内产生变小的感应电流,圆环有扩张的趋势知识点三:楞次定律与安培定则的综合应用,二次感应问题(注意因果关系,结果推原因或者带答案推)1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动.则PQ所做的运动可能是().A.向右加速运动B.向左加速运动C.向右减速运动答案BCD.向左减速运动2.(多选)如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引().答案BCA.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动3.(单选)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a().答案BA.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转4.(单选)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是().答案A5.(多选)如图是某电磁冲击钻的原理图,若突然发现钻头M向右运动,则可能是().答案ACA.开关S闭合瞬间B.开关S由闭合到断开的瞬间C.开关S已经是闭合的,滑动变阻器滑片P向左迅速滑动D.开关S已经是闭合的,滑动变阻器滑片P向右迅速滑动6.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab的运动情况是(两线圈共面放置)().答案BC A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动7.(多选)如图所示,一电子以初速度v沿与金属板平行的方向飞入MN极板间,突然发现电子向M板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是()A.开关S闭合瞬间B.开关S由闭合后断开瞬间C.开关S是闭合的,变阻器滑片P向右迅速滑动D.开关S是闭合的,变阻器滑片P向左迅速滑动答案AD知识点四:感应电流大小(法拉第电磁感应定律E =n ΔΦΔt ,E =Blv )1.(多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,磁场的磁感应强度的大小随时间变化而变化.下列说法中正确的是( ). 答案 ADA .当磁感应强度增大时,线框中的感应电流可能减小B .当磁感应强度增大时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变2.(单选)A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面,如图所示.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( ).答案 DA.I A I B =1B.I A I B =2C.I A I B =14D.I A I B=12 3.(多选)某学习小组在探究线圈中感应电流的影响因素时,设计如图所示的实验装置,让一个闭合圆线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度随时间均匀变化,则( ).答案 ADA .若把线圈的匝数增加一倍,线圈内感应电流大小不变B .若把线圈的面积增加一倍,线圈内感应电流大小变为原来的2倍C .改变线圈轴线与磁场方向的夹角大小,线圈内感应电流大小可能变为原来的2倍D .把线圈的半径增加一倍,线圈内感应电流大小变为原来的2倍4.(多选)用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,磁感应强度大小随时间的变化率ΔB Δt =k (k <0).则( ).答案 BDA .圆环中产生逆时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为⎪⎪⎪⎪krS 2ρD .图中a 、b 两点间的电势差U ab =⎪⎪⎪⎪14k πr 2 5、(单选)粗细均匀的电阻丝围成图所示的线框,置于正方形有界匀强磁场中,磁感强度为B ,方向垂直于线框平面,图中ab =bc =2cd =2de =2ef =2fa =2L .现使线框以同样大小的速度v 匀速沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则线框在通过如图所示位置时,下列说法中正确的是( ).A .ab 两点间的电势差图①中最大 答案 AB .ab 两点间的电势差图②中最大C .回路电流图③中最大D .回路电流图④中最小6.(单选)如图所示,虚线框内存在均匀变化的匀强磁场,三个电阻的阻值之比R1∶R 2∶R 3=1∶2∶3,电路中导线的电阻不计.当S 1、S 2闭合,S 3断开时,闭合回路中感应电流为I ;当S 2、S 3闭合,S 1断开时,闭合回路时感应电流为5I ;当S 1、S 3闭合,S 2断开时,闭合回路中感应电流为( ).A .0B .3IC .6ID .7I 答案 D7.(多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为L =1 m ,cd 间、de 间、cf 间分别接着阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T ,方向竖直向下的匀强磁场.下列说法中正确的是( ). 答案 BDA .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 V8.(单选)如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt 的大小应为( ).答案 CA.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π9.(单选)如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点A 用铰链连接长度为2a 、电阻为R2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( ).答案 AA.Bav 3B.Bav 6C.2Bav 3 D .Bav10. (多选)如图所示是圆盘发电机的示意图;铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘接触.若铜盘半径为L ,匀强磁场的磁感应强度为B ,回路的总电阻为R ,从左往右看,铜盘以角速度ω沿顺时针方向匀速转动.则( ).答案 BCA .由于穿过铜盘的磁通量不变,故回路中无感应电流B .回路中感应电流大小不变,为BL 2ω2RC .回路中感应电流方向不变,为C →D →R →CD .回路中有周期性变化的感应电流11.(多选)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B .直杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O 开始,直杆的位置由θ确定,则().A .θ=0时,直杆产生的电动势为2Bav 答案 ADB .θ=π3时,直杆产生的电动势为3BavC .θ=0时,直杆受的安培力大小为2B 2av +R 0 D .θ=π3时,直杆受的安培力大小为3B 2av +R 012. (多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( ).答案 ACA .R 2两端的电压为U 7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2知识点五:自感1.(多选)在如图所示的电路中,A1和A2是两个相同的灯泡,线圈L的自感系数足够大,电阻可以忽略不计.下列说法中正确的是().答案ABA.合上开关S时,A2先亮,A1后亮,最后一样亮B.断开开关S时,A1和A2都要过一会儿才熄灭C.断开开关S时,A2闪亮一下再熄灭D.断开开关S时,流过A2的电流方向向右2、(单选)如图所示,线圈L的自感系数很大,且其电阻可以忽略不计,L1、L2是两个完全相同的小灯泡,随着开关S闭合和断开的过程中,L1、L2的亮度变化情况是(灯丝不会断)().答案D亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即不亮,A.S闭合,LL1逐渐变亮B.S闭合,L1亮度不变,L2很亮;S断开,L1、L2立即不亮C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即不亮,L1亮一下才灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下才灭3.(单选)如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡时刻断开S.下列表D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t示A、B两点间电压U AB随时间t变化的图象中,正确的是().答案B4.(单选)如图所示,A、B、C是3个完全相同的灯泡,L是一个自感系数较大的线圈(直流电阻可忽略不计).则() 答案AA.S闭合时,A灯立即亮,然后逐渐熄灭B.S闭合时,B灯立即亮,然后逐渐熄灭C.电路接通稳定后,三个灯亮度相同D.电路接通稳定后,S断开时,C灯立即熄灭5.(多选)如图是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合电键调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开电键S.重新闭合电键S,则().A.闭合瞬间,A1立刻变亮,A2逐渐变亮答案BCB.闭合瞬间,A2立刻变亮,A1逐渐变亮C.稳定后,L和R两端电势差一定相同D.稳定后,A1和A2两端电势差不相同6.(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是().答案AC知识点六:电磁感应图像问题1、(单选)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是().答案A2、(单选)如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置开始沿水平向右方向以速度v匀速穿过磁场区域,在图中线框A、B两端电压U AB与线框移动距离x的关系图象正确的是().答案D3、(单选)将一段导线绕成图5甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反应F随时间t变化的图象是().答案B4、(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流以顺时针方向为正、竖直边cd所受安培力的方向以水平向左为正.则下面关于感应电流i和cd边所受安培力F随时间t变化的图象正确的是().答案AC5.(单选)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压u为正,下列u ab---t图象可能正确的是() 答案C6.(单选)如图所示,一导体圆环位于纸面内,O 为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM 可绕O 转动,M 端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R .杆OM 以匀角速度ω逆时针转动,t =0时恰好在图示位置.规定从a 到b 流经电阻R 的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t =0开始转动一周的过程中,电流随ωt 变化的图象是( ).答案 C7.(单选)边长为a 的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面向里的匀强磁场中.现把框架匀速水平向右拉出磁场,如图所示,则下列图象与这一过程相符合的是( ).答案 B8. (单选)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t 1、t 2分别表示线框ab 边和cd 边刚进入磁场的时刻.线框下落过程形状不变,ab 边始终保持与磁场水平边界线OO ′平行,线框平面与磁场方向垂直.设OO ′下方磁场区域足够大,不计空气的影响,则下列哪一个图象不可能反映线框下落过程中速度v 随时间t 变化的规律( ).答案 A9.(多选)一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示.t =0时刻对线框施加一水平向右的外力F ,让线框从静止开始做匀加速直线运动穿过磁场,外力F 随时间t 变化的图象如图乙所示.已知线框质量m =1 kg 、电阻R =1 Ω,以下说法正确的是( ).A .线框做匀加速直线运动的加速度为1 m/s 2 答案 ABCB .匀强磁场的磁感应强度为2 2 TC .线框穿过磁场的过程中,通过线框的电荷量为22 CD .线框边长为1 m10、如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时.(1)求匀强磁场的磁感应强度B ;(2)求线框进入磁场的过程中,通过线框的电荷量q ;(3)判断线框能否从右侧离开磁场?说明理由.答案 (1)0.33 T (2)0.75 C (3)不能;x =4 m<2L。
大学物理第九章练习 参考答案
第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势ε,磁通量Φ为正值。
若磁铁沿箭头方向进入线圈,则有( B )(A ) d Φ /dt < 0, ε < 0 ; (B ) d Φ /dt > 0, ε < 0 ; (C ) d Φ /dt > 0, ε > 0 ; (D ) d Φ /dt < 0, ε > 0。
2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A ) I 由A 到B ,U A >U B ; (B ) I 由B 到A ,U A <U B ; (C ) I 由B 到A ,U A >U B ; (D ) I 由A 到B ,U A <U B 。
3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量∆q 为( A )(A ) 2μ0nINA /R ; (B ) μ0nINA /R ; (C ) μ0NIA /R ; (D ) μ0nIA /R 。
4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。
二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。
2. 如图4所示,一光滑的金属导轨置于均匀磁场B 中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一。
选择题[ D ]1.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【分析】dt dI LL -=ε,在每一段都是常量。
dtdI[ D ]2. (基础训练5)在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于导线中的电动势 【分析】连接oa 与ob ,ob ab ob oab εεεε++=。
因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=⋅==⎰→→l d E ob ob εεoab ob d dB S dt dtφεε==-=- o ab oabd d dtdtϕϕ∴<[ B ]3.(基础训练6)如图12-16所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) 0ε= 221l B U U c a ω=- (B) 0ε= 221l B U U c a ω-=-(C)2B l εω=221l B U U c a ω=- (D) 2B l εω= 221l B U U c a ω-=-【分析】ab 边以匀速转动时 0=-=dtd abc φε 22l B l d B v U U U U L c b c a ω-=∙⎪⎭⎫⎝⎛⨯=-=-⎰→→→ t t tt t (b)(a)Bab clω图12-16[ B ]4.(自测提高2)真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ【分析】距离为a 的空间该点的磁感应强度大小为:aIB πμ20=磁能密度为 200022212⎪⎭⎫ ⎝⎛==a I B w m πμμμ [ B ]5.(自测提高5)用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图12-26所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向? 【分析】根据公式S dt B d l E S Ld d ⋅-=⋅⎰⎰⎰感,因为0<dtB d 且磁场方向垂直图面向里,所以感应电流为顺时针方向,再由于感应电流是涡电流,故选B 图。
二. 填空题1.(基础训练11)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=_1:16__ 【分析】()2222000112424m nI B dd W w V L L μμμ==⨯=⨯2.(基础训练14)换能器常用来检测微小的振动,如图12-19,在振动杆的一端固接一个N 匝的矩形线圈,线圈的一部分在匀强磁场B中,设杆的微小规律为t A x ωcos =,线圈随杆振动时,线圈中的感应电动势为sin NBbA t εωω= 【分析】sin d dS dx NNB NBb NBbA t dt dt dtφεωω=-=-=-=3.(基础训练15)如图12-20所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U al a Igt +-ln20πμ图12-26图12-19【分析】长直导线在周围空间产生的磁场的磁感应强度为xIB πμ20=,方向与电流方向成右手螺旋关系。
在金属杆MN 处B 的方向垂直纸面向内。
在MN 上取一微元x d,则该微元两端的电势差为:()dx xI gt dx x I v x d B v d i πμπμε2200-=⋅⋅=⋅⨯=所以金属杆MN 两端的电势差为:ala Igt a l a Iv dx x I v U l a aMN +-=+-=-=⎰+ln 2ln 22000πμπμπμ4.(基础训练16)如图12-21所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =θsin Bvl ;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是___a__点电势高. 【分析】当沿x 轴运动时,导线oc 不切割磁力线,,当沿y 轴运动时,所以a 点电势高。
5.(自测提高10)在一个中空的圆柱面上紧密地绕有两个完全相同的线圈aa ′和bb ′(如图).已知每个线圈的自感系数都等于0.05 H .若a 、b 两端相接,a ′、b ′接入电路,则整个线圈的自感L =_0_.若a 、b ′两端相连,a ′、b 接入电路,则整个线圈的自感L =__0.2H _. 若a 、b 相连,又a ′、b ′相连,再以此两端接入电路,则整个线圈的自感L =_0.05 H __. 【分析】a 、b 两端相接,a ′、b ′接入电路,反接,21212L L L L L -+=; a 、b ′两端相连,a ′、b 接入电路,顺接,21212L L L L L ++=; a 、b 相连,又a ′、b ′相连,再以此两端接入电路,不变。
三. 计算题1.(基础训练18)如图12-22两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求x =NR 时(N 为正数)小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场x ×××××图12-21图12-22()()22003322222IR IR B x R xR xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-= x NR =当时 204232I r v N R μπε=2.(基础训练19)一密绕的探测线圈面积S=4cm 2匝数N=160,电阻R=50Ω。
线圈与一个内阻r=30Ω的冲击电流计相连。
今把探测线圈放入一均匀磁场中,线圈法线与磁场方向平行。
当把线圈法线转到垂直磁场方向时,电流计指示通过的电量为4×10-5C 。
试求磁感强度的大小。
解:φφφφφ∆====∆⎰⎰⎰RN d R N dt dt d R N dt I q t t t t 2121212由于为均匀磁场BS =∆φT NSqRB 2105-⨯=∆=3.(基础训练20)一长直导线旁有一矩形线圈,两者共面(如图12-24)。
求长直导线与矩形线圈之间的互感系数。
解:xIB π20μ=x b x I s B Φd π2d d 0μ=⋅=)ln(π2d π200dda Ibx b xIΦad d+==⎰+μμ )ln(π20dd a b I ΦM +==μ4.(自测提高13) 如图12-31所示,长直导线AB 中的电流I 沿导线向上,并以d I /d t=2 A/s 的变化率均匀增长.导线附近放一个与之同面的直角三角形线框,其一边与导线平行,图12-24位置及线框尺寸如图所示.求此线框中产生的感应电动势的大小和方向.(μ0 =4π×10-7 T ·m/A ) 解:建立坐标如图所示,则三角形线框斜边方程为0.2(SI)2+-=x y在三角形线框所围平面上的磁通量为dx .x .x πI μ).x πIydx μm ⎰⎰⎥⎦⎤⎢⎣⎡++-=+=1.0001.0000502022050(2φ ()Wb I 102.590500501.0ln 1501.0800-⨯=++-=..πI μ.πI μ三角形线框感应电动势为V 105.18)(102.5988--⨯-=⨯-=-=dI/dt dtd mφε5.(自测提高14)如图12-32在半径为R 的长直螺线管中,均匀磁场随时间均匀增大(0>dt dB),直导线ab=bc=R,如图所示,求导线ac 上的感应电动势. 解:S dtB d dt d Sd i ⋅-=-=⎰⎰φε()⎪⎪⎭⎫ ⎝⎛+-=+-=∆2212143R R dt dB S S dt dB obd oab πεi ac ac oc oa εεεεε=++=i⎪⎪⎭⎫ ⎝⎛+-=2212143R R dt dB acπε6.(自测提高16)如图12-34所示,一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内,以恒定的速度v沿与棒成θ角的方向移动.开始时,棒的A 端到导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高. 解:dx v xI dx Bv l d B v d i θπμθεsin 2sin )(0-=-=⋅⨯=θθπθμπθμεθθcos cos ln 2sin 2sin 0cos cos 0vt a vt l a Iv x dxIv lvt a vt a i +++-=-=∴⎰+++ εi 由B 指向A ,A 端的电势高。
[选做题]1.(自测提高17)有一很长的长方的U 形导轨,与水平面成θ角,裸导线ab 可在导轨上无摩擦地下滑,导轨位于磁感强度B竖直向上的均匀磁场中,如图12-35所示.设导线图12-31图12-34图12-32ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v 与时间t 的函数关系.解: θαεcos sin Bvl Bvl == R Bvl R i θεcos == θθcos sin B F mg ma -= mR vl B g dt dv θθcos sin 22-= mR vl B g dt dv θθcos sin 22-= ⎰⎰=-t v dt m R vl B g dv0022cos sin θθ ()()2cos cos sin 12θθθBl mgR e v t mR Bl ⎥⎥⎦⎤⎢⎢⎣⎡-=-图12-35。