初中七年级数学培优有理数的巧算含答案(供参考)
最新人教版七年级上册数学 有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________【答案】(1)解:8;2;有道理;点M与点N之间的距离为点C与点D之间的距离为(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。
培优第二讲--有理数的运算与巧算含答案
第二讲 有理数的巧算技巧与巧算答案基础夯实: 一、填空题1、计算1+(-2)+3+(-4)+ … +99+(-100)=___-50_______2、计算1-3+5-7+9-11+…+97-99=_____-50_____3、若m <0,n >0,且| m |>| n |,则m +n ___<_____ 0.(填>、<号)4、如果|a |=3,|b |=2,若ab <0,那么a -b =_____5_____5、25.2-减去85-与83-的差,所得的结果 =______-2____212-、+3、-1.2的和比它们绝对值的和小=_____7.4_____6、若实数a 、b 满足0a b a b +=,则abab =_____-1______.7、如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=____256255______. 8、已知数轴上有A 、B 两点,A 、B 之间的距离为2,点A 与原点O 的距离为6,则所有满足条件的点B 与原点O 的距离的和为___0______;9、计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测1-22018的个位数字是______3____.10..、.3...05..万是精确到.....__..百______......位的近似数.......11、地球到太阳的距离大约是150000000千米,用科学记数法表示为__11101.5⨯_______ 米. 12..、测得某同学的身高约是...........1...66..米,那么意味着他的身高的精确值...............h .的取值范围是在.......1.665h 1.655<≤ ..二、选择题1、在1,-1,-2这三个数中,任意两数之和的最大值是( B )A . 1B .0C .-1D .-3 2、若a <0,则|a -(-a )|等于( D )A .-aB .0C .2aD .-2a 3、两个有理数的和是正数,下面说法中正确的是( D )A .两数一定都是正数B .两数都不为0C .至少有一个为负数D .至少有一个为正数 4、三个有理数相乘,积为负数,则负因数的个数为( D )A .1个B .2个C .3个D .1个或3个 5、如果a <0,b >0,a +b <0,那么下列关系中正确的是( D )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a6、已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( D )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大7、如果a +b <0,0ba>,则下列结论成立的是(B )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 8、、下列命题正确的是( C )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 9、若a +b +c =0,且b <c <0,则下列各式中,错误的是( C )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( D )A .-3B .1C .±3D .-3或1 11、有理数a 等于它的倒数,有理数b 等于它的相反数,则20102011a b +等于( B )A .0B .1C .-1D .212、如果20012002()1,()1a b a b +=--=,则ab 的值是( D )A .2B .1C .0D .-113、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过( A )小时?7A .2B .2.5C .3D .3.5 三、计算(1))217(75.2)413()5.0(+-+---=-2;(2)1853432877431---+-=-1.25;(3){})]8()3()7[()5()2(4---+-------=1(4)2164118214837--+--+-=878-(5))711()12787431(-⨯--=-31;(6)9.18.174)88(74.8)37(48.17⨯--⨯+-⨯=-1748;(7) 2011)1(524)436183(212-⨯÷⎥⎦⎤⎢⎣⎡⨯-+-=-1.5(8)[]22)3(231)5.01(1--⨯⨯---=61 ※典例剖析【例1】计算:)51413121()61514131211()6151413121()514131211(+++⨯+++++-++++⨯++++=61【例2】、阅读材料,解答问题.求201932222221++++++ 的值. 解:令201932222221++++++= S ① ∴ 21204322222222++++++= S ②② - ①得12221-=-S S ∴1222222121201932-=++++++ 运用材料以上方法计算:7201620132555551++∙∙∙++++=4122018-【例3】计算12+(13+23)+(14+24+34)+(15+25+35+45)+ … +(150+250+…+4850+4950)==612.5【例4】某儿童服装店老板以30元的价格买进20件连衣裙,针对不同的顾客,30件连衣裙的售价完全不请问,该服装店售完这20件连衣裙后,赚了多少钱?答案:328元 三、培优检测A 组 一、计算题.....1.、.|)3(2|31)5.01(124--⨯⨯-+-=.612.、.5]43)436183(2411[÷÷-+-=72193.、.22)32(3|)411()52(2|-⨯--÷-⨯ =2593-4.、.+⨯+⨯+⨯751531311……..200720051⨯+=200710035、2232318)52()5()3(-÷--⨯-+--=-31;6、]})2(34[)75.0(5.0{)4725.0(124--⨯--÷++-=312-5343332313二、今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成下表:问:这10袋盐一共有多重?答案:1000千克 B 组: 1、1999199********⨯++⨯+⨯ = 5997995;2、若l 3+23+33+…+153=14400,则23+43+63+…+303= 115200 .3、352172515515935312114715105963321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯= 52;4、计算:201954322222222+-⋅⋅⋅----- = 6 5、若||1m m =+,则()201041m +=( B )A .-1B .1C .12-D .126、设0a b c ++=,0abc >,则||||||b c a c a b a b c +++++的值是( B ) A .-3 B .1 C . 3或-1 D .-3或17、请你从右表归纳出13+23+33+43+…+n 3的公式并计算出思考题:计算:6059)60585958()602524232()601413121(+++∙∙∙+∙∙∙+++++∙∙∙+++=885第二讲 有理数的加减运算中的巧算考点·方法·破译1.理解有理数加法、减法、乘法、除法、乘方法则,并能熟练进行有理数的运算.2.掌握有理数加减乘除乘方混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算. 3.能用有理数运算律进行简便运算.常用运算技巧⑴巧用运算律 ⑵凑整法 ⑶拆项法(裂项相消) ⑷分组相约法 ⑸倒写相加法 ⑹错位相减法 ⑺换元法 ⑻观察探究、归纳法 基础夯实: 二、填空题1、计算1+(-2)+3+(-4)+ … +99+(-100)=__________2、计算1-3+5-7+9-11+…+97-99=__________3、若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)4、如果|a |=3,|b |=2,若ab <0,那么a -b =__________5、25.2-减去85-与83-的差,所得的结果 =__________212-、+3、-1.2的和比它们绝对值的和小=__________6、若实数a 、b 满足0a b a b+=,则abab =___________.7、如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 8、已知数轴上有A 、B 两点,A 、B 之间的距离为2,点A 与原点O 的距离为6,则所有满足条件的点B 与原点O 的距离的和为_________;9、计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测1-22018的个位数字是__________.10、3.05万是精确到________位的近似数.11、地球到太阳的距离大约是150000000千米,用科学记数法表示为_________ 米.12、测得某同学的身高约是1.66米,那么意味着他的身高的精确值h 的取值范围是在 .二、选择题1、在1,-1,-2这三个数中,任意两数之和的最大值是( )A . 1B .0C .-1D .-32、若a <0,则|a -(-a )|等于( )A .-aB .0C .2aD .-2a 3、两个有理数的和是正数,下面说法中正确的是( )A .两数一定都是正数B .两数都不为0C .至少有一个为负数D .至少有一个为正数 4、三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 5、如果a <0,b >0,a +b <0,那么下列关系中正确的是( )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a6、已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大7、如果a +b <0,0ba>,则下列结论成立的是( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 8、、下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 9、若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( )A .-3B .1C .±3D .-3或1 11、有理数a 等于它的倒数,有理数b 等于它的相反数,则20102011a b +等于( )A .0B .1C .-1D .212、如果20012002()1,()1a b a b +=--=,则ab 的值是( )A .2B .1C .0D .-113、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过( )小时?7A .2B .2.5C .3D .3.5 三、计算(1))217(75.2)413()5.0(+-+---; (2)1853432877431---+-;(3){})]8()3()7[()5()2(4---+------- (4)2164118214837--+--+-(5))711()12787431(-⨯--; (6)9.18.174)88(74.8)37(48.17⨯--⨯+-⨯;(7) 2011)1(524)436183(212-⨯÷⎥⎦⎤⎢⎣⎡⨯-+- (8)[]22)3(231)5.01(1--⨯⨯---※典例剖析【例1】计算:)51413121()61514131211()6151413121()514131211(+++⨯+++++-++++⨯++++【例2】、阅读材料,解答问题.求201932222221++++++ 的值. 解:令201932222221++++++= S ① ∴ 21204322222222++++++= S ②② - ①得12221-=-S S ∴1222222121201932-=++++++运用材料以上方法计算:7201620132555551++∙∙∙++++【例3】计算12+(13+23)+(14+24+34)+(15+25+35+45)+ … +(150+250+…+4850+4950)【例4】某儿童服装店老板以30元的价格买进20件连衣裙,针对不同的顾客,30件连衣裙的售价完全不请问,该服装店售完这20件连衣裙后,赚了多少钱?三、培优检测A 组 一、计算题1、|)3(2|31)5.01(124--⨯⨯-+- 2、5]43)436183(2411[÷÷-+-3、22)32(3|)411()52(2|-⨯--÷-⨯ 4、+⨯+⨯+⨯751531311 (2007)20051⨯+5、2232318)52()5()3(-÷--⨯-+--; 6、]})2(34[)75.0(5.0{)4725.0(124--⨯--÷++-5343332313B 组: 4、199919971751531⨯++⨯+⨯ = ;5、若l 3+23+33+…+153=14400,则23+43+63+…+303= .6、352172515515935312114715105963321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯= ;4、计算:201954322222222+-⋅⋅⋅----- =5、若||1m m =+,则()201041m +=( )A .-1B .1C .12-D .126、设0a b c ++=,0abc >,则||||||b c a c a b a b c +++++的值是( )A .-3B .1C . 3或-1D .-3或17、请你从右表归纳出13+23+33+43+…+n 3的公式并计算出13+23+33+43+…+1003的值=__________..8、已知c b a 、、都不等于零,且abc abc c c b b a a +++的最大值是m ,最小值为n ,求mnn m的值.思考题:计算:6059)60585958()602524232()601413121(+++∙∙∙+∙∙∙+++++∙∙∙+++。
有理数的巧算含答案
2
=
(“祖冲之杯”邀请赛试题)
2
11
=2( - )
(3)
52003 5
4
提示:设 s=5+52+53+…+52002,则 5s=52+53+…+52003.
【例 4】(1)若按奇偶分类,则 22004+32004+72004+92004 是________数; (2)设 a=355,b=444,c=533,则 a、b、c 的大小关系是_______(用“>”号连接); (3)求证:32002+42002 是 5 的倍数. 思路点拨 乘方运算是一种特殊的乘法运算,解与乘方运算有关问题常用到以下知 识:①乘方意义;②乘方法则;③a2n≥0;④an 与 a 的奇偶性相同;⑤在 n4k+r 中(k,r 为非负整 数,n≠0,0≤r<4),当 r=0 时,n4k+r 的个位数字与 n4 的个位数字相同;当 r≠0 时,n4k+r的个 位数字与 nr 的个位数字相同. 解:(1)奇;(2)a>b>c. (3)因为 32002=34×500+2,42002=44×500+2,所以 32002 与 42002 的个位数字分别与 32、42 的个数 数字相同,即 9、6,从而 32002+42002 的个位数字为 5,因此,32002+42002 是 5 的倍数. 【例 5】有人编了一个程序:从 1 开始,交替地做加法或乘法(第一次可以是加法,也可 以是乘法),每次加法,将上次运算结果加 2 或加 3;每次乘法,将上次运算结果乘 2 或乘 3,
例题求题
【例 1】现有四个有理数 3,4,-6,10,将这 4 个数(每个数用且只用一次)进行加、减、
【核心考点突破】2023学年七年级数学上册培优讲与练(人教版) 有理数混合运算的六种技巧-解析版
有理数混合运算的六种技巧(解析版)【专题精讲】有理数的混合运算是加、减、乘、除乘方的综合应用,学会运算法则是基础,运算的关键是运算的顺序,为了提高运算速度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察、分析、类比与联想,从中发现可以简算的地方从而达到算得准、算得快的目的。
计算复杂算式,应遵循以下几个原则:(1)分段同时性原则:例如在计算一0.25²÷(-21)-(−1)2021+(-2)²×(-3)²的过程中,应在第一步中计算0.25² −(12)4 (−1)2021 (-2)²,(-3)²以达到高效的目的; (2)整体性原则:例如乘除混合运算统一化为乘法,统一进行约分;(3)简明性原则:计算步骤尽可能简明,能够一步计算出来的就同时算出来,不要拖沓;(4)心算原则:计算过程中,能用心算的都尽量运用心算,心算是提高运算速度的重要方法。
有理数计算常用的技巧与方法有①应用运算律;②裂项相消;③分解相约;④巧用公式;⑤利用倒数;⑥借用图形面积◎类型一:巧用凑整法计算解题方法:多个有理数相加时,如果既有分数,也有小数,一般将存在数量少的形式转化成数量多的形式,把能凑成整数的数结合在一起,可以使计算简便,这种方法简称凑整法。
1.(2020·安徽·马鞍山市雨山实验学校七年级阶段练习)计算(1)()21112 2.75524⎛⎫----+-+ ⎪⎝⎭(2)5212018201740351632⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)()()36762464+-+-+(2)33243571375-++++(1)(9)(7)(6)(5)---+--+;(2)11213()() 2332---+-.4.(2022·全国·七年级专题练习)(- 48)-(- 512)+(- 44)-38◎类型二:运用拆项法计算解题方解答此类问题,先把带分数拆成整数和真分数两部分,再把整数部分和真分数部分分别结合在一起,利用交换律结合律得出答案。
培优专题3 有理数的巧算(含答案)-
培优专题3 有理数的巧算有理数的巧算,实际上是结合算式的特点,灵活运用有理数的运算律,使之避繁就简,从而提高解题的速度和准确率.由于有理数的巧算常常体现出方法和思维的灵活性,因此是初中数学竞赛试题中,作为考察代数运算能力的一个重要内容.在有理数的运算中,除了一些常见的巧算方法外,还可以用平均数的估算法、连续整数的求和法、求分数和的裂项相消法等.例1计算:(-1136+13107÷24107-1718)÷(-78)×1711.分析在运算中合理运用运算律,可以达到简化运算的目的.要做到合理,关键是仔细观察题中数之间的联系.解:原式=371317818 ()()362418711 -+-⨯-⨯=37398 (17)()2477 -+-⨯-=14878136206 77777777-+=.练习11.-292324×12=_________.2.1995减去它的12,再减去余下的13,再减去余下的14,…依次类推,一直减到余下的11995,•试求最后剩下的数.3.计算:472 6342+472 6352-472 633×472 635-472 634×472 636.例2 计算:3-6+9-12+…+1995-1998+2001-2004.分析 此题解法较多,如何根据其特点使运算简而巧是关键.这个题的特点是每一个数均是3的倍数,当提取公因数3后,很容易发现这个和实际上是由668•个数组成,且可相邻的两个数为一组,组成334组就可解决.解法1:原式=3×(1-2+3-4+…+665-666+667-668)=3×[(1-2)+(3-4)+…+(665-666)+(667-668)]=3×(-334)=-1002.解法2:原式=(3-6)+(9-12)+…+(1995-1998)+(2001-2004)=-3×334=-1002.练习21.计算:1+2-3-4+5+6-7-8+…+1998-1999-2000+2001+2002-2003-2004.2.计算:999×998 998 999-998×999 999 998.3.计算:9999n 个×9999n 个+91999n 个.例3 计算:S n =222121+-+223131+-+…+2211n n +-+22(1)1(1)1n n +++-. 分析 将每一项拆成两项之差,使得总和中构成相反数的项相消.拆项中常常用到: ①1(1)n n +=1n -11n +; ②1(1)(1)n n -+=12(11n --11n +); ③1(1)(2)n n n ++=12[1(1)n n +-1(1)(2)n n ++]. 解:先将假分数化成带分数,并适当拆项.由2211n n +-=1+221n -=1+(11n --11n +), 知:222121+-=1+(1-13) 223131+-=1+(12-14) …因此S n =n+(1-13)+(12-14)+…+(11n --11n +)+(1n -12n +) =n+1+12-11n +-12n + =322992(1)(2)n n n n n ++++. 练习31.1-22+32-42+…+992-1002+1012.2.112⨯+123⨯+134⨯+…+1(1)n n+=________.3.已知:P=(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).那么P的个位数是________.例4 计算:(12+13+…+12005)(1+12+13+…+12004)-(1+12+13+…+12005)(12+13+…+12004).分析四个括号中均包含12+13+…+12004,我们可以用一个字母表示它,简化计算.解:设12+13+…+12004=A,则:原式=(A+12005)(1+A)-(1+A+12005)·A=A+A2+12005+12005A-A-A2-12005A=12005.练习41.求S=1+3+32+33+ (32005)2.求1+12+212+312+…+200412.3.比较:S n=12+23448162nn++++(n是正整数)与2的大小.例5从A、B两地随机抽取10株麦苗,测得它们的株高分别如下:(单位:cm)A:76,90,84,86,81,87,86,82,85,83;B:82,84,85,89,79,80,91,89,79,74.问:哪个麦地的麦苗长得高.分析这里问哪个麦地的麦苗长得高,实质上是比较其平均数的大小.在求平均数时,若直接将各数相加求和,计算较麻烦.一般是当一组数据x1,x2,x3•…x n的各个数值较大且要求它们的和时,我们可将各数据同时减去一个适当的常数a,•得到y1=x1-a,y2=x2-a,y3=x3-a…,y n=x n-a,那么x1+x2+x3+…+x n=na+(y1+y2+y3+…y n).这里应注意的是,常数a的确定要使得新数据的求和运算尽可能简单.解:将上述两组数据分别减去85,得到两组新数据:A′:-9,5,-1,1,-4,2,1,-3,0,-2;B′:-3,-1,0,4,-6,-5,6,4,-6,-11.则A组数据的平均数为:110[85×10+(-9+5-1+1-4+2+1-3+0-2)]=110(850-10)=84.B组数据的平均数为:110[85×10+(-3-1+0+4-6-5+6+4-6-11)]=110(850-18)=83.2.∴A地麦苗长得高.练习51.已知如下数表:12 3 43 4 5 6 74 5 6 7 8 9 10…那么第200行所有数的和为__________.2.对20名儿童的身高测量如下:(单位:cm)97,101,104,98,103,101,99,97,102,96,100,102,88,100,101,96,99,102,105,98.则它们的平均身高是________.3.计算下列各数的和.49.7,50.3,49,49.3,50.5,49.4,49.8,50.2,50,50.4,49.6,49.7,50.2.答案:练习11.-35912.原式=(-30+124)×12=360+12=35912. 2.1.原式=1995×(1-12)×(1-13)×…×(1-11995) =1995×12×23…×19941995 =1.3.2原式=472 635×(472 635-472 633)+472 634×(472 634-472 636)=472 635×2-472 634×2=(472 635-472 634)×2=2.练习21.-2004.原式=(1+2-3-4)+(5+6-7-8)+…+(1997+1998-1999-2000)+(2001+•2002-•2003-2004) =-4×501=-2004.2.1997.原式=(998+1)×998 998 999-998×(998 998 999+1 001 000-1) =998×998 998 999+998 998 999-998×998 998 999-998 998 000+998=999+998=1997.3.21000n 个0原式=9999n 个×9999n 个+1000n 个0+9999n 个=9999n 个×(9999n 个+1)+ 1000n 个0=9999n 个×1000n 个0+1000n 个0=(9999n 个+1)×1000n 个0=1000n 个0×1000n 个0=21000n 个0. 练习31.5151.原式=(1012-1002)+(992-982)+…+(32-22)+1=(101+100)×(101-100)+(99+98)×(99-98)+…+(3+2)×(3-2)+1 =201+197+…+1 =(2011)512+⨯ =5151.2.1n n + 原式=(1-12)+(12-13)+…+(1n -11n +) =1-11n +=1n n +. 3.5.原式=(2-1)(2+1)(22+1)…(232+1)=(22-1)(22+1)…(232+1)=(232-1)(232+1)=264-1.∵21=2,22=4,23=8,24=16,25=32,故264的末尾数字为6,∴原数的末尾数字为5. 练习41.2006312-.3S=3+32+33+…+32006, ∴2S=32006-1,∴S=2006312-. 2.2-200412.设1+12+212+…+200412=A . 则2A=2+1+12+212+…+200312,∴A=2-200412. 3.S n <2. 2S n =1+22+34+48+…+12n n -.∴2S n -S n =1+(22-12)+(34-24)+(48-38)+…+(12n n --112n n --)-2n n =1+12+14+18+…+112n --2n n 由练2知1+12+14+18+…+112n -=2-112n -. ∴S=2-112n --2n n <2. 练习51.159201.第200行的数为:200,201,202…598.方法1:200+201+…+598=(598200)3992+⨯=159201. 方法2:每个数都减去399,则得到一组新数据:-199,-198,-197…,197,198,199,其和为0,故200+201+…+598=399×399+0=159201.2.198.9.将每个数据都减去100得到一组新数据,其和为-11, 故原数据和为:100×20-11=1989,故平均身高为99.45.3.648.1.将原数据的每个数据减去50,得到一组新数据,其和为-1.9,• 故原数据和为:50×13-1.9=648.1.。
【精选】七年级数学上册有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.4.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.5.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.8.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.9.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.【答案】(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2CF.(3)解:①当0<t≤6时,P对应数:-6+3t,Q对应数-4+2t,,解得:t=1或3;②当6<t≤8时,P对应数, Q对应数-4+2t,,解得:或;故答案为t=1或3或或【解析】【解答】(1)数轴上A、B两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F是AE的中点,∴AF=EF=7,,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,故答案为16,6,2;【分析】(1)由数轴上A、B两点对应的数分別是-4、12,可得AB的长;由CE=8,CF=1,可得EF的长,由点F是AE的中点,可得AF的长,用AB的长减去2倍的EF的长即为BE 的长;(2)设AF=FE=x,则CF=8-x,用含x的式子表示出BE,即可得出答案(3)分①当0<t≤6时;②当6<t≤8时,两种情况讨论计算即可得解10.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;11.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:【答案】(1)(2)(3)原式=.【解析】【解答】(1)故答案为:.(2)故答案为:.【分析】(1)分子为1,分母为相邻2个数的积,结果等于分子为1,分母分别为2个因数的分数的差;(2)利用(1)规律进行拆项,化简后只剩首位两个数的差,求出结果即可;(3)根据(1)规律进行变形后然后乘以,求出结果即可.12.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.【答案】(1)解:由题意得:,解得:(2)解:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D 表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t)=1.5,解得t=1.75(3)解:在运动过程中,MN-2PQ=4恒成立,理由如下:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D表示的数为-2t,M表示的数为-2-t,N表示的数为3+4t;故MN的中点P表示的数为0.5+1.5t,OD的中点Q表示的数为-t;则MN-2PQ=[(3+4t)-(-2-t)]-2[(0.5+1.5t)-(-t)]=5+5t-2(0.5+2.5t)=5+5t-1-5t=4【解析】【分析】(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D点坐标,根据D到A、B两点的距离之和为8,可知D点在B的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M、D、N点的坐标,根据中点公式求出P、Q坐标进而求出MN、PQ线段长即可求解.。
苏科版数学七年级上册 有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.4.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。
浙教版七上数学第二章有理数运算培优训练试题(附答案)
浙教版七上数学第二章有理数运算培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1. 由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A. 精确到十分位B. 精确到个位C. 精确到百位D. 精确到千位 2. 有人用600元买了一匹马,又以700元的价钱卖了出去;然后,他再用800元把它买回来,最后以900元的价钱卖出.在这桩马的交易中,他( )A. 收支平衡B. 赚了100元C. 赚了300元D. 赚了200元 3. 已知两个有理数a ,b 如果0<ab 且0>+b a ,那么( )A. a >0,b >0B. a <0,b >0C. a 、b 同号D. a 、b 异号,且正数的绝对值较大 4.已知3=x ,162=y ,则=+y x ( )A. 7或1-B. 1或7-C.7117--或或或D. 7或15. 计算99001...3012011216121++++++的值为( ) A. 1001 B. 10099 C. 901 D. 991006.如图,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1===PR NP MN 数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是A. M 或RB. N 或PC. M 或ND. P 或R7.下列各式:①10=a ;②532a a a =⋅;③4122-=-;④()()()0182534=-⨯÷-+--;⑤2222x x x =+, 其中正确的是( )A. ①②③B. ①③⑤C. ②③④D. ②④⑤8.四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色按逆时针方向改变一次,则开灯32分钟四盏灯的颜色排列为( )9.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2019次输出的结果为( )A .3B .6C .4D .110.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2018将与圆周上的哪个数字重合( )A.0B.1C.2D.3二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11. 已知()0212=++-b a ,求()_________20192018=++a b a12.若5=a ,2=b ,且0>ab ,则_______________=+b a 13.当n 为正整数时,()()nn 21211-+-+的值是14.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动:第一次将点A 向左移动3个单位长度到达点A 1,第2次将点A 1向右平移6个单位长度到达点A 2,第3次将点A 2向左移动9个单位长度到达点A 3…则第6次移动到点A 6时,点A 6在数轴上对应的实数是 ;按照这种规律移动下去,第2018次移动到点2018A 时,2018A 在数轴上对应的实数是15.在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,n 层二叉树的结点总数为_______ 16.观察规律并填空:(1)4323212112=⨯=⎪⎭⎫ ⎝⎛-(2)323432232131121122=⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-(3)85454334322321411311211222=⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-......______11......4113112112222=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-n (用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题共4小题,每小题2分,共8分)(1)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--324413322415 (2)()241258347-⨯⎪⎭⎫⎝⎛+--(3)()()2178877-⨯⨯÷- (4)()()()201938131021-÷----+-18(本题8如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,点B 所对应的数是 ;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,则A 、B 两点间距离为 ;(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.19(本题8分)某足球守门员练习折返跑,从守门员位置出发,向前跑记为正数,向后跑记为负数,他的练习记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了守门员位置? (2)守门员离开离开守门员位置最远是多少米?(3)守门员离开守门员位置达到10米以上(包括10米)的次数是多少?20(本题10分)小明有 5 张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出 2 张卡片,使这 2 张卡片上数字的乘积最大,乘积的最大值为________; (2)从中取出 2 张卡片,使这 2 张卡片上数字相除的商最小,商的最小值为________; (3)从中取出 4 张卡片,用学过的运算方法进行计算,使结果为24请你写出符合要求的运算式子(至少一个)21(本题10分). 已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=________,PC=_____________(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止,①当P 、Q 两点运动停止时,求点P 和点Q 的距离;②求当t 为何值时P 、Q 两点恰好在途中相遇。
浙教版(2024)七年级上册第二章 有理数的运算 培优(含答案)
浙教版七年级上册第二章有理数的运算培优一、选择题1.2024年4月25号,我国神舟十八号载人飞船发射取得圆满成功,在发射过程中,飞船的速度约为每小时29000千米,数据29000用科学记数法表示为()A.2.9×106B.2.9×105C.2.9×104D.29×1052.根据有理数加法法则,计算2+(﹣3)过程正确的是( )A.+(3+2)B.+(3﹣2)C.﹣(3+2)D.﹣(3﹣2)3.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A.−9+3=−6B.−9−3=−12C.9−3=6D.9+3=124.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.若式子x−2+(y+3)2=0,则(x+y)2025等于( )A.−1B.1C.−32025D.320256.计算:(−517)2023×(−325)2024=( )A.−1B.1C.−517D.−1757.22023个位上的数字是( )A.2B.4C.8D.68.求1+2+22+23+⋯+22018的值,可令S=1+2+22+23+⋯+22018,则2S=2+22+23+⋯+ 22019,因此2S−S=22019−1,仿照以上推理,计算出1+5+52+53+⋯+52018的值为( )A.52018−1B.52019−1C.52019−14D.52018−149.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A.(12)3米B.(12)5米C.(12)6米D.(12)12米10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个B.4个C.3个D.2个二、填空题11.用四舍五入法对0.618取近似数(精确到0.1)是 .12.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .13.定义一种新的运算“(a,b)”,若a c=b,则(a,b)=c,如:(2,16)=4.已知(3,9)=x,(3,y)=4,则x−y= .14.已知|3a+b+5|+(2a−2b−2)2=0,那么2a2−3ab的值为 .15.“转化”是一种解决数学问题的常用方法,有时借助几何图形可以帮助我们找到转化的方法.例如,借助图(1)可以把算式1+3+5+7+9+11转化为62=36.这是将数字求和问题转化为面积求和问题,从而建立数与形的联系,使问题易于解决.利用这样的方法,请观察图(2)计算12+14+18+116+132+164= .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了34×25=850的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a,b,c,d均为正整数,且c,d都不大于8,则b的值为 ,该图表示的乘积结果为 .三、解答题17.(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)19.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.20.用“※”定义一种新运算,规定a※b=b2−a,如1※3=32−1=8,(1)求1※2的值;(2)求(1※2)※(−5)的值.21.老师设计了一个有理数运算的游戏.规则如下:(1)若黑板上的有理数为“−4”,求应写在纸条上的有理数;(2)学习委员发现:若正确计算后写在纸条上的结果为正数,则老师在黑板上写的最大整数是多少?22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费_____ 元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?四、综合题23.阅读理解:计算(1+12+13)(12+13+14)−(1+12+13+14)(12+13)时,若把分别(12+13)与(12+13+14)看作一个整体,再利用乘法分配律进行计算,可以大大简化难度,过程如下:解:令12+13=x,12+13+14=y,则原式=.(1+x)y−(1+y)x=y+xy−x−xy=y−x=1 4(1)上述过程使用了什么数学方法? ;体现了什么数学思想? ;(填一个即可)(2)用上述方法计算:①(1+12+13+14)(12+13+14+15)−(1+12+13+14+15)(12+13+14);②(1+12+13+…+1n−1)(12+13+14+…+1n)−(1+12+13+…+1n)(12+13+14…+1n−1);③计算:1×2×3+2×4×6+3×6×9+4×8×12+5×10×151×3×5+2×6×10+3×9×15+4×12×20+5×15×25.答案解析部分1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】0.612.【答案】−613.【答案】−7914.【答案】−415.【答案】636416.【答案】3;72817.【答案】(1)26;(2)1618.【答案】图见解答,−3<3<−(−2)<|−3|<(−2)2219.【答案】(1)5,2(2)①8或−2;②9;③102313220.【答案】(1)3(2)2221.【答案】(1)4(2)322.【答案】(1)解:∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15-10)×2=26(元),故答案为:26.(2)解:由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家7月份用水量为x吨,依题意得:1.6×10+2(x-10)=1.75x ,解得:x =16,答:小刚家7月份的用水量为16吨.(3)解:因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x 吨,则8月份的用水量为(40-x )吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40-x-20)+2=79.6解得:x =8,②当10<x <20时,依题意得:16+2(x-10)+16+20+2.4(40-x-20)+2=79.6解得:x =6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【答案】(1)换元法;整体思想(转化思想)(2)解:①令12+13+14=a ,12+13+14+15=b ,∴b-a=15,∴原式=(1+a )b-(1+b )a=b+ab-a-ab=b-a=15;②令12+13+…+1n−1=m ,12+13+14+1n =t ,∴t-m=1n,∴原式=(1+m )t-(1+t )m=t+mt-m-mt=t-m=1n;③令1×2×3=x ,1×3×5=y ,∴x y =615=25∴原式=x +2x +3x +4x +5x y +2y +3y +4y +5y =15x 15y =x y =25.。
七年级有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
七年级上册数学有理数培优50题含详细答案
七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;(2)正确的结果是.8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=秒时,点P到达点A.(2)运动过程中点P表示的数是(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x ﹣y+z+w ,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d的点到原点的距离为4,求a﹣b﹣c+d的值.21.阅读下列材料:点A、B在数轴上分别表示两个数a、b,A、B两点间的距离记为|AB|,O表示原点.当A、B两点中有一点在原点时,不妨设点A为原点,如图1,则|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,若点A、B都在原点的右边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,若点A、B都在原点的左边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,若点A、B在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|.回答下列问题:(1)综上所述,数轴上A、B两点间的距离为|AB|=.(2)若数轴上的点A表示的数为3,点B表示的数为﹣4,则A、B两点间的距离为;(3)若数轴上的点A表示的数为x,点B表示的数为﹣2,则|AB|=,若|AB|=3,则x的值为.22.已知数轴上A,B两点对应数分别为﹣2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P 点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.24.解答下列问题:(1)计算:6÷(﹣+)方方同学的计算过程如下:原式=6÷(﹣)+6÷=﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程):①999×(﹣15);②999×118+333×(﹣)﹣999×18.25.阅读材料,解答下列问题:例:当a=5,则|a|=|5|=5,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a 的绝对值是0;当a<0时,如a=﹣5,则|a|=|5|=﹣(5)=5,故此时a的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣﹣3|=;(2)如果|x+1|=2,求x的值;(3)若数轴上表示数a的点位于﹣3与5之间,求|a+3|+|a﹣5|的值;(4)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a⊕b=a﹣b+ab.(1)求(﹣2)⊕(﹣3)的值;(2)求5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米):+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,P A=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A 点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.32.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B 两点相距4个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?34.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:a△b=a﹣b+ab.(1)求2△(﹣3)的值;(2)求(﹣5)△[1△(﹣2)]的值.38.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如表:(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为70(1)请写出AB的中点M对应的数(2)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请你求出C点对应的数(3)若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从A地出发,中午到达B地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B地在A地的什么方向?与A地相距多远?(2)巡逻车在巡逻中,离开A地最远多少千米?(3)巡逻车行驶每千米耗油a升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.【初步探究】(1)直接写出计算结果:2③=,(﹣)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(﹣)④×(﹣2)⑤﹣(﹣)⑥÷33.42.若|a|=5,|b|=2,且a<b,求a﹣b的值.43.观察下列等式:=1﹣,=﹣,=﹣,把以上三个等式两边分别相加得:++=1﹣+﹣+﹣(1)猜想并写出:=.(2)规律应用:计算:+++++(3)拓展提高:计算:+++…+.44.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.45.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x 为;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作,读作“a的圈n次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣)⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n次方等于;(3)计算24÷23+(﹣8)×2③.48.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a+3b+﹣cd的值是多少?49.已知(|x+1|+|x﹣2|)(|y﹣2)|+|y+1|)(|z﹣3|+|z+1|)=36,求2016x+2017y+2018z的最大值和最小值50.已知a2=9,|b|=5,且a<b,求a﹣b的值.七年级上册数学有理数培优50题参考答案与试题解析一.填空题(共5小题)1.=【解答】解:====,故答案为:.2.若|a|+|b|=2,则满足条件的整数a、b的值有8组.【解答】解:∵|a|+|b|=2,∴|a|=0,|b|=2或|a|=1|b|=1,或|a|=2,|b|=0,∴a=0,b=2;a=0,b=﹣2;a=1,b=1;a=1,b=﹣1;a=﹣1,b=1;a=﹣1,b =﹣1;a=﹣2,b=0;a=2,b=0,故答案为:8.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是1119.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c为1,此时b只能为1.所以此数为1119.故答案为1119.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点C或点D.(填“A”、“B”“C”或“D”)【解答】解:由图示知,b﹣a=4,①当a>0,b>0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,舍去;②当a<0,b<0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,故数轴的原点在D点;③当a<0,b>0时,由题意可得|a|=3|b|,即﹣a=3b,解得a=﹣3,b=1,故数轴的原点在C点;综上可得,数轴的原点在C点或D点.故填C、D.5.|x+1|+|x﹣2|+|x﹣3|的值为.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2 OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w ,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣)×(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),故加法的交换律仍然适用.18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数﹣5表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是﹣7或3.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是1008.则N点表示的数是﹣1010.【解答】解:①∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,所以数轴上数3表示的点与数﹣5表示的点重合;故答案为:﹣5;②点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣1﹣(﹣5)=4,﹣1+4=﹣3,当点A表示5时,5﹣(﹣1)=6,﹣1﹣6=﹣7,∴B点表示的数是﹣7或3;故答案为:﹣7或3;③M、N两点之间的距离为2018,并且M、N两点经折叠后重合,∴﹣1+×2018=1008,﹣1﹣×2018=﹣1010,又∵M点表示的数比N点表示的数大,∴M点表示的数是1008,N点表示的数是﹣1010,故答案为:1008,﹣1010.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,。
七年级上学期第一章《有理数》能力培优讲义1.3 有理数的加减运算 能力培优(含答案)
1.3有理数的加减运算知识要点:1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0(3)一个数同0相加,仍得这个数.2.有理数的加法的运算律:(1)加法交换律:两个数相加,交换加数的位置,和不变.即:a +b =b +a ;(2)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即:(a +b )+c =a +(b +c );3.有理数的减法法则:减去一个数等于加上这个数的相反数,即:a -b =a +(-b ).温馨提示:1.有理数相加,先定符号,再求绝对值;2.有理数的减法法则,实质是将减法运算转化为加法运算;3.减法没有交换律和结合律,所以不要出现“1-2-2=1”的错误;4.利用交换律,交换加数位置时,不要漏掉每个加数前面的符号.方法技巧:1.有理数加减法的常用运算技巧:把正负数分别结合相加;把相加得零的数分别结合相加;分数相加,凑整相加分组结合.2.当加数比较多且都在某个基本数附近时,求它们和的简便方法是:①找准基准数;②超过用正数来表示,不足用负数来表示;③求出超过或者不足的和(累积和);④利用总和=基准数×加数个数+累计和.专题一 利用有理数的加、减法则进行运算1、两个有理数的和为负数,那么这两个数一定( )A.都是负数B.至少有一个负数C.有一个是0D.绝对值不相等2、如果a 是不等于0的有理数,那么2a a a 化简的结果应该是( ) A.0 B.1C.-1D.0或者-1 3、我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图,给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )专题二 有理数的加减法在实际生活中的应用5、请阅读一小段约翰·斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时间长应为( )6、蚂蚁在一条直线上来回爬行,若向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米) +5,-3,+10,-8,-6,12,-10,+6(1)蚂蚁最后是否回到出发点?(2)在爬行过程中,每爬行1厘米奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?专题三 利用运算律对有理数加减做简便运算7、下列各题运用加法交换律、结合律变形错误的是( )A 、)]75.0()25.0[(1)75.0()25.0(1-+-+=-+-+B 、)65()43()21(654321-+-+-=-+-+-C 、⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+=+--3261214332216143D 、)26()8()37(26387++-+-=++--8、利用简便方法计算:(1)(14)(4)(2)(26)(3)++-+-+++-; (2)117-48+54-116;(3)77()( 2.3)(0.1)( 2.2)()( 3.5)1010-+++-+-++++;(4)11113(2)()0.25()2436--+--++ (5)7+97+997+9997+99997;(6)1+2-3-4+5+6-7-8+9+……+2014+2015-2016-2017+20189、某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期四生产自行车 辆;(2)产量最多的一天比产量最少的一天多生产自行车 辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?专题四 规律探索题中的有理数加减法10、我们把分子为1的分数叫理想分数,如12,13,14,....任何一个理想分数都可以写成两个不同理想分数的和,如613121+=;31=12141+;2015141+=…….根据对上述式子的观察,请你思考:如果理想分数119=b a 11+,那么a +b =___________.11.对于正数x ,规定 1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+, 则111(2018)(2017)(2)(1)(1)+()()()220172018f f f f f f f f ++++++++=…… .1.3答案:1.B 解析:根据有理数的加法法则:如果两个加数都是负数则和是负数;如果两个加数一正一负,负数的绝对值大,则和也是负数,负数的绝对值小,则和为正数;如果两个加数为正数,则和为正数;负数加0,结果为负数,正数加0,结果为正数.所以如果两个有理数的和为负数,则至少有一个数为负数.2.D 解析:当a<0时,原式=()2122a a aa a--==---;当a>0时,原式=22a aa a-==.3.C 解析:通过观察,我们不难看出此题实质上是让2个点与5个点的和等于1个点与P所在位置的点的和,所以P=2+5-1=6.所以P点的点数为6.4.A 解析:由表中数据可知:A-C=90①,C-D=80②,D-E=60③,E-F=-50④,F-G=70⑤,G-B=-40⑥,①+②+③+…+⑥,得:(A-C)+(C-D)+(D-E)+(E-F)+(F-G)+(G-B)=A-B=90+80+60-50+70-40=210.∴观测点A相对观测点B的高度是210米.6.解析:(1)根据题意可得:向右爬行的路程记为“+”,向左爬行的路程记为“-”.则蚂蚁最后离开出发点的距离是:(+5)+(-3)+(+10)+(-8)+(-6)+(12)+(-10)+(+6)=+6(厘米).答:蚂蚁最后在出发点的右边,与出发点相距6厘米.(2)蚂蚁从离开出发点开始走的路程是:|+5|+|-3|+|+10|+|-8|+|-6|+|12|+|-10|+|+6|=60(厘米),所以在爬行过程中,蚂蚁得到的奖励是:60×2=120(粒).7.C 解析:C选项去掉括号后等号的右边=31124263+-+,与等号的左边不相等,所以不正确.8.解:(1)原式= [(+14)+(+26)]+[(-4)+(-2)+(-3)] =(+40)+(-9)= 31;(2)原式= (117-116)+(-48+54)= 1+6 = 7;(3)原式=77[()()][( 2.3)(0.1)( 2.2)]( 3.5)1010-+++++-+-++= 0+0+(+3.5)= 3.5;(4)原式=1111(20.25)(3)4236-+-+=11321(2)(3)44666-+-+= 2+133=153;(5)原式=(10-3)+(100-3)+(1000-3)+(10000-3)+(100000-3)=111110-3×5=111095;(6)原式=1+(2-3-4+5)+(6-7-8+9)+……(2015-2016-2017+2018)=1+0+0+……+0=1.9.解析:(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16-(-10)=26辆;(4)这一周的工资总额是200×7×30+(6+12+16)×(30+20)+〔(-2)+(-4)+(-10)+(-8)〕×(30+15)=42620(元).10. 400 解析:根据给出的理想分数定义可得第2个分数的分母比第1个分数的分母大1,第三个分数的分母是第1个分数的分母与第2个分数的分母的乘积.不难得到在119=ba11+中,a=19+1=20,b=19×20,a+b=20+19×20=20×(1+19)=400. 11. 2018 解析:当x=1时,f(1)=12;当x=2时,f(2)=13;当x=12时,f(12)=23;当x=3时,f(3)=14,当x=13时,f(13)=34…,故f(2)+f(12)=1,f(3)+f(13)=1,…,111。
七年级《有理数》培优练习题(有答案)
1.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)= .2.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|= .3.有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到.4.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.5.如果x、y都是不为0的有理数,则代数式的最大值是.6.|x+2|+|x﹣2|+|x﹣1|的最小值是.7.当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值.16 x11 15129.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)10.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100= ,2100×()100= ;(2)通过上述验证,归纳得出:(a•b)n= ;(abc)n= .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.11.数轴上的点M对应的数是2,一只蚂蚁从点M出发沿着数轴以每秒2个单位的速度向左或向右爬行,当它到达数轴上的点N后,立即返回到原点,共用6秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?12.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.13.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?14.已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.15.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F 从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.17.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.18.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.19.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为﹣24.(1)求a;(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?20.已知数轴上A、B两点对应的数分别为﹣1和3,数轴上的一个动点P,其对应的数为x.(1)若点P到A、B两点的距离相等,求点P对应的数x的值;(2)数轴上是否存在点P,使点P到A、B两点的距离之和为5:若存在,请求出求x的值;若不存在,请说明理由.21.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?22.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).23.看数轴,化简:|a|﹣|b|+|a﹣2|.24.在一条不完整的数轴上从左到右有点A,B,C,其中点A到点B的距离为3,点C到点B的距离为7,如图所示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以C为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为4,求m的值.(3)动点P从A点出发,以每秒2个单位长度的速度向终点C移动,动点Q同时从B点出发,以每秒1个单位的速度向终点C移动,当几秒后,P、Q两点间的距离为2?请直接写出答案.参考答案与试题解析一.填空题(共8小题)1.﹣1008 . 2.b﹣2c . 3.﹣2b﹣a﹣1 . 4.﹣1 .【解答】解:∵点A1在数轴表示的数是,∴A2==2,A3==﹣1,A4==,A5==2,A6=﹣1,…,2016÷3=672,所有点A2016在数轴上表示的数是﹣1,故答案为:﹣1.5.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.6.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【解答】解:|x+2|+|x ﹣2|+|x ﹣1|表示:数轴上一点到﹣2,2和1距离的和, 当x 在﹣2和2之间的1时距离的和最小,是4. 7.﹣1≤x ≤2 ,最小值是 3 . 【解答】解:由数形结合得,若|x+1|+|x ﹣2|取最小值,那么表示x 的点在﹣1和2之间的线段上, 所以﹣1≤x ≤2,最小值是3.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x 的值 9 .【解答】解:16+11+12=39, 39﹣11﹣15=13, 39﹣12﹣13=14,x=39﹣16﹣14=9. 故答案为:9.二.解答题(共16小题) 9.先观察:1﹣=×,1﹣=×,1﹣=×,… (1)探究规律填空:1﹣=× ; (2)计算:(1﹣)•(1﹣)•(1﹣) (1))【解答】解:(1)原式=×;(2)原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=,故答案为:(1);10.阅读下列各式:(a•b)2=a 2b 2,(a•b)3=a 3b 3,(a•b)4=a 4b 4…16 x111512回答下列三个问题:(1)验证:(2×)100= 1 ,2100×()100= 1 ;(2)通过上述验证,归纳得出:(a•b)n= a n b n;(abc)n= a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.【解答】解:(1)(2×)100=1,2100×()100=1;②(a•b)n=a n b n,(abc)n=a n b n c n,③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×=(﹣1)2015×=﹣1×=﹣.11.【解答】解:(1)2×6=12(个单位长度).故蚂蚁爬行的路程是12个单位长度;(2)①当点M在点N左侧时:a﹣2+a=12,a=7;②当点M在点N右侧时:﹣a+2﹣a=12,a=﹣5;(3)若向左爬MN=2﹣(﹣5)=7若向右爬MN=7﹣2=5.12.(1)填空:log66= 1 ,log381= 4 .(2)如果log2(m﹣2)=3,求m的值.解:(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;13.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)14.解:(1)设经过t秒,点P位于点Q左侧2个单位长度,6t﹣[4t+8﹣(﹣4)]=2,解得,t=7答:经过7秒,点P位于点Q左侧2个单位长度;(2)由题意可得,经过时间t,点P表示的数为:8﹣6t,∵点M是AP的中点,点N是BP的中点,∴点M表示的数是:,点N表示的数是:,∴MN=|(8﹣3t)﹣(2﹣3t)|=|8﹣3t﹣2+3t|=6,即线段MN的长度是6.15.(1)点A所对应的数是﹣5 ,点B对应的数是27 ;解:(1)根据题意得:A点所对应的数是﹣5;B对应的数是27;(2)设经过x秒F追上点E,根据题意得:2x+32=4x,解得:x=16,则点C对应的数为﹣5﹣2×16=﹣37.故答案为:﹣5;27.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是﹣4 ;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是0 ;解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.17.(1)运动前线段AB的长为 6 ;运动1秒后线段AB的长为 4 ;(2)运动t秒后,点A,点B运动的距离分别为5t 和3t ;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.18.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.19.解:(1)依题意有a﹣6+2=﹣24,解得a=﹣20.(2)点C在数轴上向左移动3个单位长度是﹣24﹣8+3=﹣29或﹣24+8+3=﹣13;点C在数轴上向右移动3个单位长度是﹣24﹣8﹣3=﹣35或﹣24+8﹣3=﹣19.故移动前的点C距离原点有29或13或35或19个单位长度.20.解:(1)由题意,得PA=PB,∴x﹣(﹣1)=3﹣x,解得x=1.(2)∵3﹣(﹣1)=4<5,∴点P不在线段AB上.当点P落在点B右侧时,有PB+PA=5,∴(x﹣3)+(x+1)=5,解得x=3.5.当点P落在点A左侧时,有BP+AP=5,∴(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5.∴x的值是3.5或﹣1.5.21.解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.22.解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:﹣4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;﹣4.24.(1)若以B为原点,则点C所对应的数是7 ;若以C为原点,则m的值是﹣17 .解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C三点在数轴上所对应的数分别为﹣6、﹣3、4,则 m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C三点在数轴上所对应的数分别为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,0,Q对应的数是﹣(7﹣t),P 对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.。
七年级数学《有理数》经典培优(含答案)
1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是_______.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点An与原点的距离不小于26,那么n的最小值是________.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;_____ <_____ < ______ <______<_________ <______(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.5.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为____,点B表示的数为_______.(2)用含t的代数式表示P到点A和点C的距离:PA=_______,PC=________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数______所表示的点是{M,N}的奇点;数_______所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?7.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B 分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是_______,数轴上表示数x和3的两点之间的距离表示为_________;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:________,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于_________时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是__________.8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=_____=(_______)2(2)用含有n的式子表示上面的规律:______.9.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值10.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B 在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为__________;②若两点之间的距离为2,那么x值为________;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.。
【七年级数学代数培优竞赛专题】专题7 有理数的乘除、乘方【含答案】
专题7 有理数的乘除、乘方知识解读1.运用乘法运算律简便运算乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.根据题目特征,恰当使用乘法运算律能简便运算.2.妙用倒数简便运算除法没有分配律,但是a÷(b+c+d)的倒数(b+c+d)÷a,可以转化成乘法后运用乘法分配律简便运算.3.巧设参数简便运算在一些计算中,有些式子会在多处出现,此时,将这个式子看成一个整体,用字母来表示,可简便运算.4.以退为进简便运算根据题目特征,将乘方退成乘法,能简便解题.培优学案典例示范1.运用乘法运算律简便运算例1计算:(1)(1+12)×(1-12)×(1+13)×(1-13)×…×(1+12015)×(1-12015);(2)2016×一2015×;(3)2016×2015-2015×2014+2014×2013-2013×2012+…+2×1.【提示】(1)先算括号内的,再运用乘法交换律和结合律简便运算;(2)将拆成2015×10001,拆成2016×10001;(3)2016×2015-2015×2014=2015×(2016-2014),2014×2013-2013×2012=2013×(2014-2012)…【技巧点评】依据题目特点,灵活运用乘法交换律、结合律和分配律.跟踪训练1计算:(1)19191976767676761919-;(2)1352610123246⨯⨯+⨯⨯⨯⨯+⨯⨯(3)987655321666987654⨯-+⨯;(4)1111111111111009998432⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫------⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.2.妙用倒数简便运算例2计算:13211 6314973⎛⎫-÷-+-⎪⎝⎭.【提示】132116314973⎛⎫-÷-+-⎪⎝⎭的倒数是321111497363⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭.【技巧点评】除法没有分配律,但是原式的倒数可以用分配律简便运算. 跟踪训练2计算:13511760461512⎛⎫⎛⎫-÷+--⎪ ⎪⎝⎭⎝⎭3.巧设参数简便运算例3计算.11111111111111 1123423452345234⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【提示】设111x234=++,那么原式()111155x x x x⎛⎫⎛⎫++-++⎪ ⎪⎝⎭⎝⎭【技巧点评】设字母参数,运用整体思想,巧妙地消去大量的数字运算. 跟踪训练3计算:11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----⨯++++------⨯+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.4.以退为进简便运算例4 计算:(1)()2015201480.125-⨯;(2)23420142015222222-----+. 【提示】(1)()2015 8-将拆成 8-×()2014 8-;(2)20142015201420142014222222-+=-+⨯=.【技巧点评】根据乘方的意义,将幂巧妙拆分,简便运算.跟踪训练4(1)计算:1992014554⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭ ;(2)若33331231514400++++=,则333324630++++= .培优训练直击中考1.★(2017·江苏南京)计算()()()1218632+-÷---⨯ 的结果是 ( )A.7B.8C.21D.362.★(2017·武汉)计算()234⨯+-的结果为 .3.★(2017·牡丹江)请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数一2,4,一6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 .(只写一种)4.★(2016·四川雅安)P 为正整数,现规定P !=P (P-1)(P-2)×…×2×1,若m !=24,则正整数m = .5.★(2016·四川宜宾)规定:log a b (a>0,a ≠1,b >0)表示a 、b 之间的一种运算.现有如下的运算法则: log n a a n = ,log log log a N a M M N =(a>0,a ≠1,N>0,M>0,N ≠1),例如:32log 23=,10210log 5log 5log 5=,则100 log 1000= .6.★(1)(2017·湖北宜昌)计算:31210.54⎛⎫⨯-⨯ ⎪⎝⎭; (2)(2016·浙江杭州)计算:11623⎛⎫÷-+ ⎪⎝⎭; (3)(2016·河北)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭.挑战竞赛1.★★(希望杯试题)有四种说法:甲:正数的平方不一定大于它本身;乙:正数的立方不一定大于它本身;丙:负数的平方不一定大于它本身;丁:负数的立方不一定大于它本身。
七年级数学尖子生培优竞赛专题辅导第一讲有理数的巧算
第一讲有理数的巧算趣题引路】(第6届“希望杯"竞赛试题改编)计算:2004 X 20032003+2005 X 20042004 一 2003 X 20042004 一 2004 X 20052005解析 原式=2004 X 20032003 一 2003 X 20042004+2005 X 20042004一2004 X 20052005=(2004 X 2003 X 10001-2003 X 2004 X 10001)+(2005 X 2004 X 10001- 2004 X 2005 X 10001) =0点评:赢赢型式子通常将它化成^cXlOOl 型式子,有的问题还利用到1001=7X11X13这一特点 来进行考査,有理数的运算有许多技巧和方法,是中考和竞赛的热点。
知识延伸】 一、 巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。
7113 1 1例 1 计算:(1)-1999- X 16: (2)(-一一一 +二一一)-(——)86 36 4 12 48解析⑴原式=-(2000-])><168= -(3200-2) = -31998(2)原式=一(一丄一丄 + 丄)><48=—(一8 — 已 +36—4)=一 22?・6 36 4 12 3 37 1点评:⑴像1999_、2003等数字在参与运算时,往往将其写成2000--、2000+3的形式:(2)利用乘8 8法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。
二、 有理数大小的比较有理数大小比较的一般规律:正数>零>负数:两个负数比较大小,绝对值大的反而小:两个正数比较 大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运 用一些熟知的规律进行比较.1991 QI log? 09例2 (1992年"缙云杯“初中数学邀请赛试题)把-四个分数按从小到大的顺序1992 92 1993 93排列是 __________________________________ •a 疋1992(1 92 ,1 1993(1 93(11991 1991 91 91 1992 1992 92 92点评:比较分数的大小通常可以将分子化成相同或分母化成相同,再进行比较,除了通分外,倒数法也 是经常用到的方法•实际上,此类习题具有-般规律;弓<角⑴是正整数),如!|<|斗…199991一'921 1<922 311999999而丄9191-92< >丄9292-939391-92, < 92-9192一93 <一93一921,, < 9 9 ^911919 9 9 9 9 1 1 << 2 3929999 19'- 9 1 1三. 有理数巧算的几种特殊方法有理数运算时,经常会出现一些较大或较多的数求和的问题,仔细观察它们的特点,探求英中的规律, 往往可以为解题开辟新的途径.1 •倒序相加法例 3 计算:(1)1+2 + 3 + ・・・+2003 + 2004:(2)1 — 2 + 3—4+・・・ + 2003 — 2004・解析(1)设S=l+2+3 + ・・・ + 2003+2004 ①则 S=2004+2003 +…+3+2+1 ②①+②,得2S=(l+2004)+(2+2003)+・・・+(2004+l) =2005 + 2005 +…+2005 (共 2004 个 2005)=2005X2004,即原式=2009010・(2)原式=(1 一2)+(3—4)+・・・ + (2003 — 20Q4)= -1-1 ------------- 1(共 1002 个一 1) = -1002.点评:(1)式的特点是:后一项减去前一项的差都相等,这样的一列数称为等差数列,第一项叫首项, 通常用“I 表示;最后一项叫末项,通常用血表示;相等的差叫公差,通常用d 表示。
初一暑假数学培优班有理数的巧算(二)
有理数巧算(二) 【知识要点】1、乘法分配律法先运用乘法分配律“()ac ab c b a +=+”去括号,然后再巧算,这种方法叫做乘法分配律法.2、提取公因数法一个多项式的各项有公因数,可以把这个公因数提取出来,使计算简便,这种方法叫做提取公因数法.3、约分法利用分数的基本性质,将分数的分子和分母同时缩小相同的倍数,从而达到化简的目的, 这种方法叫做约分法.约分法的实质是,将写成分数形式的算式中分子部分与分母部分同时除以它们的公有因数或公有因式,从而化简计算过程,达到巧算的目的.4、凑整法如果几个数的和恰好可以凑成未尾带零的整数或者一个特殊的整数,那么,就先求出这几个数的和,可以使计算简便。
这种方法叫做凑整法。
5、整体换元法用字母将算式中具有共同特点的部分进行整体代换后,可以使计算简化。
这种方法叫做整体换元法。
【典型例题】例1.计算:103451194911994199411949145199414511949+⎪⎭⎫ ⎝⎛+⨯-⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯例2.两个十位数11111111111和9999999999的乘积有几个数字为奇数?今日分享:生命如铜钱,每个人高兴怎么用就怎么用,但一个铜板只能用一次。
例3.9200492004920049199999999999个个个+⨯的和的末尾有多少个数字0?例4.计算:445211789555789445555211⨯+⨯+⨯+⨯例5.计算:363.6542562555552345533⨯+÷+⨯例6.计算:311021983278%12541153881568825.1⨯-⨯⨯-⨯⨯+⨯⨯例9.计算:11+192+1993+19994+199995+1999996+19999997+199999998例10、⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++76655443327665544332211217665544332217665544332212【课后练习】1.计算:9.0195105375.119484⨯+⨯ 2.计算:()()575412712551234⨯-⨯-⨯-+-⨯3.计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-1100311200211200311200414.计算:1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-20005.设94495199919995199519515S 个+++++=,求S 的末四位数字的和。
有理数计算(巧算)培优
………………………………………………最新资料推荐………………………………………七年级数学培优(2)——有理数的巧算 班级:________ 姓名:_________ 知识点精析:“算对与算巧”求10099321+++++ 的和,从左到右逐次相加似乎很安稳的事,其实这样算下来不仅工作量很大,而且运算的次数太多,出错的可能性也大,聪明的高斯没有这样做,他把这个算式头尾倒过来写成129899100+++++ 然后将两个式子的对应项相加得到100个101,101乘100再除以2便得到所求的和。
这样不但算得对,而且算得快,这是一个脍炙人口的故事,它告诉我们数学运算不仅要算对更要算巧。
有理数运算是代数中最基本的运算,若能根据题目特点灵活掌握运用一些技巧,不仅可提高运算速度和准确率,还可培养学生善于思考的好习惯,有利于思维能力的培养,现介绍几种有理数运算中的解题技巧。
例题精讲:一. 巧用运算律例1. 计算12345678201220132014S变式题:计算1121231279()()()233444808080二. 巧添辅助数 例2. 计算:三. 巧用倒序相加法 例3、计算:12340272014201420142014 四. 巧用拆项法例4计算111112233420132014变式:.1111144771020112014五、巧用错位相加减法 例5、计算22013201412222变式:22013201415555 六、巧用整体换元法 例6、11111111111111232015232014232015232014七、巧用倒数法 例7、计算:......................................................最新资料推荐 (111171111711)36461218364612183636练习反馈:1. 计算:111111111111112319972319972319972319962、计算:1211230310653、求和()()()()12131415916023242525926034343635936058595960++-+++++++++++++++++ (分析:由加法交换律和结合律将分母相同的数结合相加,可改变原式繁难的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲有理数的巧算
有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.
1.括号的使用
在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.
例1计算:
分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.
注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.
例2计算下式的值:
211×555+445×789+555×789+211×445.
分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.
解原式=(211×555+211×445)+(445×789+555×789)
=211×(555+445)+(445+555)×789
=211×1000+1000×789
=1000×(211+789)
=1 000 000.
说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.
例3计算:S=1-2+3-4+…+(-1)n+1·n.
分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.
解S=(1-2)+(3-4)+…+(-1)n+1·n.
下面需对n的奇偶性进行讨论:
当n为偶数时,上式是n/2个(-1)的和,所以有
当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?
分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.
现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然
n-(n+1)-(n+2)+(n+3)=0.
这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即
(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.
说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.
有这种竞赛讲义一整套小学初中的含答案最新的需要的可以联系我
46~8453~607
微信13699~77~1074
2.用字母表示数
我们先来计算(100+2)×(100-2)的值:
(100+2)×(100-2)=100×100-2×100+2×100-4
=1002-22.
这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
于是我们得到了一个重要的计算公式
(a+b)(a-b)=a2-b2,①
这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.
例5计算3001×2999的值.
解3001×2999=(3000+1)(3000-1)
=30002-12=8 999 999.
例6计算103×97×10 009的值.
解原式=(100+3)(100-3)(10000+9)
=(1002-9)(1002+9)
=1004-92=99 999 919.
例7计算:
分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得
n2-(n2-12)=n2-n2+1=1,
即原式分母的值是1,所以原式=24 690.
例8计算:
(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.
解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)=……
=(232-1)(232+1)
=264-1.
例9计算:
分析在前面的例题中,应用过公式
(a+b)(a-b)=a2-b2.
这个公式也可以反着使用,即
a2-b2=(a+b)(a-b).
本题就是一个例子.
通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.
例10计算:
我们用一个字母表示它以简化计算.
3.观察算式找规律
例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.
87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.
分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为
90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)
+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)
+2+5+(-2)
=1800-1=1799,
平均分为90+(-1)÷20=89.95.
例12 计算1+3+5+7+…+1997+1999的值.
分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即
S=1+3+5+…+1997+1999.①
再将S各项倒过来写为
S=1999+1997+1995+…+3+1.②
将①,②两式左右分别相加,得
2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)
=2000+2000+…+2000+2000(500个2000)
=2000×500.
从而有S=500 000.
说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题
3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.
例13计算1+5+52+53+…+599+5100的值.
分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.
解设
S=1+5+52+…+599+5100,①
所以
5S=5+52+53+…+5100+5101.②
②—①得
4S=5101-1,
说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.
例14 计算:
分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式
来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.
解由于
所以
说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.
练习一
1.计算下列各式的值:
(1)-1+3-5+7-9+11-…-1997+1999;
(2)11+12-13-14+15+16-17-18+…+99+100;
(3)1991×1999-1990×2000;
(4)4726342+472 6352-472 633×472 635-472 634×472 636;
(6)1+4+7+ (244)
2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.
81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.。