2015年中考数学压轴题十大类型和经典试题
2015年中考数学压轴题
2015年中考压轴题1、如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5. (1)求b 、c 的值(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形; (3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由. 解:(1)∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·········································································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=49b 2-24 ∴ 49b 2-24=25 解得b =±314···················································································································· 3分 当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去. ∴b =-314. ··················································································································· 4分 (2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形性质,点D 必在抛物线的对称轴上, 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····································· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ·········································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ·································································· 8分 ∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··················· 9分x四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3), 这一点不在抛物线上. ··································································································· 10分2、已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.解:(1)由5x x 122+=0, ····················································································· (1分)得01=x ,5122-=x . ························································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ·········································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ································· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ························································ (5分) =22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······································· (6分)=5(个单位面积) ·············································································· (7分)(3)如:)(3123y y y -=. ················································································ (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a . 3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ·············· (9分) ∴)(3123y y y -=. ··························································································· (10分)3、如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.解:(1)点E 在y 轴上····································································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO ,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠= 306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上.3分(2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D的坐标为122⎛⎫ ⎪ ⎪⎝⎭, ·································································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上 ∴点E 的坐标为(02),∴点A的坐标为( ···································································································· 6分 抛物线2y ax bx c =++经过点E , 2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ····························································· 9分 (3)存在符合条件的点P ,点Q . ················································································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB = OB ∴边上的高为2 ········· 11分依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上282299m m ∴--+= 解得,10m =,28m =-1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ; 当点2P的坐标为28⎛⎫- ⎪ ⎪⎝⎭点Q 的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ············································4、如图,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由. 解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ································································································· 1分 点A C ,都在抛物线上, 0a c c ⎧=⎪∴⎨⎪=⎩ a c ⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x =······························································ 3分 ∴顶点1F ⎛ ⎝⎭, ······································································································· 4分 (2)存在 ························································································································· 5分 1(0P ······················································································································· 7分 x2(2P ······················································································································9分(3)存在 ·······················································································································10分理由:解法一:延长BC到点B',使B C BC'=,连接B F'交直线AC于点M,则点M就是所求的点.·····························································································11分过点B'作B H AB'⊥于点H.B点在抛物线233y x x=-(30)B∴,在Rt BOC△中,tan OBC∠=,30OBC∴∠=,BC=在Rt BB H'△中,12B H BB''==6BH H'=,3OH∴=,(3B'∴--,····················································12分设直线B F'的解析式为y kx b=+3k bk b⎧-=-+⎪∴⎨=+⎪⎩解得6kb⎧=⎪⎪⎨⎪=⎪⎩y x∴=········································································································13分yy x⎧=⎪∴⎨=⎪⎩解得37xy⎧=⎪⎪⎨⎪=⎪⎩37M⎛∴-⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时37M⎛⎝⎭,. ···14分5、如图,已知半径为1的1O与x轴交于A B,两点,OM为1O的切线,切点为M,圆心1O的坐标为(20),,二次函数2y x bx c=-++的图象经过A B,两点.(1)求二次函数的解析式;(2)求切线OM的函数解析式;(3)线段OM上是否存在一点P,使得以P O A,,为顶点的三角形与x1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分 二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩······················································································· 2分 解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ················································· 3分 (2)过点M 作MF x ⊥轴,垂足为F . ····································································· 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径).在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130OOM ∴∠= ······························ 5分1cos3022OM OO ∴==⨯= 在Rt MOF △中,3cos30322OF OM ===.1sin 3032MF OM ===.∴点M 坐标为322⎛ ⎝⎭, ··································· 6分设切线OM 的函数解析式为(0)ykx k =≠32k =,k ∴=······ 7分∴切线OM 的函数解析式为y x =·········································································· 8分 (3)存在. ······················································································································ 9分①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MOO △∽△ 113tan tan 303P A OA AOP =∠==,113P ⎛∴ ⎝⎭,················································ 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt APO O MO △∽△ 在2Rt OP A △中,1OA =,23cos302OP OA ∴==,在2Rt OP H △中,223cos 224OH OPAOP =∠==,2221sin 224P H OP AOP =∠==,2344P ⎛∴ ⎝⎭, ·········································· 11分 ∴符合条件的P 点坐标有13⎛ ⎝⎭,,344⎛ ⎝⎭, ··························································· 12分6、如图,将AOB △置于平面直角坐标系中,其中点O 为坐标原点,点A 的坐标为(30),,60ABO ∠=. (1)若AOB △的外接圆与y 轴交于点D ,求D 点坐标.(2)若点C 的坐标为(10)-,,试猜想过D C ,的直线与AOB △的外接圆的位置关系,并加以说明. (3)二次函数的图象经过点O 和A 且顶点在圆上,求此函数的解析式.解:(1)连结AD ,则∠ADO =∠B =600在Rt △ADO 中,∠ADO =600所以OD =OA ÷3=3÷3=3 所以D 点的坐标是(0,3)(2)猜想是CD 与圆相切∵ ∠AOD 是直角,所以AD 是圆的直径又∵ Tan ∠CDO=CO/OD=1/3=3, ∠CDO =300∴∠CDA=∠CDO+∠ADO=Rt ∠ 即CD ⊥AD ∴ CD 切外接圆于点D(3)依题意可设二次函数的解析式为 :y=α(x -0)(x -3)由此得顶点坐标的横坐标为:x=a a 23-=23; 即顶点在OA 的垂直平分线上,作OA 的垂直平分线EF ,则得∠EFA =21∠B =300得到EF =3EA =323可得一个顶点坐标为(23,323)同理可得另一个顶点坐标为(23,321-) 分别将两顶点代入y=α(x -0)(x -3)可解得α的值分别为332-,932则得到二次函数的解析式是y=332-x(x -3)或y=932 x(x -3)7、如图1,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E ,两点的坐标; (2)如图2,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A M E ,,三角形为等腰三角形,并求出相应的时刻点M 的坐标.解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在Rt ABE △中,5AE AO ==,4AB =.3BE∴==.2CE ∴=.E ∴点坐标为(2,4). ········································································································· 2分在Rt DCE △中,222DC CE DE +=, 又DE OD =.222(4)2OD OD ∴-+= . 解得:52CD =. D ∴点坐标为502⎛⎫⎪⎝⎭, ············································································································· 3分(2)如图①PM ED ∥,APM AED ∴△∽△.PM APED AE∴=,又知AP t =,52ED =,5AE =5522t tPM ∴=⨯=, 又5PE t =-.而显然四边形PMNE 为矩形.215(5)222PMNE t S PM PE t t t ∴==⨯-=-+矩形 ······························································· 5分21525228PMNES t ⎛⎫∴=--+ ⎪⎝⎭四边形,又5052<<∴当52t =时,PMNE S 矩形有最大值258. ··············································································· 6分 (3)(i )若以AE 为等腰三角形的底,则ME MA =(如图①) 在Rt AED △中,ME MA =,PM AE ⊥,P ∴为AE 的中点,1522t AP AE ∴===.又PM ED ∥,M ∴为AD 的中点. 过点M 作MF OA ⊥,垂足为F ,则MF 是OAD △的中位线,。
2015年中考数学压轴题分析与解答
2015年中考数学压轴题分析与解答案1.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.考点:反比例函数综合题.分析:(1)把点A坐标代入y=(x>0),即可求出k的值;(2)先求出直线AB的解析式,设M(t,),N(t,t﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.解答:解:(1)把点A(8,1)代入反比例函数y=(x>0)得:k=1×8=8,y=,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,解得:k=,b=﹣3,∴直线AB的解析式为:y=x﹣3;设M(t,),N(t,t﹣3),则MN=﹣t+3,∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,∴△BMN的面积S是t的二次函数,∵﹣<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=﹣2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.点评:本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.2.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.考点:圆的综合题.分析:(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.解答:(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•CD;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.点评:本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.3.如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx2过C,F两点,连接FD并延长交抛物线于点M.(1)若a=1,求m和b的值;(2)求的值;(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.考点:二次函数综合题.分析:(1)由a=1,根据正方形的性质及已知条件得出C(2,1).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+1)代入y=x2,即可求出b的值;(2)由正方形ABCD的边长为2a,坐标原点O为AD的中点,得出C(2a,a).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+a)代入y=x2,整理得出方程b2﹣2ab﹣a2=0,把a看作常数,利用求根公式得出b=(1±)a(负值舍去),那么=1+;(3)先利用待定系数法求出直线FD的解析式为y=x+a.再求出M点坐标为(2a﹣2a,3a﹣2a).又F(2a+2a,3a+2a),利用中点坐标公式得到以FM为直径的圆的圆心O′的坐标为(2a,3a),再求出O′到直线AB(y=﹣a)的距离d的值,以FM为直径的圆的半径r的值,由d=r,根据直线与圆的位置关系可得以FM为直径的圆与AB所在直线相切.解答:解:(1)∵a=1,∴正方形ABCD的边长为2,∵坐标原点O为AD的中点,∴C(2,1).∵抛物线y=mx2过C点,∴1=4m,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+1)代入y=x2,得2b+1=×(2b)2,b=1±(负值舍去).故m=,b=1+;(2)∵正方形ABCD的边长为2a,坐标原点O为AD的中点,∴C(2a,a).∵抛物线y=mx2过C点,∴a=m•4a2,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+a)代入y=x2,得2b+a=×(2b)2,整理得b2﹣2ab﹣a2=0,解得b=(1±)a(负值舍去),∴=1+;(3)以FM为直径的圆与AB所在直线相切.理由如下:∵D(0,a),∴可设直线FD的解析式为y=kx+a,∵F(2b,2b+a),∴2b+a=k•2b+a,解得k=1,∴直线FD的解析式为y=x+a.将y=x+a代入y=x2,得x+a=x2,解得x=2a±2a(正值舍去),∴M点坐标为(2a﹣2a,3a﹣2a).∵F(2b,2b+a),b=(1+)a,∴F(2a+2a,3a+2a),∴以FM为直径的圆的圆心O′的坐标为(2a,3a),∴O′到直线AB(y=﹣a)的距离d=3a﹣(﹣a)=4a,∵以FM为直径的圆的半径r=O′F==4a,∴d=r,∴以FM为直径的圆与AB所在直线相切.点评:本题是二次函数的综合题型,其中涉及到正方形的性质,待定系数法求二次函数、一次函数的解析式,一元二次方程的求根公式,直线与抛物线交点坐标的求法,直线与圆的位置关系.综合性较强,难度适中.正确求出抛物线的解析式是解题的关键.。
2015数学中考压轴题精选
2015数学中考压轴题精选1如图,在四边形OABC 中,AB ∥OC ,BC ⊥x 轴于C ,A (1,-1),B (3,-1),动点P 从O 点出发,沿x 轴正方向以2个单位/秒的速度运动.过P 作PQ ⊥OA 于Q .设P 点运动的时间为t 秒(0 < t < 2),ΔOPQ 与四边形OABC 重叠的面积为S . (1)求经过O 、A 、B 三点的抛物线的解析式并确定顶点M 的坐标; (2)用含t 的代数式表示P 、Q 两点的坐标; (3)将ΔOPQ 绕P 点逆时针旋转90°,是否存在t ,使得ΔOPQ 的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由; (4)求S 与t 的函数解析式;2如图,已知抛物线23y ax x c 2=-+与x 轴相交于A 、B 两点,并与直线1y x 22=-交于B 、C 两点,其中点C 是直线1y x 22=-与y 轴的交点,连接AC 。
⑴.求抛物线的解析式;⑵.证明:△ABC 为直角三角形;⑶.△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由。
3(2014•玉林)给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点. ①求此抛物线的解析式; ②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ .42014年河南省如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-34x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。
精品 2015年全国数学中考压轴题真题汇总共43页
2015年全国省市中考数学压轴题精选题2015年北京市2015年北京在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线..CP 上存在一点P ',满足2CP CP r '+=,则称P '为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P '的示意图。
(1)当O 的半径为1时.①分别判断点(2,1)M ,3(,0)2N ,(1,3)T 关于O 的反称点是否存在,若存在?求其坐标; ②点P 在直线2y x =-+上,若点P 关于O 的反称点P '存在,且点P '不在x 轴上,求点P 的横坐标的取值范围; (2)当C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P '在C 的内部,求圆心C 的横坐标的取值范围。
如图.抛物线y=x 2-4x 与x 轴交于O,A 两点,P 为抛物线上一点,过点P 的直线y=x+m 与对称轴交于点Q.(1)这条抛物线的对称轴是 , 直线PQ 与x 軸所夹锐角的度数是 ,(2)若两个三角形面积满足PAQ POQ S S ∆∆=31,求m 的値: (3)当点P 在x 軸下方的抛物线上时.过点C(2,2)的直线AC 与直线PQ 交于点D ,求:①PD+DQ 的最大值;②PD ·DQ 的最大值.已知二次函数2ax y =的图象经过点(2,1)。
(1)求二次函数2ax y =的解析式;(2)一次函数4+=mx y 的图象与二次函数2ax y =的图象交于点A (1x ,1y ),B (2x ,2y )两点 ①当23=m 时(图①),求证:△AOB 为直角三角形; ②试判断当23≠m 时(图②),△AOB 的形状,并证明; (3)根据第(2)问,说出一条你能得到的结论(不要求证明)。
2015年中考数学压轴题及答案汇总
2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
2015年中考初中数学压轴题(有答案)
2015年1中考初中数学压轴题(有答案)一.解答题(共30小题)1.(2014•攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q 为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.2.(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD 的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为_________°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t 的取值范围(解答时可以利用备用图画出相关示意图).3.(2014•泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.4.(2014•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP 为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.5.(2014•常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.6.(2014•漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为_________.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA 交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB 上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.7.(2014•云南)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC 相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.8.(2014•湖州)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.9.(2014•陕西)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.10.(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)11.(2014•宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.12.(2014•徐州)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.13.(2014•东昌府区三模)已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.14.(2014•安徽模拟)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:AB•r1+AC•r2=AB•h,∴r1+r2=h(1)理解与应用如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:.(2)类比与推理边长为2的正方形内任意一点到各边的距离的和等于_________;(3)拓展与延伸若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…r n,请问r1+r2+…r n是否为定值(用含n 的式子表示),如果是,请合理猜测出这个定值.15.(2014•安徽名校一模)如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE 是⊙O的切线.16.(2014•灌南县模拟)如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC,AD⊥CD于点D.(1)求证:CD是⊙O的切线;(2)若AB=10,AD=2,求AC的长.17.(2014•普陀区二模)如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.(1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.(2)当⊙D与AB边相切时,求BD的长.(3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?18.(2014•江西模拟)如图,矩形ABCD的边AB=4,BC=3.一简易量角器放置在矩形ABCD内,其零度线即半圆O的直径与边AB重合,点A处是0刻度,点B处是180刻度.P点是量角器的半圆弧上一动点,过P点的切线与边BC、CD(或其延长线)分别交于点E、F.设点P的刻度数为n,∠PAB=α.(1)当n=136时,α=_________,求出α与n的关系式;(2)在P点的运动过程中,线段EB与EP有怎样的数量关系,请予证明;(3)在P点的运动过程中,F点在直线CD上的位置随着α的变化而变化,当F点在线段CD上时、在CD的延长线上时、在DC的延长线上时,对应的α值分别是多少?(参考数据:tan56.3°≈1.5)(4)连接BP,在P点的运动过程中,是否存在△ABP与△CEF相似的情况?若存在,求出此时n的值以及相应的EF的长;若不存在,请说明理由.19.(2014•广东一模)如图,正方形ABCD的边长是8cm,以正方形的中心O为圆心,EF为直径的半圆切AB于M、切BC于N,已知C为BG的中点,AG交CD于H.P,Q同时从A出发,P以1cm/s的速度沿折线ADCG运动,Q以cm/s的速速沿线段AG方向运动,P,Q中有一点到达终点时,整个运动停止.P,Q运动的时间记为t.(1)当t=4时,求证:△PEF≌△MEF;(2)当0≤t≤8时,试判断PQ与CD的位置关系;(3)当t>8时,是否存在t使得=?若存在请求出所有t的值,若不存在,请说明理由.20.(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长.21.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O 的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.22.(2013•曲靖)如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.(1)求证:DF⊥AF.(2)求OG的长.23.(2013•德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O 的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.24.(2013•贺州)已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.(1)求证:点P是线段AC的中点;(2)求sin∠PMC的值.25.(2013•兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.26.(2013•南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.27.(2013•长沙)如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.28.(2013•广安)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.29.(2013•沈阳)如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)30.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.参考答案与试题解析一.解答题(共30小题)1.(2014•攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q 为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.考点:圆的综合题.专题:压轴题.分析:(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到∠MQG=2∠MBG.易得∠OCA=60°,从而得到∠MBG=60°,进而得到∠MQG=120°,所以∠MQG是定值.解答:解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.点评:本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强.证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键.2.(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD 的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t 的取值范围(解答时可以利用备用图画出相关示意图).考点:圆的综合题.专题:几何综合题;压轴题.分析:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.3.(2014•泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.考点:圆的综合题.专题:几何综合题;压轴题.分析:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用△APO∽△AOB和△AMP∽△AOB相似得出点P的坐标,再求出OP所在的直线解析式.解答:解:(1)①如图,∵∠COE=90°∴∠CFE=∠COE=45°,(圆周角定理)②方法一:如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×(1﹣b2)(4≤b<5)方法二:①如图,作OM⊥AB点M,连接OF,∵直线的函数式为:y=﹣x+b,∴B的坐标为(0,b),A的坐标为(b,0),∴AB==b,∴sin∠BAO===,∴sin∠MAO===,∴OM=b,∴在RT△OMF中,FM==∵FG=2FM,∴FG2=4FM2=4(42﹣b2)=64﹣﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×(1﹣b2)(4≤b<5)(2)如图,当b=5时,直线与圆相切,∵在直角坐标系中,∠COE=90°,∴∠CPE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴△APO∽△AOB,∴=,∵OP=r=4,OB=5,AO=,∴=即AP=,∵AB===,作PM⊥AO交AO于点M,设P的坐标为(x,y),∵△AMP∽△AOB,∴=∴=,∴y=,∴x=OM===∴点P的坐标为(,).点评:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,利用三角形相似求出点P的坐标.4.(2014•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP 为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,设AQ⊥BC,∵=cosB,AB=5,∴BQ=4,AN=QC=BC﹣BQ=4.∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.5.(2014•常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.考点:圆的综合题.专题:几何综合题;压轴题.分析:(1)首先过点M作MH⊥OD于点H,由点M(,),可得∠MOH=45°,OH=MH=,继而求得∠AOM=45°,又由OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;(2)①由OH=MH=,MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B 重合时,OP•OQ=20,可求得OQ的长,继而求得答案;②由OD=2,Q的纵坐标为t,即可得S=,然后分别从当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.解答:解:(1)过点M作MH⊥OD于点H,∵点M(,),∴OH=MH=,∴∠MOD=45°,∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵OH=MH=,MH⊥OD,∴OM==2,OD=2OH=2,∴OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴OE=5,∴E点坐标为(5,0)②∵OD=2,Q的纵坐标为t,∴S=.如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴t=QF=,此时S=;如图3,当动点P与A点重合时,Q点在y轴上,∴OP=2,∵OP•OQ=20,∴t=OQ=5,此时S=;∴S的取值范围为5≤S≤10.点评:此题考查了垂径定理、等腰直角三角形的性质以及勾股定理等知识.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.6.(2014•漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA 交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB 上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.考点:圆的综合题;等边三角形的判定与性质;矩形的性质;正方形的性质;弦切角定理;相似三角形的判定与性质.专题:压轴题;探究型.分析:(1)易证:OA=OB,∠AOB=90°,直接运用阅读材料中的结论即可解决问题.(2)易证:OA=OB=OC=0D=,然后由条件PE∥OB,PF∥AO可证△AEP∽△AOB,△BFP∽△BOA,从而可得==1,进而求出EP+FP=.(3)易证:AD=BC=4.仿照(2)中的解法即可求出PE+PF=4,因而PE+PF是定值.解答:解:(1)如图2,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠ABC=∠AOB=90°.∵AB=BC=2,∴AC=2.∴OA=.∵OA=OB,∠AOB=90°,PE⊥OA,PF⊥OB,∴PE+PF=OA=.(2)如图3,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠DAB=90°.∵AB=4,AD=3,∴BD=5.∴OA=OB=OC=OD=.∵PE∥OB,PF∥AO,∴△AEP∽△AOB,△BFP∽△BOA.∴,.∴==1.∴+=1.∴EP+FP=.∴PE+PF的值为.(3)当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图4∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴,.∴==1.∴=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.点评:本题考查了正方形的性质、矩形的性质、弦切角定理、相似三角形的判定与性质、等边三角形的判定与性质等知识,考查了类比联想的能力,由一定的综合性.要求PE+PF的值,想到将相似所得的比式相加是解决本题的关键.7.(2014•云南)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC 相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;压轴题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.8.(2014•湖州)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.考点:圆的综合题.专题:压轴题.分析:(1)连接PM,PN,运用△PMF≌△PNE证明;(2)分两种情况:①当t>1时,点E在y轴的负半轴上;②当0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF;(2)解:分两种情况:①当t>1时,点E在y轴的负半轴上,如图1,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=OE=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a.综上所述,当t>1时,b=2+a;当0<t≤1时,b=2﹣a;。
2015年全国各地中考数学试题压轴题解析汇编
2015年全国各地中考数学试题压轴题解析汇编解答题(2)26.(2015年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h ,甲出发0.5小时与乙相遇,⋯⋯,请你帮助方成同学解决以下问题: (1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇.图2图1t (h )y (km )10037311.54OA C D B110S (km )t (h )【答案】解:(1)设线段BC 所在直线的函数表达式为11y k t b =+,∵37100,0,,233B C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ ,∴1111302710033k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得114060k b =⎧⎨=-⎩. ∴线段BC 所在直线的函数表达式为4060y t =-. 设线段CD 所在直线的函数表达式为22y k t b =+,∵()7100,,4,033C D ⎛⎫⎪⎝⎭ ,∴221171003340k b k b ⎧+=⎪⎨⎪+=⎩,解得222080k b =-⎧⎨=⎩. ∴线段BC 所在直线的函数表达式为2080y t =-+.(2)∵线段OA 所在直线的函数表达式为()2001y t t =≤≤,∴点A 的纵坐标为20.当20<<30y 时,即20<4060<30t -或20<20800<30t -+, 解得92<<4t 或5<<32t . ∴当20<<30y 时, t 的取值范围为92<<4t 或5<<32t . (3)()60601<3S t t =-≤甲,()201<4S t t =≤乙.所画图形如答图:(4)当43t =0时,803S =乙,∴丙距M 地的路程S 丙与时间t 的函数关系式为()408002S t t =-+≤≤丙.联立60604080S t S t =-⎧⎨=-+⎩,解得()60601<3S t t =-≤甲与()408002S t t =-+≤≤丙图象交点的横坐标为75, ∴丙出发后75h 与甲相遇.【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用.【分析】(1)应用待定系数法即可求得线段BC ,CD 所在直线的函数表达式.(2)求出点A 的纵坐标,确定适用的函数,解不等式组求解即可. (3)求函数表达式画图即可.(4)求出S 丙与时间t 的函数关系式,与()60601<3S t t =-≤甲联立求解.27. (2015年浙江嘉兴12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元. 为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x满足如下关系式:()()5005301205<15x x y x x ⎧≤≤⎪=⎨+≤⎪⎩.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画. 若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?【答案】解:(1)设李明第n 天生产的粽子数量为420只,根据题意,得30120420n +=, 解得10n =.答:李明第10天生产的粽子数量为420只. (2)由图象可知,当0<9x ≤时, 4.1p =;当915x ≤≤时,设p kx b =+,把点(9,4.1),(15,4.7)代入止式,得9 4.115 4.7k b k b +=⎧⎨+=⎩,解得0.13.2k b =⎧⎨=⎩.∴0.1 3.2p x =+.①05x ≤≤时,()6 4.154102.6w x x =-⋅=,当5x =时,513w =最大(元); ②5<<9x 时,()()6 4.130********w x x =-⋅+=+,∵x 是整数,∴当8x =时,684w =最大(元);③915x ≤≤时,()()()2260.1 3.230120372336312768w x x x x x =--⋅+=-++=--+, ∵3<0-,∴当12x =时,768w =最大(元).综上所述,w 与x 之间的函数表达式为()()()2102.605572285<<9372336915x x w x x x x x ⎧≤≤⎪=+⎨⎪-++≤≤⎩,第12天的利润最大,最大值是768元.【考点】一元一次方程、一次函数和二次函数的综合应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设李明第n 天生产的粽子数量为420只,等量关系为:“第n 天生产的粽子数量等于420只”.(2)先求出p 与x 之间的关系式,分05x ≤≤,5<<9x ,915x ≤≤三种情况求解即可.28. (2015年浙江嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt △ABC ,其中∠ABC =90°,AB =2,BC =1,并将Rt △ABC 沿∠B 的平分线'BB 方向平移得到'''A B C V ,连结''AA BC ,. 小红要使平移后的四边形''ABC A 是“等邻边四边形”,应平移多少距离(即线段'BB 的长)? (3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB =AD ,∠BAD +∠BCD =90°,AC ,BD 为对角线,2AC AB =.试探究BC ,CD ,BD 的数量关系.【答案】解:(1)DA AB =(答案不唯一).(2)①正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形. ∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等. ∴这个四边形是菱形.②∵∠ABC =90°,AB =2,BC =1,∴5AC =. ∵将Rt △ABC 平移得到'''A B C V ,∴''BB AA =,'AB ∥AB ,''2,''1,''5A B AB B C BC A C AC ====== . i )如答图1,当'2AA AB ==时,''2BB AA AB ===; ii )如答图2,当'''5AA A C ==时,''''5BB AA A C ===;iii )如答图3,当'''5A C BC ==时,延长''C B 交AB 于点D ,则''C B AB ⊥. ∵'BB 平分ABC ∠,∴01'452ABB ABC ∠==R . 设'B D BD x ==,则'1,'2C D x BB x =+= . 在'Rt BC D ∆中,222''BD C D BC +=, ∴()()22215x x ++=,解得121,2x x ==- (不合题意,舍去).∴'22BB x ==.iv )如答图4,当'2BC AB ==时,同ii )方法,设'B D BD x ==, 可得222''BD C D BC +=,即()22212x x ++=,解得121717,22x x -+--==(不合题意,舍去). ∴142'22BB x -==.综上所述,要使平移后的四边形''ABC A 是“等邻边四边形”,应平移2或5或2或1422-的距离.(3)BC ,CD ,BD 的数量关系为2222BC CD BD +=.如答图5,∵AB AD =,∴将ADC V 绕点A 旋转到ABF V . ∴ADC ABF V V ≌.∴,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== .∴,1AC ADBAD CAF AF AB ∠=∠==. ∴ACF ABD V V ∽.∴2CF ACBD AB==.∴2CF BD =. ∵0360BAD ADC BCD ABC ∠+∠∠+∠=+,∴()000036036090270ABC ADC BAD BCD ∠+∠=-∠∠=-=+. ∴0270ABC ABF ∠+∠=.∴090CBF ∠=. ∴()2222222BC CD CF BDBD +===.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用. 【分析】(1)根据定义,添加AB BC =或BC CD =或CD DA =或DA AB =即可(答案不唯一).(2)根据定义,分'2AA AB ==,'''5AA A C ==,'''5A C BC ==,'2BC AB ==四种情况讨论即可.(3)由A B A D =,可将ADC V 绕点A 旋转到ABF V ,构成全等三角形:ADC ABF V V ≌,从而得到,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== ,进而证明ACF ABD V V ∽得到2CF BD =,通过角的转换,证明090CBF ∠=,根据勾股定理即可得出2222BC CD BD +=.29. (2015年浙江湖州10分)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),点E 与点D 同时出发,由点C 沿BC 的延长线方向运动(E 不与C 重合),连结DE 交AC 于点F ,点H 是线段AF 上一点(1)初步尝试:如图1,若△ABC 是等边三角形,DH ⊥AC ,且点D ,E 的运动速度相等,求证:HF =AH +CF小王同学发现可以由以下两种思路解决此问题:思路一:过点D 作DG ∥BC ,交AC 于点G ,先证GH =AH ,再证GF =CF ,从而证得结论成立; 思路二:过点E 作EM ⊥AC ,交AC 的延长线于点M ,先证CM =AH ,再证HF =MF ,从而证得结论成立. 请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC =30°,且点D ,E 的运动速度之比是3: 1,求ACHF的值; (3)延伸拓展:如图3,若在△ABC 中,AB =AC ,∠ADH =∠BAC =36°,记BCm AB=,且点D 、E 的运动速度相等,试用含m 的代数式表示ACHF(直接写出结果,不必写解答过程).【答案】解:(1)证明:选择思路一:如题图1,过点D 作DG ∥BC ,交AC 于点G ,∵△ABC 是等边三角形,∴0060,60ADG B A ∠=∠=∠= . ∴△ADG 是等边三角形. ∴GD AD CE ==. ∵DH ⊥AC ,∴GH AH =.∵DG ∥BC ,∴,GDF CEF DGF ECF ∠=∠∠=∠ . ∴()GDF CEF ASA ∆∆≌.∴GF CF =. ∴GH GF AH CF +=+,即HF AH CF =+. 选择思路二:如题图1,过点E 作EM ⊥AC ,交AC 的延长线于点M , ∵△ABC 是等边三角形,∴060A ACB ECM ∠=∠=∠=. ∵DH ⊥AC ,EM ⊥AC ,∴090AHD CME ∠=∠=.∵AD CE =,∴()ADH CEM AAS ∆∆≌.∴,AH CM DH EM == . 又∵090,DHF EMF DHF EFM ∠=∠=∠=∠ ,∴()DFH EFM AAS ∆∆≌∴HF MF CM CF AH CF ==+=+.(2)如答图1,过点D 作DG ∥BC ,交AC 于点G ,则090,ADG B ∠=∠=.∵030BAC ADH ∠=∠=,∴060HGD HDG ∠=∠=. ∴,3AH GH GD AD GD === . 由题意可知,3AD CE =,∴GD CE =.∵DG ∥BC ,∴,GDF CEF DGF ECF ∠=∠∠=∠ . ∴()GDF CEF ASA ∆∆≌.∴GF CF =. ∴GH GF AH CF +=+,即HF AH CF =+.∴2ACHF=. (3)1AC m HF m+=. 【考点】开放型;双动点问题;等边三角形的判定和性质;全等三角形的判定和性质;相似三角形的判定和性质.【分析】(1)根据思路任选择一个进行证明即可.(2)仿思路一,作辅助线:过点D 作DG ∥BC ,交AC 于点G ,进行计算.(3)如答图2,过点D 作DG ∥BC ,交AC 于点G ,由AB =AC ,∠ADH =∠BAC =36°可证:ADG ABC ∆∆∽,FDG FEC ∆∆∽,FDH ABC ∆∆∽,由点D 、E 的运动速度相等,可得AD CE =. 从而可得1AC m HF m+=. 30. (2015年浙江湖州12分)已知在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A (0,2),B (1,0)分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点,现将线段BA 绕点B 按顺时针方向旋转 90°得到线段BD ,抛物线y =ax 2+bx +c (a ≠0)经过点D . (1)如图1,若该抛物线经过原点O ,且13a =-. ①求点D 的坐标及该抛物线的解析式;②连结CD ,问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y =ax 2+bx +c (a ≠0)经过点E (1,1),点Q 在抛物线上,且满足∠QOB 与∠BCD 互余,若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.【答案】解:(1)①如答图,过点D 作DF ⊥x 轴于点F ,∵0090,90DBF ABO BAO ABO ∠+∠=∠+∠= ,∴DBF BAO ∠=∠. 又∵090,AOB BFD AB BD ∠=∠== , ∴()AOB BFD AAS ∆∆≌. ∴1,2DF BO BF AO ==== . ∴点D 的坐标为()3,1 . 根据题意得,1,03a c =-= ,∴213313b -⋅+=,解得43b =. ∴抛物线的解析式21433y x x =-+.②∵点C、D的纵坐标都为1, ∴CD ∥x 轴.∴BCD ABO ∠=∠. ∴BAO ∠和BCD ∠互余.若要使得POB ∠和BCD ∠互余,则只要满足POB BAO ∠=∠.设点P的坐标为214,33x x x ⎛⎫-+ ⎪⎝⎭ ,i )当点P在x 轴上方时,如答图,过点P作PG⊥x 轴于点G, 则tan tan POB BAO ∠=∠,即PG BOOG AO=. ∴2141332x xx -+=,解得125,02x x == (舍去). ∴2145334x x -+=.∴点P的坐标为55,24⎛⎫⎪⎝⎭.ii )当点P在x 轴下方时,如答图,过点P作PH⊥x 轴于点H, 则tan tan POB BAO ∠=∠,即PH BOOH AO=. ∴2141332x xx -=,解得1211,02x x == (舍去). ∴21411334x x -+=-. ∴点P的坐标为1111,24⎛⎫ ⎪⎝⎭ -.综上所述,在抛物线上存在点P ,使得∠POB 与∠BCD 互余,点P的坐标为55,24⎛⎫⎪⎝⎭或1111,24⎛⎫ ⎪⎝⎭-. (2)a 的取值范围为1<3a -或415>4a +. 【考点】二次函数综合题;线动旋转问题;全等三角形的判定和性质;曲线上点的坐标与方程的关系;锐角三角函数定义;余角的性质;方程和不等式的应用;分类思想和数形结合思想的应用.【分析】(1)①根据AAS 证明AOB BFD ∆∆≌即可得到1,2DF BO BF AO ==== ,从而得到点D 的坐标;由已知和曲线上点的坐标与方程的关系即可求得抛物线的解析式.得②可以证明,使得POB ∠和BCD ∠互余,只要满足POB BAO ∠=∠即可,从而分点P在x 轴上方和点P在x 轴下方讨论即可.(2)由题意可知,直线BD 的解析式为1122y x =-,由该抛物线y =ax 2+bx +c (a ≠0)经过点E (1,1),可得D(31) ,,所以抛物线的解析式为()221y a x a =-+-.若要使得QOB ∠和BCD ∠互余,则只要满足QOB BAO ∠=∠,据此分<0a 和>0a 两种情况讨论.31. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
2015中考数学二次函数压轴题题型归纳
2015中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。
解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。
2015年全国各地中考数学试题压轴题解析汇编解答题.doc
2015年全国各地中考数学试题压轴题解析汇编解答题(1)1. (2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.2.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N 到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN 的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°.∴sin 15°=FCNC. 又∵NC =x ,sin 15°=624-,∴624-=FC x . ∴NE =DF =62224-+x . ∴点N 到AD 的距离为62224-+x cm .(3)∵NC =x ,sin 75°=FNNC,且sin 75°=624+∴624+=FN x ,∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x ·即22673222384---=++y x x .∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---.【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.3. (2015年广东深圳9分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,,3,6cm OD cm BC AB ===开始的时候BD =1cm ,现在三角板以2cm/s 的速度向右移动. (1)当B 与O 重合的时候,求三角板运动的时间; (2)如图2,当AC 与半圆相切时,求AD ;(3)如图3,当AB 和DE 重合时,求证:2CF CG CE =⋅.【答案】解:(1)∵开始时,4BO cm =,三角板以2cm/s 的速度向右移动,∴当B 与O 重合的时候,三角板运动的时间为422/cms cm s=.(2)如答图1,设AC 与半圆相切于点H ,连接OH ,则OH AC ⊥.∵0,90AB BC ABC =∠= ,∴045A ∠=.又∵3OH OD cm ==,∴232AO OH ==.∴()323AD AO DO cm =-=-. (3)如答图2,连接EF ,∵OD OF =,∴ODF OFD ∠=∠.∵DF 是直径,∴090DFE ∠=. ∴090ODF DEF ∠+∠=. 又∵090DEC DEF CEF ∠=∠+∠=.∴ODF CEF ∠=∠. ∴CFG OFD ODF CEF ∠=∠=∠=∠. 又∵FCG ECF ∠=∠,∴CFG CEF ∆∆∽. ∴CF CE CG CF=,即2CF CG CE =⋅. 【考点】面动平移问题;等腰(直角)三角形的判定和性质;圆周角定理;相似三角形的判定和性质. 【分析】(1)直接根据“=路程时间速度”计算即可. (2)作辅助线“连接O 与切点H ”,构成等腰直角三角形求出AO 的长,从而由AO DO -求出AD的长.(3)作辅助线“连接EF ”,构成相似三角形CFG CEF ∆∆∽,得比例式即可得解.4.(2015年广东深圳9分)如图1,关于x 的二次函数2y x bx c =-++经过点(3,0)A - ,点(0,3)C ,点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上. (1)求抛物线的解析式;(2)DE 上是否存在点P 到AD 的距离与到x 轴的距离相等,若存在求出点P ,若不存在请说明理由; (3)如图2,DE 的左侧抛物线上是否存在点F ,使23FBC EBC S S ∆∆=,若存在求出点F 的坐标,若不存在请说明理由.【答案】解:(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++,得9303b c c --+=⎧⎨=⎩,解得23b c =-⎧⎨=⎩. ∴抛物线的解析式为223y x x =--+. (2)存在.∵()222314y x x x =--+=-++,∴2,4,25AE DE AD === .∴25sin 525AE ADE AD ∠===. 设()1,P p - ,当点P 在DAB ∠的角平分线时,如答图1,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-= , ∵PM PE =,∴()545p p -=,解得51p =-. ∴()1,51P -- . 当点P 在DAB ∠的外角平分线时,如答图2,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-=- , ∵PM PE =,∴()545p p -=-,解得51p =--. ∴()1,51P -- -.综上所述,DE 上存在点P 到AD 的距离与到x 轴的距离相等,点P 的坐标为()1,51--或()1,51-- -.(3)存在.假设存在点F ,使23FBC EBC S S ∆∆=, 设()2,23F f f f --+∵2,3BE OC == ,∴3EBC S ∆=. ∵23FBC EBC S S ∆∆=,∴92FBC S ∆=. 设CF 的解析式为y mx n =+,则2233fm n f f n ⎧+=--+⎨=⎩,解得23m f n =--⎧⎨=⎩.∴CF 的解析式为()23y f x =--+. 令0y =,得32x f =+,即CF 与x 轴的交点坐标为3,02Q f ⎛⎫ ⎪+⎝⎭. 若点F 在x 轴上方,如答图2,则BCF BCQ BFQ S S S ∆∆∆=-, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅-⋅-⋅--+ ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值).当1372f -=时,233715232f f ---+=.∴13733715,22F ⎛⎫-- ⎪ ⎪⎝⎭. 若点F 在x 轴下方,如答图3,则BCF BCQ BFQ S S S ∆∆∆=+, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅+⋅-⋅+- ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值). 当1372f -=时,23371523>02f f ---+=,不符合点F 在x 轴下方,舍去. 综上所述,DE 的左侧抛物线上存在点F ,使23FBC EBC S S ∆∆=,点F 的坐标为13733715,22⎛⎫-- ⎪ ⎪⎝⎭.【考点】二次函数综合题;待定系数法的应用;曲线上点的坐标与方程的关系;锐角三角函数定义;角平分线的性质;分类思想、转换思想和方程思想的应用.【分析】(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++即可求解.(2)根据角平分线上的点到角的两边距离相等的性质,分点P 在DAB ∠的角平分线和点P 在DAB ∠的外角平分线两种情况讨论即可.(3)由已知求出92FBC S ∆=,分点F 在x 轴上方和点F 在x 轴下方两种情况讨论,当点F 在x 轴上方时,BCF BCQ BFQ S S S ∆∆∆=-;当点F 在x 轴下方时,BCF BCQ BFQ S S S ∆∆∆=+,据此列方程求解.5. (2015年广东汕尾11分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+. ∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.6.(2015年广东汕尾10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,,∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =. ∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.7. (2015年广东广州14分)如图,四边形OMTN 中,OM =ON ,TM =TN ,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD 中,已知AB =AD =5,BC =CD ,BC >AB ,BD ,AC 为对角线,BD =8;①是否存在一个圆使得A ,B ,C ,D 四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由; ②过点B 作BF ⊥CD ,垂足为F ,BF 交AC 于点E ,连接DE . 当四边形ABED 为菱形时,求点F 到AB 的距离.【答案】解:(1)筝形的对角线互相垂直. 证明如下:如答图1,连接,MN OT ,在OMT ∆和ONT ∆中,∵OM ON TM TN OT OT =⎧⎪=⎨⎪=⎩,∴()OMT ONT SSS ∆∆≌.∴MOT NOT ∠=∠. 又∵OM =ON ,∴OT MN ⊥,即筝形的对角线互相垂直. (2)存在.由(1)知,AC BD ⊥,设,AC BD 相交于点M ,如答图2, ∵AB =AD =5, BD =8,∴4BM =.∴22534AM =-=. ∵A ,B ,C ,D 四点共圆,∴0180ABC ADC ∠+∠=. 又∵ABC ADC ∆∆≌,∴090ABC ADC ∠=∠=. ∴AC 即为所求圆的直径.∵090,ABC AMB BAC MAB ∠=∠=∠=∠ ,∴BAC MAB ∆∆∽.∴AB AM AC AB =,即535AC =,解得253AC =. ∴圆的半径为256.(3)∵四边形ABED 为菱形,∴5AB AD BE DE ====.∴03,4,,90AM ME BM MD BD AE BME ====⊥∠= .又∵0,90BF CD BFD ⊥∠= .∴090BME BFD ∠=∠=又∵MBE FBD ∠=∠,∴BME BFD ∆∆∽. ∴BE EM BD DF =,即538DF =,解得245DF =. 在Rt DEF ∆中,由勾股定理,得22E F D ED F=-, ∴22247555EF ⎛⎫=-= ⎪⎝⎭.∴325BF =. ∵//AB DE ,∴ABF DEF ∠=∠.如答图3,过点F 作FG AB ⊥于点G ,则FG 就是点F 到AB 的距离.∵090BGF EFD ∠=∠=,∴BGF EFD ∆∆∽.∴BF FG DE DF =,即3252455FG =,解得768125FG =. ∴点F 到AB 的距离为768125.【考点】新定义;全等三角形的判定和性质;等腰三角形的性质;勾股定理;圆内接四边形的性质;圆周角定理;相似三角形的判定和性质.【分析】(1)筝形的对角线互相垂直,利用SSS 证明OMT ONT ∆∆≌得到MOT NOT ∠=∠,从而根据等腰三角形三线合一的性质即可得出结论.(2)根据垂径定理和勾股定理求出AM 的长,证明BAC MAB ∆∆∽,由对应边成比例列式求解即可.(3)证明BME BFD ∆∆∽,求出245DF =,应用勾股定理求出75EF =,得到325BF =,作辅助线“过点F 作FG AB ⊥于点G ”构造相似三角形BGF EFD ∆∆∽,由对应边成比例列式求得FG 的长, FG 就是点F 到AB 的距离.8.(2015年广东广州10分)已知O 为坐标原点,抛物线21(0)y ax bx c a =++≠与x 轴相交于点1(,0)A x ,2(,0)B x .与y 轴交于点C ,且O ,C 两点之间的距离为3,12120,4x x x x ⋅<+= ,,点A ,C在直线23y x t =-+上.(1)求点C 的坐标;(2)当1y 随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线1y 向左平移(0)n n >个单位,记平移后y 随着x 的增大而增大的部分为P ,直线2y 向下平移n 个单位,当平移后的直线与P 有公共点时,求225n n -的最小值. 【答案】解:(1)令0x =,得1y c =,∴()0,C c .∵O ,C 两点之间的距离为3,∴3c =,解得3c =±. ∴点C 的坐标为()0,3 或()0,3 -. (2)∵120x x ⋅<,∴12,x x 异号.①若()0,3C ,把()0,3C 代入23y x t =-+得30t =+,即3t =. ∴233y x =-+.把()1,0A x 代入233y x =-+得1033x =-+,即11x =.∴()1,0A . ∵12,x x 异号,11>0x =,∴2<0x .∵124x x +=,∴214x +=,214x -=,23x =-.∴()3,0B - .把()1,0A ,()3,0B - 代入213y ax bx =++,得309330a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=-⎩.∴()2212314y x x x =--+=-++.∴当1x ≤-时,1y 随着x 的增大而增大.②若()0,3C -,把()0,3C -代入23y x t =-+得30t -=+,即3t =-. ∴233y x =--.把()1,0A x 代入233y x =--得1033x =--,即11x =-.∴()1,0A - . ∵12,x x 异号,11<0x =-,∴2>0x .∵124x x +=,∴214x -+=,214x +=,23x =.∴()3,0B .把()1,0A - ,()3,0B 代入213y ax bx =++,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩.∴()2212314y x x x =--=--.∴当1x ≥时,1y 随着x 的增大而增大.综上所述,若()0,3C ,当1y 随着x 的增大而增大时,1x ≤-;若()0,3C -,当1y 随着x 的增大而增大时,1x ≥.(3)①若()0,3C ,则()2212314y x x x =--+=-++,233y x =-+,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+++,则当1x n ≤--时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =-+-. 要使平移后直线与P 有公共点,则当1x n =--时,34y y ≥,即()()2114313n n n n ---+++≥---+-,解得1n ≤-,与>0n 不符,舍去.②若()0,3C -,则()2212314y x x x =--=--,233y x =--,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+-,则当1x n ≥-时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =---. 要使平移后直线与P 有公共点,则当1x n =-时,43y y ≥, 即()()2313114n n n n ----≥---+-,解得1n ≥. 综上所述,1n ≥.∵2252525248n n n ⎛⎫-=-- ⎪⎝⎭,∴当54n =时,225n n -的最小值为258-. 【考点】二次函数综合题;线动平移问题;曲线上点的坐标与方程的关系;不等式和绝对值的性质;二次函数的最值;分类思想的应用.【分析】(1)一方面,由点C 在抛物线21(0)y ax bx c a =++≠得到()0,C c ,另一方面,由O ,C 两点之间的距离为3,得到3c =±,从而得到点C 的坐标.(2)分()0,3C 和()0,3C -两种情况讨论.(3)分()0,3C 和()0,3C -两种情况讨论得到n 的范围内1n ≥,从而根据二次函数最值原理即可求解.9. (2015年广东佛山10分)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数24y x x =-+刻画,斜坡可以用一次函数12y x =刻画. (1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连结抛物线的最高点P 与点O 、A 得△POA . 求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积,请直接写出点.....M 的坐标.【答案】解:(1)∵()()222444424y x x x x x =-+=--++=--+,∴点P 的坐标为()2,4 .(2)联立2412y x x y x⎧=-+⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或7274x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点A 的坐标为77,24⎛⎫ ⎪⎝⎭.(3)如答图1,作二次函数图象的对称轴交OA 于点B ,则点B 的坐标为()2,1 ,3BP =. ∴1172132322224POA OBP BAP S S S ∆∆⎛⎫=+=⨯⨯+⨯⨯-= ⎪⎝⎭V.(4)315,24⎛⎫⎪⎝⎭ . 【考点】二次函数的应用(实际问题);二次函数的性质;曲线上点的坐标与方程的关系;等高三角形面积的应用;待定系数法、转换思想和数形结合思想的应用. 【分析】(1)化为顶点式即可得二次函数图象的顶点坐标.(2)联立24y x x =-+和12y x =即可求出点A 的坐标. (3)作辅助线“作二次函数图象的对称轴交OA 于点B ”,将POA S V 转化为OBP S ∆和BAP S ∆之和. (4)作辅助线“过点P 作//PM OA 交抛物线于另一点M ”,则△MOA 的面积等于△POA 的面积,设直线PM 的解析式为12y x m =+, 将()2,4P 代入,得14232m m =⋅+⇒=, ∴直线PM 的解析式为132y x =+.联立24132y x x y x ⎧=-+⎪⎨=+⎪⎩,解得,24x y =⎧⎨=⎩或32154x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点M 的坐标为315,24⎛⎫⎪⎝⎭ . 10.(2015年广东佛山11分)如图,在ABCD Y 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE EF FD ==. 连结BE 、BF ,使它们分别与AO 相交于点G 、H . (1)求 : EG BG 的值; (2)求证:AG OG =;(3)设 ,AG a GH b HO c ===,,求 : : a b c 的值.【答案】解:(1)∵AE EF FD ==,∴13AE AD =. ∵四边形ABCD 是平行四边形,∴//AD BC .∴AEG CBG ∆∆∽.∴13EG AE BG AD ==,即1: 3EG BG =. (2)证明:由(1)AEG CBG ∆∆∽,∴13AG CG =.∵四边形ABCD 是平行四边形,∴AO OC =.∴2CG AO AG =-. ∴123AG AO AG =-,即12AG AO =.∴AG OG =.(3)如答图,过点F 作//FM AC 交BD 于点M ,∵AE EF FD ==,∴13DM DF DO DA ==.∴16DM BD =,56BM BD =. ∵12BO BD =.∴35BO BM =.∵//FM AC ,∴BOH BMF ∆∆∽.∴35HO BO FM BM ==,即35HO FM =. ∵//FM AC ,∴DFM DAO ∆∆∽.∴13FM DF AO DA ==,即13FM AO =.∴33115535HO FM AO AO ==⋅=.由(2)得12AG AO =,∴1132510GH AO AG HO AO AO AO AO =--=--=.∵ ,AG a GH b HO c ===,, ∴131532: : : : : : 5 : 3 : 22105101010a b c AO AO AO ===. 【考点】平行四边形的综合题;平行四边形的性质;平行的性质;相似三角形的判定和性质;数形结合思想的应用.【分析】(1)由平行四边形对边平行的性质可得AEG CBG ∆∆∽,从而得出结果.(2)由(1)AEG CBG ∆∆∽得到13AG CG =,从而根据平行四边形对角线互相平分的性质得出结论. (3)作辅助线“过点F 作//FM AC 交BD 于点M ”,构造两组相似三角形BOH BMF ∆∆∽和BOH BMF ∆∆∽,通过相似三角形对应边成比例的性质,求出AG GH HO 、、与AO 的关系即可求得 : : a b c 的值.11. (2015年广东梅州10分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+.∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.12.(2015年广东梅州10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,, ∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =.∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.13. (2015年浙江衢州10分)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园.他们离开衢州的距离y (千米)与乘车时间t (小时)的关系如下图所示.请结合图象解决下面问题: (1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?【答案】解:(1)∵24024021=-, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为y kt b =+,∵当1t =时,0y =;当2t =时,240y =,∴02240k b k b +=⎧⎨+=⎩,解得240240k b =⎧⎨=-⎩.∴乐乐乘私家车路线的解析式为240240y t =-.∴当 1.5t =时,120y =.设颖颖乘高铁路线的解析式为1y k t =,∴1120 1.5k =,解得180k =.∴颖颖乘高铁路线的解析式为80y t =. ∴当2t =时,160y =.∵21616056-=,∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米. (3)把216y =代入80y t =得 2.7t =.∵182.7 2.460-=(小时),216902.4=(千米), ∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.【考点】一次函数的图象和应用;待定系数法的应用;直线上点的坐标与方程的关系.. 【分析】(1)由图象提供的信息,根据“路程÷时间=速度”计算即可.(2)先求乐乐乘私家车路线的解析式,得到 1.5t =时的函数值,即可求得颖颖乘高铁路线的解析式,得到2t =时,颖颖乘高铁街的路程,从而得到当颖颖到达杭州火车东站时,乐乐距离游乐园的距离.(3)求得私家车按原速度到达游乐园的时间,得到提前18分钟的实际用时,即可得到乐乐要提前18分钟到达游乐园,私家车必须达到的速度.14. (2015年浙江衢州12分)如图,在ABC ∆中,275,9,2ABC AB AC S ∆===,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时, P 、Q 两点同时停止运动. 以PQ 为边作正方形PQEF (P Q E F 、、、按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.【答案】解:(1)如答图1,过点B 作BM AC ⊥于点M ,∵279,2ABC AC S ∆== ,12ABC S AC BM ∆=⋅⋅,∴271922BM =⋅⋅,解得,3BM =. 又∵5,AB = ∴根据勾股定理,得2222534AM AB BM =-=-=.∴3tan 4BM A AM ==.(2)存在.如答图2,过点P 作PN AC ⊥于点N , 经过时间t ,5AP CQ t == ∵3tan 4A =, ∴4,3AN t PN t == .∴99QN AC AN CQ t =--=-.根据勾股定理,得,()()2222223999016281PQ PN NQ t t t t =+=+-=-+,∴22990162810<<5S PQ t t t ⎛⎫==-+ ⎪⎝⎭. ∵90>0a =,且1629229010b a --=-=⨯在t 的取值范围内, ∴2244908116281449010ac b S a -⨯⨯-===⨯最小值.∴S 存在最小值?若存在,这个最小值是8110. (3)当914t =或911或1或97秒时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上.【考点】双动点问题;勾股定理;锐角三角函数定义;二次函数最值的应用;分类思想的应用.【分析】(1)作辅助线“过点B 作BM AC ⊥于点M ”构造直角三角形ABM ,根据已知求出BM 和应用AM 的长,即可根据正切函数定义求出3tan 4BM A AM ==. (2)根据2S PQ =求得S 关于t 的二次函数,应用研究二次函数的最值原理求解即可.(3)分四种情况讨论:①当点E 在HG 上时,如答图3,1914t =;②当点F 在GH 上时,如答图4,2911t =;③当点P 在QH 上(或点E 在QC 上)时,如答图5,31t =;④当点F 在CG 上时,如答图6,197t =.15. (2015年浙江绍兴12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEFG中,∵GF=EF,AG=AE,AD=AB,∴DG=BE.又∵∠DGF=∠BEF=90°,∴△DGF≌△BEF(SAS).∴DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或α<180°.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明△DGF≌△BEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则α=0°,它是假命题的反例是α=180°的情况.(3)限制点F范围或α的范围即可.16. (2015年浙江绍兴14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点. (1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F. 若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【答案】解:(1)①∵四边形OABC为矩形,OA=4,OC=2,∴点B(4,2).②如答图1,过点P作PD⊥OA于点D,∵BQ:BP=1:2,点B1是点B关于PQ的对称点,∴∠PDB1=∠PB1Q=∠B1AQ=90°.∴∠PB 1D=∠B 1QA. ∴△PB 1D ∽△B 1QA. ∴111PB PD 2AB B Q==. ∴B 1A=1.∴OB 1=3,即B 1(3,0).(2)∵四边形OABC 为平行四边形,OA=4,OC=2,且OC ⊥AC ,∴∠OAC=30°.∴点C ()13 ,. ∵B 1E :B 1F=1:3,∴点B 1不与点E 、F 重合,也不在线段EF 的延长线上.①当点B 1在线段FE 的延长线上时,如答图2,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B 1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a . ∴CF=2323-a . ∴FE=4343-a ,B 1E=2323-a . ∴B 1G= B 1E+EF+FG=2343324333⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭a a a m . ∴36355=-+a m , 即点B 1的纵坐标为36355-+m ,m 的取值范围为17101777≤≤+m . ②当点B 1在线段EF (点E 、F 除外)上时,如答图3,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a ∴CF=2323-a . ∴FE=4343-a ,B 1F=34FE=33-a . ∴B 1G= B 1F +FG=()3333-+=a a m . ∴33322=-+a m , 即点B 1的纵坐标为33322-+m ,m 的取值范围为1537≤≤m . 【考点】轴对称问题;矩形和平行四边形的性质;轴对称的性质;相似三角形的判定和性质;含30度直角三角形的性质;点的坐标;分类思想的应用.【分析】(1)①直接根据矩形的性质得到点B 的坐标.②过点P 作PD ⊥OA 于点D ,证明△PB 1D ∽△B 1QA ,得到B 1A 的长,从而得到OB 1的长,进而得到点B 1的坐标.(2)分点B 1在线段FE 的延长线上和点B 1在线段EF (点E 、F 除外)上两种情况讨论即可.17. (2015年浙江台州12分)如图,在多边形ABCDE 中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF ∥CB 交AB 于点F ,FB=1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP=x ,⋅PO OQ =y .(1)①延长BC 交ED 于点M ,则MD = ▲ ,DC = ▲②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围.【答案】解:(1)①2;1.②∵=AP x ,∴2=-EP x . 在V Rt AEF 中,4tan 22∠===AF AEF AE , ∴tan 2(2)24=⋅∠=⨯-=-+PO PE AEF x x ∵90∠=∠=︒A AED ,∴AB DE P . ∵PQ AB P ,∴PQ ED P . 当01<≤x 时,如答图1所示, ∵EF CB P ,PQ AB P ,∴四边形OFBQ 是平行四边形.∴1==OQ FB . ∴(24)124=⋅=-+⨯=-+y PO OQ x x . 当12<≤x 时,如答图2所示, ∵90∠=∠=︒AED D ,∴AE CD P . ∵PQ ED P ,∴四边形DEPQ 是矩形. ∴3(24)21=--+=-OQ x x .∴2(24)(21)4104=⋅=-+⋅-=-+-y PO OQ x x x x .∴()()22401410412-+<≤⎧⎪=⎨-+-<≤⎪⎩x x y x x x (2)∵当()102≤≤>a x a 时,24y x =-+,∴42yx -=.由12a x ≤≤得,4122y a -≤≤,解得342y a ≤≤-.∵当1(0)2a x a ≤≤>时,96a y b ≤≤,∴93642a b a =⎧⎨=-⎩,解得1359a b ⎧=⎪⎪⎨⎪=⎪⎩.∴15,39a b ==. (3)15524+≤≤x . 【考点】由实际问题列函数关系式(几何问题);平行四边形、矩形的判定和性质;相似三角形的判定和性质;方程组和不等式组的应用;分类思想和数形结合思想的应用. 【分析】(1)①如答图1,延长BC 交ED 于点M ,则∵∠A =∠AED =90°,∴ED ∥AB .∵EF ∥CB ,∴四边形FBM E 是平行四边形. ∴EM =FB =1. ∵ED =3,∴MD =2. ∵△AFE ∽△DEC ,且21512==-AE AF ,∴DC =1. ②分01<≤x 和12<≤x 两种情况求y 关于x 的函数解析式. (2)由(1)得到的24y x =-+,化为42yx -=代入12a x ≤≤,解出342y a ≤≤-,结合已知条件得到关于a ,b 的方程组求解即可.(3)y 关于x 的函数图象如答图3,当13y ≤≤时,15524+≤≤x.18. (2015年浙江台州14分)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3,求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点;(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND 和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究∆AMF S ,∆BEN S 和四边形MNHG S 的数量关系,并说明理由.【答案】解:(1)∵点M ,N 是线段AB 的勾股分割点, AM =2,MN =3,∴若MN 为斜边,则222=+MN AM BN ,即22232=+BN ,解得5=BN . 若BN 为斜边,则222=+BN AM MN ,即22223=+BN ,解得13=BN . ∴BN 的长为5或13.(2)证明:∵点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,∴222=+EC DE BD .∵在△ABC 中,FG 是中位线,AD ,AE 分别交FG 于点M ,N , ∴F M 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线. ∴BD =2FM ,DE =2MN ,EC =2NG .∴()()()222222=+NG MN FM ,即222444=+NG MN FM . ∴222=+NG MN FM .∴点M ,N 是线段FG 的勾股分割点. (3)如答图1,C ,D 是线段AB 的勾股分割点.QPNM E(4)+=△△四边形AMF BEN MNHG S S S .理由如下:设=AM a ,=BN b ,=MN c , ∵H 是DN 的中点,∴12==DH HN c . ∵△MND ,△BNE 均为等边三角形,∴60∠=∠=︒D DNE .∵∠=∠DHG NHE ,∴△DGH ≌△NEH .∴==DG EN b .∴=-MG c b . ∵∥GM EN ,∴△AGM ∽△AEN . ∴-=+c b ab a c.∴22=-+c ab ac bc . ∵点M ,N 是线段AB 的勾股分割点,∴222=+c a b .∴2()()-=-a b b a c ,又∵-≠b a c .∴=a b .在△DGH 和△CAF 中,∠=∠D C ,=DG CA ,∠=∠DGH CAF , ∴△DGH ≌△CAF . ∴=△△DGH CAF S S .∵222=+c a b ,∴222333444=+c a b . ∴=+△△△DMN ACM ENB S S S .∵=+△△四边形DMN DGH MNHG S S S ,=+△△△ACM CAF AMF S S S , ∴+=△△四边形AMF BEN MNHG S S S .【考点】新定义和阅读理解型问题;开放型和探究型问题;勾股定理;三角形中位线定理;尺规作图(复杂作图);等边三角形的性质;全等、相似三角形的判定和性质;分类思想和数形结合思想的应用. 【分析】(1)根据定义,分MN 为斜边和BN 为斜边两种情况求解即可.(2)判断FM 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线后代入222=+EC DE BD 即可证明结论.(3)①过点C 作AB 的垂线MN ,②在MN 截取CE =CA ;③连接BE ,作BE 的垂直平分线PQ 交AB 于点D . 则点C ,D 是线段AB 的勾股分割点.(作法不唯一)(4)首先根据全等、相似三角形的判定和性质证明△AMC 和△NBM 是全等的等边三角形,再证明+=△△四边形AMF BEN MNHG S S S .19. (2015年浙江温州12分)如图,抛物线x x y 62+-=交x 轴正半轴于点A ,顶点为M ,对称轴NB 交x 轴于点B ,过点C (2,0)作射线CD 交MB 于点D (D 在x 轴上方),OE ∥CD 交MB 于点E ,EF ∥x 轴交CD 于点F ,作直线MF. (1)求点A ,M 的坐标;(2)当BD 为何值时,点F 恰好落在该抛物线上? (3)当BD=1时,①求直线MF 的解析式,并判断点A 是否落在该直线上;②延长OE 交FM 于点G ,取CF 中点P ,连结PG ,△FPG ,四边形DEGP ,四边形OCDE 的面积分别记为S 1,S 2,S 3,则S 1:S 2:S 3= ▲。
2015年中考数学压轴题答案及解析(全国通用)
2015年中考数学压轴题答案及解析(全国通用)1、某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?2、如图,已知直线与x轴交于点A,与y轴交于点C,抛物线经过点A和点C,对称轴为直线l:,该抛物线与x轴的另一个交点为B.(1)求此抛物线的解析式;(2)点P在直线l上,求出使△PAC的周长最小的点P的坐标;(3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.3、如图①,直线l:与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:,则P表示的函数解析式为,若P:,则l表示的函数解析式为 .(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.(图①)(图②)(图③)4、如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.5、如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.6、已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).7、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.8、如图,抛物线与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.10、如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.11、如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.12、如图,抛物线y=ax2+bx+c经过原点,与轴相交于点E(8, 0 ), 抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m, 0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.13、如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.14、如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.15、如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.16、如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)A的坐标,∠AOB= 。
2015年中考数学压轴题及答案精选(三)
2015年中考数学压轴题汇编(三)61.(12分)(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.考点:二次函数综合题.分析:(1)利用根据与系数的关系得出α+β=,αβ=﹣2,进而代入求出m的值即可得出答案;(2)利用轴对称求最短路线的方法,作点D关于y轴的对称点D′,点E关于x轴的对称点E′,得出四边形DNME的周长最小为:D′E′+DE,进而利用勾股定理求出即可;(3)利用平行四边形的判定与性质结合P点纵坐标为±4,进而分别求出即可.解答:解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,α+β=,αβ=﹣2,∵=﹣2,∴=﹣2,即=﹣2,解得:m=1,故抛物线解析式为:y=﹣x2+4x+2;(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),作点D关于y轴的对称点D′,点E关于x轴的对称点E′,则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),连接D′E′,交x轴于M,交y轴于N,此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,则D′E′===10,设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,∴DE===2,∴四边形DNME的周长最小值为:10+2;(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+,x2=2﹣,当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+,x4=2﹣,故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).点评:此题主要考查了平行四边形的性质以及勾股定理、利用轴对称求最短路线等知识,利用数形结合以及分类讨论得出P点坐标是解题关键.62.(12分)(2015•包头)已知抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,与y 轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式,用配方法把一般式化为顶点式求出点D 的坐标;(2)根据点的坐标求出△AOC,△BOC的面积,利用勾股定理的逆定理判断△BCD为直角三角形,求出其面积,计算即可得到答案;(3)假设存在,设点M的坐标为(m,0),表示出MA的长,根据MN∥BC,得到比例式求出AN,根据△AMN∽△ACM,得到比例式求出m,得到点M的坐标,求出BC的解析式,根据MN∥BC,设直线MN的解析式,求解即可.解答:解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣3,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点D的坐标为:(1,﹣4);(2)S1+S3=S2,过点D作DE⊥x轴于点E,DF⊥y轴于F,由题意得,CD=,BD=2,BC=3,CD2+BC2=BD2,∴△BCD是直角三角形,S1=×OA×OC=,S2=×OB×OC=S3,=×CD×BC=3,∴S1+S3=S2;(3)存在点M使∠AMN=∠ACM,设点M的坐标为(m,0),∵﹣1<m<3,∴MA=m+1,AC=,∵MN∥BC,∴=,即=,解得,AN=(m+1),∵∠AMN=∠ACM,∠MAN=∠CAM,∴△AMN∽△ACM,∴=,即(m+1)2=•(m+1),解得,m1=,m2=﹣1(舍去),∴点M的坐标为(,0),设BC的解析式为y=kx+b,把B(3,0),C(0,﹣3)代入得,,解得,则BC的解析式为y=x﹣3,又MN∥BC,∴设直线MN的解析式为y=x+b,把点M的坐标为(,0)代入得,b=﹣,∴直线MN的解析式为y=x﹣.点评:本题考查的是二次函数的解析式的确定和相似三角形的判定和性质,灵活运用待定系数法二次函数和一次函数求解析式是解题的关键,注意一元二次方程的解法和勾股定理逆定理的运用.63.(12分)(2015•恩施州)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.(1)求AD的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A、B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使S△PAM=?若存在,求出P点坐标;若不存在,请说明理由.考点:几何变换综合题.专题:综合题.分析:(1)作BP⊥AD于P,BQ⊥MC于Q,如图1,根据旋转的性质得AB=AO=5,BE=OC=AD,∠ABE=90°,利用等角的余角相等得∠ABP=∠MBQ,可证明Rt△ABP∽Rt△MBQ得到==,设BQ=PD=x,AP=y,则AD=x+y,所以BM=x+y﹣2,利用比例性质得到PB•MQ=xy,而PB﹣MQ=DQ﹣MQ=DM=1,利用完全平方公式和勾股定理得到52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;(2)由AB=BM可判断Rt△ABP≌Rt△MBQ,则BQ=PD=7﹣AP,MQ=AP,利用勾股定理得到(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S阴影部分=S梯形ABQD﹣S△BQM进行计算即可;然后利用待定系数法求直线AM的解析式;(3)先确定B(3,1),然后利用待定系数法求抛物线的解析式;(4)当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2设P(x,x2﹣x+5),则K(x,﹣x+5),则KP=﹣x2+x,根据三角形面积公式得到•(﹣x2+x)•7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、(,);再求出过点(3,1)与(,)的直线l的解析式为y=﹣x+,则可得到直线l 与y轴的交点A′的坐标为(0,),所以AA′=,然后把直线AM向上平移个单位得到l′,直线l′与抛物线的交点即为P点,由于A″(0,),则直线l′的解析式为y=﹣x+,再通过解方程组得P点坐标.解答:解:(1)作BP⊥AD于P,BQ⊥MC于Q,如图1,∵矩形AOCD绕顶点A(0,5)逆时针方向旋转得到矩形ABEF,∴AB=AO=5,BE=OC=AD,∠ABE=90°,∵∠PBQ=90°,∴∠ABP=∠MBQ,∴Rt△ABP∽Rt△MBQ,∴==,设BQ=PD=x,AP=y,则AD=x+y,BM=x+y﹣2,∴==,∴PB•MQ=xy,∵PB﹣MQ=DQ﹣MQ=DM=1,∴(PB﹣MQ)2=1,即PB2﹣2PB•MQ+MQ2=1,∴52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,∴BM=5,∴BE=BM+ME=5+2=7,∴AD=7;(2)∵AB=BM,∴Rt△ABP≌Rt△MBQ,∴BQ=PD=7﹣AP,MQ=AP,∵BQ2+MQ2=BM2,∴(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,∴BQ=7﹣3=4,∴S阴影部分=S梯形ABQD﹣S△BQM=×(4+7)×4﹣×4×3=16;设直线AM的解析式为y=kx+b,把A(0,5),M(7,4)代入得,解得,∴直线AM的解析式为y=﹣x+5;(3)设经过A、B、D三点的抛物线的解析式为y=ax2+bx+c,∵AP=MQ=3,BP=DQ=4,∴B(3,1),而A(0,5),D(7,5),∴,解得,∴经过A、B、D三点的抛物线的解析式为y=x2﹣x+5;(4)存在.当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2,设P(x,x2﹣x+5),则K(x,﹣x+5),∴KP=﹣x+5﹣(x2﹣x+5)=﹣x2+x,∵S△PAM=,∴•(﹣x2+x)•7=,整理得7x2﹣46x+75,解得x1=3,x2=,此时P点坐标为(3,1)、(,),求出过点(3,1)与(,)的直线l的解析式为y=﹣x+,则直线l与y轴的交点A′的坐标为(0,),∴AA′=5﹣=,把直线AM向上平移个单位得到l′,则A″(0,),则直线l′的解析式为y=﹣x+,解方程组得或,此时P点坐标为(,)或(,),综上所述,点P的坐标为(3,1)、(,)、(,)、(,).点评:本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形.64.(12分)(2015•鄂州)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B 的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=m2﹣2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;(3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M (﹣3,2)时,△MAN∽△ABC;④当点M在第四象限时,解题时,需要注意相似三角形的对应关系.解答:解:(1)①y=当x=0时,y=2,当y=0时,x=﹣4,∴C(0,2),A(﹣4,0),由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为1,0).②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x﹣1),又∵抛物线过点C(0,2),∴2=﹣4a∴a=∴y=x2x+2.(2)设P(m,m2m+2).过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=m2m+2﹣(m+2)=m2﹣2m,∵S△PAC=×PQ×4,=2PQ=﹣m2﹣4m=﹣(m+2)2+4,∴当m=﹣2时,△PAC的面积有最大值是4,此时P(﹣2,3).(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M(n,n2n+2),则N(n,0)∴MN=n2+n﹣2,AN=n+4当时,MN=AN,即n2+n﹣2=(n+4)整理得:n2+2n﹣8=0解得:n1=﹣4(舍),n2=2∴M(2,﹣3);当时,MN=2AN,即n2+n﹣2=2(n+4),整理得:n2﹣n﹣20=0解得:n1=﹣4(舍),n2=5,∴M(5,﹣18).综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.点评:本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.65.(10分)(2015•娄底)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)把A、B两点分别代入抛物线解析可求得a和b,可求得抛物线解析式;(2)过A作AD⊥BC于点D,则AD为⊙A的半径,由条件可证明△ABD∽△CBO,利用相似三角形的性质可求得AD的长,可求得半径;(3)由待定系数法可求得直线BC解析式,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,可设出P、Q的坐标,可表示出△PQC和△PQB的面积,可表示出△PBC 的面积,再利用二次函数的性质可求得其最大值,容易求得P点坐标.解答:解:(1)∵抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得,解得,∴抛物线解析式为y=﹣x2+2x﹣;(2)过A作AD⊥BC于点D,如图1,∵⊙A与BC相切,∴AD为⊙A的半径,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由勾股定理可得BC===,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴=,即=,解得AD=,即⊙A的半径为;(3)∵C(0,﹣),∴可设直线BC解析式为y=kx﹣,把B点坐标代入可求得k=,∴直线BC的解析式为y=x﹣,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,如图2,设P(x,﹣x2+2x﹣),则Q(x,x﹣),∴PQ=(﹣x2+2x﹣)﹣(x﹣)=﹣x2+x=﹣(x﹣)2+,∴S△PBC=S△PCQ+S△PBQ=PQ•OE+PQ•BE=PQ(OE+BE)=PQ•OB=PQ=﹣(x﹣)2+,∴当x=时,S△PBC有最大值,此时P点坐标为(,),∴当P点坐标为(,)时,△PBC的面积有最大值.点评:本题主要考查二次函数的综合应用,涉及待定系数法、切线的性质、相似三角形的判定和性质、二次函数的性质等知识.在(1)中注意待定系数法的应用步骤,在(2)中确定出⊙A的半径是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,计算量大,综合性较强.66、(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.考点:二次函数综合题.分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.解答:解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4,将(4,0),(1,0)代入上式,得解得:,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(﹣4,0),A′(4,0)∴AA′=8,MD=,∴=点评:本题考查了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决本题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.67.(12分)(2015•西宁)如图,在平面直角坐标系xOy中,以M为顶点的抛物线与x轴分别相交于B,C两点,抛物线上一点A的横坐标为2,连接AB,AC,正方形DEFG的一边GF在线段BC上,点D,E在线段AB,AC上,AK⊥x轴于点K,交DE于点H,下表给出了这条抛物线上部分点(x,y)的坐标值:x …﹣2 0 4 8 10 …y …0 5 9 5 0 …(1)求出这条抛物线的解析式;(2)求正方形DEFG的边长;(3)请问在抛物线的对称轴上是否存在点P,在x轴上是否存在点Q,使得四边形ADQP 的周长最小?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用已知表格中数据结合顶点式直接求出抛物线解析式即可;(2)首先得出四边形HEFK为矩形,再利用△ADE∽△ABC,得出正方形DEFG的边长;(3)首先求出AB所在直线解析式,进而得出D点坐标,再求出直线A′D′的解析式得出Q′的坐标即可.解答:解:(1)由图表可得:抛物线的顶点坐标为:(4,9),设函数解析式为:y=a(x﹣4)2+9(a≠0),把点(0,5)代入y=a(x﹣4)2+9,解得:a=﹣.∴函数解析式为:y=﹣(x﹣4)2+9;(2)设正方形DEFG的边长为m,∵AK⊥x轴,∴∠AKC=90°,∵∠DEF=∠EFG=90°,∴四边形HEFK为矩形,∴HK=EF=m,∵点A在抛物线y=﹣(x﹣4)2+9上,横坐标为2,∴y=﹣(x﹣4)2+9=8,∴点A的坐标为:(2,8),∴AK=8,∴AH=AK﹣HK=8﹣m,由题意可得:B(﹣2,0),C(10,0),∴BC=12,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴m=﹣,∴正方形的边长为:;(3)存在,理由:过顶点M作抛物线的对称轴直线l:x=4,设点A关于直线l:x=4对称点为A′,A′点的坐标为:(6,8),∴设AB所在直线解析式为:y=kx+b,∴,解得:,∴AB所在直线解析式为:y=2x+4,∵D在直线AB上,DG=,∴点D的纵坐标为:,由2x+4=,解得:x=,∴点D的坐标为:(,),设点D关于x轴对称点为D′,则D′(,﹣),连接A′D′交对称轴于点P,交x轴于点Q,连接AP,DQ,则四边形ADQP的周长最小,设直线A′D′的解析式为:y=k′x+b′,∴,解得:,∴直线A′D′的解析式为:y=x﹣,当x=4时,y=×4﹣=,∴P(4,),当y=0时,x=,∴Q点坐标为:(,0).点评:此题主要考查了二次函数综合以及待定系数法求一次函数解析式等知识,利用轴对称得出四边形ADQP的周长最小时P的位置是解题关键.68.(12分)(2015•自贡)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.考点:二次函数综合题.分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c 的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m 和n的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.解答:解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).点评:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.69.(12分)(2015•资阳)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m.n)(m<0),过点E(0.﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l 于S,连接FR、FS.试判断△RFS的形状,并说明理由.考点:二次函数综合题.分析:(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,﹣x+1),则D(x,x2),表示出DM,分类讨论列方程求解;(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=∠BFC=90°,所以△RFS是直角三角形.解答:解:(1)因为点C在抛物线上,所以C(1,),又∵直线BC过C、F两点,故得方程组:解之,得,所以直线BC的解析式为:y=﹣x+1;(2)要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M(x,﹣x+1),则D(x,x2),∵MD∥y轴,∴MD=﹣x+1﹣x2,由MD=OF,可得|﹣x+1﹣x2|=1,①当﹣x+1﹣x2=1时,解得x1=0(舍)或x1=﹣3,所以M(﹣3,),②当﹣x+1﹣x2,=﹣1时,解得,x=,所以M(,)或M(,),综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,M点坐标为(﹣3,)或(,)或(,);(3)过点F作FT⊥BR于点T,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,BF====,∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=∠BFC=90°,∴△RFS是直角三角形.点评:本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.70.(12分)(2015•宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.①当四边形OMHN为矩形时,求点H的坐标;②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)把A(﹣2,0),B(4,0),代入抛物线y=﹣x2+bx+c,求出b、c即可;(2)①表示出ON、MH,运用ON=MH,列方程求解即可;②存在,先求出BC的解析式,根据互相垂直的直线一次项系数积等于﹣1,直线经过点P,待定系数法求出直线PF的解析式,求直线BC与直线PF的交点坐标即可.解答:解:(1)把A(﹣2,0),B(4,0),代入抛物线y=﹣x2+bx+c得:解得:b=1,c=4,∴y=﹣x2+x+4;(2)点C的坐标为(0,4),B(4,0)∴直线BC的解析式为y=﹣x+4,①根据题意,ON=OM=t,MH=﹣t2+t+4∵ON∥MH∴当ON=MH时,四边形OMHN为矩形,即t=﹣t2+t+4解得:t=2或t=﹣2(不合题意舍去)把t=2代入y=﹣t2+t+4得:y=2∴H(2,2);②存在,当PF⊥BC时,∵直线BC的解析式为y=﹣x+4,∴设PF的解析式为y=x+b,又点P(1,)代入求得b=,∴根据题意列方程组:解得:∴F(,)当PF⊥BP时,∵点P(1,),B(4,0),∴直线BP的解析式为:y=﹣x+6,∴设PF的解析式为y=x+b,又点P(1,)代入求得b=,∴根据题意列方程组:解得:∴F(,),综上所述:△PFB为直角三角形时,点F的坐标为(,)或(,).点评:本题考查了待定系数法求直线和抛物线解析式,求顶点坐标,矩形的判定与性质以及两直线互相垂直的性质,本题有一定的综合性,难度不大,关键是掌握两直线互相垂直的性质.71.(12分)(2015•遂宁)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C (0,3)三点.(1)求该抛物线的解析式;(2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由;(3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC围成的图形面积为S,试确定S与t的函数关系式.考点:二次函数综合题.分析:(1)把A(﹣2,0),B(4,0),C(0,3)代入抛物线y=ax2+bx+c,求解即可;(2)作线段CA的垂直平分线,交y轴于M,交AC与N,连结AM1,则△AM1C是等腰三角形,然后求出OM1得出M1的坐标,当CA=CM2时,则△AM2C是等腰三角形,求出OM2得出M2的坐标,当CA=AM3时,则△AM3C是等腰三角形,求出OM3得出M3的坐标,当CA=CM4时,则△AM4C是等腰三角形,求出OM4得出M4的坐标,(3)当点P在y轴或y轴右侧时,设直线与BC交与点D,先求出S△BOC,再根据△BPD∽△BOC,得出=()2,=()2,求出S=S△BPD;当点P 在y轴左侧时,设直线与AC交与点E,根据=()2,得出=()2,求出S=S△ABC﹣S△APE=9﹣,再整理即可.解答:解:(1)把A(﹣2,0),B(4,0),C(0,3)代入抛物线y=ax2+bx+c得:,解得:,则抛物线的解析式是:y=﹣x2+x+3;(2)如图1,作线段CA的垂直平分线,交y轴于M,交AC与N,连结AM1,则△AM1C 是等腰三角形,∵AC==,∴CN=,∵△CNM1∽△COA,∴=,∴=,∴CM1=,∴OM1=OC﹣CM1=3﹣=,∴M1的坐标是(0,),当CA=CM2=时,则△AM2C是等腰三角形,则OM2=3+,M2的坐标是(0,3+),当CA=AM3=时,则△AM3C是等腰三角形,则OM3=3,M3的坐标是(0,﹣3),当CA=CM4=时,则△AM4C是等腰三角形,则OM4=﹣3,M4的坐标是(0,3﹣),(3)如图2,当点P在y轴或y轴右侧时,设直线与BC交与点D,∵OB=4,OC=3,∴S△BOC=6,∵BP=BO﹣OP=4﹣t,∴=,∵△BPD∽△BOC,∴=()2,∴=()2,∴S=S△BPD=t2﹣3t+6(0≤t<4);当点P在y轴左侧时,设直线与AC交与点E,∵OP=﹣t,AP=t+2,∴=,∵=()2,∴=()2,∴S△APE=,∴S=S△ABC﹣S△APE=9﹣=﹣t2﹣3t+6(﹣2<t<0).点评:此题考查了二次函数的综合,用到的知识点是二次函数的图象与性质、相似三角形的判定与性质、等腰三角形的判定、线段的垂直平分线等,关键是根据题意画出图形,作出辅助线,注意分类讨论,数形结合的数学思想方法.71.(12分)(2015•攀枝花)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)把A(﹣1,0)、B(3,0)两点代入y=﹣x2+bx+c即可求出抛物线的解析式,(2)设D(t,﹣t2+2t+3),过点D作DH⊥x轴,根据S△BCD=S梯形OCDH+S△BDH﹣S△BOC=﹣t2+t,即可求出D点坐标及△BCD面积的最大值,(3)设过点P与BC平行的直线与抛物线的交点为Q,根据直线BC的解析式为y=﹣x+3,过点P与BC平行的直线为y=﹣x+5,得Q的坐标为(2,3),根据PM的解析式为:x=1,直线BC的解析式为y=﹣x+3,得M的坐标为(1,2),设PM与x轴交于点E,求出过点E与BC平行的直线为y=﹣x+1,根据得点Q的坐标为(,﹣),(,﹣).解答:解:(1)由得,则抛物线的解析式为y=﹣x2+2x+3,(2)设D(t,﹣t2+2t+3),过点D作DH⊥x轴,则S△BCD=S梯形OCDH+S△BDH﹣S△BOC=(﹣t2+2t+3+3)t+(3﹣t)(﹣t2+2t+3)﹣×3×3=﹣t2+t,∵﹣<0,∴当t=﹣=时,D点坐标是(,),△BCD面积的最大值是;(3)设过点P与BC平行的直线与抛物线的交点为Q,∵P点的坐标为(1,4),直线BC的解析式为y=﹣x+3,∴过点P与BC平行的直线为y=﹣x+5,由得Q的坐标为(2,3),∵PM的解析式为x=1,直线BC的解析式为y=﹣x+3,∴M的坐标为(1,2),设PM与x轴交于点E,∵PM=EM=2,∴过点E与BC平行的直线为y=﹣x+1,由得或,∴点Q的坐标为(,﹣),(,﹣),∴使得△QMB与△PMB的面积相等的点Q的坐标为(2,3),(,﹣),(,﹣).点评:此题考查了二次函数综合,用到的知识点是二次函数的图象与性质、三角形梯形的面积、直线与抛物线的交点,关键是作出辅助线,求出符合条件的所有点的坐标.72.(10分)(2015•南充)已知抛物线y=﹣x2+bx+c与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线y=kx+2(k≠0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L 最小值时点O,B移动后的坐标及L的最小值.考点:二次函数综合题.分析:(1)根据对称轴公式求出b的值,再根据根与系数的关系求出c的值,从而求出二次函数解析式;(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k﹣2)x﹣1=0,根据根与系数的关系求出k的值,进而求出M(﹣1,0),N(1,4);(3)O,B,P,C构成多边形的周长L=OB+BP+PC+CO,根据线段OB平移过程中,OB、PC长度不变,得到要使L最小,只需BP+CO最短,作点P关于x轴(或OB)对称点P′(1,﹣4),连接C′P′与x轴交于点B′,然后根据平移知识和勾股定理解答.解答:解:(1)由已知对称轴为x=1,得﹣=1,∴b=2,抛物线y=﹣x2+bx+c与x轴交于点A(m﹣2,0)和B(2m+1,0),即﹣x2+2x+c=0的解为m﹣2和2m+1,(m﹣2)+(2m+1)=2,3m=3,m=1,将m=1代入(m﹣2)(2m+1)=﹣c得,(1﹣2)(2+1)=﹣c,∴c=3,∴m=1,c=3,抛物线的解析式为y=﹣x2+2x+3;(2)由,∴x2+(k﹣2)x﹣1=0,x1+x2=﹣(k﹣2),x1x2=﹣1,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(k﹣2)2+4,∴当k=2时,(x1﹣x2)2的最小值为4,即|x1﹣x2|的最小值为2,∴x2﹣1=0,x1=1,x2=﹣1,即y1=4,y2=0,∴当|x1﹣x2|最小时,抛物线与直线的交点为M(﹣1,0),N(1,4);(3)O(0,0),B(3,0),P(1,4),C(0,3),O,B,P,C构成多边形的周长L=OB+BP+PC+CO,∵线段OB平移过程中,OB、PC长度不变,∴要使L最小,只需BP+CO最短,如图,平移线段OC到BC′,四边形OBC′C是矩形,∴C′(3,3),作点P关于x轴(或OB)对称点P′(1,﹣4),连接C′P′与x轴交于点B′,设C′P′解析式为y=ax+n,∴,解得,∴y=x﹣,当y=0时,x=,∴B′(,0),又3﹣=,故点B向左平移,平移到B′,同时,点O向左平移,平移到0′(﹣,0).即线段OB向左平移时,周长L最短,此时,线段BP,CO之和最短为P′C′==,O′B′=OB=3,CP=,∴当线段OB向左平移,即点O平移到O′(﹣,0),点B平移到B′(,0)时,周长L最短为++3.点评:本题考查了二次函数综合题,涉及待定系数法求二次函数解析式、函数与方程的关系、最短路径问题等,综合性强,值得关注.73.(12分)(2015•绵阳)已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.解答:解:(1)由题意得,,整理得2x2+5x﹣4a=0.。
2015中考数学压轴题精选精析
如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P AC N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;.图 9yxOED CBAOBxyA MC13-如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA 的面积最大,求出点D 的坐标.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答 (1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限. ①当线段34PQ AB =时,求tan ∠CED 的值; ②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.思路点拨1.第(1)、(2)题用待定系数法求解析式,它们的结果直接影响后续的解题.2.第(3)题的关键是求点E 的坐标,反复用到数形结合,注意y 轴负半轴上的点的纵坐标的符号与线段长的关系.3.根据C 、D 的坐标,可以知道直角三角形CDE 是等腰直角三角形,这样写点E 的坐标就简单了.满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭. 直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2). 过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==. ②1(12,2)P --,265(1,)22P --.图2 图3 图4考点伸展第(3)题②求点P的坐标的步骤是:如图3,图4,先分两种情况求出等腰直角三角形CDE的顶点E的坐标,再求出CE的中点F的坐标,把点F的纵坐标代入抛物线的解析式,解得的x的较小的一个值就是点P的横坐标.(2010•河南)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.解:(1)设抛物线的解析式为y=a(x+4)(x-2),①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=-x,则Q(x,-x).②如图2,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).故满足题意的Q点的坐标有四个,分别是(-4,4),(4,-4),(2013•眉山)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y 轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由..∴抛物线的解析式为:y=x2+2x-3.(2)存在.△APE为等腰直角三角形,有三种可能的情形:①以点A为直角顶点.如解答图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F.∵OA=OD=1,则△AOD为等腰直角三角形,∵PA⊥AD,则△OAF为等腰直角三角形,∴OF=1,F(0,-1).设直线PA的解析式为y=kx+b,将点A(1,0),F(0,-1)的坐标代入得:解得k=1,b=-1,∴y=x-1.将y=x-1代入抛物线解析式y=x2+2x-3得,x2+2x-3=x-1,整理得:x2+x-2=0,解得x=-2或x=1,当x=-2时,y=x-1=-3,∴P(-2,-3);②以点P为直角顶点.此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上.过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合.∴P(-3,0);③以点E为直角顶点.此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上,即P(-3,0);综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形.点P 的坐标为(-2,-3)或(-3,0).(2010•宜宾)将直角边长为6的等腰Rt△A O C放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接A P,当△A PE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△A G C的面积与(2)中△A PE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.(1分)∵抛物线的图象又经过点(-3,0)和(6,0),(2012•从化市一模)如图(1),在平面直角坐标系中,抛物线y=ax2+bx-3a 经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;(3)如图(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.(1)y=-x2+2x+3=-(x-1)2+4 ∴D(1,4)204.(四川省遂宁市)如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求该二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使PA +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.(1)设二次函数的解析式为:y=a (x-h )2+k(2)∵点A 、B 关于直线x=4对称 ∴PA=PB∴PA+PD=PB+PD≥DB∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P 设直线x=4与x 轴交于点M∵PM∥OD,∴∠BPM=∠BDO,又∵∠PBM=∠DBO ∴△BPM∽△BDOCD O BAyx207.(四川省内江市)如图所示,已知点A(-1,0),B(3,0),C(0,t),且t>0,tan∠BAC=3,抛物线经过A、B、C三点,点P(2,m)是抛物线与直线l:y=k(x+1)的一个交点.(1)求抛物线的解析式;(2)对于动点Q(1,n),求PQ+QB的最小值;(3)若动点M在直线l上方的抛物线上运动,求△AMP的边AP上的高h的最大值.(3)过点P作PN⊥x轴于点N,过点M作MK⊥x轴于点K,设点M的坐标为(x,-x2+2x+3),(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1).(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式.(2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标.②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.(1)ABxyO图1C ABxyOP D E图2CABP xyOD E 图3C(注:只回答有最大面积,而没有说明理由的,不给分;点P 的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)1.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)满分解答:1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4) 所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F 所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似. 如图,BD=2222112BG DG +=+=BE=22223332BO OE +=+= DE=22222425DF EF +=+= 所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆..(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.yxD EABFOG17. 解:(1)直线33y x =--与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ··························································································· 1分 点A C ,都在抛物线上,23033a c c ⎧=++⎪∴⎨⎪-=⎩ 333a c ⎧=⎪∴⎨⎪=-⎩∴抛物线的解析式为2323333y x x =-- ·························································· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ································································································ 4分 (2)存在 ················································································································ 5分 1(03)P -, ·············································································································· 7分 2(23)P -, ·············································································································· 9分 (3)存在 ·············································································································· 10分 理由:解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.····················································································· 11分 过点B '作B H AB '⊥于点H .A O xyBFC图16B 点在抛物线2323333y x x =--上,(30)B ∴,在Rt BOC △中,3tan 3OBC ∠=, 30OBC ∴∠=,23BC =,在Rt BB H '△中,1232B H BB ''==, 36BH B H '==,3OH ∴=,(323)B '∴--, ·················································· 12分 设直线B F '的解析式为y kx b =+233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得36332k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- ···································· 13分 3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,310377M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ····· 14分 解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ················································· 11分 过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=,BCO FHG ∠=∠ HFG CBO ∴∠=∠A O xyBFC图9HBM AO xyBF C 图10H MG同方法一可求得(30)B ,. 在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=,可求得33GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC 的对称点.5303H ⎛⎫∴- ⎪ ⎪⎝⎭,··············································· 12分 设直线BH 的解析式为y kx b =+,由题意得03533k b b =+⎧⎪⎨=-⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=-⎪⎩553393y ∴=- ··············································· 13分 55339333y x y x ⎧=-⎪∴⎨⎪=--⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩310377M ⎛⎫∴- ⎪ ⎪⎝⎭,线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ······················································ 1 ∴在直19.(2008年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?19. 解:(1)在2334y x =-+中,令0y = 23304x ∴-+= 12x ∴=,22x =- (20)A ∴-,,(20)B , ··················································· 1分又点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ················································································ 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ······················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B , 4AB ∴=,94CD = ································································································ 5分 1994242ABC S ∴=⨯⨯=△ ··························································································· 6分 (3)过点N 作NP MB ⊥于点PxyA B CE M D P N OEO MB ⊥NP EO ∴∥BNP BEO ∴△∽△ ································································································· 7分 BN NP BE EO∴= ··········································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP ∴=,65NP t ∴= ························································································· 9分 16(4)25S t t ∴=- 2312(04)55S t t t =-+<< ······················································································ 10分 2312(2)55S t =--+ ······························································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. (2010•内江)如图,抛物线y=mx2-2mx-3m (m >0)与x 轴交于A 、B 两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A 、B 两点的坐标;(2)经探究可知,△BCM 与△ABC 的面积比不变,试求出这个比值;(3)是否存在使△BCM 为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由满分解答:(1)∴A、B两点的坐标为(-1,0)、(3,0).(4分)(3)存在使△BCM为直角三角形的抛物线;《3题图》过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m,∴MN=DM-DN=m.∴CM2=CN2+MN2=1+m2;在Rt△OBC中,BC2=OB2+OC2=9+9m2,在Rt△BDM中,BM2=BD2+DM2=4+16m2;①如果△BCM是Rt△,且∠BMC=90°,那么CM2+BM2=BC2,即1+m2+4+16m2=9+9m2,②如果△BCM是Rt△,且∠BCM=90°,那么BC2+CM2=BM2,即9+9m2+1+m2=4+16m2,解得m=±1,∵m>0,∴m=1;∴存在抛物线y=x2-2x-3,使得△BCM是Rt△;③如果△BCM是Rt△,且∠CBM=90°,那么BC2+BM2=CM2,。
2015中考数学真题分类汇编:二次函数(压轴题)
26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.PH=PM,设﹣﹣a=),得出S==,==,OB=OA=2=SPH=PM6,+6)a=325.(10分)(2015•莆田)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c 为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q 为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四x的顶点坐标和QM=OP=﹣OQ=OP=y=,x﹣,﹣QM=OP=)﹣,y=,x+3;OQ=OP=,,+x x+3,或﹣.抛物线y=x2上任意点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.EM=FM=EF<<点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB 相似时,请你直接写出点M的坐标.a=(;(=,即,(,得,,)=,即,,得,)25.(14分)(2015•漳州)如图,抛物线y=﹣x+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.(1)填空:点C的坐标为(0,3),点D的坐标为(1,4);(2)设点P的坐标为(a,0),当|PD﹣PC|最大时,求α的值并在图中标出点P的位置;(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t 之间的关系式,并直接写出当t为何值时S最大,最大值为多少?两点坐标代入可得,解得,,,,解得坐标为(,<,解得×﹣×()﹣tt=,可知当时,t=时,有最大值≤,解得,,)(×﹣××=(t 显然当t=时,S=t=有最大值,最大值为.28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.x是方程﹣bb b±,当时,抛物线与﹣.x x﹣(),∴抛物线的顶点(﹣,)即为所求的点x x××C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.,t+4a=,(x x+4=(﹣,,)代入得,x﹣×=)t﹣x+4﹣,﹣t+4t+4﹣(t+4﹣=NG+CF=×(﹣),t=时,,t=,得:y=t﹣,﹣28.(12分)(2015•兰州)已知二次函数y=ax的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明),x时,联立直线和抛物线解析式可得或,==,且∠时,联立直线和抛物线解析式可得,解得﹣==,且∠26.(12分)(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.方向滑动距离x方向滑动距离,x﹣(﹣﹣,得或==22C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.,t+4a=,(x x+4=(﹣,,)代入得,x﹣×=)t﹣x+4﹣,﹣t+4t+4﹣(t+4﹣=NG+CF=×(﹣),t=时,,t=,得:y=t﹣,﹣y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出)联立两解析式可得:,解得:,或的坐标为(,)×4++4(××﹣;y=×y=,解得,的坐标为(,)25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.得,解得:得,解得:﹣﹣,n=时,的最小值为:﹣23.(2015•深圳)如图1,关于x的二次函数y=﹣x+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.,,ADE=(﹣﹣ADE=(,﹣﹣,﹣,FQ OB=FQ=,或的坐标是(,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.=,==,)x+y=,﹣=,==x x+3x x+326.(12分)(2015•河池)如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.+t+3t|CM=t|=t,解得x+3)分别代入得,解得•x)+x=时,有最大值,最大值为t+3t+3t|=tt|=tt=tt=t,此时点坐标为(,,个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y 轴于点D,且∠BPC=∠OCP,求点P的坐标.OE=,,即可得到结论;AB=1,,•,即,联立,﹣2=,(﹣,)26.(2015•北海)如图1所示,已知抛物线y=﹣x+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.(1)直接写出D点和E点的坐标;(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?(3)图2所示的抛物线是由y=﹣x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT 是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.,然后再证明,而可证得的横坐标是:﹣或(舍去),代入得解得:,联立得:解得:,即=25.(10分)(2015•贵港)如图,抛物线y=ax+bx+c与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.解得:x=﹣﹣,x•x=(﹣3x+)﹣﹣x=(﹣,时,,(﹣,﹣).26.(12分)(2015•桂林)如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O 时,点C、D停止运动.(1)直接写出抛物线的解析式:y=﹣x2+3x+8;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.xxt;,进而可知:当CD=﹣,然后求出﹣得:x﹣,得:﹣••﹣﹣t﹣,;,,﹣x+5x+b,x﹣x,与x解得:,(,﹣)=,,,,OM=,=,,)x+b,),x+,x+,与﹣解得:,,),﹣)()26.(14分)(2015•安顺)如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S 取最大值时的点C的坐标.,解得:x+2x+.,解得:x+,m)m+)(﹣)﹣(m+)m m+2((××(﹣mm m+5<时,时,m+=×+=,,)27.(16分)(2015•毕节市)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.点坐标代入函数解析式,得,,,,=a=(﹣,(((26.(16分)(2015•六盘水)如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0),D (0,﹣1),E(1,0).(1)求图①中抛物线的函数表达式.(2)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式.(3)将图②中的抛物线绕原点O顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为y2=2px,点D1与D2是旋转前后的对应点,求图③中抛物线的函数表达式.(4)将图③中的抛物线绕原点O顺时针旋转90°后与直线y=﹣x﹣1相交于A、B两点,D2与D3是旋转前后如图④,求线段AB的长..,,()).24.(12分)(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.x+3x+3,)x﹣,﹣),,),26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.x。
2015中考数学真题分类汇编:二次函数(压轴题)资料
26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.考点:二次函数综合题.分析:(1)把抛物线的解析式化成顶点式即可求得对称轴;求得直线与坐标轴的交点坐标,即可证得直线和坐标轴围成的图形是等腰直角三角形,从而求得直线PQ与x轴所夹锐角的度数;(2)分三种情况分别讨论根据已知条件,通过△OBE∽△ABF对应边成比例即可求得;(3)①过点C作CH∥x轴交直线PQ于点H,可得△CHQ是等腰三角形,进而得出AD⊥PH,得出DQ=DH,从而得出PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,得出PH=PM,因为当PM最大时,PH最大,通过求得PM的最大值,从而求得PH的最大值;由①可知:PD+PH≤6,设PD=a,则DQ﹣a,得出PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,当点P在抛物线的顶点时,a=3,得出PD•DQ≤18.解答:解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是x=2,∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),∴交点到原点的距离相等,∴直线与坐标轴围成的三角形是等腰直角三角形,∴直线PQ与x轴所夹锐角的度数是45°,故答案为x=2、45°.(2)设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,显然当点B在OA的延长线时,S△POQ=S△PAQ不成立;①当点B落在线段OA上时,如图①,==,由△OBE∽△ABF得,==,∴AB=3OB,∴OB=OA,由y=x2﹣4x得点A(4,0),∴OB=1,∴B(1,0),∴1+m=0,∴m=﹣1;②当点B落在线段AO的延长线上时,如图②,同理可得OB=OA=2,∴B(﹣2,0),∴﹣2+m=0,∴m=2,综上,当m=﹣1或2时,S△POQ=S△PAQ;(3)①过点C作CH∥x轴交直线PQ于点H,如图③,可得△CHQ是等腰三角形,∵∠CDQ=45°+45°=90°,∴AD⊥PH,∴DQ=DH,∴PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,∴PH=PM,∴当PM最大时,PH最大,∴当点P在抛物线顶点出时,PM最大,此时PM=6,∴PH的最大值为6,即PD+DQ的最大值为6.②由①可知:PD+PH≤6,设PD=a,则DQ﹣a,∴PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,∵当点P在抛物线的顶点时,a=3,∴PD•DQ≤18.∴PD•DQ的最大值为18.点评:本题是二次函数的综合题,考查了抛物线的性质,直线的性质,三角形相似的判定和性质,难度较大.25.(10分)(2015•莆田)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由“恒定”抛物线y=ax2+bx+c,得到b=a+c,即a﹣b+c=0,即可确定出抛物线恒过定点(﹣1,0);(2)先求出抛物线y=x2﹣的顶点坐标和B的坐标,由题意得出PA∥CQ,PA=CQ;存在两种情况:设抛物线的解析式为y=a(x+2)2﹣,把点A坐标代入求出a的值即可;②顶点Q在y轴上,此时点C与点B重合;证明△OQC≌△OPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为y=ax2+,把点C坐标代入求出a的值即可.解答:(1)证明:由“恒定”抛物线y=ax2+bx+c,得:b=a+c,即a﹣b+c=0,∵抛物线y=ax2+bx+c,当x=﹣1时,y=0,∴“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A(﹣1,0);(2)解:存在;理由如下:∵“恒定”抛物线y=x2﹣,当y=0时,x2﹣=0,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=﹣,∴顶点P的坐标为(0,﹣),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,﹣),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=a(x+2)2﹣,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:y=(x+2)2﹣,即y═x2+4x+3;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,,∴△OQC≌△OPA(AAS),∴OQ=OP=,设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=ax2+,把点C(1,0)代入得:a=﹣,∴抛物线的解析式为:y=﹣x2+;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:y=x2+4x+3,或y=﹣x2+.点评:本题是二次函数综合题目,考查了新定义“恒定”抛物线、用待定系数法求抛物线的解析式、全等三角形的判定与性质、抛物线的对称性、坐标与图形性质等知识;本题难度较大,综合性强,特别是(2)中,需要作辅助线证明三角形全等求出点的坐标才能得出抛物线的解析式.26.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.考点:二次函数综合题;勾股定理;矩形的判定与性质.专题:综合题;阅读型.分析:(1)如图1,只需令x=0,即可得到点C的坐标.根据题意可得AC=AE,从而有∠AEC=∠ACE.易证AE∥CO,从而有∠AEC=∠OCE,即可得到∠ACE=∠OCE,同理可得∠OCF=∠BCF,然后利用平角的定义即可证到∠ECF=90°;(2))①过点P作PH⊥EF于H,分点H在线段EF上(如图2①)和点H在线段EF的延长线(或反向延长线)上(如图2②)两种情况讨论,然后只需运用勾股定理及平方差公式即可证到PE2+PF2﹣2PM2=2EM2,即PE2+PF2=2(PM2+EM2);②连接CD,PM,如图3.易证▱CEDF是矩形,从而得到M是CD的中点,且MC=EM,然后根据①中的结论,可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).由MC=EM可得PC2+PD2=PE2+PF2.根据PE=PF=3可求得PC2+PD2=18.根据1<PD<2可得1<PD2<4,即1<18﹣PC2<4,从而可求出PC的取值范围.解答:解:(1)当x=0时,y=k•0+1=1,则点C的坐标为(0,1).根据题意可得:AC=AE,∴∠AEC=∠ACE.∵AE⊥EF,CO⊥EF,∴AE∥CO,∴∠AEC=∠OCE,∴∠ACE=∠OCE.同理可得:∠OCF=∠BCF.∵∠ACE+∠OCE+∠OCF+∠BCF=180°,∴2∠OCE+2∠OCF=180°,∴∠OCE+∠OCF=90°,即∠ECF=90°;(2)①过点P作PH⊥EF于H,Ⅰ.若点H在线段EF上,如图2①.∵M为EF中点,∴EM=FM=EF.根据勾股定理可得:PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2=2PH2+EH2+HF2﹣2(PH2+MH2)=EH2﹣MH2+HF2﹣MH2=EM(EH+MH)+MF(HF﹣MH)=EM(EH+MH)+EM(HF﹣MH)=EM(EH+MH+HF﹣MH)=EM•EF=2EM2,∴PE2+PF2=2(PM2+EM2);Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.同理可得:PE2+PF2=2(PM2+EM2).综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);②连接CD、PM,如图3.∵∠ECF=90°,∴▱CEDF是矩形,∵M是EF的中点,∴M是CD的中点,且MC=EM.由①中的结论可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).∵MC=EM,∴PC2+PD2=PE2+PF2.∵PE=PF=3,∴PC2+PD2=18.∵1<PD<2,∴1<PD2<4,∴1<18﹣PC2<4,∴14<PC2<17.∵PC>0,∴<PC<.24.(12分)(2015•福建)如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.考点:二次函数综合题.分析:(1)根据待定系数法,可得抛物线的解析式;(2)根据勾股定理,可得OA2、OB2、AB2的长,根据勾股定理的逆定理,可得∠OAB的度数,根据点到直线的距离的定义,可得答案;(3)根据抛物线上的点满足函数解析式,可得方程②,根据相似三角形的性质,可得方程①③,根据解方程组,可得M点的坐标.解答:解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,将B点坐标代入函数解析式,得(5﹣1)2a﹣1=3,解得a=.故抛物线的解析式为y=(x﹣1)2﹣1;(2)由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(5﹣1)2+(3+1)2=32,OA2+AB2=OB2,∴∠OAB=90°,O到直线AB的距离是OA=;(3)设M(a,b),N(a,0)当y=0时,(x﹣1)2﹣1=0,解得x1=3,x2=﹣1,D(3,0),DN=3﹣a.①当△MND∽△OAB时,=,即=,化简,得4b=a﹣3 ①M在抛物线上,得b=(a﹣1)2﹣1 ②联立①②,得,解得a1=3(不符合题意,舍),a2=﹣2,b=,M1(﹣2,),当△MND∽△BAO时,=,即=,化简,得b=12﹣4a ③,联立②③,得,解得a1=3(不符合题意,舍),a2=﹣17,b=12﹣4×(﹣17)=80,M2(﹣17,80).综上所述:当△DMN与△OAB相似时,点M的坐标(﹣2,),(﹣17,80).点评:本题考查了二次函数综合题,(1)设成顶点式的解析式是解题关键,(2)利用了勾股定理及勾股定理的逆定理,点到直线的距离;(3)利用了相似三角形的性质,图象上的点满足函数解析式得出方程组是解题关键,要分类讨论,以防遗漏.25.(14分)(2015•漳州)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.(1)填空:点C的坐标为(0,3),点D的坐标为(1,4);(2)设点P的坐标为(a,0),当|PD﹣PC|最大时,求α的值并在图中标出点P的位置;(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?考点:二次函数综合题.分析:(1)根据抛物线与坐标轴交点坐标求法和顶点坐标求法计算即可;(2)求|PD﹣PC|的值最大时点P的坐标,应延长CD交x轴于点P.因为|PD﹣PC|小于或等于第三边CD,所以当|PC﹣PD|等于CD时,|PC﹣PD|的值最大.因此求出过CD两点的解析式,求它与x轴交点坐标即可;(3)过C点作CE∥x轴,交DB于点E,求出直线BD的解析式,求出点E的坐标,求出P′C′与BC 的交点M的坐标,分点C′在线段CE上和在线段CE的延长线上两种情况,再分别求得N点坐标,再利用图形的面积的差,可表示出S,再求得其最大值即可.解答:解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴C(0,3),D(1,4),故答案为:0;3;1;4;(2)∵在三角形中两边之差小于第三边,∴延长DC交x轴于点P,设直线DC的解析式为y=kx+b,把D、C两点坐标代入可得,解得,∴直线DC的解析式为y=x+3,将点P的坐标(a,0)代入得a+3=0,求得a=﹣3,如图1,点P(﹣3,0)即为所求;(3)过点C作CE∥x,交直线BD于点E,如图2,由法可求得直线BD的解析式为y=﹣2x+6,直线BC的解析式为y=﹣x+3,在y=﹣2x+6中,当y=3时,x=,∴E点坐标为(,3),设直线P′C′与直线BC交于点M,∵P′C′∥DC,P′C′与y轴交于点(0,3﹣t),∴直线P′C′的解析式为y=x+3﹣t,联立,解得,∴点M坐标为(,),∵B′C′∥BC,B′坐标为(3+t,0),∴直线B′C′的解析式为y=﹣x+3+t,分两种情况讨论:①当0<t<时,如图2,B′C′与BD交于点N,联立,解得,∴N点坐标为(3﹣t,2t),S=S△B′C′P﹣S△BMP﹣S△BNB′=×6×3﹣(6﹣t)×(6﹣t)﹣t×2t=﹣t2+3t,其对称轴为t=,可知当0<t<时,S随t的增大而增大,当t=时,有最大值;②当≤t<6时,如图3,直线P′C′与DB交于点N,立,解得,∴N点坐标为(,),S=S△BNP′﹣S△BMP′=(6﹣t)×﹣×(6﹣t)×=(6﹣t)2=t2﹣t+3;显然当<t<6时,S随t的增大而减小,当t=时,S=综上所述,S与t之间的关系式为S=,且当t=时,S有最大值,最大值为.点评:本题主要考查二次函数的综合应用,涉及待定系数法、三角形三边关系、平移的性质和二次函数的性质等知识点.在(1)中掌握二次函数的顶点式是解题的关键,在(2)中确定出P点的位置是解题的关键,在(3)中用t分别表示出E、M、N的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较多,综合性较强,计算量较大.28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.考点:二次函数综合题.分析:(1)把A(0,﹣4)代入可求c,运用两根关系及|x2﹣x1|=5,对式子合理变形,求b;(2)因为菱形的对角线互相垂直平分,故菱形的另外一条对角线必在抛物线的对称轴上,满足条件的D点,就是抛物线的顶点;(3)由四边形BPOH是以OB为对角线的菱形,可得PH垂直平分OB,求出OB的中点坐标,代入抛物线解析式即可,再根据所求点的坐标与线段OB的长度关系,判断是否为正方形即可.解答:解:(1)∵抛物线y=﹣x2+bx+c,经过点A(0,﹣4),∴c=﹣4又∵由题意可知,x1、x2是方程﹣x2+bx﹣4=0的两个根,∴x1+x2=b,x1x2=6由已知得(x2﹣x1)2=25又∵(x2﹣x1)2=(x2+x1)2﹣4x1x2=b2﹣24∴b2﹣24=25解得b=±,当b=时,抛物线与x轴的交点在x轴的正半轴上,不合题意,舍去.∴b=﹣.(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上,又∵y=﹣x2﹣x﹣4=﹣(x+)2+,∴抛物线的顶点(﹣,)即为所求的点D.(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(﹣6,0),根据菱形的性质,点P必是直线x=﹣3与抛物线y=﹣x2﹣x﹣4的交点,∴当x=﹣3时,y=﹣×(﹣3)2﹣×(﹣3)﹣4=4,∴在抛物线上存在一点P(﹣3,4),使得四边形BPOH为菱形.四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(﹣3,3),但这一点不在抛物线上点评:本题考查了抛物线解析式的求法,根据菱形,正方形的性质求抛物线上符合条件的点的方法.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x ﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB 的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).点评:本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.28.(12分)(2015•兰州)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)考点:二次函数综合题.分析:(1)把点(2,1)代入可求得a的值,可求得抛物线的解析式;(2)①可先求得A、B两点的坐标,过A、B两点作x轴的垂线,结合条件可证明△ACO∽△ODB,可证明∠AOB=90°,可判定△AOB为直角三角形;②可用m分别表示出A、B两点的坐标,过A、B两点作x轴的垂线,表示出AC、BD的长,可证明△ACO∽△ODB,结合条件可得到∠AOB=90°,可判定△AOB为直角三角形;(3)结合(2)的过程可得到△AOB恒为直角三角形等结论.解答:(1)解:∵y=ax2过点(2,1),∴1=4a,解得a=,∴抛物线解析式为y=x2;(2)①证明:当m=时,联立直线和抛物线解析式可得,解得或,∴A(﹣2,1),B(8,16),分别过A、B作AC⊥x轴,BD⊥x轴,垂足分别为C、D,如图1,∴AC=1,OC=2,OD=8,BD=16,∴==,且∠ACO=∠ODB,∴△ACO∽△ODB,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;②解:△AOB为直角三角形.证明如下:当m≠时,联立直线和抛物线解析式可得,解得或,∴A(2m﹣2,(m﹣)2),B(2m+2,(m+)2),分别过A、B作AC⊥x轴,BD⊥x轴,如图2,∴AC=(m﹣)2,OC=﹣(2m﹣2),BD=(m+)2,OD=2m+2,∴==,且∠ACO=∠ODB,∴△ACO∽△OBD,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;(3)解:由(2)可知,一次函数y=mx+4的图象与二次函数y=ax2的交点为A、B,则△AOB恒为直角三角形.(答案不唯一).点评:本题主要考查二次函数的综合应用,涉及待定系数法、相似三角的判定和性质、直角三角形的判定等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意表示出A、B两点的坐标,构造三角形相似是解题的关键,在(3)中答案不唯一,可结合(2)的过程得出.本题知识点较多,综合性很强,难度较大.26.(12分)(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x 轴,交于M点,根据直线AC的斜率求得△P′PM是等腰直角三角形,进而求得抛物线向上平移1个单位,向右平移1个单位,从而求得平移后的解析式,进而求得与x轴的交点,与直线AC的交点,即可证得结论;(3)如答图3所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.解答:解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x﹣1.(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x 轴,交于M点,∵点A的坐标为(0,﹣1),点C的坐标为(4,3),∴直线AC的解析式为y=x﹣1,∵直线的斜率为1,∴△P′PM是等腰直角三角形,∵PP′=,∴P′M=PM=1,∴抛物线向上平移1个单位,向右平移1个单位,∵y=﹣x2+2x﹣1=﹣(x﹣2)2+1,∴平移后的抛物线的解析式为y=﹣(x﹣3)2+2,令y=0,则0=﹣(x﹣3)2+2,解得x1=1,x=52,∴平移后的抛物线与x轴的交点为(1,0),(5,0),解,得或∴平移后的抛物线与AC的交点为(1,0),∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).(3)如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==2.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2.点评:本题为二次函数中考压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、几何变换(平移,对称)、等腰直角三角形、平行四边形、轴对称﹣最短路线问题等知识点,考查了存在型问题和分类讨论的数学思想,试题难度较大.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x ﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB 的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).点评:本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.24.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.考点:二次函数综合题.分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.解答:解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).点评:本题是二次函数的综合题型,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,三角形的面积,待定系数法求一次函数的解析式,难度适中.利用数形结合与方程思想是解题的关键.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.考点:二次函数综合题.分析:(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B点坐标,进而求出函数解析式,进而得出答案;(3)利用①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x ﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.解答:解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.点评:此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n 的取值范围是解题关键.23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.考点:二次函数综合题.分析:(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F 点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.解答:解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PM=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵S△EBC=3,2S△FBC=3S△EBC,∴S△FBC=,过F作FQ⊥x轴,交BC的延长线于Q,如图3,∵S△FBC=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,).点评:本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.22.(9分)(2015•珠海)如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.考点:二次函数综合题.。
2015年中考数学压轴题(八大类型 )
2015年中考数学压轴题(八大类型 )一.面积与动点1.(重庆市綦江县)如图,已知抛物线y =a (x -1)2+33(a ≠0)经过点A (-2,0),抛物线的顶点为D ,过O 作射线OM ∥AD .过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM运动,设点P 运动的时间为t (s ).问:当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC =OB ,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s ),连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.DCM y OABQPx二.几何图形与变换2.(辽宁省铁岭市)如图所示,已知在直角梯形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,1)、B (3,1).动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(0<t <4),△OPQ 与直角梯形OABC 重叠部分的面积为S .(1)求经过O 、A 、B 三点的抛物线解析式; (2)求S 与t 的函数关系式;(3)将△OPQ 绕着点P 顺时针旋转90°,是否存在t ,使得△OPQ的顶点O 或Q 在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由.2O A B Cxy113P Q三.相似204.(四川省遂宁市)如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求该二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.CD O BAyx四。
2015山东中考数学压轴题解析
2. (12 分) (2015•聊城)如图,在直角坐标系中,Rt △OAB 的直角顶点 A 在 x 轴上,OA=4,AB=3.动点 M 从点 A 出 发,以每秒 1 个单位长度的速度,沿 AO 向终点 O 移动;同 时点 N 从点 O 出发, 以每秒 1.25 个单位长度的速度, 沿 OB 向终点 B 移动.当两个动点运动了 x 秒( 0<x<4)时,解 答下列问题:21 教育名师原创作品
i)若点P为直角顶点,则∠APC=90°. 由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在
ii)若点 A 为直角顶点,则∠PAC=90°. 如答图 3﹣1,过点 A( , )作 AN⊥x 轴于点 N,则 ON= ,AN= . 过点 A 作 AM⊥直线 AB,交 x 轴于点 M,则由题意易知,△AMN 为等腰直角三角形, ∴MN=AN= ,∴OM=ON+MN= + =3, ∴M(3,0) . 设直线 AM 的解析式为:y=kx+b, 则: ,解得 ,
1
1
2 .
y
(1)求抛物线的解析式.
y x 4x 2
2
D′′ N C
Dl G′
F′ E B E′′ x
(2)抛物线的对称轴为 l,与 y 轴的交点为 C,顶点为 D ,点 C 关于 l 对称点为 E.是否存在 x 轴上的点 M、 y 轴上的点 N,使 四边形 DNME 的周长最小?若存在,请画出图形(保留作图痕 迹),并求出周长的最小值;若不存在,请说明理由.2·1 ·c· n· j·y (3 )若点 P 在抛物线上,点 Q 在 x 轴上,当以点 D 、E、P 、 Q 为顶点的四边形为平行四边形时,求点 P 的坐标.www
②若∠ONM=90°,如图 3 所示: 则∠ONM= ∠OAB, 此时 OM=4﹣x,ON=1.25x , ∵∠ONM= ∠OAB,∠MON= ∠BOA, ∴△OMN∽△OBA, ∴ 即 , ,
江苏省2015年中考数学压轴题
1. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件B. 第10天销售一件产品的利润是15元C. 第12天与第30天这两天的日销售利润相等D. 第30天的日销售利润是750元2. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】A.133 B. 92 C.4133D. 253. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4kmB .()22+km B . C .22km D .()42-kmC .4. (2015年江苏泰州3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】A. 1对B. 2对C. 3对D. 4对5. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23 D. 326. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0k x b --的解集为【 】A. <2xB. >2xC. <5xD. >5x7. (2015年江苏盐城3分)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为【 】D.A. B. C. 8.(2015年江苏扬州3分)已知x =1不是这个不等式的解,则实x =2是不等式(5)(32)0x ax a --+≤的解,且数a 的取值范围是【 】A. 1a >B. 2a ≤C. 12a <≤D. 12a ≤≤9. (2015年江苏常州2分)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【 】A.833cm 2 B.8 cm 2 C. 1633cm 2 D. 16cm 210. (2015年江苏淮安3分)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F ,若32=BC AB ,DE =4,则EF 的长是【 】A.38 B. 320 C. 6 D. 10 11. (2015年江苏南通3分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为【 】A. 2.5B. 2.8C. 3D. 3.212. (2015年江苏宿迁3分)在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数2y x=的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为【 】A. 2个B. 4个C. 5个D. 6个13. (2015年江苏镇江3分)如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t ),AB ∥x 轴,矩形A B C D ''''与矩形ABCD 是位似图形,点O 为位似中心,点A ′,B ′分别是点A ,B 的对应点,A B k AB ''=.已知关于x ,y 的二元一次方程2134mnx y n x y +=+⎧⎨+=⎩(m ,n 是实数)无解,在以m ,n 为坐标(记为(m ,n ))的所有的点中,若有且只有一个点落在矩形A B C D ''''的边上,则k t ⋅的值等于【 】A.34B. C. 43 D. 321. (2015年江苏连云港3分)如图,在△ABC 中,∠BAC =60°,∠ABC =90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2,且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC 的长为 ▲ .2. (2015年江苏南京2分)如图,过原点O 的直线与反比例函数y 1,y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点,若函数11y x=,则y 2与x 的函数表达式是 ▲ .3. (2015年江苏苏州3分)如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ .4. (2015年江苏泰州3分)如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE =OD ,则AP 的长为 ▲ .5. (2015年江苏无锡2分)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 ▲ 元.6. (2015年江苏徐州3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 ▲ .7. (2015年江苏盐城3分)设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S ;……, 依此类推,则n S 可表示为 ▲ .(用含n 的代数式表示,其中n 为正整数)8. (2015年江苏扬州3分)如图,已知△ABC 的三边长为a b c 、、,且<<a b c ,若平行于三角形一边的直线将△ABC 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为123s s s 、、,则123s s s 、、的大小关系是 ▲ (用“<”号连接).9. (2015年江苏常州2分)如图,在⊙O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 ▲ .10. (2015年江苏淮安3分)将连续正整数按如下规律排列:第1列 第2列 第3列 第4列 第5列 第1行 1 2 3 4 第2行 8 7 6 5 第3行9101112第4行 16 15 14 13 第5行17181920………若正整数565位于第a 行,第b 列,则b a += ▲ . 11. (2015年江苏南通3分)关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是 ▲ .12. (2015年江苏宿迁3分)当x =m 或x =n (m ≠n )时,代数式223x x -+的值相等,则x =m +n 时,代数式223x x -+的值为 ▲ .13. (2015年江苏镇江2分)如图,△ABC 和△DBC 是两个具有公共边的全等三角形,AB =AC =3cm ,BC =2cm ,将△DBC 沿射线BC 平移一定的距离得到△D 1B 1C 1,连接AC 1,BD 1.如果四边形ABD1C 1是矩形,那么平移的距离为 ▲ cm .1. (2015年江苏连云港12分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为22的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与A G 在同一直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长.(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,将线段DG 与线段BE 相交,交点为H ,写出△GHE 与△BHD 面积之和的最大值,并简要说明理由.2. (2015年江苏连云港14分)如图,已知一条直线过点(0,4),且与抛物线214y x交于A ,B 两点,其中点A 的横坐标是﹣2.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由;(3)过线段AB上一点P,作P M∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?3. (2015年江苏南京8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE⊥CD.求证:△ABE是等边三角形.4.(2015年江苏南京10分)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单元:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义.(2)求线段AB所表示的y1与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?5. (2015年江苏苏州10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接PA 、PC ,PA =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△PAC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6. (2015年江苏苏州10分)如图,在矩形ABCD中,AD=a cm,AB=b cm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B →C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P从A→B→C→D,全程共移动了▲ cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点.若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.7. (2015年江苏泰州12分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.8. (2015年江苏泰州14分)已知一次函数42-=x y 的图像与x 轴、y 轴分别相交于点A 、B ,点P 在该函数图像上, P 到x 轴、y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求21d d +的值;(2)直接写出21d d +的范围,并求当321=+d d 时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使421=+ad d (a 为常数), 求a 的值.9. (2015年江苏无锡10分)一次函数34y x =的图像如图所示,它与二次函数24y ax ax c =-+的图像交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图像的对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图像的顶点为D .①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.10. (2015年江苏无锡10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段05上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60º,OM=4,OQ=1,求证:05⊥OB;(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形;①问:11OM ON的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由;②设菱形OMPQ 的面积为S 1,△NOC 的面积为S 2,求12S S 的取值范围.11. (2015年江苏徐州8分)为加强公民的节水意识,合理利用水资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学压轴题十大类型目录第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题 7 第三讲中考压轴题十大类型之面积问题 13 第四讲中考压轴题十大类型之三角形存在性问题 19 第五讲中考压轴题十大类型之四边形存在性问题 25 第六讲中考压轴题十大类型之线段之间的关系 31 第七讲中考压轴题十大类型之定值问题 38 第八讲中考压轴题十大类型之几何三大变换问题 44 第九讲中考压轴题十大类型之实践操作、问题探究 50 第十讲中考压轴题十大类型之圆 56 第十一讲中考压轴题综合训练一 62 第十二讲中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题.1. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.2. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t >),△MPQ 的面积为S . (1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.3. (的B备用图FE D C BAFE OPD CBFE OPD CBFE OPD CB延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线P A匀速运动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线P A的同侧,设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t 之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.备用图1 备用图2三、测试提高1.(2011山东烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D 在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ 的面积为S(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时S有最大值?并求出最大值.备用图第二讲 中考压轴题十大类型之函数类问题1. (2011浙江温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B的坐标为(0,b )(b >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a . (1) 当b =3时,① 直线AB 的解析式;② 若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值; (3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. (2010武汉)如图,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ =22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围;(3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不xyP'DO CBAP能,请说明理由.备用图3. (2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数ky x=(k >0)的图象过点E 且与直线1l 相交于点F . (1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; (3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.4. (2010浙江舟山)△ABC 中,∠A =∠B =30°,AB =23△ABC 放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1)当点B 6B 的横坐标; (2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当5a =,12b =-,35c =A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.O yxEDCBA5. (湖北黄冈)已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标;(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△P AC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E . (1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题1. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB . (1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. (2011湖北十堰)如图,己知抛物线y =x 2+bx +c 与x 轴交于点A (1,0)和点 B ,与y 轴交于点C (0,-3).(1)求抛物线的解析式;(2)如图(1),己知点H (0,-1).问在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D 在x 轴上的正投影为点E (﹣2,0),F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.yxMPOCBA3.(2010天津)在平面直角坐标系中,已知抛物线2y x bx=-+c+与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(Ⅰ)若2b=,3c=,求此时抛物线顶点E的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE = S△ABC,求此时直线BC的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S△BCE =2S△AOC,且顶点E恰好落在直线43y x=-+上,求此时抛物线的解析式.4.(2011山东聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t s时,△EFG的面积为S cm2.(1)当t=1s时,S的值是多少?(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由.AEB F G D5.(2011江苏淮安)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿P A、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F 运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S.(1)当t=1时,正方形EFGH的边长是.当t=3时,正方形EFGH的边长是.(2)当0<t≤2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?BB备用图三、测试提高1. (2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性A DE FGC B备用图(1)AC备用图(2)ACy =-x +7OABxyy =43x y =-x +7OABxy y =43x 1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.(备用图)2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3.(2009四川眉山)如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△P AE是直角三角形时,求点P的坐标.4.(2010广东中山)如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线上时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP;(2)设04x≤≤(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.FP WQNA BWQPMFDBA板块三、相似三角形存在性5. (2011湖北天门)在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a = ,b = ,顶点C 的坐标为 ;(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之 四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. (2010(40),-,B (04),-,C (20),三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3.(2011黑龙江鸡西)已知直线343=+与x轴、y轴分别交于A、B两点,∠ABC=60°,BCy x与x轴交于点C.(1)试确定直线BC的解析式;(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA 向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.yxO CBA4.(2007河南)如图,对称轴为直线x=27的抛物线经过点A (6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高1. (2009辽宁抚顺)已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与x 轴交于点A (-2,0)、点B (6,0),与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N . (1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得P A =PC ,若存在,求出点P 的坐标;若不存在,请说明理由; (3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.3. (2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . (1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+; (3) 在(2)的条件下,请探究当点P 位于何处时,△P AC 的周长有最小值,并求出△P AC 的周长y B OD CA xED 'y B O DCA x的最小值.4. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线3:3l y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.lyxK HBOA5. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P(-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ图1 图26. (2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.三、测试提高1. (2009浙江舟山)如图,已知点A (-4,8)和点B (2,n )在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4x22A8 -2O -2 -4y6 B C D -44第七讲 中考压轴题十大类型之定值问题1. (2011天津)已知抛物线1C :21112y x x =-+,点F (1,1). (Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q(Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. (2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. (2008山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.(1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由; (3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. (2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: (1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. (2009湖南湘西)在直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是(3,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C . (1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积; (4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且 ∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. (2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.的值等于 ;若14CE CD =,为整数),则AMBN 的值等折叠,使点B 落在CD 边上一点MN ,设()111AB CE m BC m CD n=>=,,E (不与点C D ,重合),压平后得到折痕则AMBN的值等于 .(用含m n ,的式子表示)2. (2011陕西)如图①,在矩形ABCD中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端AD EFM图(1) Ny x CD F EA (B )Oy xCD FEA (B )Oy xCDFEA (B )O图1 图2 图3 图4ααααθ4θ6θ5θ3HHHHB 4A 4B 2B 3B 3B 4B 5A 5A 4B 3A 3A 3A 3A 2A 2A 2B 2B 2B 1B 1B 1A A A 1A A A 2B 2A 0B 1A 1A 点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”. (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;(2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么?图① 图②图③3. (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. (1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(n1800<<α).(3)设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;(4)试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4. (2009山东德州)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)D D D5. (2010江苏苏州)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D ∠=°,45E ∠=°,4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行?问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形?问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.CEDF (图①)(图②)。