中考数学压轴题目十大类型之三角形的存在问题目备考练习
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。
2020年中考数学难题突破:函数中特殊三角形存在性问题解析与练习及参考答案
(3 ) ①x= 1 (1 ,a)
②三 AQ= BQ,AB=BQ, AQ=AB
解: (1) ∵直线 y=3x+ 3,
∴当 x=0 时, y= 3,当 y=0 时, x=- 1,
∴点 A 的坐标为 ( -1,0) ,点 B 的坐标为 (0 ,3) .
(2) 设抛物线对应的函数表达式为
y=ax2+ bx+c,由题意,得
③当 AQ= AB时,如图③, 由勾股定理,得 22+a2= 10,解得 a=± 6,此时点 Q的坐标是 (1 , 6) 或(1 ,- 6) . 综上所述,存在符合条件的点 Q,点 Q的坐标为 (1 ,1) 或 (1 ,0) 或 (1 , 6) 或(1 ,- 6) . 类型 2 直角三角形、全等三角形存在性问题 例 2 如图 2,已知直线 y=kx -6 与抛物线 y= ax2+bx+c 相交于 A,B 两点,且点 A(1,- 4) 为抛 物线的顶点,点 B 在 x 轴上.
解得
1- m= 2
13
1+ m= 2
13 >0,舍去
,
∴点 P 的坐标为
1- 2
13 ,
13-1 . 2
(3) 如图,①当∠ Q1AB=90°时,△ DAQ∽1 △ DOB,
AD DQ1
5 DQ1
∴OD= DB,即6= 3ຫໍສະໝຸດ , 557
∴DQ1= 2,∴ OQ1=2,
7 即点 Q1的坐标为 0,- 2 ;
C(3,0) .
(1) 求点 A,B 的坐标.
(2) 求抛物线对应的函数表达式.
图1
(3) 在抛物线的对称轴上是否存在点 Q,使△ ABQ是等腰三角形?若存在, 求出符合条件的点 Q的坐
标;若不存在,请说明理由.
【中考数学压轴题】十大类型之三角形的存在性问题备考练习(含答案)
【中考数学压轴题】十大类型之三角形的存在性问题备考练习一、解答题(共2道,每道50分)1.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q 在直线l2从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).(1)求直线l2的解析式.(2)设△PCQ的面积为S,请求出S 关于t的函数关系式.(3)试探究:当t为何值时,△PCQ为等腰三角形?答案:(1)l2的解析式为.(2)(3)t=5,或,或时,△PCQ为等腰三角形.解题思路:(1)由题意,知B(0,6),C(8,0).设直线l2的解析式为y=kx+b,则,解得,b=6.∴l2的解析式为.(2)解法一:如图,过P作PD⊥l2于D,则△PDC∽△BOC.∴.由题意知,OA=2,OB=6,OC=8,∴,PC=10-t∴,∴∴解法二:如图,过Q作QD⊥x轴于D,则△CQD∽△CBO.∴.由题意知,OA=2,OB=6,OC=8.∴,∴,.(3)根据等腰三角形的基本特征画出图形,进行分类讨论,再表达出相对应的个线段的长度建立等式来进行求解.要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ.①当CP=CQ时(如图①),得10-t=t,解得t=5.②当QC=QP时(如图②),过Q作QD⊥x轴于D,则.∵△QDC∽△BOC,∴,即,解得.③当PC=PQ时(如图③),过P作PD⊥l2于D,则∵△CDP∽△COB,∴.∴,解得.综上所述,当t=5,或,或时,△PCQ为等腰三角形.试题难度:三颗星知识点:中考压轴之三角形存在性问题2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连结AC、BC,A、C两点的坐标分别为A(-3,0)、C,且当x=-4和x=2时二次函数的函数值y相等.(1)求实数a、b、c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.答案:(1)(2);P(-1,)(3)Q()解题思路:(1)由题意,得,解之得(2)由(1)得,当y=0时,x=-3或1,∴B(1,0),A(-3,0),C(0,)∴OA=3,OB=1,OC=.易求得AC=,BC=2,AB=4∴△ABC为直角三角形,且∠ACB=90°,∠A=30°,∠B=60°又由BM=BN=PN=PM知四边形PMBN为菱形,∴PN∥AB,∴,∴过P做PE⊥AB于E,在Rt△PEM中,∠PME=∠B=,PM=∴ME=又OM=BM-OB=故OE=1,∴P(-1,)(3)由(1)、(2)知抛物线的对称轴为直线x=-1,且∠ACB=90°,①若∠BQN=90°∵BN的中点到对称轴的距离大于1,而,∴以BN为直径的圆不与对称轴相交,∴∠BQN≠,即此时不存在符合条件的Q点②若∠BNQ=90°,当∠NBQ=60°,则Q、E重合,此时∠BNQ≠;当∠NBQ=30°,则Q、P重合,此时∠BNQ≠即此时不存在符合条件的Q点③若∠QBN=时,延长NM交对称轴于点Q,此时,Q为P关于x轴的对称点。
中考数学压轴题专项练习:特殊三角形问题(10道)及答案
中考数学压轴题专项练习:特殊三角形问题(10道)及答案题库:二次函数压轴题-特殊三角形问题1.如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,2),抛物线的对称轴交x 轴于点D.(1)求抛物线的解析式; (2)求sin ∠ABC 的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.第1题图解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中得,-12-b +c =0c =2,解得b =32c =2,∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0,解得x 1=-1,x 2=4,∴点B 的坐标为(4,0),在Rt △BOC 中,BC =OC 2+OB 2=22+42=25,∴sin ∠ABC =OC BC =225=55;(3)存在,点P 坐标为(32,52)或(32,-52)或(32,4).【解法提示】由抛物线y =-12x 2+32x +2得对称轴为直线x =32,∴点D 的坐标为(32,0).∴CD =OC 2+OD 2=22+(32)2=52.∵点P 在对称轴x =32上,且△PCD 是以CD 为腰的等腰三角形,∴当点D 为顶点时,有DP =CD =52,此时点P 的坐标为(32,52)或(32,-52);当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG ,第1题解图∵DG =2,∴PG =2,PD =4,∴点P 的坐标为(32,4).综上,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为(32,52)或(32,-52)或(32,4).2. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式; (2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图解:(1)由题意得-b2a =-1a +b +c =0c =3,解得a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0),∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得-3m +n =0n =3,解得m =1n =3,∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第2题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18, PB 2=(-1+3)2+t 2=4+t 2, PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t=-2;②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4;③若P 为直角顶点,则PB 2+PC 2=BC 2,即: 4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172).3.如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A (0,-6)和点C (6,0).(1)求抛物线的解析式;(2)若抛物线与x 轴的负半轴交于点B ,试判断△ABC 的形状;(钝角三角形、直角三角形、锐角三角形)(3)在抛物线上是否存在点P ,使得△P AC 是以AC 为底的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.第3题图解:(1)将C 、A 两点坐标代入y =x 2+bx +c ,可得36+6b +c =0c =-6,解得b =-5c =-6,∴抛物线的解析式为y =x 2-5x -6; (2)当y =0时,则有:x 2-5x -6=0,即(x +1)(x -6)=0,∴解得x 1=-1,x 2=6(舍),∴B (-1,0).由两点之间的距离公式可得: BC 2=[(-1)-6]2=49, AC 2=(6-0)2+[0-(-6)]2=72,AB 2=(-1-0)2+[0-(-6)]2=37,∵AB 2+BC 2>AC 2,∴△ABC 为锐角三角形.(3)存在满足条件的点P ,使得△P AC 是以AC 为底的等腰三角形理由:如解图,过线段AC 的中点M ,作AC 的垂线交抛物线于点P ,第3题解图直线MP 与抛物线必有两个满足条件的交点P ,∵A (0,-6),C (6,0),∴点M 的坐标为(3,-3),且OA =OC ,∴直线MP 过点O ,设直线MP 的解析式为y =kx ,将点M (3,-3)代入得,k =-1,即直线MP 的解析式为y =-x ,联立y =-x y =x 2-5x -6,解得x 1=2-10y 1=10-2或x 2=2+10y 2=-2-10 ,∴点P 的坐标为(2-10,10-2)或(2+10,-2-10).4. 如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动,同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒.当t 为何值时,P A =QA?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第4题图解:(1)∵直线y =-2x +10与x 轴、y 轴相交于A 、B 两点,∴A (5,0),B (0,10),设过O 、A 、C 三点的抛物线的解析式为y =ax 2+bx (a ≠0),把点A (5,0)和C (8,4)代入可得25a +5b =064a +8b =4,解得a =16b =-56,∴抛物线的解析式为y =16x 2-56x ;∵A (5,0),B (0,10),C (8,4),∴AB 2=125,AC 2=25,BC 2=100,∵AB 2=AC 2+BC 2,∴△ABC 是直角三角形.(2)如解图,连接AP ,AQ ,当P ,Q 运动t 秒,即OP =2t ,CQ =10-t ,第4题解图在Rt △AOP 和Rt △ACQ 中,AC =OAP A =QA,∴Rt △AOP ≌Rt △ACQ ,∴OP =CQ ,∴2t =10-t ,∴t =103,∵t <5,∴当运动时间为103秒时,P A =QA ; (3)存在.由题可得,抛物线的对称轴直线为x =52,设点M 的坐标为( 52,b ),利用点的坐标可求得 AB 2=102+52=125, MB 2=(52)2+(b -10)2, MA 2=(52)2+b 2,∵△MAB 是等腰三角形,∴可分以下三种情况讨论:①当AB =MA 时,即125=(52)2+b 2,解得b =±5192,即点M 的坐标为(52,5192)或(52,-5192);②当AB =BM 时,即125=(52)2+(b -10)2,解得b =10±5192,即点M 的坐标为(52,10+5192)或(52,10-5192);③当MB =MA 时,即(52)2+(b -10)2=(52)2+b 2,解得b =5,此时点A 、M 、B 共线,故这样的点M 不存在.综上所述,存在点M ,使以点A 、B 、M 为顶点的三角形是等腰三角形,点M 的坐标为(52,5192)或(52,-5192)或(52,10+5192)或(52,10-5192).5. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.解:(1)由题意得32+3b +c =0c =3,解得b =-4c =3,∴抛物线的解析式为y =x 2-4x +3;(2)如解图①,过点P 作PG ∥CF 交CB 与点G ,第5题解图①由题可知,直线BC 的解析式为y =-x +3,OC =OB =3,∴∠OCB =45°. 同理可知∠OFE =45°,∴△CEF 为等腰直角三角形,∵PG ∥CF ,∴△GPE 为等腰直角三角形,∵F(0,m),C(0,3),∴CF=3-m,∵△CEF∽△GEP∴EF=22CF=22(3-m), PE=22PG,设P(t,t2-4t+3)(1<t<="">2PG=22(-t+3-t-m)=22(-m-2t+3),∵点P是直线y=x+m与抛物线的交点,∴t2-4t+3=t+m,∴PE+EF=22(3-m)+22(-m-2t+3)=22(-2t-2m+6)=-2(t+m-3)=-2(t2-4t)=-2(t-2)2+42,∴当t=2时,PE+EF最大,最大值为42;(3)由(1)知对称轴x=2,设点D(2,n),如解图②.第5题解图②当△BCD是以BC为直角边的直角三角形时,分两种情况讨论:(ⅰ)D在C上方D1位置时,由勾股定理得CD21+BC2=BD21,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;(ⅱ)D 在C 下方D 2位置时,由勾股定理得BD 22+BC 2=CD 22,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2 ,解得n =-1,综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).6.如图,抛物线y =ax 2-2ax +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK +KN 的值最小,求出此时点K 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.第6题图解:(1)∵抛物线经过点C (0,4),A (4,0),∴c=a a c=??-+?41680,解得a=c=?-124,∴抛物线的解析式为y =-12x 2+x +4;</t。
中考数学压轴题十大类型经典题目
中考数学压轴题十大类型目录第一讲 中考压轴题十大类型之动点问题 1 第二讲 中考压轴题十大类型之函数类问题 7 第三讲 中考压轴题十大类型之面积问题 13 第四讲 中考压轴题十大类型之三角形存在性问题 19 第五讲 中考压轴题十大类型之四边形存在性问题 25 第六讲 中考压轴题十大类型之线段之间的关系 31 第七讲 中考压轴题十大类型之定值问题 38 第八讲 中考压轴题十大类型之几何三大变换问题 44 第九讲 中考压轴题十大类型之实践操作、问题探究 50 第十讲 中考压轴题十大类型之圆 56 第十一讲 中考压轴题综合训练一 62 第十二讲 中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题1.2011吉林如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm,BC =4cm,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,这里规定:线段是面积为0的三角形解答下列问题:1 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. 2当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.3当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. 4直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.D C BA 2.2007河北如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC3设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;,写出t 的取值范围;若不能,请说明理由. 备用图3.2008河北如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒0t >.1D F ,两点间的距离是 ;2射线QK 能否把四边形CDEF 分成面积相等的两部分若能,求出t 的值.若不能,说明理由;3当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; 4连结PG ,当PG AB ∥时,请直接..写出t 的值. 4.2011山西太原如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为8,0,点B 的坐标为11,4,动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t秒0t>,△MPQ的面积为S.1点C的坐标为________,直线l的解析式为__________.2试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.3试求题2中当t为何值时,S的值最大,并求出S的最大值.4随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形请直接写出t的值.5.2011四川重庆如图,矩形ABCD中,AB=6,BC=2错误!,点O是AB的中点,点P在AB的延长线上,且BP=3个单位长度的速度沿OA匀速运动,到达A点后,F从P点出发,以每秒1个单位长度的速度沿射线当两点相遇时停止运动.在点E、F的运动过程中,以和矩形ABCD在射线PA的同侧,设运动的时间为t秒1当等边△EFG的边FG恰好经过点C时,求运动时间t的值;2在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;3设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.2011山东烟台如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为-4,0,0,4.动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t秒时,△OPQ的面积为S不能构成△OPQ的动点除外.1求出点B、C的坐标;2求S随t变化的函数关系式;3当t为何值时S有最大值并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题12011浙江温州如图,在平面直角坐标系中,O是坐标原点,点A的坐标为-4,0,点B的坐标为0,bb>0.P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P 关于y轴的对称点为P′ 点P′不在y轴上,连结P P′,P′A,P′C,设点P的横坐标为a.(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是-1,m ,求m 的值;2若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值; 3是否同时存在a ,b ,使△P ′CA 为等腰直角三角形若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. 2010武汉如图,抛物线212y ax ax b=-+经过A -1,0,C 2,32两点,与x 轴交于另一点B . 1求此抛物线的解析式; 2若抛物线的顶点为M ,点P 为线段OB 上一动点 不与点B 重合,点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; 3在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与2中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. 2011江苏镇江在平面直角坐标系xOy 中,直线1l 过点A 1,0且与y 轴平行,直线2l 过点B 0,2且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=k >0的图象过点E 且与直线1l 相交于点F . 1若点E 与点P 重合,求k 的值; 2连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; 3是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等若存在,求E 点坐标;若不存在,请说明理由.4. 2010浙江舟山△ABC 中,∠A =∠B =30°,AB=ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O 如图,△ABC 可以绕点O 作任意角度的旋转.1当点B 在第一象限,,求点B 的横坐标; x y P'DO C B A P2如果抛物线2y ax bx c =++a ≠0的对称轴经过点C ,请你探究:①当a =,12b =-,c =,A ,B 两点是否都在这条抛物线上并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上若存在,直接写出m 的值;若不存在,请说明理由.5.12若点N 为线段BMQ .当点N 在线段BM 上运动时点N 不与点B ,点M 面积为S ,求S 与t 之间的函数关系式及自变量3,求出所有符合条件的点P 4将△OAC 补成矩形,使得△,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标不需要计算过程. 三、测试提高1. 2011山东东营如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为30-,,0,1,点D是线段BC 上的动点与端点B 、C 不重合,过点D 作直线12y x b =+交折线OAB 于点E . 1记△ODE 的面积为S .求S 与b 的函数关系式;2当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 第三讲 中考压轴题十大类型之面积问题1. 2011辽宁大连如图,抛物线y =ax 2+bx +c 经过A -1,0、B 3,0、C 0,3三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .1求该抛物线的解析式;2抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;3在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. 2011湖北十堰如图,和点 B ,与y 轴交于点C 0,-3.1求抛物线的解析式;2如图1,己知点H 0,-1.问在抛物线上是否存在点G 点G 在y 轴的左侧,使得S △GHC =S △GHA 若存在,求出点G 的坐标,若不存在,请说明理由:3如图2,抛物线上点D 在x 轴上的正投影为点E ﹣2,0,F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.3. 2010天津在平面直角坐标系中,已知抛物线2y x bx =-+c +与x 轴交于点A 、B 点A 在点B 的左侧,与y 轴的正半轴交于点C ,顶点为E . Ⅰ若2b =,3c =,求此时抛物线顶点E 的坐标;Ⅱ将Ⅰ中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;Ⅲ将Ⅰ中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. 2011山东聊城如图,在矩形ABCD 中,AB =12cm,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s,点F 的速度为4cm/s,当点F 追上点G 即点F 与点G 重合时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.1当t =1s 时,S 的值是多少2写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;3若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似请说明理由.5. 2011江苏淮安如图,在Rt△ABC中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒t >0,正方形EFGH 与△ABC 重叠部分面积为S .1当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . 2当0<t ≤2时,求S 与t 的函数关系式;3直接答出:在整个运动过程中,当t 为何值时,S 最大最大面积是多少A EB FC GDA 备用图三、测试提高1. 2010山东东营如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点D 不与A ,B 重合,且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .1当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;2设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. 2011江苏盐城如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .1求点A 和点B 的坐标;2过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.备用图2. 2009湖北黄冈如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t 单位:秒B AD E F G C B 备用图1 A C B 备用图2 A C1求A ,B ,C 三点的坐标和抛物线的顶点的坐标;2当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;3当902t <<时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由;4当t 为何值时,△PQF 为等腰三角形请写出解答过程.板块二、直角三角形3. 2009四川眉山如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 1,0. 1求该抛物线的解析式;2动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. 2010广东中山如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动点M 可运动到DA 的延长线上,当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:1说明△FMN ∽△QWP ;2设04x ≤≤即M 从D 到A 运动的时间段.试问x 为何值时,△PWQ 为直角三角形当x 在何范围时,△PQW 不为直角三角形3问当x 为何值时,线段MN 最短求此时MN 的值.板块三、相似三角形存在性 5. 2011湖北天门在平面直角坐标系中,抛物线2y ax bx =+ 3+与x 轴的两个交点分别为-3,0、B 1,0,过顶点C 作CH ⊥x 轴于点. 1直接填写:a = ,b = ,顶点C 的坐标为 ;2在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形若存在,求出点D 的坐标;若不存在,说明理由; 3若点P 为x 轴上方的抛物线上一动点点P 与顶点C 不重合,PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. W QPNM F D CB A备用图三、测试提高1. 2009广西钦州如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.1填空:点C 的坐标是_____,b =_____,c =_____;2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. 2009黑龙江齐齐哈尔直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.1直接写出A 、B 两点的坐标;2设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;3当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. 2010河南在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.1求抛物线的解析式;2若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.3若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. 2011黑龙江鸡西已知直线y =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .1试确定直线BC 的解析式;2若动点P 从A 点出发沿AC 向点C 运动不与A 、C 重合,同时动点Q 从C 点出发沿CBA 向点A 运动不与C 、A 重合,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;3在2的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. 2007河南如图,对称轴为直线x =27的抛物线经过点A 6,0和B0,4.1求抛物线解析式及顶点坐标;2设点Ex ,y 是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;3①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形②是否存在点E ,使四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.5. 2010黑龙江大兴安岭如图,在平面直角坐标系中,函数2y x =+12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M,且点M 为线段OB 的中点. 1求直线AM 的解析式;2试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;3若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 1. 2009辽宁抚顺已知:如图所示2=++y ax x c a ≠0与x C .1求出此抛物线的解析式,2在抛物线上有一点D ,D 的坐标,并求出直线AD 的解析式;3在2中的直线AD P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. 2010天津在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.Ⅰ若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;Ⅱ若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. 2011四川广安四边形ABCD 是直角梯形,BC ∥AD ,∠=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A 1 0-,,B 1 2-,,D 3,0.连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .1求抛物线的解析式;2抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;3设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大并求出最大值.3. 2011四川眉山如图,在直角坐标系中,已知点A 0,1,B 4-,4,将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . 1 求抛物线的解析式和点C 的坐标;2 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;3 在2的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. 2011福建福州已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x轴交于A 、B 两点B 在A 点右侧,点H 、B 关于直线3:33l y x =+ 1求A 、B 两点坐标,并证明点A 在直线l 上; 2求二次函数解析式;3过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. 2009湖南郴州 如图1,已知正比例函数和反比例函数的图象都经过点M -2,-1,且y B O D C A xEyB O DC A x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与xP -1,-2为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .1写出正比例函数和反比例函数的关系式;2当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等如果存在,请求出点Q 的坐标,如果不存在,请说明理由;3如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. 2010江苏苏州如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为3,0、0,4. 1求抛物线的解析式;2设()M m n ,M B O A 、、、,求点M 的坐标; 3在2的条件下,试问:22228PA PB PM ++>是否总成立请说明理由.三、测试提高1. 2009浙江舟山如图,已知点A -4,8和点B 2,n 在抛物线2=y ax 上.1求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;2平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C -2,0和点D -4,0是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1. 2011天津已知抛物线1C :21112y x x =-+,点F 1,1. Ⅰ求抛物线1C 的顶点坐标;Ⅱ①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P P P x y ,01P x <<,连接PF ,并延长交抛物线1C 于点Q Q Q x y ,,试判断112PF QF+=是否成立请说明理由; Ⅲ将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. 2009湖南株洲如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x轴上,点B 坐标为3,m 0m >,线段AB 与y 轴相交于点D ,以P 1,0为顶点的抛物线过点B 、D .1求点A 的坐标用m 表示; 2求抛物线的解析式;3设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. 2008山东济南已知:抛物线2y ax bx c =++a ≠0,顶点C1,3-,与x 轴交于A 、B 两点,(10)A -,. 1求这条抛物线的解析式; 2如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点P 与A 、B 两点不重合,过点P 作断PM PNBE AD+是否为PM ⊥AE 于M ,PN ⊥DB 于N ,请判定值 若是,请求出此定值;若不是,请说明理由;3在2的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE相交于点F 、GF 与A 、E 不重合,G 与E 、B 不重合,请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. 2011湖南株洲孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: 1若测得OA OB ==如图1,求a 的值;2对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; 3对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. 2009湖北武汉如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .1求抛物线的解析式;2已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; 3在2的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. 2009湖南湘西在直角坐标系xOy与x 轴交于两点A 、B ,与y 的坐标是3,0.将直线y kx =沿y 轴向上平移3(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. 2009山西太原问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一方法指导:图1 图2 图3 图4αθ4HB 2B 3A 3A 222B 1A 1A 011点E 不与点C ,D 重合,压平后得到折痕MN .当12CE CD =时,求AMBN 的值. 类比归纳:在图1中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n=n 为整数,则AMBN 的值等于 .用含n 的式子表示 联系拓广: 如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E 不与点C D ,重合,压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .用含m n ,的式子表示 2. 2011陕西如图①,在矩形ABCD 中,将矩形折叠,使B落在边AD 含端点上,落点记为E ,这时折痕与边BC 或边CD 含端点交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.1由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;2如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;3如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么图① 图② 图③3. 2010江西南昌课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=αα<∠A 1A 0A 2,θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. 1用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线0H 垂直且被它平分的线段若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想图2NA B CD E F M图1A BCDE FM N设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合其中,A 1与B 1重合,现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转αn1800<<α. 3设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;4试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请将这条线段用相应的顶点字母表示出来不要求证明;若不存在,请说明理由.4. 2009山东德州已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC于F ,连接DF ,G 为DF 中点,连接EG ,CG . 1求证:EG =CG ;2将图①中△BEF 绕B 点逆时针旋转45o,如图②所示,取DF 中点G ,连接EG ,CG .问1中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. 3将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问1中的结论是否仍然成立通过观察你还能得出什么结论均不要求证明5. 2010江苏苏州刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D =°,45E ∠=°, 4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上移动开始时点与点重合. 1在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.填“不变”、“变大”或“变小” 2刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行 问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.三、测试提高1. 2009湖南常德如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:F BA D E G图①F A D G图② F A E 图③ ①图②F ED AB图③D。
九年级中考数学复习三角形综合压轴题专题练习
九年级中考数学复习三角形综合压轴题专题练习1、如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sin B的值;(2)如果CD=5,求BE的值.2、如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.3、如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.=;(1)求证:BD CE∆(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC 的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.△中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ 4、在Rt ABC⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;△中,两条直角边BC、AC满足关系式BC=λAC,是否存在(3)在Rt ABC一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.5、已知锐角△ABC中,边BC长为12,高AD长为8(1) 如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC 边上,EF交AD于点KEF的值①求AK②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值(2) 若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长6、【问题背景】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点.(1)【观察猜想】观察图1,猜想线段AP与BE的数量关系是,位置关系是.(2)【拓展探究】把△ADE绕点A逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明:否则写出新的结论并说明理由.(3)【问题解决】把△ADE绕点A在平面内自由旋转,若DE=4,BC=8,请直接写出线段AP长的取值范围.7、感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a的代数式表示)8、如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3(1) 求证:EF+PQ=BC(2) 若S1+S3=S2,求AEPE的值(3) 若S3-S1=S2,直接写出AEPE的值9、在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为E,DE与AB相交于点F.⑴当AB=AC时,(如图1),①∠EBF=_______°;②探究线段BE与FD的数量关系,并加以证明;⑵当AB=kAC时(如图2),求BEFD的值(用含k的式子表示).10、提出问题⑴如图1,在等边△ABC中,点M是BC上任意一点(不含端点B、C),连接AM,以AM为边作等边△AMN,连接CN,求证:∠ABC=∠CAN;类比探究⑵如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,⑴中的结论∠ABC=∠CAN还成立吗?请说明理由.拓展延伸⑶如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C)连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC,连接CN,试探究∠ABC与∠CAN的数量关系,并说明理由.11、如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围.12、已知四边形ABCD的一组对边AD、BC的延长线交于点E(1) 如图1,若∠ABC=∠ADC=90°,求证:ED·EA=EC·EB3,CD=5,AB=12,△CDE的面积(2) 如图2,若∠ABC=120°,cos∠ADC=5为6,求四边形AB CD的面积(3) 如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC3,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)=513、如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s 的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF和点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH= cm,DG = cm;(2)t为多少秒时△PDE为等腰三角形?请说明理由;(3)t为多少秒时点P与点G重合?写出计算过程;(4)求tan∠PBF的值(可用含t的代数式表示).14、在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1;(3)①设BC 的中点为M ,则线段PM 的长为 ;②点P 到AB 所在直线的距离的最大值为 .(直接填写结果)15、我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC=6,BC=3,∠ACB=30°,试判断△ABC 是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是”等底”,作△ABC 关于BC 所在直线的对称图形得到△A'BC ,连结AA′交直线BC 于点D .若点B 是△AA′C 的重心,求的值.(3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直E 1B C E (D 1)A PE 1BCED D 1A线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.16、【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).17、如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于__________________时,线段AC的长取得最大值,且最大值为_____________.(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2 , 0),点B的坐标为(5 , 0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.18、已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°。
中考压轴题全面突破之四:三角形的存在性含答案13页.doc
题型特点三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,考查分类讨论、画图及建等式计算.解题思路①由判定定理确定三角形所满足的特殊关系;②分类讨论,画图;③建等式,对结果验证取舍.对于目标三角形不确定、点的位置难以寻找等存在性问题的思考方向为:①从角度入手,通过角的对应关系尝试画出一种情形.②解决第一种情形.能根据几何特征表达线段长的,借助对应边成比例、或线段长转坐标代入函数表达式求解;不能直接表达线段长的,观察点的位置,考虑联立函数表达式求解.③分类讨论,类比解决其他情形.分类时,先考虑点的位置,再考虑对应关系,用同样方法解决问题.难点拆解①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线k值乘积为 1;②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合一找相似建等式;③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线段长,借助函数或几何特征建等式.④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.1.(2012云南改编)如图,在平面直角坐标系中,抛物线错误!未找到引用源。
的图象经过点(2,4),且与直线错误!未找到引用源。
交于A,B两点.(1)求抛物线的函数解析式.(2)过点A作AC⊥AB交x轴于点C,求点C的坐标.(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2.(2009广西钦州)如图,已知抛物线错误!未找到引用源。
与坐标轴交于A,B,C三点,A点的坐标为(﹣1,0),过点C的直线错误!未找到引用源。
与x 轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)点C的坐标是____________,b=_______,c=______.(2)求线段QH的长(用含t的式子表示).(3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ 相似?若存在,求出所有t的值;若不存在,说明理由.3.(2012海南)如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M,N关于点P对称,连接AN,ON.(1)求该二次函数的关系式.(2)若点A的坐标是(6,﹣3),求△ANO的面积.(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.4.(2011湖北天门)在平面直角坐标系中,抛物线错误!未找到引用源。
第3讲 中考压轴题专题之三角形存在性问题
第三讲中考压轴题专题之三角形存在性问题板块一、等腰三角形存在性1.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5B.6C.7D.82.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.3.(2016滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.4.(2014兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.板块二、直角三角形5.如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=﹣2,点P是抛物线上位于A,C两点之间的一个动点,则△P AC的面积的最大值为()T5 T7 T8 A.B.C.D.36.将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为()A.个单位B.1个单位C.个单位D.个单位7.如图,直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D 作DE⊥AC于E点,DF⊥BC于F点,连接EF,则线段EF长的最小值为.8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△P AC为直角三角形时点P的坐标.9.(2015连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?10.(2016黄岗)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.板块三、等腰直角三角形11.已知⼀次函数y=x+1的图象与y轴交于点A,将该函数图象绕点A旋转45°,旋转后的图象对应的函数关系式是.12.二次函数y=x2+bx+c的图象的顶点为D,与x轴正方向从左至右依次交于A,B两点,与y轴正方向交于C点,若△ABD和△OBC均为等腰直角三角形(O为坐标原点),则b+2c=.13.如图,P是抛物线C:y=2x2﹣8x+8对称轴上的一个动点,直线x=k平行于y轴,分别与直线y =x、抛物线C交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,则满足条件的k为.14.(2019青龙县期末)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C (0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析1.【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,与坐标轴的交点P1,P2,P3,P4,P5符合题意;作AB的垂直平分线,与坐标轴的交点P6,P7符合题意,故选:C.2.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).3.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),∴点M3坐标为(﹣1,﹣1).③当点A为等腰三角形的顶角的顶点的三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).4.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=×4×EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).5.【解答】解:∵x=﹣=﹣2,且a=1,∴b=4;则,抛物线:y=x2+4x+c;∴AB=x B﹣x A===2,点M(﹣2,c﹣4);∵抛物线是轴对称图形,且△MAB是直角三角形,∴△MAB必为等腰直角三角形,则有:AB=2=2|c﹣4|,解得:c=3;∴抛物线:y=x2+4x+3,且A(﹣3,0)、B(﹣1,0)、C(0,3).过点P作直线PQ∥y轴,交直线AC于点Q,如右图;设点P(x,x2+4x+3),由A(﹣3,0)、C(0,3)易知,直线AC:y=x+3;则:点Q(x,x+3),PQ=(x+3)﹣(x2+4x+3)=﹣x2﹣3x;S△P AC=PQ×OA=×(﹣x2﹣3x)×3=﹣(x+)2+,∴△P AC有最大面积,且值为;故选:C.6.解:设抛物线向上平移a(a>1)个单位,使抛物线与坐标轴有三个交点,且这些交点能构成直角三角形,则有平移后抛物线的解析式为:y=﹣2x2﹣1+a,AM=a,∵抛物线y=﹣2x2﹣1与y轴的交点M为(0,﹣1),即OM=1,∴OA=AM﹣OM=a﹣1,令y=﹣2x2﹣1+a中y=0,得到﹣2x2﹣1+a=0,解得:x=±,∴B(﹣,0),C(,0),即BC=2,又△ABC为直角三角形,且B和C关于y轴对称,即O为BC的中点,∴AO=BC,即a﹣1=,两边平方得:(a﹣1)2=,∵a﹣1≠0,∴a﹣1=,解得:a=.故选:A.7.【解答】解:如图,连接CD.∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短,可得当CD⊥AB时,CD最短,即线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×4×3=×5•CD,解得CD=2.4,∴线段EF长的最小值为2.4.故答案为:2.48.【解答】解:∵直线y=x+2过点B(4,m),∴m=6,∴B(4,6).将A、B两点坐标代入抛物线解析式得:,解得:∴抛物线的解析式为:y=2x2﹣8x+6.①若A为直角顶点,如图1,设AC的解析式为:y=﹣x+b,将A点代入y=﹣x+b得b=3∴AC的解析式为y=﹣x+3,由,解得:或(舍去)令P点的横坐标为3,则纵坐标为5,∴P(3,5);②若C为直角顶点,如图2,令,解得:x=或x=(舍去),令P点的横坐标为,则纵坐标为,∴P(,);故答案为:(3,5)或(,).9.【解答】解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵﹣2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.10.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).11.【解答】解:如图1,∵⼀次函数y=x+1的图象与y轴交于点A,与x轴交于B,∴A(0,1),B(﹣2,0),当直线y=x+1绕点A顺时针旋转45°后的图象为直线l,过B作BD⊥直线l于D,过D作FD⊥y轴于F,过B作BE⊥FD延长线于E,则△ABD为等腰直角三角形,易得△ADF≌△DBE(AAS),设AF=a,则DE=a,∵点A(0,1),点B(﹣2,0),∴DF=BE=OF=1+a,EF=ED+DF=a+1+a=OB=2,∴a=,∴DF=OF=1+a=,∴D(﹣,),设直线l的解析式为y=kx+1,则=﹣k+1,解得k=﹣,∴y=﹣x+1;如图2,直线y=x+1绕点A逆时针旋转45°后的图象为直线l,过B作BD⊥直线l于D,过D作FD⊥y轴于F,作DE⊥x轴于E,则△ABD为等腰直角三角形,易得△ADF≌△BDE(AAS),设DF=b,则DE=b,∵点A(0,1),点B(﹣2,0),∴AF=BE=1+b,BO=BE+OE=b+1+b=OB=2,∴b=,∴D(﹣,﹣),设直线l的解析式为y=kx+1,则﹣=﹣k+1,解得k=3,∴y=3x+1;综上,旋转后的图象对应的函数关系式是y=﹣x+1或y=3x+1.故答案为y=﹣x+1或y=3x+1.12.【解答】解:由已知,得C点的坐标为:(0,c),,,.过D作DE⊥AB于点E,则2DE=AB,即,得:,所以或.又b2﹣4c>0,所以.又OC=OB,即:,得:.故答案为:2.13.【解答】解:∵直线x=k分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,∴A(k,k),B(k,2k2﹣8k+8),AB=|k﹣(2k2﹣8k+8)|=|2k2﹣9k+8|,①当△ABP是以点A为直角顶点的等腰直角三角形时,∠P AB=90°,此时P A=AB=|k﹣2|,即|2k2﹣9k+8|=|k﹣2|,解得k=或1或3;②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|k﹣2|,结果同上.故答案为:或1或3.14.【解答】解:(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ==,CQ的解析式为y=x+3,又∵AE==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴S△P AD====×4×3.解得m=0或1.(4)存在,点P的坐标为(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2(舍去),∴点P(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,如图4,同理可得n=2,解得m1=1+(舍去),m2=1﹣.故点P(1﹣,2).综上可得,点P的坐标为(0,3)或(1﹣,2).。
中考数学压轴题【直角三角形的存在性问题】解题训练卷
【直角三角形的存在性问题】解题训练卷解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).例题解析例❶如图1-1,在△ABC中,AB=AC=10,cos∠B=45.D、E为线段BC上的两个动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值.图1-1【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点.在Rt△ABH中,AB=10,cos∠B=45,所以BH=8.所以BC=16.由EF //AC ,得BF BE BA BC =,即31016BF x +=.所以BF =5(3)8x +.图1-2 图1-3 图1-4①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠==,得45BD BF =. 解方程45(3)58x x =⨯+,得x =3. ②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠==,得45BF BD =. 解方程5154885x x +=,得757x =. 我们看到,在画示意图时,无须受到△ABC 的“限制”,只需要取其确定的∠B .例❷ 如图2-1,已知A 、B 是线段MN 上的两点,,,.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB =x ,若△ABC 为直角三角形,求x 的值.图2-1【解析】△ABC 的三边长都可以表示出来,AC =1,AB =x ,BC =3-x .如果用斜边进行分类,每条边都可能成为斜边,分三种情况:①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根.②若AB 为斜边,则1)3(22+-=x x ,解得35=x (如图2-2). ③若BC 为斜边,则221)3(x x +=-,解得34=x (如图2-3). 因此当35=x 或34=x 时,△ABC 是直角三角形.4=MN 1=MA 1>MB图2-2 图2-3例❸ 如图3-1,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x x y 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.图3-1【解析】A 、B 两点是确定的,以线段AB 为分类标准,分三种情况.如果线段AB 为直角边,那么过点A 画AB 的垂线,与第一象限内的一支双曲线没有交点;过点B 画AB 的垂线,有1个交点.以AB 为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.由题意,得点B 的坐标为(2,0),且∠BAP 不可能成为直角.①如图3-2,当∠ABP =90°时,点P 的坐标为(2,1).②方法一:如图3-3,当∠APB =90°时,OP 是Rt △APB 的斜边上的中线,OP =2.设P 2(,)x x ,由OP 2=4,得2244x x+=.解得x =P (2,2).图3-2 图3-3方法二:由勾股定理,得PA 2+PB 2=AB 2.解方程2222222(2)()(2)()4x x x x+++++=,得x = 方法三:如图3-4,由△AHP ∽△PHB ,得PH 2=AH ·BH .解方程22()(2)(2)x x x=+-,得x =图3-4 图3-5这三种解法的方程貌似差异很大,转化为整式方程之后都是(x 2-2)2=0.这个四次方程的解是x 1=x 2=2,x 3=x 4=AB 为直径的圆与双曲线相切于P 、P ′两点(如图3-5). 例❹ 如图4-1,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.图4-1【解析】和例题3一样,过A 、B 两点分别画AB 的垂线,各有1个点Q .和例题3不同,以AB 为直径画圆,圆与y 轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.将A (1,-4)代入y =kx -6,可得k =2.所以y =2x -6,B (3,0).设OQ 的长为m .分三种情况讨论直角三角形ABQ :①如图4-2,当∠AQB =90°时,△BOQ ∽△QHA ,BO QH OQ HA=.所以341m m -=.解得m =1或m =3.所以Q (0,-1)或(0,-3).②如图4-3,当∠BAQ =90°时,△QHA ∽△AGB ,QH AG HA GB =.所以4214m -=. 解得72m =.此时7(0,)2Q -. ③如图4-4,当∠ABQ =90°时,△AGB ∽△BMQ ,AG BM GB MQ =.所以243m =. 解得32m =.此时3(0,)2Q .图4-2 图4-3 图4-4三种情况的直角三角形ABQ ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.已知A (1,-4)、B (3,0),设Q (0, n ),那么根据两点间的距离公式可以表示出AB 2,AQ 2和BQ 2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了. 例❺ 如图5-1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧).若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图5-1【解析】有且只有三个直角三角形ABM 是什么意思呢?过A 、B 两点分别画AB 的垂线,与直线l 各有一个交点,那么第三个直角顶点M 在哪里?以AB 为直径的⊙G 与直线l 相切于点M 啊! 由23333(4)(2)848y x x x x =--+=-+-,得A (-4, 0)、B (2, 0),直径AB =6. 如图5-2,连结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.因此3tan 4GEM ∠=. 设直线l 与y 轴交于点C ,那么OC =3.所以直线l (直线EC )为334y x =-+. 根据对称性,直线l 还可以是334y x =-.图5-2例❻ 如图6-1,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.图6-1【解析】这道题目画示意图有技巧的,如果将点D 看作主动点,那么CE 就是从动线段.反过来画图,点E 在以CA 为半径的⊙C 上,如果把点E 看作主动点,再画∠ACE 的平分线就产生点D 了.(1)如图6-2,设AB 边上的高为CH ,那么A H =BH =4.在Rt △ACH 中,AH =4,4cos 5A ∠=,所以AC =5,CH =3. (2)①如图6-3,当∠AFC =90°时,F 是AB 的中点,AF =4,CF =3.在Rt △DEF 中,EF =CE -CF =2,4cos 5E ∠=,所以52DE =.此时52AD DE ==. ②如图6-4,当∠ACF =90°时,∠ACD =45°,那么△ACD 的条件符合“角边角”.作DG ⊥AC ,垂足为G .设DG =CG =3m ,那么AD =5m ,AG =4m .由CA =5,得7m =5.解得57m =.此时2557AD m ==.图6-2 图6-3 图6-4(3)因为DA =DE ,所以只存在∠ADE =90°的情况.①如图6-5,当E 在AB 下方时,根据对称性,知∠CDA =∠CDE =135°,此时△CDH 是等腰直角三角形,DH =CH =3.所以AD =AH -DH =1.②如图6-6,当E 在AB 上方时,根据对称性,知∠CDA =∠CDE =45°,此时△CDH 是等腰直角三角形,DH =CH =3.所以AD =AH +DH =7.图6-5 图6-。
中考压轴题十大类型之三角形存在性问题
y=-y=-中考压轴题十大类型之三角形存在性问题板块一、等腰三角形存在性1.如图,已知一次函数7y x=-+与正比例函数34y x=的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.(备用图)2. 如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒) (1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3. 如图,已知直线112y x =+与轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.4. 如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形? (3)问当x 为何值时,线段MN 最短?求此时MN 的值.yM板块三、相似三角形存在性5. 在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a = ,b = ,顶点C 的坐标为 ; (2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)FP WQ N A CB三、测试提高1. 如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.。
中考压轴题存在性问题——存在等腰、直角三角形问题专项训练 -答案版
中考压轴题存在性问题——存在等腰、直角三角形问题专项训练评卷人得分一.解答题(共50小题)1.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2.如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.4.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.5.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.6.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.7.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.8.如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S 的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.9.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.10.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.12.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图1,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S,求点E的坐标;△CGO(3)如图2,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.13.如图1,抛物线y=﹣x2+2x﹣1的顶点A在x轴上,交y轴于B,将该抛物线向上平移,平移后的抛物线与x轴交于C,D,顶点为E(1,4).(1)求点B的坐标和平移后抛物线的解析式;(2)点M在原抛物线上,平移后的对应点为N,若OM=ON,求点M的坐标;(3)如图2,直线CB与平移后的抛物线交于F.在抛物线的对称轴上是否存在点P,使得以C,F,P为顶点的三角形是直角三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2+bx+3的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.15.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.16.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?18.已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.19.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.20.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.21.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.22.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P 的坐标.24.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C (0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.25.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.26.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB 于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.29.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,点B(3,0),经过点A的直线AC与抛物线的另一交点为C(4,),与y轴交点为D,点P是直线AC下方的抛物线上的一个动点(不与点A,C重合).(1)求该抛物线的解析式.(2)过点P作PE⊥AC,垂足为点E,作PF∥y轴交直线AC于点F,设点P的横坐标为t,线段EF的长度为m,求m与t的函数关系式.(3)点Q在抛物线的对称轴上运动,当△OPQ是以OP为直角边的等腰直角三角形时,请直接写出符合条件的点P的坐标.30.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C (0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.31.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M 是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.32.如图,在平面直角坐标系中,抛物线y=ax2+bx(a,b为常数,a≠0)经过两点A(2,4),B(4,4),交x轴正半轴于点C.(1)求抛物线y=ax2+bx的解析式.(2)过点B作BD垂直于x轴,垂足为点D,连接AB,AD,将△ABD以AD为轴翻折,点B的对应点为E,直线DE交y轴于点P,请判断点E是否在抛物线上,并说明理由.(3)在(2)的条件下,点Q是线段OC(不包含端点)上一动点,过点Q垂直于x轴的直线分别交直线DP及抛物线于点M,N,连接PN,请探究:是否存在点Q,使△PMN 是以PM为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.33.如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.34.如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y 轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C 的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.35.如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接P A、PB,设点E运动的时间为t(0<t <4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.36.如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.37.如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;②抛物线上是否存在点P,使得△P AB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB 的距离的最大值.38.已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△P AB为等腰三角形.39.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.40.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.41.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.42.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.43.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D (2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P 的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△P AE为直角三角形?若存在,求出t的值;若不存在,说明理由.44.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N 从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.45.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.46.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.47.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.48.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.49.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.50.如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.中考压轴题存在性问题——存在等腰、直角三角形问题专项训练参考答案与试题解析一.解答题(共50小题)1.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)将点C、D的坐标代入抛物线表达式,即可求解;(2)当△AOC∽△AEB时,=()2=()2=,求出y E=﹣,由△AOC∽△AEB得:,即可求解;(3)如图2,连接BF,过点F作FG⊥AC于G,当折线段BFG与BE重合时,取得最小值,即可求解;(4)①当点Q为直角顶点时,由Rt△QHM∽Rt△FQM得:QM2=HM•FM;②当点H为直角顶点时,点H(0,2),则点Q(1,2);③当点F为直角顶点时,同理可得:点Q(1,﹣).【解答】解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).【点评】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、三角形相似、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.2.如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.【分析】(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,即可求解;(2)①将点M的坐标代入抛物线表达式,即可求解);②分∠BMD为直角、∠MBD为直角、∠MDB为直角三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax ﹣12a,即:﹣12a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,令y=0,解得:x=4或﹣2,故点A(﹣2,0),函数的对称轴为:x=2,故点D(2,8);(2)将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AD的表达式为:y=2x+4,设点N(n,2n+4),∵MN=OA=2,则点M(n+2,2n+4),①将点M的坐标代入抛物线表达式得:2n+4=﹣(n+2)2+2(n+1)+6,解得:n=﹣2±2,故点M的坐标为(2,4)或(﹣2,﹣4);②点M(n+2,2n+4),点B、D的坐标分别为(6,0)、(2,8),则BD2=(6﹣2)2+82,MB2=(n﹣4)2+(2n+4)2,MD2=n2+(2n﹣4)2,当∠BMD为直角时,由勾股定理得:(6﹣2)2+82=(n﹣4)2+(2n+4)2+n2+(2n﹣4)2,解得:n=,当∠MBD为直角时,同理可得:n=﹣4,当∠MDB为直角时,同理可得:n=,故点M的坐标为:(﹣2,﹣4)或(,)或(,)或(,).【点评】本题考查的是二次函数综合运用,涉及到一次函数、勾股定理的运用等,其中(2)②,要注意分类求解,避免遗漏.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.。
冲刺中考数学几何压轴题专项复习专题18直角三角形存在性问题巩固练习(基础)
直角三角形存在性问题巩固练习(基础)1.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.如图,抛物线y=mx2+nx﹣3(m≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求点C坐标及抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点D,使得△BCD是以CD为直角边的直角三角形?若存在,直接写出D点坐标;若不存在,请说明理由.3. 如图,顶点为的二次函数图象与x 轴交于点,点B 在该图象上,交其对称轴l 于点M ,点M 、N 关于点P 对称,连接、.(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接,当时,请判断的形状,并求出此时点B 的坐标. ②求证:.4. 如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.(3,3)P (6,0)A OB BN ON OP 12OP MN =NOB ∆BNM ONM ∠=∠2(0)y ax bx c a =++≠1x =-x A B y C (1,0)A (0,3)C y mx n =+B C BC 1x =-M M A C M P 1x =-BPC ∆P5.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.6.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.7. 如图,已知直线与抛物线相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.8. 如图,已知直线AB 经过点(0,4),与抛物线y =x 2交于A ,B 两点,其中点A 的横坐标是.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.y kx 6=-2y ax bx c =++142-9. 已知如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)△APD 能否构成直角三角形?若能请直接写出点P 坐标,若不能请说明理由;10. 如图1,已知抛物线y =﹣x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.23384x直角三角形存在性问题巩固练习(基础)1.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【解答】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x x y x ⎧-++⎪⎨-+⎪⎩==,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y =﹣x +b ,把A (﹣1,0)代入得13+b =0,解得b =﹣13,∴直线PC 的解析式为y =﹣13x ﹣13, 解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 2. 如图,抛物线y =mx 2+nx ﹣3(m ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.【解答】(1)y =x 2+2x ﹣3;(2;(3)点D,﹣3)、(,﹣3)、(1,﹣3)【解析】(1)∵抛物线与x 轴交于A (﹣3,0),B (1,0)两点,∴抛物线的表达式为:,即﹣3a =﹣3,解得:a =1,故抛物线的表达式为:y =x 2+2x ﹣3;(2)过点P 作PM ∥y 轴交直线EF 于点M ,设点P (x ,x 2+2x ﹣3)、点M (x ,﹣x ),则PH =PM, 当x =﹣时,PH;(3)①当∠BCD =90°时,如图2左侧图,当点D 在BC 右侧时,过点D 作DM ⊥y 轴于点M ,则CD =1,OB =1,OC =3,tan ∠BCO ==tan ∠CDM =tanα,则sinα,cosα; ()22(3)(1)23=23=+-=+-+-y a x x a x x ax ax a 2)22323=2⎫---++⎪⎝⎭x x x x 3213x D =CDcosα,同理y D =﹣3,故点D,﹣3); 同理当点D (D′)在BC 的左侧时,同理可得点D ′(,﹣3); ②当∠CDB =90°时,如右侧图,CD =OB =1,则点D (1,﹣3);综上,点D 的坐标为:,﹣3﹣)、(,﹣3+)、(1,﹣3). 3. 如图,顶点为的二次函数图象与x 轴交于点,点B 在该图象上,交其对称轴l 于点M ,点M 、N 关于点P 对称,连接、.(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接,当时,请判断的形状,并求出此时点B的坐标. ②求证:.【解答】(1)二次函数的关系式为;(2)①是等腰直角三角形,此时点B 坐标为;②见解析【解析】(1)∵二次函数顶点为,∴设顶点式, ∵二次函数图象过点,∴,解得:, ∴二次函数的关系式为,1010(3,3)P (6,0)A OB BN ON OP 12OP MN =NOB ∆BNM ONM ∠=∠2211y (x 3)3x 2x 33=--+=-+NOB ∆(33)+-(3,3)P 2(3)3y a x =-+(6,0)A 2(63)30a -+=13a =-2211y (x 3)3x 2x 33=--+=-+(2)设,∴直线解析式为:, ∵交对称轴l 于点M ,∴当时,,∴,∵点M 、N 关于点P 对称,∴,∴,即, ①∵,∴,解得:, ∴, ∴,,∴,,,∴,,∴是等腰直角三角形,此时点B 坐标为.②证明:如图,设直线与x 轴交于点D,∵、,设直线解析式为, 21(,2)(3)3B b b b b -+>OB 1(2)3y b x =-+OB 3M x=1(2)363M y b b=-+⨯=-+(3,6)M b -+3(6)3NP MP b b ==--+=-33N y bb =+-=(3,)N b 12OP MN =OP MP=3b =-3b =+22112(32(3333b b -+=-⨯++⨯+=-(33)B +-(3,3N +222(3(3)36OB =++-=+2223(336ON =++=+222(33)(3372BN =+-+---=+OB ON =222OB ON BN +=NOB ∆(33)+-BN 21(,2)3B b b b -+(3,)N b BN y kx d =+∴ 解得:,∴直线:, 当时,,解得:,∴,∵,轴,∴垂直平分,∴,∴.4. 如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.【解答】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或. 【解析】(1)依题意得:,解得:,21233kb d b b k d b ⎧+=-+⎪⎨⎪+=⎩1k b 3d 2b⎧=-⎪⎨⎪=⎩BN 123y bx b =-+0y =1203bx b -+=6x =(6,0)D (3,0)C NC x ⊥NC OD ND NO =BNM ONM ∠=∠2(0)y ax bx c a =++≠1x =-x A B y C (1,0)A (0,3)C y mx n =+B C BC 1x =-M M A C M P 1x =-BPC ∆P 223y x x =--+3y x =+(1,2)M -P (1,2)--(1,4)-(-(-1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩123a b c =-⎧⎪=-⎨⎪=⎩∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为;(3)设,又,,∴,,, ①若点为直角顶点,则,即:解得:,②若点为直角顶点,则,即:解得:,③若点为直角顶点,则,即:解得:,综上所述的坐标为或或或. 5. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,抛物线与x 轴的另一交点为B .223y x x =--+1x =-()1,0A ()3,0B -()0,3C y mx n =+303m n n -+=⎧⎨=⎩13m n =⎧⎨=⎩y mx n =+3y x =+BC 1x =-M MA MC +1x =-3y x =+2y =()1,2M -M A C M ()1,2-()1,P t -()3,0B -()0,3C 218BC =()2222134PB t t =-++=+()()222213610PC t t t =-+-=-+B 222BC PB PC +=22184610t t t ++=-+2t =-C 222BC PC PB +=22186104t t t +-+=+4t =P 222PB PC BC +=22461018t t t ++-+=1t =2t =P ()1,2--()1,4-⎛- ⎝⎭31,2⎛⎫-- ⎪ ⎪⎝⎭(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.【解答】(1)y =x +3, y =﹣x 2﹣2x +3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1) 或(﹣1,) 【解析】(1)∵抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),抛物线与x 轴的另一交点为B ,∴B 的坐标为:(﹣3,0),设抛物线的解析式为:y =a (x﹣1)(x +3),把C (0,3)代入,﹣3a =3,解得:a =﹣1,∴抛物线的解析式为:y =﹣(x ﹣1)(x +3)=﹣x 2﹣2x +3;把B (﹣3,0),C (0,3)代入y =mx +n 得:,解得:, ∴直线y =mx +n 的解析式为:y =x +3;(2)设P (﹣1,t ),又∵B (﹣3,0),C (0,3),∴BC 2=18,PB 2=(﹣1+3)2+t 2=4+t 2,PC 2=(﹣1)2+(t ﹣3)2=t 2﹣6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2,即:18+4+t 2=t 2﹣6t +10,解之得:t =﹣2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2,即:18+t 2﹣6t +10=4+t 2,解之得:t =4, ③若点P 为直角顶点,则PB 2+PC 2=BC 2,即:4+t 2+t 2﹣6t +10=18,解得:t 1,t 2; 综上所述P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1) 或(﹣1). 3230{3m n n -+==1{3m n ==6. 已知:如图,抛物线y =ax 2+bx +c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.【解答】(1)抛物线解析式为y =﹣x 2+2x +6;(2)点P (4,6). 【解析】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y =a (x ﹣6)(x +2),将点A (0,6)代入,得:﹣12a =6,解得:a =﹣, 所以抛物线解析式为y=﹣(x ﹣6)(x +2)=﹣x 2+2x +6; (2)△PDE 为等腰直角三角形,则PE =PD ,点P (m ,-m 2+2m +6), 1212121212函数的对称轴为:x =2,则点E 的横坐标为:4-m ,则PE =|2m -4|,即-m 2+2m +6+m -6=|2m -4|, 解得:m =4或-2或55(舍去-2和5)故点P的坐标为:(4,6)或(5,-5).7. 如图,已知直线与抛物线相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)若点Q 是y 轴上一点,且△ABQ为直角三角形,求点Q 的坐标.【解答】(1);(2)Q 点坐标为(0,-)或(0,)或(0,-1)或(0,-3).【解析】(1)把A (1,﹣4)代入y =kx ﹣6,得k =2,∴y =2x ﹣6,令y =0,解得:x =3,∴B 的坐标是(3,0).∵A 为顶点,∴设抛物线的解析为y =a (x ﹣1)2﹣4,把B (3,0)代入得:4a ﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴,∴DQ 1=, ∴OQ 1=,即Q 1(0,-); 12y kx 6=-2y ax bx c =++2y x 2x 3=--72321DQ AD OD DB =527272②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB ,∴,即, ∴OQ 2=,即Q 2(0,); ③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E ,则△BOQ 3∽△Q 3EA ,∴,即 ∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,即Q 3(0,﹣1),Q 4(0,﹣3).综上,Q 点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣3). 8. 如图,已知直线AB 经过点(0,4),与抛物线y =x 2交于A ,B 两点,其中点A 的横坐标是.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.2OQ OB OD OB =2363OQ =323233OQ OB Q E AE =33341OQ OQ =-7232142-【解答】(1)直线y =x +4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣,0),(0,0),(6,0),(32,0).【解析】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,,A 点的坐标为(-2,1),设直线的函数关系式为y =kx +b ,将(0,4),(-2,1)代入得, 解得,∴y =x +4, ∵直线与抛物线相交,, 解得:x =-2或x =8,当x =8时,y =16,∴点B 的坐标为(8,16);(2)存在.∵由A (-2,1),B (8,16)可求得AB 2==325,.设点C (m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6;③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32, ∴点C 的坐标为(-,0),(0,0),(6,0),(32,0).321221(2)14y =⨯-=421b k b =⎧⎨-+=⎩324k b ⎧=⎪⎨⎪=⎩32231424x x ∴+=22(82)(161)++-12129. 已知如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)△APD 能否构成直角三角形?若能请直接写出点P 坐标,若不能请说明理由;【解答】(1)y =x 2﹣4x +3;(2);(3)点P (1,0)或(2,﹣1).【解析】(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴,解得,∴抛物线解析式为y =x 2﹣4x +3;(2)令x =0,则y =3,∴点C (0,3),则直线AC 的解析式为y =﹣x +3,设点P (x ,x 2﹣4x +3).∵PD ∥y 轴,∴点D (x ,﹣x +3),∴PD =(﹣x +3)﹣(x 2﹣4x +3)=﹣x 2+3x =﹣(x ﹣)2+.∵a =﹣1<0,∴当x =时,线段PD 的长度有最大值;(3)①∠APD 是直角时,点P 与点B 重合,此时,点P (1,0),②∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A (3,0),∴点P 为在抛物线顶点时,∠PAD =45°+45°=90°,此时,点P (2,﹣1).综上所述:点P (1,0)或(2,﹣1)时,△APD 能构成直角三角形.9493010b c b c ++=⎧⎨++=⎩43b c =-⎧⎨=⎩3294329410. 如图1,已知抛物线y =﹣x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【解答】(1)y =﹣x +3;(2)R (1,);(3)BT =2或BT =. 【解析】(1)令y =0,即,解得, ∵点A 在点B 的左侧∴A (﹣2,0),B (4,0),令x =0解得y =3,∴C (0,3),设BC 所在直线的解析式为y =kx +3,将B 点坐标代入解得k =,∴BC 的解析式为y =-x +3; (2)∵MQ ⊥BC ,过M 作x 轴垂线,∴∠QMH =∠CBO ,∴tan ∠QMH =tan ∠CBO =,∴QH =QM ,MH =MQ , ∴△MHQ 周长=MQ +QH +MH =QM +QM +MQ =3QM , 23384x+34921652333084x x -++=122,4x x =-=34-343434543454则求△MHQ 周长的最大值,即为求QM 的最大值;设M (m ,), 过点M 与BC 直线垂直的直线解析式为, 直线BC 与其垂线相交的交点, ∴, ∴当m =2时,MQ 有最大值,∴△MHQ 周长的最大值为,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3), 连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM ';∵AM '的直线解析式为y =x +3,∴R (1,); (3)①当TC '∥OC 时,GO ⊥TC ',∵△OCT ≌△OTC ',∴,∴∴BT =2; ②当OT ⊥BC 时,过点T 作TH ⊥x 轴,OT =, ∵∠BOT =∠BCO ,∴,∴OH =, ∴∴BT =; 综上所述:BT =2或BT =. 233384m m -++243733812y x m m =--+22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭()23=410MQ m m -+6518532923412=55OG ⨯=12655T ⎛⎫ ⎪⎝⎭,1253=1255c O o BOT H s ∠=362536482525T ⎛⎫ ⎪⎝⎭,165165。
中考数学复习---《三角形综合》压轴题练习(含答案解析)
中考数学复习---《三角形综合》压轴题练习(含答案解析)一.全等三角形的判定与性质1.(2022•淄博)如图,在△ABC中,AB=AC,点D在AC边上,过△ABD的内心I作IE⊥BD于点E.若BD=10,CD=4,则BE的长为()A.6B.7C.8D.9【答案】B【解答】解:如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BEI=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10﹣x=x﹣4,∴x=7,∴BE=7.故选:B.2.(2022•湘西州)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.18【答案】B【解答】解:∵CG∥AB,∴∠B=∠MCG,∵M是BC的中点,∴BM=CM,在△BMH和△CMG中,,∴△BMH≌△CMG(ASA),∴HM=GM,BH=CG,∵AB=6,AC=8,∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,∵∠A=90°,MH⊥AB,∴GH∥AC,∴四边形ACGH为矩形,∴GH=8,∴四边形ACGH的周长最小值为14+8=22,故选:B.3.(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B 顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)【答案】①②③【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接P A,AC.∵A,A1关于DE对称,∴P A=P A1,∴P A1+PC=P A+PC≥AC=,∴P A1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.4.(2022•朝阳)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD 为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为.【答案】3或.【解答】解:如图,E点在AD的右边,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD=2,∵BD=2CD,∴CD=1,∴BC=BD+CD=2+1=3,∴等边三角形ABC3,如图,E点在AD的左边,同上,△BAE≌△CAD(SAS),∴BE=CD,∠ABE=∠ACD=60°,∴∠EBD=120°,过点E作EF⊥BC交CB的延长线于点F,则∠EBF=60°,∴EF=BE=CD,BF=BE=CD,∴CF=BF+BD+CD=CD,在Rt△EFC中,CE=2,∴EF2+CF2=CE2=4,∴+=4,∴CD=或CD=﹣(舍去),∴BC=,∴等边三角形ABC的边长为,故答案为:3或.5.(2022•日照)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P 是x轴上一动点,把线段P A绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是.【答案】2【解答】解:方法一:∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=P A,∴△APF是等边三角形,∴AP=AF,如图,当点F1在x轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO⊥P1F1,∴P1O=F1O,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:P1O=F1O=,∴P1A=P1F1=AF1=,∴点F1的坐标为(,0),如图,当点F2在y轴上时,∵△P2AF2为等边三角形,AO⊥P2O,∴AO=F2O=4,∴点F2的坐标为(0,﹣4),∵tan∠OF1F2===,∴∠OF1F2=60°,∴点F运动所形成的图象是一条直线,∴当OF⊥F1F2时,线段OF最短,设直线F1F2的解析式为y=kx+b,则,解得,∴直线F1F2的解析式为y=x﹣4,∵AO=F2O=4,AO⊥P1F1,∴F1F2=AF1=,在Rt△OF1F2中,设点O到F1F2的距离为h,则×OF1×OF2=×F1F2×h,∴××4=××h,解得h=2,即线段OF的最小值为2;方法二:如图,在第二象限作等边三角形AOB,连接BP、AF,过点B作BP′⊥x轴于点P′,∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=P A,∴△APF是等边三角形,∴AP=AF,∠P AF=60°,∵△AOB是等边三角形,∴AB=AO=OB=4,∠BAO=60°,∴∠BAP=60°+∠OAP=∠OAF,在△BAP和△OAF中,,∴△BAP≌△OAF(SAS),∴BP=OF,∵P是x轴上一动点,∴当BP⊥x轴时,BP最小,即点P与点P′重合时BP=BP′最小,∵∠BOP′=30°,∠BP′O=90°,∴BP′=OB=×4=2,∴OF的最小值为2,故答案为2.二.勾股定理6.(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNXT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【答案】48【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.7.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt △DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A 重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【答案】21【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F 作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.8.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【答案】80【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI 于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.三.等腰直角三角形(共2小题)9.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得P A+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【答案】B【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,P A+PB+PC值最小,此时∠APB=∠APC =∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.10.(2022•绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC=45°,AC与BD交于点E,若AB=2,CD=2,则△ABE的面积为.【答案】【解答】解:过点D作DF⊥AC于点F,∵AC⊥BC,∠ABC=45°,∴AC=BC=AB=2,∵∠ADC=90°,CD=2,∴AD=,∵,∴DF=,∴AF=,∴CF=,∵DF∥BC,∴△DEF∽△BEC,∴,即,∴EF=,∴AE=,∴.故答案为:.11.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【答案】B【解答】解:如图,不妨假设点P在AB的左侧,∵S△P AB +S△ABC=S△PBC+S△P AC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF =GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠F AP,∴△CPN∽△FP A,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.13.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.3【答案】C【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.14.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.【答案】C【解答】解:过C作CD⊥x轴于点D,CE⊥y轴于点E,如图:∵CD⊥x轴,CE⊥y=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE﹣OA=CD﹣OA=1,∴AC===BC=AB,在Rt△BCD中,BD===,在Rt△AOB中,OB===,∵OB+BD=OD=m,∴+=m,化简变形得:3m4﹣22m2﹣25=0,解得m=或m=﹣(舍去),∴m=,故选:C.三.等腰直角三角形(共1小题)15.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.【答案】7【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.四.等边三角形的性质(共2小题)16.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△BOC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴△AOB与△BOC的面积之和为S△BOC +S△BCD=S△BOD+S△COD=×12+=,故选:C.17.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC 上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.【答案】【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,∴∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,∴∠C=60°,∴△CEF是等边三角形,∴∠BFE=120°,即∠APB=∠BFE,∴△APB∽△BFE,∴==2,设BP=x,则AP=2x,作BH⊥AD延长线于H,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=,BH=,∴AH=AP+PH=2x+=x,在Rt△ABH中,AH2+BH2=AB2,即(x)2+(x)2=62,解得x=或﹣(舍去),∴AP=,BP=,∴△ABP的周长为AB+AP+BP=6++=6+=,故答案为:.五.含30度角的直角三角形(共1小题)18.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D =180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m (结果取整数,参考数据:≈1.7).【答案】370【解答】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,∵∠D=60°,∠ABC=120°,∠BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△DCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.六.等腰直角三角形(共2小题)19.(2022•长沙)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.【答案】B【解答】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.20.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D 为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P 的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.【答案】或【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.30。
2022年中考数学知识梳理系统复习专题训练: 三角形压轴练习(附答案)
2022中考数学知识梳理系统复习专题训练:三角形压轴练习1.如图,在四边形ABCD中,∠ABC=90°,过点B作BE⊥CD,垂足为点E,过点A作AF⊥BE,垂足为点F,且BE=AF.(1)求证:△ABF≌△BCE;(2)连接BD,且BD平分∠ABE交AF于点G.求证:△BCD是等腰三角形.2.如图,已知线段a和∠EAF,点B在射线AE上.画出△ABC,使点C在射线AF上,且BC =a.(1)依题意将图补充完整;(2)如果∠A=45°,AB=,BC=5,求△ABC的面积.3.在△ABC中,AB>BC,直线l垂直平分AC.(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.①补全图形;②判断∠BAD和∠BCD的数量关系,并证明.(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD =∠BCD.4.通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式(a+b)(a﹣b)=a2﹣b2给予解释.图乙中的△ABC是一个直角三角形,∠C=90°,人们很早就发现直角三角形的三边a,b,c满足a2+b2=c2的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,求出(a+b)2的值.5.如图,在三角形ABC中,CD平分∠ACB,交AB于点D,点E在AC上,点F在CD上,连接DE,EF.(1)若∠ACB=70°,∠CDE=35°,求∠AED的度数;(2)在(1)的条件下,若∠BDC+∠EFC=180°,试说明:∠B=∠DEF.6.已知:如图,△ABC是等边三角形,D是BC延长线上一点,且CD=CB,连接AD,过点D 作DM⊥DB,在DM上截取一点E,使得DE=AD,连接AE.(1)求证:△ADB≌△AEC;(2)猜想EC和AD的位置关系,并证明.7.在Rt △ABC 中,∠ACB =90°,AC =15,AB =25,点D 为斜边AB 上动点. (1)如图1,当CD ⊥AB 时,求CD 的长度;(2)如图2,当AD =AC 时,过点D 作DE ⊥AB 交BC 于点E ,求CE 的长度;(3)如图3,在点D 的运动过程中,连接CD ,当△ACD 为等腰三角形时,直接写出AD 的长度.8.如图1,在Rt △ABC 中,∠ACB =90°,动点M 从点A 出发沿A ﹣C ﹣B 向点B 匀速运动,动点N 从点B 出发沿B ﹣C ﹣A 向点A 运动.设MC 的长为y 1(cm ),NC 的长为y 2(cm ),点M 的运动时间为x (s ),y 1、y 2与x 的函数图象如图2所示. (1)线段AC = cm ,点M 运动 s 后点N 开始运动; (2)求点P 的坐标,并写出它的实际意义; (3)当∠CMN =45°时,求x 的值.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角板的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角板绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC 的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第秒时,∠COM与∠CON互补.10.综合与实践问题情境在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,点E是射线AB上一点,连接CE,过点B作BF⊥CE于点F,且交直线CD于点G.(1)如图1,当点E在线段AD上时,求证:CG=AE.自主探究(2)如图2,当点E在线段BD上时,其它条件不变,请猜想CG与AE之间的数量关系,并说明理由.拓展延伸(3)如图3,当点E在线段AB的延长线上时,其它条件不变,请直接写出CG与AE之间的数量关系.11.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为5、12,那么这个直角三角形斜边长为.(2)如图1,AD⊥BC于D,AD=BD,AC=BE,AC=10,DC=6,求BD的长度.(3)如图2,点A在数轴上表示的数是请用类似的方法在图2数轴上画出表示数的B点(保留痕迹).12.已知,在平面直角坐标系中,A(m,0)、B(0,n),m、n满足(m﹣n)2+|m﹣5|=0.C 为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由!(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.13.(1)如图a,AE是∠MAD的平分线,点C是AE上一点,点B是AM上一点,在AD上求作一点P,使得△ABC≌△APC,请保留清晰的作图痕迹.(2)如图b,在△ABC中,∠ACB=90°,∠A=60o,BE、CF分别是∠ABC和∠ACB的角平分线,CF与BE相交于点O.请探究线段BC、BF、CE之间的数量关系,直接写出结论,不要求证明.(3)如图c,若(2)中∠ACB为任意角,其它条件不变,请探究BC、BF、CE之间又有怎样的数量关系,请证明你的结论.14.直角三角形ABC中,∠ABC=90°,点D为AC的中点,点E为CB延长线上一点,且BE =CD,连接DE.(1)如图1,求证∠C=2∠E;(2)如图2,若AB=6,BE=5,△ABC的角平分线CG交BD于点F,求△BCF的面积.15.如图,在△ABC中,AB=AC,点P是AB边上的动点(不与点A、B重合),把△ABC沿过点P的直线l折叠,点B的对应点是点D,折痕为PQ.(1)若点D恰好在AC边上.①如图1,当PQ∥AC时,连接AQ,求证:AQ⊥BC.②如图2,当DP⊥AB,且BP=3,CD=2,求△ABC与△CDQ的周长差.(2)如图3,点P在AB边上运动时,若直线l始终垂直于AC,△ACD的面积是否变化?请说明理由.参考答案1.证明:(1)∵BE ⊥CD ,AF ⊥BE , ∴∠AFB =∠BEC =90°. ∴∠ABE +∠BAF =90°. ∵∠ABC =90°, ∴∠ABE +∠EBC =90°, ∴∠BAF =∠EBC . 在△ABF 和△BCE 中,∴△ABF ≌△BCE (ASA ). (2)∵∠ABC =90°, ∴∠ABD +∠DBC =90°. ∵∠BEC =90°, ∴∠DBE +∠BDE =90°, ∵BD 平分∠ABE , ∴∠ABD =∠DBE . ∴∠DBC =∠BDE .∴BC =CD ,即△BCD 是等腰三角形. 2.解:(1)如图,△ABC 1、△ABC 2 为所求.(2)过点B 作BD ⊥AF 于D . ∴∠ADB =90°,在△ABD 中,∠A =45°,AB =,∴∠ABD =45°,AD =BD .∵AD 2+BD 2=AB 2, ∴,∴AD =4=BD ,由(1)作图可知:BC 1=BC 2=5, 在Rt △BDC 2中,同理可得:DC 2=3. ∴△BC 1C 2是等腰三角形. ∴DC 1=DC 2=3,∴AC 1=AD ﹣C 1D =4﹣3=1,AC 2=AD +C 2D =4+3=7, ∴, .3.解:(1)①补全图形;②结论:∠BAD +∠BCD =180°,理由如下:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F ,则∠AED =∠CFD =90°. ∵BD 平分∠ABC , ∴DE =DF .∵直线l 垂直平分AC ,∴DA=DC,在Rt△ADE和Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL).∴∠BAD=∠FCD.∵∠FCD+∠BCD=180°,∴∠BAD+∠BCD=180°;(2)结论:∠BAD=∠BCD,理由如下:过点D作DN⊥AB于N,作DM⊥BE于M,则∠AND=∠CMD=90°.∵BD平分∠ABE,∴DM=DN.∵直线l垂直平分AC,∴DA=DC,在Rt△ADN和Rt△CDM中,∴Rt△ADN≌Rt△CDM(HL).∴∠BAD=∠BCD.4.解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是: ab×4=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25.故(a+b)2的值为25.5.(1)解:∵CD平分∠ACB,∴∠BCD=∠ACB,∵∠ACB=70°,∴∠BCD=35°,∵∠CDE=35°,∴∠CDE=∠BCD,∴DE∥BC,∴∠AED=∠ACB=70°;(2)证明:∵∠EFC+∠EFD=180°,∠BDC+∠EFC=180°,∴∠EFD=∠BDC,∴AB∥EF,∴∠ADE=∠DEF,∵DE∥BC,∴∠ADE=∠B,∴∠DEF=∠B.6.(1)证明:∵MD⊥DB,∴∠EDB=90°,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠CAB=60°,∵CD=CB=AC,∴∠ADB=∠DAC=30°,∴∠ADE=60°,∵DE=AD,∴△ADE是等边三角形,∠DAE=60°,AE=AD,∴∠CAB=∠DAE=60°,∴∠DAB=∠EAC,∴△ADB≌△AEC(SAS);(1)猜想:AD⊥EC,理由如下:∵△ADB≌△AEC,∵△AED是等边三角形,∴EC是△AED的角平分线,∴EC是△AED的高线,∴AD⊥EC.7.解:(1)∵∠ACB=90°,A C=15,AB=25,∴BC===20,∵AB•CD=BC•AC,∴25CD=20×15,∴CD=12;(2)在Rt△ACE和Rt△ADE中,∠C=∠EDA=90°,∵,∴Rt△ACE≌Rt△ADE(HL),∴CE=DE,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(3)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠B CD=90°,∴∠B=∠BCD,∴BD=CD,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•A C•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.综合以上可得AD的长度为15,18,或12.5.8.解:(1)点M与点C重合时,观察图象可知AC=10cm,观察图象可知,当点M运动1s后N点开始运动;故答案为:10,1;(2)M点运动的速度为18÷6=3cm/s,∴P的橫坐标为10,∴P(,0),实际意义:当点M运动s时,点M与点C重合;(3)∵∠CMN=45°,∠C=90°,∴∠CNM=∠CMN=45°,∴△CMN为等腰直角三角形,①当0<x≤1时,10﹣3x=8,解得,x=,②当1<x≤3时,10﹣3x=8﹣4(x﹣1),解得,x=2,③当3<x<6时,3x﹣10=2(x﹣3),解得,x=4,④当6≤x≤8时,2(x﹣3)=8,解得,x=7,综上所述,x=,2,4或7.9.解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)在旋转的过程中,∠COM与∠CON互补,则ON旋转67.5°或247.5°,∴=15,或=55,故答案为:15或55.10.综合与实践解:(1)AE=CG,理由如下:∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠ABC=45°.∵点D是AB的中点,∴∠BCG=∠ACB=45°,∴∠A=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.∵∠ACE+∠BCF=90°,∴∠CBG=∠ACE,在△ACE和△CBG中,,∴△ACE≌△CBG(ASA),∴AE=CG;自主探究(2)AE=CG;理由如下:∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠ABC=45°.∵点D是AB的中点,∴∠BCG=∠ACB=45°,∴∠A=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.∵∠ACE+∠BCF=90°,∴∠CBG=∠ACE,在△ACE和△CBG中,,∴△ACE≌△CBG(ASA),∴AE=CG;拓展延伸(3)CG=AE.证明:同(1)(2)可得∠A=∠GCB=45°,∵BF⊥CE,∴∠GDB=∠BFE=90°,∵∠DBG=∠FBE,∴∠CGB=∠AEC,,∴△ACE≌△CBG(AAS),∴CG=AE.11.解:(1)由勾股定理可得,这个直角三角形斜边长为=13,故答案为:13;(2)在△ADC中,∠ADC=90°,AC=10,DC=6,则由勾股定理得AD=8,∵AD⊥BC于D,AD=BD,AC=BE,∴Rt△ADC≌Rt△BDE(HL),∴BD=AD=8;(3)如图2所示,点A在数轴上表示的数是=,点B表示的数为=,故答案为:.12.解:(1)∵(m﹣n)2+|m﹣5|=0,∴m﹣n=0,m﹣5=0,∴m=n=5,∴A(5,0)、B(0,5),∴AC=BC=5,∴△AOB为等腰直角三角形,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是x轴正半轴上一点,∴点P在BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∵C为AB的中点,∴AB=2OC,∴AB=2PE.故答案为:AB=2PE.(2)成立,理由如下:∵点C为AB中点,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵∠POD=45°﹣∠POC,∠PDO=45°﹣∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,又∠AOC=∠BAO=45°∴OC=AC=AB∴AB=2PE;(3)∵AB=5,∴OA=OB=5,∵OP=PD,∴∠POD=∠PDO==67.5°,∴∠APD=∠PDO﹣∠A=22.5°,∠BOP=90°﹣∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,,∴△POB≌△DPA(SAS),∴PA=OB=5,DA=PB,∴DA=PB=5﹣5,∴OD=OA﹣DA=5﹣(5﹣5)=10﹣5,∴点D的坐标为(10﹣5,0).13.(1)解:如图1,以点A为圆心,以AB长为半径画弧交AD于一点,则此点为所要求的点P.(2)解:线段BC、BF、CE之间的关系为:BC=BF+CE.证明:如图2中,在CB上截取CM=CE,连接OM.∵∠A=60°,∠ACB=90°,又∵BE,CF分别是∠ABC和∠ACB的平分线,∴∠FCA=∠FCB=45°,∠ABE=∠EBC=15°,∴∠BFC=∠A+∠ACF=105°,∠CEB=∠A+∠ABE=75°在△OCE和△OCM中,,∴△OCE≌△OCM(SAS),∴∠CEO=∠OMC=75°,∴∠BMO=180°﹣∠CMO=105°,∴∠BFO=∠BMO,在△OBF或△OBM中,,∴△OBF≌△OBM(AAS),∴BF=BM,∴BC=BM+CM=BF+CE.(3)解:线段BC、BF、CE之间的关系为:BC=BF+CE.证明:在BC上截取BF'=BF,连接OF'.在△BFO和△BF'O中,∴△BFO≌△BF'O(SAS),∴∠BOF=∠BOF',∵∠A=60o,BE、CF分别是∠ABC和∠ACB的角平分线,CF与BE相交于点O.∴∠BOC=180°﹣∠ABC﹣∠ACB=180°﹣60°=120°,∴∠BOF'=∠BOF=∠COE=180°﹣120°=60°.∠COF'=∠BOC﹣∠BOF'=120°﹣60°=60°,在△COE和△COF'中,∴△COE≌△COF'(ASA),∴CE=CF',∴BC=BF+CE.14.解:(1)证明:∵∠ABC=90°,点D为AC的中点,∴BD=AC=CD=AD,∵CD=BE,∴BE=BD,∴∠BDE=∠E,∵BD=CD,∴∠C=∠DBC,∴∠C=∠DBC=∠BDE+∠E=2∠E;(2)过点F作FM⊥BC,FN⊥AC∵CG平分∠ABC∴FM=FN∵BE=5∴CD=AD=BE=5,AC=10又∵AB=6∴在Rt △ABC 中,AB 2+BC 2=AC 2∴BC =8∵BD 为△ABC 的中线∴S △BCD =S △ABC =×AB ×BC =××6×8=12又∵S △BCD =S △BCF +S △CDF∴12=CD •FN +BC •FM ∴×5×FM +×8×FM =12∴FM =∴S △BCF =BC •FM =×8×=. 15.解:(1)①如图1中,连接AQ ,BD .BD 交PQ 于O .∵△PQD 是由△PQB 翻折得到,∴PQ 垂直平分线段BD ,∴OB =OD ,∵PQ ∥AC ,∴BQ =QC ,∵AB =AC ,∴AQ ⊥BC .②如图2中,设PA =x ,则AB =AC =x +3,AD =AC ﹣CD =x +1,∵PB=PD=3,PD⊥AB,∴∠APD=90°,∴AD2=PA2+PD2,∴(x+1)2=x2+32,解得x=4,∵BQ=DQ,∴△ABC的周长﹣△QDC的周长=AB+AC+BC﹣(QD+QC+CD)=2AB﹣CD=14﹣2=12.(2)如图3中,结论:S△ADC =S△ABC=定值.理由:连接BD.∵△APD与△CPB关于直线PQ对称,∴BD⊥PQ,∵AC⊥PQ,∴BD∥AC,∴S△ADC =S△ABC=定值.。
(全国通用)中考数学难点攻克:函数中特殊三角形存在性问题解析与练习
中考数学难题突破——函数中特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1等腰三角形存在性问题例1 如图1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.【分层分析】(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.【解题方法】对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.【解答】【分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单. (3)①x =1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax2+bx +c ,由题意,得⎩⎨⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎨⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x2+2x +3.(3)∵抛物线对应的函数表达式为y =-x2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ=BQ时,如图①,设抛物线的对称轴交x轴于点D,过点B作BF⊥DQ于点F.由勾股定理,得BQ=BF2+QF2=(1-0)2+(3-a)2,AQ=AD2+QD2=22+a2,得(1-0)2+(3-a)2=22+a2,解得a=1,∴点Q的坐标为(1,1).②当AB=BQ时,如图②,由勾股定理,得(1-0)2+(a-3)2=10,解得a=0或6,当点Q的坐标为(1,6)时,其在直线AB上,A,B,Q三点共线,舍去,∴点Q的坐标是(1,0).③当AQ=AB时,如图③,由勾股定理,得22+a2=10,解得a=±6,此时点Q的坐标是(1,6)或(1,-6).综上所述,存在符合条件的点Q,点Q的坐标为(1,1)或(1,0)或(1,6)或(1,-6).类型2直角三角形、全等三角形存在性问题例2如图2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.2(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分层分析】(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.【解题方法】本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.【解答】【分层分析】(1)顶点点B待定系数(2)点A,B,Q解:(1)把(1,-4)代入y=kx-6,得k=2,∴直线AB对应的函数表达式为y=2x-6.令y=0,解得x=3,∴点B的坐标是(3,0).∵点A为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x2-2x -3. (2)存在.∵OB =OC =3,OP =OP , ∴当∠POB =∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q1AB =90°时,△DAQ1∽△DOB , ∴AD OD =DQ1DB ,即56=DQ13 5,∴DQ1=52,∴OQ1=72, 即点Q1的坐标为⎝ ⎛⎭⎪⎫0,-72;②当∠Q2BA =90°时,△BOQ2∽△DOB , ∴OB OD =OQ2OB ,即36=OQ23,∴OQ2=32,即点Q2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ3B =90°时,过点A 作AE ⊥y 轴于点E , 则△BOQ3∽△Q3EA ,∴OB Q3E =OQ3AE ,即34-OQ3=OQ31,∴OQ32-4OQ3+3=0,∴OQ3=1或3, 即点Q3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专项训练1.如图3,点O(0,0),A(2,2),若存在点P ,使△APO 为等腰直角三角形,则点P 的个数为________.图32.如图4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图43.如图5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图54.如图6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图65. 如图7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图76.如图8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图8参考答案1.【解答】6【解析】先根据等腰直角三角形的判定和点A的坐标即可得出使△APO为等腰直角三角形点P的个数。
人教版数学中考复习《三角形相关问题》专项练习含答案
三角形相关问题一、综合题1.(2018•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.2.(2018•北京)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是________.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.3.(2018•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是________,位置关系是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.4.(2018•荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.5.(2018•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM 于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC________OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是________;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式________.6.(2018•玉林)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.7.(2018•黄石)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD 中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF 的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.8.(2018•荆门)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C 作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.9.(2018•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE= 时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.10.(2018•大连)如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为________;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD= ,求PC 的长.11.(2018•呼和浩特)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.12.(2018•张家界)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.13.(2018•北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.14.(2018•百色)已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.15.(2018•百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)证明:EG=FH.16.(2018•河池)解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF 的数量关系,并证明你的结论.17.(2018•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.18.(2018•青岛)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.19.(2018•威海)如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.20.(2018•达州)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.21.(2018•达州)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为________;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:________;(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.22.(2018•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC 于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.23.(2018•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=________,OC△OA=________;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.24.(2018•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.答案解析部分一、综合题1.【答案】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB= ,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC= .【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在Rt△只要证明∠ADC=60°,AD=2即可解决问题;2.【答案】(1)解:①P2,P3②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,∴设P(x,﹣x),当OP=1时,由距离公式得,OP= =1,∴x= ,当OP=3时,OP= =3,解得:x=± ;∴点P的横坐标的取值范围为:﹣≤≤﹣,或≤x≤ (2)解:∵直线y=﹣x+1与x轴、y轴交于点A、B,∴A(1,0),B(0,1),如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC= ,∴C(1﹣,0),∴圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣;如图3,当圆过点A,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC= =2 ,∴C(2 ,0).∴圆心C的横坐标的取值范围为:2≤x C≤2 ;综上所述;圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣或2≤x C≤2【解析】【解答】(1)①∵点P1(,0),P2(,),P3(,0),∴OP1= ,OP2=1,OP3= ,∴P1与⊙O的最小距离为,P2与⊙O的最小距离为1,OP3与⊙O的最小距离为,∴⊙O,⊙O的关联点是P2,P3;故答案为:P2,P3;【分析】(1)①根据点P1(,0),P2(,),P3(,0),求得P1= ,P2=1,OP3= ,于是得到结论;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式得到即可得到结论;(2根据已知条件得到A(1,0),B(0,1),如图1,当圆过点A时,得到C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,得到C(1﹣,0),于是得到结论;如图3,当圆过点A,则AC=1,得到C(2,0),如图4,当圆过点B,连接BC,根据勾股定理得到C(2 ,0),于是得到结论.3.【答案】(1)PM=PN;PM⊥PN(2)解:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN= BD,PM= CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形(3)解:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2 ,在Rt△ABC中,AB=AC=10,AN=5 ,=2 +5 =7 ,∴MN最大∴S△PMN最大= PM2= × MN2= ×(7 )2= .【解析】【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN= BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM= CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,【分析】(1)利用三角形的中位线得出PM= CE,PN= BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM= BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.4.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS)(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形【解析】【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.5.【答案】(1)=;AC2+CO2=CD2(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立(3)OC﹣AC= CD【解析】【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(3.)如图3,结论:OC﹣CA= CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC= CD,故答案为:OC﹣AC= CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC ﹣AC)2=2CD2,开方后是:OC﹣AC= CD.6.【答案】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′= BC=2,AB=4 ,点E′为AC的中点,∴2≤DE<2 (点E与点E′重合时取等号).∴4≤S=DE2<8.四边形EDFG∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF 可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作D E′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE <2 ,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.7.【答案】(1)证明:如图①中,设AD=BC=a,则AB=CD= a.∵四边形ABCD是矩形,∴∠C=90°,∵PC=AD=BC=a,∴PB= = a,∴BA=BP(2)解:如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,∴CQ=CQ′= a﹣a,∵CQ′//AB,∴= = =(3)证明:如图③中,作TH//AB交NM于H,交BC于K.由(2)可知,AD=BC=1,AB=CD= ,DP=CF= ﹣1,∵S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,∵TH//AB//FM,TF=TB,∴HM=HN,∴HT= (FM+BN),∵BN=PM,∴HT= (FM+PM)= PF= •(1+ ﹣1)= ,∴S△MNT= HT= =定值【解析】【分析】(1)如图①中,设AD=BC=a,则AB=CD= a.通过计算得出AB=BP= a,由此即可证明;(2)如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,可得CQ=CQ′= a﹣a,由CQ′//AB,推出= = = ;(3)如图③中,作TH//AB交NM于H,交BC于K.由S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,利用梯形的中位线定理求出HT即可解决问题;8.【答案】(1)证明:∵点E是CD的中点,∴DE=CE.∵AB∥CF,∴∠BAF=∠AFC.在△ADE与△FCE中,∵,∴△ADE≌△FCE(AAS)(2)解:由(1)得,CD=2DE,∵DE=2,∴CD=4.∵点D为AB的中点,∠ACB=90°,∴AB=2CD=8,AD=CD= AB.∵AB∥CF,∴∠BDC=180°﹣∠DCF=180°﹣120°=60°,∴∠DAC=∠ACD= ∠BDC= ×60°=30°,∴BC= AB= ×8=4【解析】【分析】(1)先根据点E是CD的中点得出DE=CE,再由AB∥CF可知∠BAF=∠AFC,根据AAS 定理可得出△ADE≌△FCE;(2)根据直角三角形的性质可得出AD=CD= AB,再由AB∥CF可知∠BDC=180°﹣∠DCF=180°﹣120°=60°,由三角形外角的性质可得出∠DAC=∠ACD= ∠BDC=30°,进而可得出结论.9.【答案】(1)证明:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF(2)解:在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE= ,∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,∴,∴BG= ,∴CG=BC﹣BG=(3)解:不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【解析】【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.10.【答案】(1)∠BAD+∠ACB=180°(2)解:如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴= = = ,∴= ,∴4y2+2xy﹣x2=0,∴()2+ ﹣1=0,∴= (负根已经舍弃),∴= .(3)解:如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴= = ,∴= ,即=∵CD= ,∴PC=1.【解析】【解答】解:(1.)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出= = = ,可得= ,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得= = ,可得= ,即= ,由此即可解决问题;11.【答案】(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD= AC,AE= AB,∴AD=AE,在△ABD和△ACE中,∴△ABD≌△ACE(ASA).∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE= AB,AD= AC,ED是△ABC的中位线,∴ED∥BC,ED= BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN= BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离= BC,∴BD⊥CE,∴四边形DEMN是正方形.【解析】【分析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED∥BC,ED= BC,MN∥BC,MN= BC,等量代换得到ED∥MN,ED=MN,推出四边形EDNM是平行四边形,(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性质得到OB=OC,由三角形的重心的性质得到O到BC的距离= BC,根据直角三角形的判定得到BD⊥CE,于是得到结论.12.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS)(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形【解析】【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF 即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.13.【答案】(1)解:∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α(2)解:PQ= MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△AEB是等腰直角三角形,∴PQ= MB,∴PQ= MB.【解析】【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△AEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.14.【答案】(1)解:将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y= ;(2)解:由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).∴S△ACD= AD•CD= × [3﹣(﹣3)]×|﹣2|=6.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.15.【答案】(1)证明:∵四边形ABCD是矩形,∴AD//BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE= AD,CF= BC,∴AE CF,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴CE//AF,∴∠DGE=∠AHD=∠BHF,∵AB//CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.16.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB= BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴= ,∴AE= BF.【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.17.【答案】(1)证明:∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)解:如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF= AB=1,∴BF= ,∴BC=2BF=2 ,∵BD=x,AE=y则DC=2 ﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y= x+2(0<x<2 );(3)解:当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x,x=2 ﹣2,代入y= x+2,解得:y=4﹣2 ,即AE=4﹣2 ,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED= EC,即y= (2﹣y),解得:y= ,即AE= ,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2 或.【解析】【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x;②当AE=ED时,如图3,则ED= EC,即y= (2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.18.【答案】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【解析】【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.19.【答案】(1)解:如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC= = ,CD1= ﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(﹣2)2,解得:x= ,∴当x= 时,直线AD1过点C(2)解:如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE= = ,∵AD1=AD=2,PD=PD1=x,∴D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(﹣2)2=(3﹣x)2+12,解得:x= ,∴当x= 时,直线AD1过BC的中点E;(3)解:如图3,当0<x≤2时,y=x,如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a= ,所以y= = ,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=【解析】【分析】(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.20.【答案】(1)解:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF= =10,∴OC=OE= EF=5(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【解析】【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.21.【答案】(1)证明:∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q= ,∴OQ=OQ1+Q1Q=x1+ = ,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= = ,即线段P1P2的中点P(x,y)P的坐标公式为x= ,y=(2);(﹣3,3)或(7,1)或(﹣1,﹣3)(3)解:如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,由对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,x),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x= ,∴R(,),∴=n,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则= ,= ,解得x= ,y= ,∴M(,),∴MN= = ,即△PEF的周长的最小值为【解析】【解答】(2)①∵M(2,﹣1),N(﹣3,5),∴MN= = ,故答案为:;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);【分析】(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.22.【答案】(1)证明:在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE(2)证明:①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴= = ,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴= ,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴= ,∵AB=2AG,∴= ,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】【分析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到= = ,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到= ,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到= ,等量代换得到= ,于是得到结论.23.【答案】(1)0;7(2)解:①如图2,取BC的中点O,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2 ,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD= AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2 ,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD= = =2 ,∴BA△BC=BD2﹣CD2=24;(3)解:如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DB= AN= × OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3 ,∴S△ABC= BC×AO=6 .【解析】【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC= BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD= AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD= =4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2 ,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.24.【答案】(1)解:如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)解:成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE= OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ= OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)解:如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.【解析】【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED 即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.。
中考数学压轴题专题直角三角形的存在性
专题22 直角三角形的存在性破解策略以线段AB 为边的直角三角形构造方法如右图所示:A BAB ECFEFABC直角三角形的另一个顶点在以A 在以AB 为直径的圆上,或过A 、B 且与AB 垂直的直线上(A ,B 两点除外).解直角三角形的存在性问题时,若没有明确指出直角三角形的直角,就需要进行分类讨论.通常这类问题的解题策略有:(1)几何法:先分类讨论直角,再画出直角三角形,后计算.如图,若∠ACB =90°.过点A 、B 作经过点C 的直线的垂线,垂足分别为E 、F .则△AEC ∽△CF B .从而得到线段间的关系式解决问题.(2)代数法:先罗列三边长,再分类讨论直角,根据勾股定理列出方程,然后解方程并检验.有时候将几何法和代数法相结合.可以使得解题又快又好! 例题讲解例1 如图,抛物线l :y =ax 2+2x -3与r 轴交于A ,B (3,0)两点(点A 在点B 的左侧).与y 轴交于点C (0,3).已知对称轴为x =1. (1)求抛物线的表达式;(2)设点P 是抛物线l 上任意一点,点Q 在直线x =-3上,问:△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.xy CB AOlxyCMNABOQlP xylQA O NB PM解:(1)由题意可得点A 的坐标为(1,0).所以抛物线表达式可变为y =a (x -3)(x +1)=ax 2-2ax -3a 由点C 的坐标可得-3a =3,a =-1所以抛物线的表达式为y =-x 2+2x +3.(2)如图,过点P 作PM 垂直于直线l ,垂足为M .过点B 作BN 垂直于直线PM .垂足为N .若△PBQ 是以点P 为直角顶点的等腰直角三角形,无论点P 在BQ 的上方或下方,由“弦图模型”均可得△PQM ∽△BPN . 所以PM =BN .设点P 的坐标为(m ,H ,-m 2+2m +3).则PM =|m +3|,BN =|-m 2+2m +3|,所以|m +3|=|-m 2+2m +3|.解得m 1=0,m 2=1,m 3=3+332,m 4=3332- 所以点P 的坐标为(0,3),(1,4),(3+132,332-9-),(3332-,32+3-9)例2 如图,一次函数y =-2x +10的图象与反比例函数y =kx(k >0)的图象相交于A 、B两点(点A 在点B 的右侧),分别交x 轴.y 轴于点E ,F .若点A 的坐标为(4,2).问:反比例函数图象的另一支上是否存在一点P .使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由,xy B AFPO Exy OPEBFA解:将点A (4,2)代入反比例函数表达式,得k =8, 所以反比例函数为y =8x, 联立方程纽组8210y x y x ⎧=⎪⎨⎪=-+⎩ , 解得1142x y =⎧⎨=⎩,2218x y =⎧⎨=⎩ 所以点B 的坐标为(1,8).由题意可得点E .F 的坐标分剐为(5,0),(0,10), 以AB 为直角迎的直角三角形有两种情况:如图1,当∠PAB =90°时,连结OA ,则OA 2242+25而AE 2212+5,OE =5,所以OA 2+AE 2=OE 2, 即OA ⊥A B .所以A ,O ,P 三点共线. 由O 、A 两点的坐标可得直线AP 的表达式为y =12x . 联立方程组812y xy x ⎧=⎪⎪⎨⎪=⎪⎩解得1142x y =⎧⎨=⎩,2242x y =-⎧⎨=-⎩所以点P的坐标为(-4,-2).②如图2,当∠PBA=90°时,记BP与y轴的交点为G.易证△FBC∽△FOE,所以FB FO FG FE=,而FO=10.FEFB可求得FG=52,所以点G的坐标为(0,152).由B,G两点的坐标可得直线BP的表达式为y=12x+152,联立方程组115228y xyx⎧⎪⎪⎨⎪⎪⎩=+,=,解得1118xy⎧⎨⎩=,=;221612xy⎧⎪⎨⎪⎩=-,=-.所以点P的坐标为(-16,-12);综上可得,满足条件的点P坐标为(-4,-2)或(-16,-12).图2例3 如图,抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A,B两点(点A 在点B的左侧),点A的横坐标是-1.D是x轴负半轴上的一个动点,将抛物线C1绕点D旋转180°后得到抛物线C2.抛物线C2的顶点为Q,与x轴相交于E,F两点(点E在点F的左侧).当以点P,Q,E为顶点的三角形是直角三角形时,求顶点Q的坐标.C解 由题意可得点A (-1,0),P (2,-5),B (5,0).设点D 的坐标为(m ,0),则点Q 的坐标为(2m -2,5),E 的坐标为(2m -5,0),所以PQ 2=(2m -4)2 +102,PE 2=(2m -7)2+52,EQ 2=32+52=34. △PQE 为直角三角形有三种情况:①当∠PQE = 90°时,有PE 2=PQ 2+ EQ 2,即(2m -7)2+52=(2m -4)2+102+34,解得m =-193,所以点Q 的坐标为(-443,5);②当∠QEP =90°时,有PQ 2=PE 2 +EQ 2,即(2m -4)2+102=(2m -7)2+52+34,解得m =-23,所以点Q 的坐标为(-103,5);③当∠QPE = 90°时,有EQ 2=PE 2 + PQ 2,即(2m -7)2+52+(2m -4)2+102=34,方程无解,所以此种情况不成立,综上可得,当△PQE 为直角三角形时,顶点Q 的坐标为(-443,5)或(-103,5). 例4 如图.在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,AD =2,BC =6,AB =3.E 为BC 边上一点,当BE =2时,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.当正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B ′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B 'EFG 的边EF 与AC 交于点M ,连结B ′D ,B 'M ,DM .问:是否存在这样的t ,使△B 'DM 是直角三角形,若存在,求出t 的值;若不存在,请说明理由.EB'MFGCD AB解 存在满足条件的t .理由如下:如图,过点D 作DH ⊥ BC 于点H ,过点M 作MN ⊥DH 于点N , 则BH =AD =2,DH =AB =3.所以BB ′=HE =t ,HB ′=|t -2|,EC =4-t . 易证△MEC ∽△ABC , 可得ME AB =EC BC ,即3ME =46t -,所以ME =2-12t . 在Rt △B ′ME 中,有B ′M 2=ME 2+B ′E 2=14t 2-2t +8. 在Rt △DHB ′中,有B ′D 2=DH 2+B ′H 2=t 2-4t +13. 在Rt △DMN 中,DN =DH -NH =12t +1. 则DM 2=DN 2+MN 2=54t 2+t +1. ①若∠DB'M =90°,则DM 2=B'M 2+B'D 2,即54t 2+t +1=(14t 2-2t +8)+(t 2-4t +13), 解得t 1=207; ②若∠B'MD =90°,则B'D 2=B'M 2+DM 2,即t 2-4t +13=(14t 2-2t +8)+(54t 2+t +1), 解得t 2=-3+17,t 3=-3-17(舍);③若∠B'DM =90°,则B'M 2=B 'D 2+DM 2,即14t 2-2t +8=(t 2-4t +13)+(54t 2+t +1), 此方程无解. 综上所得,当t =207或-3+17时,△B'DM 是直角三角形. NHBAD CGFM B'E进阶训练1.如图,在平面直角坐标系xOy 中,Rt △OAB 的直角顶点A 在x 轴上,OA =4,AB =3.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动.当两个动点运动了x (0<x <4)时,解答下列问题:(1)求点N 的坐标(用含x 的代数式表示);(2)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.yMN O解:(1)N (x ,34x ); (2)当△OMN 是直角三角形时,x 的值为2或6441. 【提示】(1)过点N 作NP ⊥OA 于点P ,由△PON ∽△AOB 即可求得; (2)分类讨论,通过△OMN 和△OAB 相似即可列出等式求得x 的值.POBA N M xy2.如图,在平面直角坐标xOy 中,直线y =kx -3与双曲线y =4x的两个交点为A ,B .其中A (-1,a ).若M 为x 轴上的一个动点,且△AMB 为直角三角形,求满足条件的点M 的坐标.AxyBO解:满足条件的点M 的坐标为(-5,0),(5,0),(3412-,0)或(3412+,0). 【提示】先求出点A ,B 的坐标,再设点M 的坐标,从而用待定字母表示AM 2,BM 2,AB 2.然后讨论直角,根据勾股定理列方程即可.3.如图,抛物线233384yx x 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B 的坐标; (2)若直线l 过点E (4,0),M 为直线l 上的一个动点,当以A ,B ,M 为顶点所作的直角三角形有且只有三个时,求直线l 的表达式.OCBAy xD EM 3M 2M 1OCBAyx解:(1)A (﹣4,0),B (2,0);(2)直线l 的表达式为334yx 或334y x . 【提示】(2)若△ABM 是直角三角形,则点M 在以AB 为直径的圆上,或过A ,B 且与AB 垂直的直线上(A ,B 两点除外).由题意可得直线l 与以AB 为直径的圆相切(如图),点M 1,M 2,M 3即为满足条件的三个点,此时直线l :334yx ;根据对称性,直线l 还可以为334yx4,如图,顶点为P (4,﹣4)的二次函数图象经过原点O (0,0),点A 在该图象上, OA 交其对称轴l 于点M ,点M ,N 关于点P 对称,连结AN ,ON . (1)求该二次函数的表达式;(2)当点A 在对称轴l 右侧的二次函数图象上运动时,请回答下列问题: ①证明:∠ANM =∠ONM ;②△ANO 能否为直角三角形?如果能,请求出所有符合条件的点A 的坐标;如果不能,请说明理由.解:(1)2124y x x ;(2)①略;②△ANO 能为直角三角形,符合条件的点A 的坐标为(442,4)【提示】(2)①过点A 作AH ⊥l 于点H ,令l 与x 轴的交点为D .设点A (m ,2124m m ),则直线AO 的表达式为1(2)4ym x ,从而求得点M 的坐标为(4,m -8),N 的坐标为(4,﹣m ),只需证明tan∠ANH =tan∠OND 即可;②分类讨论:当∠ANO =90°时,∠ANM =∠ONM =45°,点N 与点P 重合,点M 与点D 重合,不满足M ,N 关于点P 对称,故此时不存在这样的点A ; 当∠NOA =90°时,有12OP MN ,求得满足条件的点A (442,4);当∠NAO =90°时,有12APMN ,即22221(4)(24)(4)4m m m m ,解得m =4,此时点A ,P 重合,不满足题意.5.抛物线y =﹣x 2+2x +3的顶点为C ,点A 的坐标为(﹣1,4),其对称轴l 上是否存在点M ,使线段MA 绕点M 逆时针旋转90°得到线段MB ,且点B 恰好落在抛物线上?若存在,求出点M 的坐标;若不存在,请说明理由. 解:存在,点M 的坐标为(1,2)或(1,5).【提示】如图,连结AC ,则AC ⊥l ,作BD ⊥l 于点D ,则△MCA ≌△BDM ,从而MD =AC =2,BD =M C .无论点A ,B 在l 同侧还是异侧,设点M (1,m ),都可得B (m -3,m -2),代入抛物线表达式即可求得m =2或5,从而点M 的坐标为(1,2)或(1,5).B 2M 2M 1D 2D 1OC B 1Al yx。
林初中2022届中考数学压轴题专项汇编专题22直角三角形的存在性
林初中2022届中考数学压轴题专项汇编专题22直角三角形的存在性破解策略以线段AB为边的直角三角形构造方法如右图所示:AEAABBFCEFBC直角三角形的另一个顶点在以A在以AB为直径的圆上,或过A、B且与AB垂直的直线上(A,B两点除外).解直角三角形的存在性问题时,若没有明确指出直角三角形的直角,就需要进行分类讨论.通常这类问题的解题策略有:(1)几何法:先分类讨论直角,再画出直角三角形,后计算.如图,若∠ACB=90°.过点A、B作经过点C的直线的垂线,垂足分别为E、F.则△AEC∽△CFB.从而得到线段间的关系式解决问题.(2)代数法:先罗列三边长,再分类讨论直角,根据勾股定理列出方程,然后解方程并检验.有时候将几何法和代数法相结合.可以使得解题又快又好!例题讲解例1如图,抛物线l:y=a某2+2某-3与r轴交于A,B(3,0)两点(点A在点B的左侧).与y轴交于点C(0,3).已知对称轴为某=1.(1)求抛物线的表达式;(2)设点P是抛物线l上任意一点,点Q在直线某=-3上,问:△PB Q能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.lyCMlyPCNQlyQAOB某AOB某AOB某MPN解:(1)由题意可得点A的坐标为(1,0).所以抛物线表达式可变为y=a(某-3)(某+1)=a某2-2a某-3a由点C的坐标可得-3a=3,a=-1所以抛物线的表达式为y=-某2+2某+3.(2)如图,过点P作PM垂直于直线l,垂足为M.过点B作BN垂直于直线PM.垂足为N.若△PBQ是以点P为直角顶点的等腰直角三角形,无论点P在BQ的上方或下方,由“弦图模型”均可得△PQM∽△BPN.所以PM=BN.设点P的坐标为(m,H,-m2+2m+3).则PM=|m+3|,BN=|-m2+2m+3|,所以|m+3|=|-m2+2m+3|.解得m1=0,m2=1,m3=所以点P的坐标为(0,3),(1,4),(3+333-33,m4=223+13-9-333-3,),(222,-9+33)2k例2如图,一次函数y=-2某+10的图象与反比例函数y=(k>0)的图象相交于A、B某两点(点A在点B的右侧),分别交某轴.y轴于点E,F.若点A 的坐标为(4,2).问:反比例函数图象的另一支上是否存在一点P.使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由,yFABOPE某yFBAOE某P解:将点A(4,2)代入反比例函数表达式,得k=8,所以反比例函数为y=8,某8某4某21y联立方程纽组,解得1,某y2y812y2某10所以点B的坐标为(1,8).由题意可得点E.F的坐标分剐为(5,0),(0,10),以AB为直角迎的直角三角形有两种情况:如图1,当∠PAB=90°时,连结OA,则OA=4222=25.而AE=1222=5,OE=5,所以OA2+AE2=OE2,即OA⊥AB.所以A,O,P三点共线.由O、A两点的坐标可得直线AP的表达式为y=1某.28y某解得某14,某24联立方程组y12y22y1某2所以点P的坐标为(-4,-2).②如图2,当∠PBA=90°时,记BP与y轴的交点为G.易证△FBC∽△FOE,所以FBFO,FGFE而FO=10.FE=5210255,FB=1222=5可求得FG=为y =515,所以点G的坐标为(0,).由B,G两点的坐标可得直线BP的表达式22115某+,22115y=某+,某=-16,某1=1,222联立方程组解得18y=8;y=-.12y=,2某所以点P的坐标为(-16,-1);21).2综上可得,满足条件的点P坐标为(-4,-2)或(-16,-yFGAPOE某图2例3如图,抛物线C1:y=a(某-2)2-5的顶点为P,与某轴相交于A,B两点(点A在点B的左侧),点A的横坐标是-1.D是某轴负半轴上的一个动点,将抛物线C1绕点D旋转180°后得到抛物线C2.抛物线C2的顶点为Q,与某轴相交于E,F两点(点E在点F的左侧).当以点P,Q,E为顶点的三角形是直角三角形时,求顶点Q的坐标.yQC1EFDAOB某C2P解由题意可得点A(-1,0),P(2,-5),B(5,0).设点D的坐标为(m,0),则点Q的坐标为(2m-2,5),E的坐标为(2m-5,0),所以PQ2=(2m-4)2+102,PE2=(2m-7)2+52,EQ2=32+52=34.△PQE为直角三角形有三种情况:①当∠PQE=90°时,有PE2=PQ2+EQ2,22即(2m-7)+52=(2m-4)+102+34,解得m=-1944,所以点Q的坐标为(-,335);②当∠QEP=90°时,有PQ2=PE2+EQ2,22即(2m-4)+102=(2m-7)+52+34,解得m=-210,所以点Q的坐标为(-,335);③当∠QPE=90°时,有EQ2=PE2+PQ2,即(2m-7)2+52+(2m-4)2+102=34,方程无解,所以此种情况不成立,综上可得,当△PQE为直角三角形时,顶点Q的坐标为(-4410,5)或(-,5).33例4如图.在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,当BE=2时,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.当正方形BEFG沿BC向右平移,记平移中的正方形BEFG为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B\'EFG的边EF与AC交于点M,连结B′D,B\'M,DM.问:是否存在这样的t,使△B\'DM是直角三角形,若存在,求出t的值;若不存在,请说明理由.ADGFBMB\'EC解存在满足条件的t.理由如下:如图,过点D作DH⊥BC于点H,过点M作MN⊥DH于点N,则BH=AD=2,DH=AB=3.所以BB′=HE=t,HB′=|t-2|,EC=4-t.易证△MEC∽△ABC,可得MEECME4-t1=,即=,所以ME=2-t.BC62AB312t-2t+8.4在Rt△B′ME中,有B′M2=ME2+B′E2=在Rt△DHB′中,有B′D2=DH2+B′H2=t2-4t+13.在Rt△DMN 中,DN=DH-NH=则DM2=DN2+MN2=1t+1.252t+t+1.4①若∠DB\'M=90°,则DM2=B\'M2+B\'D2,即521t+t+1=(t2-2t+8)+(t2-4t+13),4420;7解得t1=②若∠B\'MD=90°,则B\'D2=B\'M2+DM2,即t2-4t+13=(125t-2t+8)+(t2+t+1),44解得t2=-3+17,t3=-3-17(舍);③若∠B\'DM=90°,则B\'M2=B\'D2+DM2,即125t-2t+8=(t2-4t+13)+(t2+t+1),44此方程无解.综上所得,当t=DGF20或-3+17时,△B\'DM是直角三角形.7ANBHB\'MEC进阶训练1.如图,在平面直角坐标系某Oy中,Rt△OAB的直角顶点A在某轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了某(0<某<4)时,解答下列问题:(1)求点N的坐标(用含某的代数式表示);(2)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,yBNOMA某求出某的值;若不存在,请说明理由.解:(1)N(某,3某);464.41(2)当△OMN是直角三角形时,某的值为2或【提示】(1)过点N作NP⊥OA于点P,由△PON∽△AOB即可求得;即t2-4t+13=(125t-2t+8)+(t2+t+1),44解得t2=-3+17,t3=-3-17(舍);③若∠B\'DM=90°,则B\'M2=B\'D2+DM2,即125t-2t+8=(t2-4t+13)+(t2+t+1),44此方程无解.综上所得,当t=DGF20或-3+17时,△B\'DM是直角三角形.7ANBHB\'MEC进阶训练1.如图,在平面直角坐标系某Oy中,Rt△OAB的直角顶点A在某轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了某(0<某<4)时,解答下列问题:(1)求点N的坐标(用含某的代数式表示);(2)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,yBNOMA某求出某的值;若不存在,请说明理由.解:(1)N(某,3某);464.41(2)当△OMN是直角三角形时,某的值为2或【提示】(1)过点N作NP⊥OA于点P,由△PON∽△AOB即可求得;。
初中数学精品试题:九下思维拓展四:特殊三角形存在性问题
数学:九年级下数学思维拓展特殊三角形存在性问题班级:学号:姓名:编写人:类型1等腰三角形存在性问题例1 如图,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.类型2直角三角形、全等三角形存在性问题例2 如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.专 题 训 练1.如图,点O (0,0),A (2,2),若存在点P ,使△APO为等腰直角三角形,则点P 的个数为________.2.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x的图象于点C ,连结A C.若△ABC 是等腰三角形,则k 的值是________.3.如图,在平面直角坐标系中,已知点A (2,2),点B (2,-3).试问坐标轴上是否存在一点P ,使得△ABP 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y =n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△P AB为等腰三角形.5.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y 轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.6.如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【中考数学压轴题】十大类型之三角形的存在性
问题备考练习
一、解答题(共2道,每道50分)
1.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q 在直线l2从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).(1)求直线l2的解析式.(2)设△PCQ的面积为S,请求出S 关于t的函数关系式.(3)试探究:当t为何值时,△PCQ为等腰三角形?
2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连结
AC、BC,A、C两点的坐标分别为A(-3,0)、C,且当x=-4和x=2时二次函数的函数值y相等.(1)求实数a、b、c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。