FIR数字滤波器的设计与实现

合集下载

FIR数字滤波器设计与软件实现实验报告222

FIR数字滤波器设计与软件实现实验报告222

FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验标题:FIR数字滤波器设计与软件实现实验目的:1.学习FIR数字滤波器的基本原理和设计方法;2.掌握使用MATLAB软件进行FIR数字滤波器设计的方法;3.通过实验验证FIR数字滤波器的性能和效果。

实验器材与软件:1.个人计算机;2.MATLAB软件。

实验步骤:1.确定所需的滤波器类型和设计要求;2.根据设计要求选择合适的滤波器设计方法,如窗函数法、最优化方法等;3.使用MATLAB软件进行滤波器设计,并绘制滤波器的频率响应曲线;4.将设计好的滤波器用于信号处理,观察滤波效果。

实验结果与分析:1.进行实验前,首先确定滤波器的类型和设计要求。

例如,我们选择低通滤波器,要求通带频率为1kHz,阻带频率为2kHz,通带最大衰减为1dB,阻带最小衰减为60dB。

2.在MATLAB软件中,我们选择窗函数法进行滤波器设计。

根据设计要求,选择合适的窗函数,如矩形窗、汉宁窗等。

根据设计要求和窗函数的特点,确定滤波器的长度N和窗函数的参数。

3. 使用MATLAB中的fir1函数进行滤波器设计,并绘制滤波器的频率响应曲线。

根据频率响应曲线,可以分析滤波器的性能是否符合设计要求。

4. 将设计好的滤波器用于信号处理,观察滤波效果。

在MATLAB中,可以使用filter函数对信号进行滤波处理,然后绘制原始信号和滤波后的信号的时域波形和频谱图进行对比分析。

实验结论:1.通过本次实验,我们学习了FIR数字滤波器的基本原理和设计方法;2.掌握了使用MATLAB软件进行FIR数字滤波器设计的方法;3.实验结果显示,设计的FIR数字滤波器可以满足设计要求,具有良好的滤波效果。

4.FIR数字滤波器在数字信号处理中具有广泛的应用前景,对于滤除噪声、改善信号质量等方面有重要意义。

数字信号处理实验报告-FIR滤波器的设计与实现

数字信号处理实验报告-FIR滤波器的设计与实现

数字信号处理实验报告-FIR滤波器的设计与实现在数字信号处理中,滤波技术被广泛应用于时域处理和频率域处理中,其作用是将设计信号减弱或抑制被一些不需要的信号。

根据滤波器的非线性抑制特性,基于FIR(Finite Impulse Response)滤波器的优点是稳定,易设计,可以得到较强的抑制滤波效果。

本实验分别通过MATLAB编程设计、实现、仿真以及分析了一阶低通滤波器和平坦通带滤波器。

实验步骤:第一步:设计一阶低通滤波器,通过此滤波器对波型进行滤波处理,分析其对各种频率成分的抑制效果。

为此,采用零极点线性相关算法设计滤波器,根据低通滤波器的特性,设计的低通滤波器的阶次为n=10,截止频率为0.2π,可以使设计的滤波器被称为一阶低通滤波器。

第二步:设计平坦通带滤波器。

仿真证明,采用兩個FIR濾波器組合而成的阻礙-提升系統可以實現自定義的總三值響應的設計,得到了自定義的總三值響應函數。

实验结果:1、通过MATLAB编程,设计完成了一阶低通滤波器,并通过实验仿真得到了一阶低通滤波器的频率响应曲线,证明了设计的滤波器具有良好的低通性能,截止频率为0.2π。

在该频率以下,可以有效抑制波形上的噪声。

2、设计完成平坦通带滤波器,同样分析其频率响应曲线。

从实验结果可以看出,此滤波器在此频率段内的通带性能良好,通带范围内的信号透过滤波器后,损耗较小,滞后较小,可以满足各种实际要求。

结论:本实验经过实验操作,设计的一阶低通滤波器和平坦通带滤波器具有良好的滤波特性,均已达到预期的设计目标,证明了利用非线性抑制特性实现FIR滤波处理具有较强的抑制滤波效果。

本实验既有助于深入理解FIR滤波器的设计原理,也为其他应用系统的设计和开发提供了指导,进而提高信号的处理水平和质量。

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理FIR数字滤波器设计的基本原理是从理想滤波器的频率响应出发,寻找一个系统函数,使其频率响应尽可能逼近滤波器要求的理想频率响应。

为了实现这一目标,通常会采用窗函数法进行设计。

这种方法的基本思想是,将理想滤波器的无限长单位脉冲响应截断为有限长因果序列,并用合适的窗函数进行加权,从而得到FIR滤波器的单位脉冲响应。

在选择窗函数时,需要考虑其频率响应和幅度响应。

常见的窗函数包括矩形窗、三角形窗、汉宁窗、汉明窗、布莱克曼窗和凯泽窗等。

每种窗函数都有其特定的特性,如主瓣宽度、旁瓣衰减等。

根据实际需求,可以选择合适的窗函数以优化滤波器的性能。

在软件实现上,可以使用各种编程语言和信号处理库进行FIR滤波器的设计和实现。

例如,在MATLAB中,可以使用内置的`fir1`函数来设计FIR滤波器。

该函数可以根据指定的滤波器长度N和采样频率Fs,自动选择合适的窗函数并计算滤波器的系数。

然后,可以使用快速卷积函数`fftfilt`对输入信号进行滤波处理。

此外,还可以使用等波纹最佳逼近法来设计FIR数字滤波器。

这种方法的目标是找到一个最接近理想滤波器频率响应的实数序列,使得在所有可能的实
数序列中,该序列的误差平方和最小。

通过优化算法,可以找到这个最优序列,从而得到性能更优的FIR滤波器。

总的来说,FIR数字滤波器设计与软件实现数字信号处理实验原理是基于对理想滤波器频率响应的逼近和优化,通过选择合适的窗函数和算法,实现信号的滤波处理。

实验五FIR数字滤波器的设计

实验五FIR数字滤波器的设计

实验五FIR数字滤波器的设计FIR数字滤波器(Finite Impulse Response)是一种数字滤波器,它的输出仅由有限数量的输入样本决定。

设计FIR数字滤波器的步骤如下:1.确定滤波器的要求:首先需要明确滤波器的频率响应、截止频率、通带和阻带的幅频响应等要求。

2.选择滤波器类型:根据实际需求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。

3.确定滤波器的阶数:根据滤波器类型和要求,确定滤波器的阶数。

通常情况下,滤波器的阶数越高,能够实现更陡峭的频率响应,但会引入更多的计算复杂度。

4.设计滤波器的理想频率响应:根据滤波器的要求和类型,设计滤波器的理想频率响应。

可以使用常用的频率响应设计方法,如窗函数法、最小最大法或线性相位法等。

这些方法可以实现平滑的频率响应或者良好的阻带衰减。

5.确定滤波器的系数:根据设计的理想频率响应,通过反变换或优化算法确定滤波器的系数。

常用的优化算法包括频域方法、时域方法、最小二乘法或最小相位法等。

6.实现滤波器:将所得的滤波器系数转化为滤波器的差分方程形式或直接计算滤波器的频域响应。

7.评估滤波器性能:使用合适的测试信号输入滤波器,并对滤波器的输出进行评估。

可以使用指标,如频率响应曲线、幅度响应误差、相位响应误差或阻带衰减等指标来评估滤波器性能。

8.优化滤波器性能:根据评估结果,进行必要的修改和优化设计,以满足滤波器的要求。

通过以上步骤,可以设计出满足需求的FIR数字滤波器。

需要注意的是,FIR数字滤波器设计的复杂度和性能需要权衡与平衡,以满足实际应用的要求。

FIR数字滤波器设计与软件实现

FIR数字滤波器设计与软件实现

实验二J FIR 数字滤波器设计与软件实现 一、实验指导1.实验目的掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。

掌握F1R 滤波器的快速卷积实现原理。

学会调用MATLAB 函数设计与实现FIR 滤波器。

2.实验内容及步骤(1) 认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR 数 字滤波器的原理;(2) 调用信号产生函数xtg 产生具有加性噪声的信号XI,并自动显 示xt 及其频谱,如图1所示;(3) 请设计低通滤波器,从髙频噪声中提取xt 中的单频调幅信号, 要求信号幅频失真小于,将噪声频谱衰减60dBo 先观察xt 的频谱, 确定滤波器指标参数。

(1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

(町彳書号力口喋声漩形0 0.05 0.1 OJS 0.2 0.250.3 0.35 0 4 0,45 0.5t/3 图1具有加性噪声的信号x(t)及其频谱如图1O5务°•6(4)根据滤波器指标选择合适的窗函数.计算窗函数的长度N,调用MATLAB函数firl设计一个FIR低通滤波器。

并编写程序,调用MATLAB快速卷积函数fftmt实现对xt的滤波。

绘图显示滤波器的频响特性曲线.滤波器输出信号的幅频特性图和时域波形图。

(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。

并比较两种设计方法设计的滤波器阶数。

提示:①MATLAB函数firl的功能及其调用格式请查阅教材;②采样频率Fs=iOOOHz,釆样周期T=l/Fs;◎根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp二120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率iyp=2VpT = 0247r,通带最大衰为,阻带截至频率迅=2龙£丁 = 0・3兀,阻带最小衰为60dBo④实验程序框图如图2所示,供读者参考。

实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现
实验目的:
掌握FIR数字滤波器的设计与软件实现方法,了解滤波器的概念与基
本原理。

实验原理:
FIR数字滤波器全称为有限脉冲响应数字滤波器,其特点是具有有限
长度的脉冲响应。

滤波器通过一系列加权系数乘以输入信号的延迟值,并
将这些值相加得到输出信号。

FIR滤波器的频率响应由滤波器系数所决定。

实验步骤:
1.确定所需的滤波器的设计规格,包括截止频率、通带波纹、阻带衰
减等。

2.选择适当的滤波器设计方法,如窗函数、最佳近似法、最小二乘法等。

3.根据所选方法,计算滤波器的系数。

4.在MATLAB环境下,使用滤波器的系数实现滤波器。

5.输入所需滤波的信号,经过滤波器进行滤波处理。

6.分析输出的滤波信号,观察滤波效果是否符合设计要求。

实验要求:
1.完成FIR数字滤波器的设计和软件实现。

2.对比不同设计方法得到的滤波器性能差异。

3.分析滤波结果,判断滤波器是否满足设计要求。

实验器材与软件:
1.个人电脑;
2.MATLAB软件。

实验结果:
根据滤波器设计规格和所选的设计方法,得到一组滤波器系数。

通过
将滤波器系数应用于输入信号,得到输出滤波信号。

根据输出信号的频率
响应、通带波纹、阻带衰减等指标,评估滤波器的性能。

实验注意事项:
1.在选择设计方法时,需要根据滤波器要求和实际情况进行合理选择。

2.在滤波器实现过程中,需要注意滤波器系数的计算和应用。

3.在实验过程中,注意信号的选择和滤波结果的评估方法。

实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。

在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。

下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。

阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。

阶数的选择需要根据实际应用来进行权衡。

2.确定滤波器的类型。

根据实际需求,选择低通、高通、带通或带阻滤波器。

低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。

3.确定滤波器的参数。

根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。

这些参数决定了滤波器的性能。

4.设计滤波器的频率响应。

使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。

5.将频率响应转换为滤波器的系数。

根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。

6.实现滤波器。

将滤波器的系数应用到数字信号中,实现滤波操作。

7.优化滤波器性能。

根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。

以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。

FIR 数字滤波器设计和实现.

FIR 数字滤波器设计和实现.

2北京邮电大学信息与通信工程学院概述:IIR 和FIR 比较IIR 与FIR 性能比较IIR 数字滤波器:幅频特性较好;但相频特性较差; 有稳定性问题;FIR 数字滤波器:可以严格线性相位,又可任意幅度特性因果稳定系统可用FFT 计算(计算两个有限长序列的线性卷积但阶次比IIR 滤波器要高得多3北京邮电大学信息与通信工程学院概述:IIR 和FIR 比较IIR 与FIR 设计方法比较IIR DF :无限冲激响应,H(Z 是z -1的有理分式,借助于模拟滤波器设计方法,阶数低(同样性能要求。

其优异的幅频特性是以非线性相位为代价的。

缺点:只能设计特定类型的滤波器,不能逼近任意的频响。

FIR DF :有限冲激响应,系统函数H(Z 是z -1的多项式,采用直接逼近要求的频率响应。

设计灵活性强缺点:①设计方法复杂;②延迟大;③阶数高。

(运算量比较大,因而在实现上需要比较多的运算单元和存储单元FIR DF 的技术要求:通带频率ωp ,阻带频率ωs 及最大衰减αp ,最小衰减αs 很重要的一条是保证H(z 具有线性相位。

4北京邮电大学信息与通信工程学院概述:FIR DF 设计方法FIR 数字滤波器设计FIR 滤波器的任务:给定要求的频率特性,按一定的最佳逼近准则,选定h(n 及阶数N 。

三种设计方法:n 窗函数加权法o 频率采样法p FIR DF 的CAD --切比雪夫等波纹逼近法5北京邮电大学信息与通信工程学院概述:FIR DF 零极点FIR 滤波器的I/O 关系:10N r y(nh(rx(n r−==−∑0121(, ,,,...,=−h n n N FIR 滤波器的系统传递函数:1211011N N N rN r h(z h(z .....h(N H(zh(rzz −−−−−=++−==∑⇒在Z 平面上有N-1 个零点;在原点处有一个(N-1阶极点,永远稳定。

FIR 系统定义:一个数字滤波器DF 的输出y(n,如果仅取决于有限个过去的输入和现在的输入x(n, x(n-1,. ......, x(n-N+1,则称之为FIR DF 。

fir数字滤波器设计及软件实现

fir数字滤波器设计及软件实现

实验二 FIR 数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。

(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。

(3)掌握FIR 滤波器的快速卷积实现原理。

(4)学会调用MATLAB 函数设计与实现FIR 滤波器。

2. 两种设计FIR 滤波器的方法比较窗函数法简单方便,易于实现。

但存在以下缺点:滤波器边界频率不易精确控制。

窗函数法总使通带和阻带波纹幅度相等,不能分别控制通带和阻带波纹幅度。

所设计的滤波器在阻带边界频率附近的衰减最小,距阻带边界频率越远,衰减越大。

,所以如果在阻带边界频率附近的衰减刚好达到设计指标要求,则阻带中其他频段的衰减就有很大富余量,存在较大的资源浪费。

等波纹最佳逼近法是一种优化设计方法,克服了窗函数法的缺点,使最大误差最小化,并在整个逼近频段上均匀分布。

用等波纹最佳逼近法设计的FIR 数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。

与窗函数法相比,由于这种设计法使最大误差均匀分布,所以设计的滤波器性能价格比最高。

阶数相同时,这种设计方法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大。

指标相同时,这种设计法使滤波器阶数最低。

3. 滤波器参数及实验程序清单(1) 滤波器参数选取根据加噪信号频谱图和实验要求,可选择一低通滤波器进行滤波,确定滤波器指标参数:通带截止频率Hz f p 130=,阻带截至频率Hz f s 150=,换算成数字频率,通带截止频率ππω26.02==T f p p ,通带最大衰减为dB p 1.0=α,阻带截至频率ππω3.02==T f s s ,阻带最小衰减为dB s 60=α。

(2) 实验程序清单 图1 程序流程图信号产生函数xtg 程序清单function xt=xtg%产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz.N=1600;Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt ,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct ,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%=======设计高通滤波器hn,用于滤除噪声nt 中的低频成分,生成高通噪声======= fp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,devdev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt%================================================================ xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;figure(1);subplot(2,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/4,min(xt),max(xt)]);title('信号加噪声波形');subplot(2,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('信号加噪声的频谱');axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度');FIR数字滤波器设计及软件实现程序清单clear all;close allxt=xtg; %调用xtg产生信号xt, xt长度N=1600,并显示xt及其频谱fp=130;fs=150;Rp=0.1;As=60;Fs=1000; % 输入给定指标%用窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs;Nb=ceil(11*pi/B);hn=fir1(Nb-1,wc,blackman(Nb));y1t=fftfilt(hn,xt,1600); %调用函数fftfilt对xt滤波figure(2);t=0:0.001:1.599; %绘制滤波后的信号时域波形图subplot(2,1,1);plot(t,y1t);grid;xlabel('t/s');ylabel('y_1(t)');title('滤波后的y_1(t)的波形');axis([0 0.5 -1 1]);subplot(2,1,2);[h w]=freqz(hn); %绘制低通滤波器的损耗函数曲线plot(w/pi,20*log10(abs(h)));grid;xlabel('ω/π');ylabel('幅度(dB )');title('窗函数法低通滤波器的损耗函数曲线');axis([0 1 -120 5]);%用等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0]; %确定remezord 函数所需参数f,m,devdev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); %确定remez 函数所需参数hn=remez(Ne,fo,mo,W); %调用remez 函数进行设计y2t=fftfilt(hn,xt,1600); %调用函数fftfilt 对xt 滤波figure(3);t=0:0.001:1.599; %绘制滤波后的信号时域波形图subplot(2,1,1);plot(t,y2t);grid;xlabel('t/s');ylabel('y_2(t)');title('滤波后的y_2(t)的波形');axis([0 0.5 -1 1]);subplot(2,1,2);[h w]=freqz(hn); %绘制低通滤波器的损耗函数曲线plot(w/pi,20*log10(abs(h)));grid;xlabel('ω/π');ylabel('幅度(dB )');title('等波纹逼近法低通滤波器的损耗函数曲线');axis([0 1 -80 5]);4. 实验结果在matlab 中键入以上程序,得到的仿真结果如下图2 具有加性噪声的信号x(t)及其频谱图3 窗函数法设计的滤波器损耗函数曲线及其滤波后的信号)(1t y图4 等波纹逼近法设计的滤波器损耗函数曲线及其滤波后的信号)(2t y由上述实验结果可见用窗函数法设计滤波器,滤波器长度 Nb=184。

FIR数字滤波器设计与软件实现实验报告222

FIR数字滤波器设计与软件实现实验报告222

FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验报告标题:FIR数字滤波器设计与软件实现实验目的:1.掌握FIR数字滤波器的设计原理;2.学会使用软件进行FIR数字滤波器设计;3.实现FIR数字滤波器的软件仿真。

实验材料与设备:1.计算机;2.FIR滤波器设计软件。

实验原理:FIR(Finite Impulse Response)数字滤波器是一种线性时不变滤波器,具有无穷冲击响应长度。

其传递函数表达式为:H(z)=b0+b1*z^(-1)+b2*z^(-2)+...+bM*z^(-M)其中,H(z)为滤波器的传递函数,z为z变换的复数变量,b0,b1,...,bM为滤波器的系数,M为滤波器的阶数。

FIR滤波器的设计包括理想滤波器的设计和窗函数法的设计两种方法。

本实验使用窗函数法进行FIR滤波器的设计。

窗函数法的步骤如下:1.确定滤波器的阶数M;2.设计理想低通滤波器的频率响应Hd(w);3.根据滤波器的截止频率选择合适的窗函数W(n);4.计算滤波器的单位脉冲响应h(n);5.调整滤波器的单位脉冲响应h(n)的幅度;6.得到滤波器的系数b0,b1,...,bM。

实验步骤:1.在计算机上安装并打开FIR滤波器设计软件;2.根据实验要求选择窗函数法进行FIR滤波器的设计;3.输入滤波器的阶数M和截止频率,选择合适的窗函数;4.运行软件进行滤波器设计,得到滤波器的系数;5.使用软件进行FIR滤波器的软件仿真。

实验结果:经过软件仿真,得到了FIR数字滤波器的单位脉冲响应和频率响应曲线,满足设计要求。

滤波器的阶数和截止频率对滤波器的响应曲线有一定影响。

通过调整滤波器阶数和截止频率,可以得到不同的滤波效果。

实验结论:本实验通过窗函数法进行FIR数字滤波器的设计,并通过软件进行了仿真。

实验结果表明,FIR数字滤波器具有良好的滤波效果,可以用于信号处理和通信系统中的滤波需求。

FIR数字滤波器设计与软件实现

FIR数字滤波器设计与软件实现

实验四:FIR数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。

(2)学会调用MA TLAB函数设计FIR滤波器。

(3)通过观察频谱的相位特性曲线,建立线性相位概念。

(4)掌握FIR数字滤波器的MATLAB软件实现方法。

2.实验原理设计FIR数字滤波器一般采用直接法,如窗函数法和频率采样法。

本实验采用窗函数法设计FIR滤波器,要求能根据滤波需求确定滤波器指标参数,并按设计原理编程设计符合要求的FIR数字滤波器。

本实验软件实现是调用MATLAB提供的fftfilt函数对给定输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3. 实验内容及步骤(1) FIR数字滤波器设计根据窗函数法设计FIR数字滤波器的原理和步骤,设计一个线性数字低通滤波器,要求通带临界频率fp=120Hz,阻带临界频率fs=150Hz,通带内的最大衰减Ap=0.1dB,阻带内的最小衰减As=60db,采样频率Fs=1000Hz。

观察设计的滤波器频率特性曲线,建立线性相位概念。

(2) FIR数字滤波器软件实现利用第(1)步设计的数字滤波器,调用fftfilt函数对信号进行滤波,观察滤波前后的信号波形变化。

4.思考题(1)简述窗函数法设计FIR数字滤波器的设计步骤。

(2)简述信号在传输过程中失真的可能原因。

5.实验报告要求(1)结合实验内容打印程序清单和信号波形。

(2)对实验结果进行简单分析和解释。

(3)简要回答思考题。

常用窗函数技术参数及性能比较一览表窗类型最小阻带衰减主瓣宽度精确过渡带宽窗函数矩形窗21dB 4π/M 1.8π/M boxcar三角窗25dB 8π/M 6.1π/M bartlett汉宁窗44dB 8π/M 6.2π/M hanning哈明窗53dB 8π/M 6.6π/M hamming 布莱克曼窗74dB 12π/M 11π/M blackman 取凯塞窗时用kaiserord函数来得到长度M和βkaiser附录:(1)FIR数字滤波器设计clear;clc;close all;format compactfp=120, Ap=0.1, fs=150, As=60 ,Fs=1000,wp=2*pi*fp/Fs,ws=2*pi*fs/Fs ,Bt=ws-wp; M=ceil(11*pi/Bt);if mod(M,2)==0; N=M+1, else N=M, end;wc=(wp+ws)/2,n=0:N-1;r=(N-1)/2;hdn=sin(wc*((n-r)+eps))./(pi*((n-r)+eps));win=blackman(N); hn=hdn.*win',figure(1);freqz(hn,1,512,Fs);grid on;图(一)FIR数字滤波器(2)FIR数字滤波器软件实现n=[0:190];xn=sin((2*pi*120/1000)*n)+sin((2*pi*150/1000)*n);yn=fftfilt(hn,xn);figure(2)subplot(2,1,1);plot(xn);title('滤波前信号') ;subplot(2,1,2);plot(yn);title('滤波后信号');图(2)FIR数字滤波器软件实现思考题:(1) 用升余弦窗设计一线性相位低通FIR数字滤波器,并读入窗口长度。

FIR滤波器设计与实现实验报告

FIR滤波器设计与实现实验报告

FIR滤波器设计与实现实验报告实验报告:FIR滤波器设计与实现一、实验目的本实验旨在通过设计和实现FIR滤波器来理解数字滤波器的原理和设计过程,并且掌握FIR滤波器的设计方法和实现技巧。

二、实验原理1.选择滤波器的类型和阶数根据滤波器的类型和阶数的不同,可以实现不同的滤波效果。

常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

选择适当的滤波器类型和阶数可以实现对不同频率分量的滤波。

2.确定滤波器的系数在设计FIR滤波器时,系数的选择对滤波器的性能有重要影响。

通常可以使用窗函数法、最小二乘法、频率采样法等方法来确定系数的值。

常见的窗函数有矩形窗、汉明窗和布莱克曼窗等。

三、实验步骤1.确定滤波器的类型和阶数根据实际需求和信号特点,选择合适的滤波器类型和阶数。

例如,如果需要设计一个低通滤波器,可以选择实验中使用的巴特沃斯低通滤波器。

2.确定滤波器的频率响应根据滤波器的类型和阶数,确定滤波器的频率响应。

可以通过matlab等软件来计算和绘制滤波器的频率响应曲线。

3.确定滤波器的系数根据频率响应的要求,选择合适的窗函数和窗长度来确定滤波器的系数。

可以使用matlab等软件来计算和绘制窗函数的形状和频率响应曲线。

4.实现滤波器的功能将滤波器的系数应用于输入信号,通过加权求和得到输出信号的采样点。

可以使用matlab等软件来模拟和验证滤波器的功能。

四、实验结果在实际实验中,我们选择了一个4阶低通滤波器进行设计和实现。

通过计算和绘制滤波器的频率响应曲线,确定了窗函数的形状和窗长度。

在实际实验中,我们通过实现一个滤波器功能的matlab程序来验证滤波器的性能。

通过输入不同频率和幅度的信号,观察滤波器对信号的影响,验证了设计的滤波器的功能有效性。

五、实验总结通过本实验,我们深入了解了FIR滤波器的设计原理和实现方法。

通过设计和实现一个具体的滤波器,我们掌握了滤波器类型和阶数的选择方法,以及系数的确定方法。

FIR滤波器设计与实现-毕业设计

FIR滤波器设计与实现-毕业设计

FIR滤波器设计与实现-毕业设计实验二 FIR滤波器设计与实现班级:10通信成员:一、实验目的通过实验巩固FIR滤波器的认识和理解。

熟练掌握FIR低通滤波器的窗函数设计方法。

理解FIR的具体应用。

二、实验内容在通信、信息处理以及信号检测等应用领域广泛使用滤波器进行去噪和信号的增强。

FIR滤波器由于可实现线性相位特性以及固有的稳定特征而等到广泛应用,其典型的设计方法是窗函数设计法。

设计流程如下:(1)设定指标:截止频率fc,过渡带宽度△f,阻带衰减A。

(2)求理想低通滤波器(LPF)的时域响应hd(n)。

(3)选择窗函数w(n),确定窗长N。

(4)将hd(n)右移(N-1)/2点并加窗获取线性相位FIR滤波器的单位脉冲响应h(n)。

(5)求FIR的频域响应H(e),分析是否满足指标。

如不满足,转(3)重新选择,否则继续。

(6)求FIR的系统函数H(z)。

(7)依据差分方程由软件实现FIR滤波器或依据系统函数由硬件实现。

实验要求采用哈明窗设计一个FIR低通滤波器并由软件实现。

哈明窗函数如下:w(n) 0.54-0.46cos(),0≤n≤N-1;设采样频率为fs 10kHz。

实验中,窗长度N和截止频率fc应该都能调节。

具体实验内容如下:(1)设计FIR低通滤波器(FIR_LPF)(书面进行)。

(2)依据差分方程编程实现FIR低通滤波器。

(3)输入信号x(n) 3.0sin(0.16)+cos(0.8)到fc 2000Hz,N 65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤fs范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。

(4)输入信号x(n) 1.5sin(0.2)-cos(0.4)+1.2sin(0.9)到fc 1100Hz,N 65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤fs范围输入信号x (n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。

FIR滤波器设计与实现实验报告

FIR滤波器设计与实现实验报告

FIR滤波器设计与实现实验报告目录一、实验概述 (2)1. 实验目的 (3)2. 实验原理 (3)3. 实验设备与工具 (4)4. 实验内容与步骤 (6)5. 实验数据与结果分析 (7)二、FIR滤波器设计 (8)1. 滤波器设计基本概念 (9)2. 系数求解方法 (10)频谱采样法 (11)最小均方误差法 (14)3. 常用FIR滤波器类型 (15)线性相位FIR滤波器 (16)非线性相位FIR滤波器 (18)4. 设计实例与比较 (19)三、FIR滤波器实现 (20)1. 硬件实现基础 (21)2. 软件实现方法 (22)3. 实现过程中的关键问题与解决方案 (23)4. 滤波器性能评估指标 (25)四、实验结果与分析 (26)1. 实验数据记录与处理 (27)2. 滤波器性能测试与分析 (29)通带波动 (30)虚部衰减 (31)相位失真 (32)3. 与其他设计方案的对比与讨论 (33)五、总结与展望 (34)1. 实验成果总结 (35)2. 存在问题与不足 (36)3. 未来发展方向与改进措施 (37)一、实验概述本次实验的主要目标是设计并实现一个有限脉冲响应(Finite Impulse Response,简称FIR)滤波器。

FIR滤波器是数字信号处理中常用的一种滤波器,具有线性相位响应和易于设计的优点。

本次实验旨在通过实践加深我们对FIR滤波器设计和实现过程的理解,提升我们的实践能力和问题解决能力。

在实验过程中,我们将首先理解FIR滤波器的基本原理和特性,包括其工作原理、设计方法和性能指标。

我们将选择合适的实验工具和环境,例如MATLAB或Python等编程环境,进行FIR滤波器的设计。

我们还将关注滤波器的实现过程,包括代码编写、性能测试和结果分析等步骤。

通过这次实验,我们期望能够深入理解FIR滤波器的设计和实现过程,并能够将理论知识应用到实践中,提高我们的工程实践能力。

本次实验报告将按照“设计原理设计方法实现过程实验结果与分析”的逻辑结构进行组织,让读者能够清晰地了解我们实验的全过程,以及我们从中获得的收获和启示。

fir数字滤波器设计实验报告

fir数字滤波器设计实验报告

fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言数字滤波器是一种常见的信号处理工具,用于去除信号中的噪声或者滤波信号以达到特定的目的。

其中,FIR(Finite Impulse Response)数字滤波器是一种常见且重要的数字滤波器,其特点是具有有限冲击响应。

本实验旨在设计并实现一个FIR数字滤波器,通过对滤波器的设计和性能评估,加深对数字滤波器的理解。

设计过程1. 确定滤波器的要求在设计FIR数字滤波器之前,首先需要明确滤波器的要求。

这包括滤波器类型(低通、高通、带通或带阻)、截止频率、滤波器阶数等。

在本实验中,我们选择设计一个低通滤波器,截止频率为1kHz,滤波器阶数为32。

2. 设计滤波器的传递函数根据滤波器的要求,我们可以利用Matlab等工具设计出滤波器的传递函数。

在本实验中,我们选择使用窗函数法设计滤波器。

通过选择合适的窗函数(如矩形窗、汉宁窗等),可以得到滤波器的传递函数。

3. 确定滤波器的系数根据滤波器的传递函数,我们可以通过离散化的方法得到滤波器的系数。

这些系数将决定滤波器对输入信号的响应。

在本实验中,我们使用了Matlab的fir1函数来计算滤波器的系数。

4. 实现滤波器在得到滤波器的系数之后,我们可以将其应用于输入信号,实现滤波器的功能。

这可以通过编程语言(如Matlab、Python等)来实现,或者使用专用的数字信号处理器(DSP)来进行硬件实现。

实验结果为了评估设计的FIR数字滤波器的性能,我们进行了一系列的实验。

首先,我们使用了一个具有噪声的输入信号,并将其输入到滤波器中。

通过比较滤波器输出信号和原始信号,我们可以评估滤波器对噪声的去除效果。

实验结果显示,设计的FIR数字滤波器能够有效地去除输入信号中的噪声。

滤波后的信号更加平滑,噪声成分明显减少。

此外,滤波器的截止频率也得到了有效控制,滤波器在截止频率之后的信号衰减明显。

讨论与总结通过本次实验,我们深入了解了FIR数字滤波器的设计和实现过程。

fir数字滤波器设计实验报告

fir数字滤波器设计实验报告

fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言:数字滤波器是一种广泛应用于信号处理和通信系统中的重要工具。

其中,有一类常见的数字滤波器是FIR(Finite Impulse Response)数字滤波器。

FIR数字滤波器具有线性相位特性、稳定性好、易于设计和实现等优点,被广泛用于音频处理、图像处理、通信系统等领域。

本实验旨在通过设计一个FIR数字滤波器,探索其设计原理和实际应用。

一、实验目的本实验的目的是通过设计一个FIR数字滤波器,实现对特定信号的滤波处理。

具体来说,我们将学习以下几个方面的内容:1. FIR数字滤波器的基本原理和特点;2. FIR数字滤波器的设计方法和流程;3. 使用MATLAB软件进行FIR数字滤波器的设计和仿真。

二、实验原理1. FIR数字滤波器的基本原理FIR数字滤波器是一种线性时不变系统,其输出仅与当前输入和过去若干个输入有关,没有反馈回路。

这种特性使得FIR数字滤波器具有线性相位特性,适用于对信号的频率响应要求较高的应用场景。

FIR数字滤波器的输出可以通过卷积运算来计算,即将输入信号与滤波器的冲激响应进行卷积运算。

2. FIR数字滤波器的设计方法FIR数字滤波器的设计方法有很多种,常见的包括窗函数法、频率采样法和最优化方法等。

在本实验中,我们将使用窗函数法进行FIR数字滤波器的设计。

窗函数法的基本思想是将理想滤波器的频率响应与一个窗函数相乘,从而得到实际可实现的滤波器。

三、实验步骤1. 确定滤波器的设计要求在设计FIR数字滤波器之前,我们首先需要明确滤波器的设计要求。

包括滤波器的通带、阻带、过渡带的频率范围和响应要求等。

2. 选择窗函数和滤波器的阶数根据设计要求,选择合适的窗函数和滤波器的阶数。

常见的窗函数有矩形窗、汉宁窗、汉明窗等。

不同的窗函数对滤波器的性能有一定影响,需要根据实际情况进行选择。

3. 计算滤波器的冲激响应利用所选窗函数和滤波器的阶数,计算滤波器的冲激响应。

FIR数字滤波器设计实验_完整版

FIR数字滤波器设计实验_完整版

FIR数字滤波器设计实验_完整版FIR数字滤波器设计实验是一种以FIR(Finite Impulse Response)数字滤波器为主题的实验。

在这个实验中,我们将学习如何设计和实现一个FIR数字滤波器,以滤除特定频率范围内的噪声、增强信号或实现其他特定的信号处理功能。

以下是一个可能的FIR数字滤波器设计实验的完整版实验步骤和要求:实验目的:1.学习FIR数字滤波器的基本原理和设计方法。

2. 熟悉Matlab等数字信号处理软件的使用。

3.实践设计和实现一个FIR数字滤波器,以实现特定的信号处理功能。

实验步骤:1.确定实验所需的信号处理功能。

例如,设计一个低通滤波器以滤除高频噪声,或设计一个带通滤波器以增强特定频率范围内的信号。

2.确定数字滤波器的规格。

包括截止频率、滤波器阶数、滤波器类型(低通、高通、带通、带阻)等。

3. 使用Matlab等数字信号处理软件进行设计和仿真。

根据信号处理功能和滤波器规格,选择合适的设计方法(如窗函数法、频率采样法等),并设计出数字滤波器的系数。

4.对设计的数字滤波器进行性能评估。

通过模拟信号输入和滤波输出、频率响应曲线等方式,评估滤波器在实现信号处理功能方面的性能。

5.利用硬件平台(如DSP处理器、FPGA等)实现设计的FIR数字滤波器。

根据设计的滤波器系数,编程实现滤波器算法,并进行实时信号处理和输出。

同时,可以利用外部信号源输入不同类型的信号,进行滤波效果验证和性能测试。

6.对滤波器设计和实现进行综合分析。

根据实际效果和性能测试结果,分析滤波器设计中的优缺点,并提出改进方案。

实验要求:1.理解FIR数字滤波器的基本原理和设计方法。

2. 掌握Matlab等数字信号处理软件的使用。

3.能够根据信号处理要求和滤波器规格,选择合适的设计方法并设计出满足要求的滤波器。

4.能够通过模拟和实验验证滤波器的性能。

5.具备对滤波器设计和实现进行综合分析和改进的能力。

通过完成上述实验,学生可以深入理解FIR数字滤波器的原理和设计方法,掌握数字信号处理软件的使用,提升数字信号处理的实践能力,并了解数字滤波器在实际应用中的重要性和价值。

FIR 数字滤波器设计和实现.

FIR 数字滤波器设计和实现.

2北京邮电大学信息与通信工程学院概述:IIR 和FIR 比较IIR 与FIR 性能比较IIR 数字滤波器:幅频特性较好;但相频特性较差; 有稳定性问题;FIR 数字滤波器:可以严格线性相位,又可任意幅度特性因果稳定系统可用FFT 计算(计算两个有限长序列的线性卷积但阶次比IIR 滤波器要高得多3北京邮电大学信息与通信工程学院概述:IIR 和FIR 比较IIR 与FIR 设计方法比较IIR DF :无限冲激响应,H(Z 是z -1的有理分式,借助于模拟滤波器设计方法,阶数低(同样性能要求。

其优异的幅频特性是以非线性相位为代价的。

缺点:只能设计特定类型的滤波器,不能逼近任意的频响。

FIR DF :有限冲激响应,系统函数H(Z 是z -1的多项式,采用直接逼近要求的频率响应。

设计灵活性强缺点:①设计方法复杂;②延迟大;③阶数高。

(运算量比较大,因而在实现上需要比较多的运算单元和存储单元FIR DF 的技术要求:通带频率ωp ,阻带频率ωs 及最大衰减αp ,最小衰减αs 很重要的一条是保证H(z 具有线性相位。

4北京邮电大学信息与通信工程学院概述:FIR DF 设计方法FIR 数字滤波器设计FIR 滤波器的任务:给定要求的频率特性,按一定的最佳逼近准则,选定h(n 及阶数N 。

三种设计方法:n 窗函数加权法o 频率采样法p FIR DF 的CAD --切比雪夫等波纹逼近法5北京邮电大学信息与通信工程学院概述:FIR DF 零极点FIR 滤波器的I/O 关系:10N r y(nh(rx(n r−==−∑0121(, ,,,...,=−h n n N FIR 滤波器的系统传递函数:1211011N N N rN r h(z h(z .....h(N H(zh(rzz −−−−−=++−==∑⇒在Z 平面上有N-1 个零点;在原点处有一个(N-1阶极点,永远稳定。

FIR 系统定义:一个数字滤波器DF 的输出y(n,如果仅取决于有限个过去的输入和现在的输入x(n, x(n-1,. ......, x(n-N+1,则称之为FIR DF 。

fir数字滤波器的设计与实现

fir数字滤波器的设计与实现

fir数字滤波器的设计与实现一、引言数字滤波器是数字信号处理中的重要组成部分,它可以用于去除信号中的噪声,平滑信号等。

其中,fir数字滤波器是一种常见的数字滤波器。

本文将介绍fir数字滤波器的设计与实现。

二、fir数字滤波器概述fir数字滤波器是一种线性相位、有限脉冲响应(FIR)的数字滤波器。

它通过一系列加权系数对输入信号进行卷积运算,从而实现对信号的过滤。

fir数字滤波器具有以下特点:1. 稳定性好:由于其有限脉冲响应特性,使得其稳定性优于IIR(无限脉冲响应)数字滤波器。

2. 线性相位:fir数字滤波器在频域上具有线性相位特性,因此可以保持输入信号中各频率分量之间的相对时延不变。

3. 设计灵活:fir数字滤波器可以通过改变加权系数来实现不同的频率响应和截止频率。

三、fir数字滤波器设计步骤1. 确定需求:首先需要确定所需的频率响应和截止频率等参数。

2. 选择窗函数:根据需求选择合适的窗函数,常用的有矩形窗、汉明窗、布莱克曼窗等。

3. 计算滤波器系数:利用所选窗函数计算出fir数字滤波器的加权系数。

常见的计算方法有频率采样法、最小二乘法等。

4. 实现滤波器:将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。

四、fir数字滤波器实现方法1. 直接形式:直接将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。

该方法简单易懂,但是需要大量运算,不适合处理较长的信号序列。

2. 快速卷积形式:利用快速傅里叶变换(FFT)来加速卷积运算。

该方法可以大大减少计算量,适合处理较长的信号序列。

五、fir数字滤波器应用案例1. 语音处理:fir数字滤波器可以用于去除语音信号中的噪声和杂音,提高语音质量。

2. 图像处理:fir数字滤波器可以用于图像去噪和平滑处理,提高图像质量。

3. 生物医学信号处理:fir数字滤波器可以用于生物医学信号的滤波和特征提取,如心电信号、脑电信号等。

六、总结fir数字滤波器是一种常见的数字滤波器,具有稳定性好、线性相位和设计灵活等优点。

fir、iir数字滤波器的设计与实现

fir、iir数字滤波器的设计与实现

一、概述数字滤波器是数字信号处理中的重要部分,它可以对数字信号进行滤波、去噪、平滑等处理,广泛应用于通信、音频处理、图像处理等领域。

在数字滤波器中,fir和iir是两种常见的结构,它们各自具有不同的特点和适用场景。

本文将围绕fir和iir数字滤波器的设计与实现展开讨论,介绍它们的原理、设计方法和实际应用。

二、fir数字滤波器的设计与实现1. fir数字滤波器的原理fir数字滤波器是一种有限冲激响应滤波器,它的输出仅依赖于输入信号的有限个先前值。

fir数字滤波器的传递函数可以表示为:H(z) = b0 + b1 * z^(-1) + b2 * z^(-2) + ... + bn * z^(-n)其中,b0、b1、...、bn为滤波器的系数,n为滤波器的阶数。

fir数字滤波器的特点是稳定性好、易于设计、相位线性等。

2. fir数字滤波器的设计方法fir数字滤波器的设计通常采用频率采样法、窗函数法、最小均方误差法等。

其中,频率采样法是一种常用的设计方法,它可以通过指定频率响应的要求来确定fir数字滤波器的系数,然后利用离散傅立叶变换将频率响应转换为时域的脉冲响应。

3. fir数字滤波器的实现fir数字滤波器的实现通常采用直接型、级联型、并行型等结构。

其中,直接型fir数字滤波器是最简单的实现方式,它直接利用fir数字滤波器的时域脉冲响应进行卷积计算。

另外,还可以利用快速傅立叶变换等算法加速fir数字滤波器的实现。

三、iir数字滤波器的设计与实现1. iir数字滤波器的原理iir数字滤波器是一种无限冲激响应滤波器,它的输出不仅依赖于输入信号的有限个先前值,还依赖于输出信号的先前值。

iir数字滤波器的传递函数可以表示为:H(z) = (b0 + b1 * z^(-1) + b2 * z^(-2) + ... + bn * z^(-n)) / (1 +a1 * z^(-1) + a2 * z^(-2) + ... + am * z^(-m))其中,b0、b1、...、bn为前向系数,a1、a2、...、am为反馈系数,n为前向路径的阶数,m为反馈路径的阶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FIR 滤波器的设计一.摘 要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有着广泛的应用。

其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。

二.关键词:FIR 窗函数 系统函数 MATLAB 三.引言:数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。

(1).FIR 滤波器的基本结构在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为:nN n zn h z H ∑-==1)()( 。

从该系统函数可看出,FIR 滤波器有以下特点:1)系统的单位冲激响应h(n)在有限个n 值处不为零;2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统);3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。

1.FIR 滤波器实现的基本结构有:1) 横截型(卷积型、直接型)a.一般FIR 滤波器的横截型(直接型、卷积型)结构:若给定差分方程为:。

则可以直接由差分方程得出FIR 滤波器结构如下图所示:这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。

b .线性相位FIR 滤波器的横截型结构若h(n)呈现对称特性,即此FIR 滤波器具有线性相位,则可以简化成横截型结构,下面分情况讨论:①N 为奇数时线性相位FIR 滤波器实现结构如图所示:②N 为偶数时线性相位FIR 滤波器实现结构如图所示我们知道IIR 滤波器的优点是可利用模拟滤波器设计的结果,缺点是相位是非线性的,若需要线性相位,则要用全通网络进行校正,比较麻烦,而FIR 滤波器的优点是可以方便地实现线性相位。

2)、级联型将H (z )分解为若干个实系数一阶或二阶因子相乘:实现结构如下图所示:该结构图中有2L =M 个延迟器,2L +1=M +1个乘法器,2L =M 个加法器。

分析H (z )及结构图可以得出级联型的特点: ①每个基本节控制一对零点,便于控制滤波器的传输零点。

②系数比直接型多,所需的乘法运算多。

3)频率取样型若FIR 滤波器的冲激响应为有限长(N 点)序列h(n),则有如图所示的关系:∏=--++=Lk k k z z h z H 12,21,1)1(]0[)(ββ11β21βL1βL2β12β22βx [k ]y [k ]1-z 1-z h [0]1-z 1-z 1-z 1-z因此,对h(n)可以利用DFT得到H(k),然后利用内插公式:来表示系统函数,这就为FIR滤波器提供了另外一种结构:频率抽样结构,这种结构由两部分级联而成:分析系统函数其中级联的第一部分为:这是一个梳状滤波器,它滤掉了频率及其各次谐波。

级联的第二部分为N个一阶网络并联而成,第k个一阶网络为:它在单位圆上有一个极点:这是一个谐振频率的无损耗谐振器。

这个谐振器的极点正好与梳状滤波器的一个零点(i=k)相抵消,从而使这个频率上的频率响应等于H(k)。

这样,N个谐振器的N个极点就和梳状滤波器的N个零点相抵消,从而在N个频率抽样点上的频率响应就分别等于N 个H(k)值。

有上叙的理论分析基础可以得到FIR滤波器的频率抽样结构。

FIR滤波器的频率抽样结构如图所示:频率抽样结构的特点是它的系数H(k)就是滤波器在处的响应,因此控制滤波器的频率响应很方便。

频率抽样结构存在问题的问题是:在有限长情况下,系数量化后极点不能和零点抵消,使FIR 系统不稳定。

解决方法:在r 圆上进行(r<1但近似等于1)取样,即用r 1-z 代1-z,到单位圆内。

∑-=-----=111][1)(N k k NNNzrWk H Nzr z H(a )当N为偶数时的频率取样型结构如图所示。

(b )当N为奇数时频率抽样型结构如图所示。

4)快速卷积结构若FIR 滤波器的单位冲激响应h(n)是一个N1点有限长序列,输入x(n)是一个N2点有限长序列,那么输出y(n)是x(n)与h(n)的线性卷积,它是一个L =N1+N2-1点的有限长序列。

我们知道,将x(n)补上L -N2个零值点,将h(n)补上L -N1个零值点,然后进行L 点圆周卷积,就可以代替原x(n)与h(n)的线性卷积。

而圆周卷积可以用DFT 和IDFT 的方法来计算,这样我们得到FIR 滤波器的快速卷积结构:这里DFT 和IDFT 都将采用快速傅里叶变换算法,当N1和N2足够长时,比直接计算线性卷积要快得多。

2.线性相位FIR 滤波器的特点从以上的讨论中可以看出,我们最感兴趣的是具有线性特性的FIR 滤波器,因此在设计FIR 滤波器时,需要着重研究线性相位FIR 滤波器的特点和性质,在上述已经介绍了线性相位FIR 滤波器的横截型结构,现在介绍它的频响特性。

FIR 滤波器的单位冲激响应h(n)是有限长的(0≤n ≤N-1),其Z 变换为:其傅立叶变换为:其中H(ω)是幅度函数,是一个纯实数,可正可负, θ(ω)是相位函数。

可以证明,线性相位FIR 滤波器的冲激响应满足对称条件: h(n) =±h(N-1-n) 和)()(1)1(---±=zH zz H N(1)、线性相位FIR 滤波器的幅度函数和相位函数:(a )当h(n)是偶对称时,其幅度函数和相位函数分别为:特点:幅度函数H(ω)包括正负值,相位函数是严格线性相位,滤波器有(N-1)/2个抽样周期的延时,它等于单位抽样响应h(n)长度N 的一半。

(b )当h(n)是奇对称时,其幅度函数和相位函数分别为:特点:相位函数是严格线性相位,但在零频率(ω=0)处有π/2的相移。

仍有(N-1)个抽样周期的延时。

因此当h(n)为奇对称时,FIR滤波器将是一个具有准确相位的正交变换网络。

(2)、 FIR滤波器的线性相位特性FIR滤波器的线性相位特性如图所示。

(3)、任何一种线性相位FIR滤波器的群延时都为:(4)FIR滤波器幅度函数的特点分四种情况分别讨论H(ω)的特点:(a)当h(n)偶对称,N为奇数时:幅度函数的特点:H(ω)对ω=0,,呈偶对称。

(b)当h(n)偶对称,N为偶数时:幅度函数的特点:当时,,在z=-1处有一个零点,对是奇对称;如果滤波器在处幅度不为零(如高通滤波器),则不能用这种滤波器。

(c )当h(n)奇对称,N 为奇数时幅度函数的特点:H (ω)在ω=0, ,处都为零,也就是H(z)在 处为零;H (ω)对ω=0,,都成奇对称。

(d )当h(n)奇对称,N 为偶数时:幅度函数的特点:H (ω)在ω=0, 处为零,即H(z)在z=1处为零点;H (ω)对ω=0,呈奇对称,对ω=呈偶对称。

(5)、零点位置:线性相位FIR 滤波器的系统函数有以下关系:可见,若i z z =是H(z)的零点,则i z z /1=也一定是H(z)的零点。

又由于当h(n)是实数时,H(z)的零点必成共轭对出现,所以i z z =及i z z /1=也一定是H(z)的零点。

因而线性相位FIR 滤波器的零点必是互为倒数的共轭对。

其有四种可能性:(1) 既不在实轴上,也不在单位园上,则是互为倒数的两组共轭对。

(2) 不在实轴上,但是在单位园上,则共轭对的倒数是它们本身,故只有一组共轭对。

(3) 在实轴上而不在单位园上,只有倒数部分,无复共轭部分。

(4)既在实轴上又在单位园上,有两种可能,z =1或z =-1。

四.设计心得与体会作为一个电子信息类专业的学生,数字信号处理是我们的重要专业课程,是我们将来从事通信事业的基本保障。

通过对该课程的学习,我们对数字通信理论有了更进一步的理解;通过对该数字滤波器的设计,我们也了解了数字滤波器的基本结构和基本特性,而且还掌握了基本的撰写论文的形式和思路。

通过对作为该论文的重要部分—MATLAB的运用,从而大大提高了我们对集计算,编程与绘图于一体的该应用软件的运用能力。

MATLAB包含的几十个工具箱,覆盖了通信,自动控制,信号处理,图象处理,财经,化工,生命科学等科学技术领域,汲取了当今世界这些领域的最新研究成果,已经成为从事科学研究和工程设计不可缺少的工具软件。

该论文将数字信号处理的有关教学内容和MATLAB语言紧密,有机地结合起来,使我们在学习基础理论知识的同时学会了应用MATLAB,在学习应用MATLAB的同时,加深了对基本知识的理解,增强了我们的计算机应用能力,提高了学习效果。

总之,无论是从教学知识掌握出发,还是从对MATLAB的应用出发,通过对数字滤波器的设计,我们受益非浅。

参考文献:程佩青编. 数字信号处理教程(第三版). 北京:清华大学出版社,2009。

相关文档
最新文档