FIR数字滤波器课程设计报告
fir滤波器设计实验报告
fir滤波器设计实验报告fir滤波器设计实验报告引言:滤波器是数字信号处理中常用的工具,它能够对信号进行去噪、频率分析和频率选择等处理。
其中,FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,具有线性相位和稳定性等优点。
本实验旨在设计一个FIR滤波器,并通过实际测试验证其性能。
一、实验目的本实验的目的是通过设计一个FIR滤波器,掌握FIR滤波器的设计方法和性能评估。
具体包括以下几个方面:1. 了解FIR滤波器的基本原理和特点;2. 学习FIR滤波器的设计方法,如窗函数法、最小二乘法等;3. 掌握MATLAB等工具的使用,实现FIR滤波器的设计和性能评估;4. 通过实际测试,验证所设计FIR滤波器的性能。
二、实验原理FIR滤波器是一种非递归滤波器,其输出仅依赖于当前和过去的输入样本。
其基本原理是将输入信号与一组滤波器系数进行卷积运算,得到输出信号。
FIR滤波器的频率响应由滤波器系数决定,通过调整滤波器系数的值,可以实现不同的滤波效果。
在本实验中,我们采用窗函数法设计FIR滤波器。
窗函数法是一种常见的FIR滤波器设计方法,其基本思想是通过对滤波器的频率响应进行窗函数加权,从而实现对信号频率的选择。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等。
三、实验过程1. 确定滤波器的要求:根据实际需求,确定滤波器的截止频率、通带衰减和阻带衰减等参数。
2. 选择窗函数:根据滤波器的要求,选择合适的窗函数。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等,不同窗函数有不同的性能特点。
3. 计算滤波器系数:根据所选窗函数的特性,计算滤波器的系数。
这一步可以使用MATLAB等工具进行计算,也可以手动计算。
4. 实现滤波器:使用MATLAB等工具,将计算得到的滤波器系数应用于滤波器的实现。
可以使用差分方程、卷积等方法实现滤波器。
5. 评估滤波器性能:通过输入不同的信号,观察滤波器的输出,并评估其性能。
FIR滤波器设计实验报告
FIR滤波器设计实验报告实验报告:FIR滤波器设计一、实验目的:本实验旨在通过设计FIR滤波器,加深对数字信号处理中滤波器原理的理解,掌握FIR滤波器的设计方法和调试技巧。
二、实验原理:在窗函数法中,常用的窗函数有矩形窗、三角窗、汉明窗和黑曼窗等。
根据实际需求选择适当的窗口函数,并通过将窗口函数应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
三、实验步骤:1.确定滤波器的阶数和截止频率。
2.选择适当的窗口函数,如汉明窗。
3.计算出理想低通滤波器的冲激响应。
4.将选定的窗口函数应用到理想低通滤波器的冲激响应中。
5.得到FIR滤波器的冲激响应。
四、实验结果:假设要设计一个阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz。
1.选择汉明窗作为窗口函数。
2.根据采样频率和截止频率计算出理想低通滤波器的冲激响应。
假设截止频率为f_c,则理想低通滤波器的冲激响应为:h(n) = 2f_c * sinc(2f_c * (n - (N-1)/2))其中,sinc(x)为正弦函数sin(x)/x。
3.将汉明窗应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
具体计算过程如下:h(n) = w(n) * h_ideal(n)其中,w(n)为汉明窗:w(n) = 0.54 - 0.46 * cos(2πn/(N-1))h_ideal(n)为理想低通滤波器的冲激响应。
4.计算得到FIR滤波器的冲激响应序列。
五、实验总结:本次实验通过设计FIR滤波器,加深了对数字信号处理中滤波器原理的理解。
掌握了FIR滤波器的设计方法和调试技巧。
通过设计阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz的实例,了解了窗函数法设计FIR滤波器的具体步骤,并得到了滤波器的冲激响应。
【备注】以上内容仅为参考,具体实验报告内容可能根据实际情况有所调整。
FIR数字滤波器设计与软件实现实验报告222
FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验标题:FIR数字滤波器设计与软件实现实验目的:1.学习FIR数字滤波器的基本原理和设计方法;2.掌握使用MATLAB软件进行FIR数字滤波器设计的方法;3.通过实验验证FIR数字滤波器的性能和效果。
实验器材与软件:1.个人计算机;2.MATLAB软件。
实验步骤:1.确定所需的滤波器类型和设计要求;2.根据设计要求选择合适的滤波器设计方法,如窗函数法、最优化方法等;3.使用MATLAB软件进行滤波器设计,并绘制滤波器的频率响应曲线;4.将设计好的滤波器用于信号处理,观察滤波效果。
实验结果与分析:1.进行实验前,首先确定滤波器的类型和设计要求。
例如,我们选择低通滤波器,要求通带频率为1kHz,阻带频率为2kHz,通带最大衰减为1dB,阻带最小衰减为60dB。
2.在MATLAB软件中,我们选择窗函数法进行滤波器设计。
根据设计要求,选择合适的窗函数,如矩形窗、汉宁窗等。
根据设计要求和窗函数的特点,确定滤波器的长度N和窗函数的参数。
3. 使用MATLAB中的fir1函数进行滤波器设计,并绘制滤波器的频率响应曲线。
根据频率响应曲线,可以分析滤波器的性能是否符合设计要求。
4. 将设计好的滤波器用于信号处理,观察滤波效果。
在MATLAB中,可以使用filter函数对信号进行滤波处理,然后绘制原始信号和滤波后的信号的时域波形和频谱图进行对比分析。
实验结论:1.通过本次实验,我们学习了FIR数字滤波器的基本原理和设计方法;2.掌握了使用MATLAB软件进行FIR数字滤波器设计的方法;3.实验结果显示,设计的FIR数字滤波器可以满足设计要求,具有良好的滤波效果。
4.FIR数字滤波器在数字信号处理中具有广泛的应用前景,对于滤除噪声、改善信号质量等方面有重要意义。
FIR数字滤波器的设计实验报告
数字信号处理实验报告姓名:寇新颖 学号:026 专业:电子信息科学与技术实验五 FIR 数字滤波器的设计一、实验目的1.熟悉FIR 滤波器的设计基本方法2.掌握用窗函数设计FIR 数字滤波器的原理与方法,熟悉相应的计算机高级语言编程。
3.熟悉线性相位FIR 滤波器的幅频特性和相位特性。
4.了解各种不同窗函数对滤波器性能的影响。
二、实验原理与方法FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d eH ,其对应的单位脉冲响应)(n h d 。
1.用窗函数设计FIR 滤波器的基本方法设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。
设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。
以低通线性相位FIR 数字滤波器为例。
⎰∑--∞-∞===ππωωωωωπd e e Hn h e n he H jn j dd jn n dj d )(21)()()()(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即⎩⎨⎧-==2/)1()()()(N a n w n h n h d 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
2.典型的窗函数(1)矩形窗(Rectangle Window))()(n R n w N =其频率响应和幅度响应分别为:21)2/sin()2/sin()(--=N j j eN e W ωωωω,)2/sin()2/sin()(ωωωN W R =(2)三角形窗(Bartlett Window)⎪⎩⎪⎨⎧-≤<----≤≤-=121,122210,12)(N n N N n N n N n n w其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωωωω(3)汉宁(Hanning)窗,又称升余弦窗)()]12cos(1[21)(n R N n n w N --=π其频率响应和幅度响应分别为:)]12()12([25.0)(5.0)()()]}12()12([25.0)(5.0{)()21(-++--+==-++--+=---N W N W W W e W eN W N W W e W R R R aj N j R R R j πωπωωωωπωπωωωωω(4)汉明(Hamming)窗,又称改进的升余弦窗)()]12cos(46.054.0[)(n R N n n w N --=π其幅度响应为:)]12()12([23.0)(54.0)(-++--+=N W N W W W R R R πωπωωω (5)布莱克曼(Blankman)窗,又称二阶升余弦窗)()]14cos(08.0)12cos(5.042.0[)(n R N n N n n w N -+--=ππ 其幅度响应为:)]14()14([04.0)]12()12([25.0)(42.0)(-++--+-++--+=N W N W N W N W W W R R R R R πωπωπωπωωω(6)凯泽(Kaiser)窗10,)())]1/(21[1()(020-≤≤---=N n I N n I n w ββ其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
FIR滤波器设计实验报告
FIR滤波器设计实验报告实验目的:学习和掌握有限脉冲响应(FIR)滤波器的设计方法,了解数字滤波器的原理和实现。
实验器材:计算机、Matlab软件、FIR滤波器设计工具。
实验原理:1.确定滤波器的规格:包括通带频率、阻带频率、通带纹波、阻带衰减等参数。
2. 根据滤波器规格选择合适的FIR滤波器设计方法:常见的设计方法有窗函数法、频域近似法、Remez算法等。
3.根据设计方法计算FIR滤波器的系数:根据设计方法的不同,计算滤波器的系数也有所区别。
4.对FIR滤波器进行验证和优化:可以通过频率响应、幅频特性等指标对滤波器进行调整,并进行验证。
实验步骤:1.确定滤波器规格:设置通带频率为3kHz,阻带频率为5kHz,通带纹波为0.01dB,阻带衰减为40dB。
2.选择窗函数法进行FIR滤波器设计。
3.根据滤波器规格计算滤波器的阶数。
4.根据阶数选择合适的窗函数。
5.计算FIR滤波器的系数。
6.通过绘制滤波器的频率响应曲线进行验证。
7.分析滤波器的性能,并对滤波器进行优化。
实验结果:根据以上步骤进行设计和计算,得到了FIR滤波器的系数,利用Matlab绘制了滤波器的频率响应曲线。
分析和讨论:根据频率响应曲线,可以看出滤波器在通带频率范围内有较好的衰减效果,滤波器的阻带频率范围内衰减也满足要求。
但是在通带和阻带之间存在一定的过渡带,可能会对信号造成一部分的失真。
因此,可以考虑进一步优化滤波器的设计,使其在通带和阻带之间的过渡带更加平滑,减小失真的影响。
结论:通过本次实验,我们学习并掌握了FIR滤波器的设计方法,了解了数字滤波器的原理和实现。
在实际应用中,可以根据需要选择合适的FIR滤波器设计方法,并根据滤波器的规格进行计算和调整。
通过不断优化和验证,可以得到满足要求的FIR滤波器,实现对数字信号的滤波处理。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告Title: FIR Digital Filter Design Experiment ReportAbstract:This experiment aims to design a Finite Impulse Response (FIR) digital filter using MATLAB software. The FIR filter is a type of digital filter that is widely used in signal processing applications. In this experiment, we will design a low-pass FIR filter with specified frequency response characteristics and then implement it using MATLAB.Introduction:Digital filters are essential components in signal processing systems. They are used to remove unwanted noise, extract specific frequency components, and improve the overall quality of signals. FIR filters are a popular choice due to their linear phase response and stability. In this experiment, we will focus on designing a low-pass FIR filter, which attenuates high-frequency components while passing low-frequency components.Methodology:1. Specification of filter characteristics: The first step is to specify the desired frequency response characteristics of the FIR filter, such as the cutoff frequency and the stopband attenuation.2. Design of filter coefficients: Using MATLAB, the filter coefficients are calculated using the specified filter characteristics. This involves determining the filter length and the coefficients that will achieve the desired frequency response.3. Implementation of the filter: The designed filter coefficients are then used to implement the FIR filter in MATLAB. The input signal is passed through the filter to observe the filtering effect.Results:The designed FIR filter successfully meets the specified frequency response characteristics. The filter effectively attenuates high-frequency components while passing low-frequency components, as intended. The implementation of the filter in MATLAB also demonstrates its practical application in signal processing.Conclusion:In conclusion, this experiment has provided hands-on experience in designing and implementing a low-pass FIR digital filter. The use of MATLAB software has facilitated the process and allowed for a deeper understanding of digital filter design. FIR filters are powerful tools in signal processing and their design and implementation are crucial skills for engineers and researchers in various fields. Overall, this experiment has provided valuable insights into the design and implementation of FIR digital filters, and has enhanced our understanding of their applications in signal processing.。
fir滤波器设计实验报告
fir滤波器设计实验报告一、实验目的本次实验的目的是设计FIR滤波器,从而实现信号的滤波处理。
二、实验原理FIR滤波器是一种数字滤波器,它采用有限长的冲激响应滤波器来实现频率选择性的滤波处理。
在FIR滤波器中,系统的输出只与输入和滤波器的系数有关,不存在反馈环路,因此具有稳定性和线性相位的特性。
FIR滤波器的设计最常采用Window法和最小二乘法。
Window法是指先对理想滤波器的频率特性进行窗函数的处理,再通过离散傅里叶变换来得到滤波器的时域响应。
最小二乘法则是指采用最小二乘法来拟合理想滤波器的频率特性。
本次实验采用的是Window法。
三、实验步骤1.设计滤波器的频率响应特性:根据实际需要设计出需要的滤波器的频率响应特性,通常采用理想滤波器的底通、高通、带通、带阻等特性。
2.选择窗函数:根据设计的滤波器的频率响应特性选择相应的窗函数,常用的窗函数有矩形窗、汉宁窗、汉明窗等。
3.计算滤波器的时域响应:采用离散傅里叶变换将设计的滤波器的频率响应特性转化为时域响应,得到滤波器的冲激响应h(n)。
4.归一化:将得到的滤波器的冲激响应h(n)进行归一化处理,得到单位加权的滤波器系数h(n)。
5.实现滤波器的应用:将得到的滤波器系数h(n)应用于需要滤波的信号中,通过卷积的方式得到滤波后的信号。
四、实验结果以矩形窗为例,设计一阶低通滤波器,截止频率为300Hz,采样频率为8000Hz,得到的滤波器系数为:h(0)=0.0025h(1)=0.0025滤波效果良好,经过滤波后的信号频率响应相对于滤波前有较明显的截止效应。
五、实验总结通过本次实验,我们掌握了FIR滤波器的设计方法,窗函数的选择和离散傅里叶变换的应用,使我们能够更好地处理信号,实现更有效的信号滤波。
在日常工作和学习中,能够更好地应用到FIR滤波器的设计和应用,提高信号处理的精度和效率。
FIR数字滤波器设计与软件实现实验报告222
FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验报告标题:FIR数字滤波器设计与软件实现实验目的:1.掌握FIR数字滤波器的设计原理;2.学会使用软件进行FIR数字滤波器设计;3.实现FIR数字滤波器的软件仿真。
实验材料与设备:1.计算机;2.FIR滤波器设计软件。
实验原理:FIR(Finite Impulse Response)数字滤波器是一种线性时不变滤波器,具有无穷冲击响应长度。
其传递函数表达式为:H(z)=b0+b1*z^(-1)+b2*z^(-2)+...+bM*z^(-M)其中,H(z)为滤波器的传递函数,z为z变换的复数变量,b0,b1,...,bM为滤波器的系数,M为滤波器的阶数。
FIR滤波器的设计包括理想滤波器的设计和窗函数法的设计两种方法。
本实验使用窗函数法进行FIR滤波器的设计。
窗函数法的步骤如下:1.确定滤波器的阶数M;2.设计理想低通滤波器的频率响应Hd(w);3.根据滤波器的截止频率选择合适的窗函数W(n);4.计算滤波器的单位脉冲响应h(n);5.调整滤波器的单位脉冲响应h(n)的幅度;6.得到滤波器的系数b0,b1,...,bM。
实验步骤:1.在计算机上安装并打开FIR滤波器设计软件;2.根据实验要求选择窗函数法进行FIR滤波器的设计;3.输入滤波器的阶数M和截止频率,选择合适的窗函数;4.运行软件进行滤波器设计,得到滤波器的系数;5.使用软件进行FIR滤波器的软件仿真。
实验结果:经过软件仿真,得到了FIR数字滤波器的单位脉冲响应和频率响应曲线,满足设计要求。
滤波器的阶数和截止频率对滤波器的响应曲线有一定影响。
通过调整滤波器阶数和截止频率,可以得到不同的滤波效果。
实验结论:本实验通过窗函数法进行FIR数字滤波器的设计,并通过软件进行了仿真。
实验结果表明,FIR数字滤波器具有良好的滤波效果,可以用于信号处理和通信系统中的滤波需求。
FIR数字滤波器的设计报告
一、实验名称:FIR 数字滤波器的设计 二、实验内容:1. 分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽11=N ,截止频率rad c πω2.0=,要求绘出两种窗函数设计的滤波器幅频曲线。
程序代码:N=11;h1=fir1(N-1,0.2,boxcar(N)); h2=fir1(N-1,0.2,hamming(N)); w=0:0.01:pi; H1=freqz(h1,1,w);H1db=20*log10(abs(H1)/max(abs(H1))); H2=freqz(h2,1,w);H2db=20*log10(abs(H2) /max(abs(H1))); subplot(1,2,1)plot(w/pi,abs(H1),'-.',w/pi,abs(H2)) legend('矩形窗','哈明窗'); xlabel('w/pi');ylabel('幅频响应'); subplot(1,2,2)plot(w/pi,H1db,'-.',w/pi,H2db) xlabel('w/pi');ylabel('dB'); legend('矩形窗','哈明窗'); 图形:0.510.20.40.60.811.2w/pi幅频响应0.51-120-100-80-60-40-2020w/pid B2. 设计一个线性相位FIR 低通滤波器,通带截止频率为rad p πω2.0=,阻带截止频率为rad s πω4.0=,阻带最小衰减为dB s 50=α。
要求分别绘制理想脉冲响应曲线,哈明窗曲线,实际脉冲响应曲线,FIR 低通滤波器的幅频曲线(分贝形式)。
程序代码:wp=0.2*pi;ws=0.4*pi;tr_width=ws-wp; %计算过渡带的带宽N=ceil(8*pi/tr_width); %计算滤波器的阶次 n=0:N-1;wc=(ws+wp)/2; %计算3 dB 截止频率 alpha=(N-1)/2; %单位响应的对称中心m=n-alpha;hd=sin(wc*m)./(pi*m); %理想低通滤波器的单位响应 w_ham=(hamming(N))';h=hd.*w_ham; %实际滤波器的单位响应 w=0:0.01:pi;H=freqz(h,1,w); %实际滤波器的幅频特性 dbH=20*log10(abs(H)/max(abs(H)));subplot(221);stem(n,hd,’.’);title('理想单位响应'); xlabel('n');ylabel('hd(n)');subplot(222);stem(n,w_ham,’.’);title('哈明窗'); xlabel('n');ylabel('w(n)');subplot(223);stem(n,h,’.’);title('实际单位响应'); xlabel('n');ylabel('h(n)');subplot(224);plot(w/pi,db);title('幅频响应'); xlabel('w/pi');ylabel('分贝数'); 图形:102030理想单位响应nh d (n)哈明窗n w (n )nh (n )0.20.41-120-100-505幅频响应w/pi分贝数3. 利用频率采样法设计线性相位低通滤波器,要求3 dB 截止频率rad c 2/πω=,采样点数取33=N ,选用)1()(n N h n h --=的情况。
实验四 FIR数字滤波器的设计(实验报告)
实验四 FIR数字滤波器的设计(实验报告)《数字信号处理》实验报告学院专业电子信息工程班级姓名学号时间实验四FIR数字滤波器的设计一、实验目的1、掌握用窗函数法、频率采样法及优化算法设计FIR 滤波器的原理及步骤,学会相应的MATLAB编程。
2、熟悉具有线性相位的FIR滤波器的幅频特性和相频特性。
3、了解各种不同窗函数对滤波器性能的影响。
二、实验内容1、用窗函数法设计一个FIR数字低通滤波器LPDF,验证设计结果的幅频特性和相频特性。
要求:通带截止频率ωp=π,通带波纹Rp=,阻带截止频率ωs=π,阻带衰减As=50dB。
50Magnitude (dB) Frequency ( rad/sample) (degrees)- Frequency ( rad/sample)图1-1 低通滤波器LPDF的频率响应图1-2 低通滤波器LPDF的零极点图单位脉冲响应h(n)的数据长度= 45 对称性为:偶对称得到的滤波器通带边界点( 326 )和阻带边界点参数2、用窗函数法设计一个FIR数字高通滤波器HPDF,验证设计结果的幅频特性和相频特性。
要求:通带截止频率ωp=π,通带波纹Rp=,阻带截止频率ωs=π,阻带衰减As=50dB。
Real Part50Magnitude (dB) Frequency ( rad/sample) (degrees) Frequency ( rad/sample)图2-1 高通滤波器HPDF的频率响应图2-2 高通滤波器HPDF的零极点图-滤波器H(z)零点个数= h(n)对称性为:偶对称得到的滤波器通带边界点( 426 )和阻带边界点参数3、用窗函数法设计一个FIR数字带通滤波器BPDF,验证设计结果的幅频特性和相频特性。
要求:阻带截止频率ωs1=π,衰减65dB,通带截止频率ωp1=π→ωp2=π范围内衰减,高端阻带截止频率ωs2=π,阻带衰减As=65dB。
501Magnitude (dB)0-50-100Imaginary Frequency ( rad/sample) Frequency ( rad/sample) (degrees)0-20XX-4000-6000图3-1 带通滤波器BPDF的频率响应图3-2 带通滤波器BPDF的零极点图 FIR滤波器的阶次= 111 h(n)对称性为:偶对称得到的滤波器通带边界点( 298、704 )和阻带边界点参数中心频率:通带带宽:4、用窗函数法设计一个FIR数字带阻滤波器BSDF,验证设计结果的幅频特性和相频特性。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告FIR数字滤波器设计实验报告概述数字滤波器是数字信号处理中的重要组成部分,广泛应用于音频、图像、视频等领域。
其中,FIR数字滤波器是一种常见的数字滤波器,具有线性相位、稳定性好、易于实现等优点。
本实验旨在设计一种基于FIR数字滤波器的信号处理系统,实现对信号的滤波和降噪。
实验步骤1. 信号采集需要采集待处理的信号。
本实验采用的是模拟信号,通过采集卡将其转换为数字信号,存储在计算机中。
2. 滤波器设计接下来,需要设计FIR数字滤波器。
为了实现对信号的降噪,我们选择了低通滤波器。
在设计滤波器时,需要确定滤波器的阶数、截止频率等参数。
本实验中,我们选择了8阶低通滤波器,截止频率为500Hz。
3. 滤波器实现设计好滤波器后,需要将其实现。
在本实验中,我们采用MATLAB 软件实现FIR数字滤波器。
具体实现过程如下:定义滤波器的系数。
根据滤波器设计的公式,计算出系数值。
利用MATLAB中的filter函数对信号进行滤波。
将采集到的信号作为输入,滤波器系数作为参数,调用filter函数进行滤波处理。
处理后的信号即为滤波后的信号。
4. 结果分析需要对处理后的信号进行分析。
我们可以通过MATLAB绘制出处理前后的信号波形图、频谱图,比较它们的差异,以评估滤波器的效果。
结果显示,经过FIR数字滤波器处理后,信号的噪声得到了有效的降低,滤波效果较好。
同时,频谱图也显示出了滤波器的低通特性,截止频率处信号衰减明显。
结论本实验成功设计并实现了基于FIR数字滤波器的信号处理系统。
通过采集、滤波、分析等步骤,我们实现了对模拟信号的降噪处理。
同时,本实验还验证了FIR数字滤波器的优点,包括线性相位、稳定性好等特点。
在实际应用中,FIR数字滤波器具有广泛的应用前景。
FIR滤波器设计与实现实验报告
FIR滤波器设计与实现实验报告实验报告:FIR滤波器设计与实现一、实验目的本实验旨在通过设计和实现FIR滤波器来理解数字滤波器的原理和设计过程,并且掌握FIR滤波器的设计方法和实现技巧。
二、实验原理1.选择滤波器的类型和阶数根据滤波器的类型和阶数的不同,可以实现不同的滤波效果。
常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
选择适当的滤波器类型和阶数可以实现对不同频率分量的滤波。
2.确定滤波器的系数在设计FIR滤波器时,系数的选择对滤波器的性能有重要影响。
通常可以使用窗函数法、最小二乘法、频率采样法等方法来确定系数的值。
常见的窗函数有矩形窗、汉明窗和布莱克曼窗等。
三、实验步骤1.确定滤波器的类型和阶数根据实际需求和信号特点,选择合适的滤波器类型和阶数。
例如,如果需要设计一个低通滤波器,可以选择实验中使用的巴特沃斯低通滤波器。
2.确定滤波器的频率响应根据滤波器的类型和阶数,确定滤波器的频率响应。
可以通过matlab等软件来计算和绘制滤波器的频率响应曲线。
3.确定滤波器的系数根据频率响应的要求,选择合适的窗函数和窗长度来确定滤波器的系数。
可以使用matlab等软件来计算和绘制窗函数的形状和频率响应曲线。
4.实现滤波器的功能将滤波器的系数应用于输入信号,通过加权求和得到输出信号的采样点。
可以使用matlab等软件来模拟和验证滤波器的功能。
四、实验结果在实际实验中,我们选择了一个4阶低通滤波器进行设计和实现。
通过计算和绘制滤波器的频率响应曲线,确定了窗函数的形状和窗长度。
在实际实验中,我们通过实现一个滤波器功能的matlab程序来验证滤波器的性能。
通过输入不同频率和幅度的信号,观察滤波器对信号的影响,验证了设计的滤波器的功能有效性。
五、实验总结通过本实验,我们深入了解了FIR滤波器的设计原理和实现方法。
通过设计和实现一个具体的滤波器,我们掌握了滤波器类型和阶数的选择方法,以及系数的确定方法。
FIR数字滤波器课程设计报告
FIR数字滤波器课程设计报告数字滤波器是一种通过数字信号处理来实现滤波的设备,主要用于去除信号中的噪声或不需要的频率成分。
在本次课程设计中,我们将设计一个FIR(有限冲激响应)数字滤波器,用于对输入信号进行滤波处理。
一、设计目标设计一个离散时间FIR数字滤波器,具有以下特点:1.滤波器类型:低通滤波器2.滤波器阶数:10阶3.截止频率:2kHz4.采样频率:4kHz二、设计步骤1.确定滤波器系数:根据滤波器类型、阶数和截止频率,利用滤波器设计工具进行计算,得到滤波器的系数。
2.实现滤波器:将滤波器系数作为滤波器的输入,通过算法实现滤波器的功能。
3.验证滤波器性能:使用信号发生器生成一组测试信号,将其输入到滤波器中,并通过示波器观察滤波后的信号波形。
三、滤波器系数计算1.选择滤波器类型为低通滤波器,即希望通过滤波器的信号为低频信号,而将高频信号滤除。
2.选择滤波器阶数为10阶,即滤波器具有10个延迟单元。
3.选择截止频率为2kHz,即希望2kHz以下的信号通过滤波器,2kHz以上的信号被滤除。
四、滤波器实现采用直接型FIR滤波器结构来实现该低通滤波器。
具体算法如下:1.输入信号x(n)和滤波器系数h(n),其中n表示时刻。
2.延时单元:将输入信号每次延迟一个单位,即x(n)→x(n-1)。
3.权重系数:将延时后的信号与对应的滤波器系数相乘得到权重系数,即a(n)=x(n-1)×h(n)。
4.累加求和:将所有的权重系数相加求和得到输出信号,即y(n)=∑a(n)。
五、滤波器性能验证使用信号发生器产生频率为1kHz,幅度为1V的正弦波信号作为输入信号,将其输入到滤波器中,并通过示波器观察滤波后的信号波形。
同时,使用频谱分析仪观察滤波前后信号的频谱图,并比较滤波效果。
六、总结与改进通过本次课程设计,我们成功设计并实现了一个FIR数字滤波器。
滤波器具有低通特性,能够有效滤除高频信号,保留低频信号。
FIR滤波器设计与实现实验报告
FIR滤波器设计与实现实验报告目录一、实验概述 (2)1. 实验目的 (3)2. 实验原理 (3)3. 实验设备与工具 (4)4. 实验内容与步骤 (6)5. 实验数据与结果分析 (7)二、FIR滤波器设计 (8)1. 滤波器设计基本概念 (9)2. 系数求解方法 (10)频谱采样法 (11)最小均方误差法 (14)3. 常用FIR滤波器类型 (15)线性相位FIR滤波器 (16)非线性相位FIR滤波器 (18)4. 设计实例与比较 (19)三、FIR滤波器实现 (20)1. 硬件实现基础 (21)2. 软件实现方法 (22)3. 实现过程中的关键问题与解决方案 (23)4. 滤波器性能评估指标 (25)四、实验结果与分析 (26)1. 实验数据记录与处理 (27)2. 滤波器性能测试与分析 (29)通带波动 (30)虚部衰减 (31)相位失真 (32)3. 与其他设计方案的对比与讨论 (33)五、总结与展望 (34)1. 实验成果总结 (35)2. 存在问题与不足 (36)3. 未来发展方向与改进措施 (37)一、实验概述本次实验的主要目标是设计并实现一个有限脉冲响应(Finite Impulse Response,简称FIR)滤波器。
FIR滤波器是数字信号处理中常用的一种滤波器,具有线性相位响应和易于设计的优点。
本次实验旨在通过实践加深我们对FIR滤波器设计和实现过程的理解,提升我们的实践能力和问题解决能力。
在实验过程中,我们将首先理解FIR滤波器的基本原理和特性,包括其工作原理、设计方法和性能指标。
我们将选择合适的实验工具和环境,例如MATLAB或Python等编程环境,进行FIR滤波器的设计。
我们还将关注滤波器的实现过程,包括代码编写、性能测试和结果分析等步骤。
通过这次实验,我们期望能够深入理解FIR滤波器的设计和实现过程,并能够将理论知识应用到实践中,提高我们的工程实践能力。
本次实验报告将按照“设计原理设计方法实现过程实验结果与分析”的逻辑结构进行组织,让读者能够清晰地了解我们实验的全过程,以及我们从中获得的收获和启示。
FIR数字滤波器课程设计报告
吉林建筑大学电气与电子信息工程学院数字信号处理课程设计报告设计题目: FIR数字滤波器的设计专业班级:学生姓名:学号:指导教师:设计时间:目录一、设计目的 (3)二、设计内容 (3)三、设计原理 (3)3.1 数字低通滤波器的设计原理 (3)3.1.1 数字滤波器的定义和分类 (3)3.1.2 数字滤波器的优点 (3)3.1.3 FIR滤波器基本原理 (4)3.2变换方法的原理 (7)四、设计步骤 (8)五、数字低通滤波器MATLAB编程及幅频特性曲线 (9)5.1 MATLAB语言编程 (9)5.2 幅频特性曲线 (10)六、总结 (11)七、参考文献 (13)一、设计目的课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。
本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充二、设计内容(1)设计一线性相位FIR 数字低通滤波器,截止频率,过渡带宽度 ,阻带衰减dB A s 30>。
(2)设计一线性相位FIR 数字低通滤波器,截止频率,过渡带宽度,阻带衰减dB A s 50>。
三、设计原理3.1数字低通滤波器的设计原理3.1.1 数字滤波器的定义和分类数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。
因此,数字滤波器本身既可以是用数字硬件装配成的一台完成给定运算的专用的数字计算机,也可以将所需要的运算编成程序,让通用计算机来执行。
从数字滤波器的单位冲击响应来看,可以分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。
滤波器按功能上分可以分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF) [4]。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言数字滤波器是一种常见的信号处理工具,用于去除信号中的噪声或者滤波信号以达到特定的目的。
其中,FIR(Finite Impulse Response)数字滤波器是一种常见且重要的数字滤波器,其特点是具有有限冲击响应。
本实验旨在设计并实现一个FIR数字滤波器,通过对滤波器的设计和性能评估,加深对数字滤波器的理解。
设计过程1. 确定滤波器的要求在设计FIR数字滤波器之前,首先需要明确滤波器的要求。
这包括滤波器类型(低通、高通、带通或带阻)、截止频率、滤波器阶数等。
在本实验中,我们选择设计一个低通滤波器,截止频率为1kHz,滤波器阶数为32。
2. 设计滤波器的传递函数根据滤波器的要求,我们可以利用Matlab等工具设计出滤波器的传递函数。
在本实验中,我们选择使用窗函数法设计滤波器。
通过选择合适的窗函数(如矩形窗、汉宁窗等),可以得到滤波器的传递函数。
3. 确定滤波器的系数根据滤波器的传递函数,我们可以通过离散化的方法得到滤波器的系数。
这些系数将决定滤波器对输入信号的响应。
在本实验中,我们使用了Matlab的fir1函数来计算滤波器的系数。
4. 实现滤波器在得到滤波器的系数之后,我们可以将其应用于输入信号,实现滤波器的功能。
这可以通过编程语言(如Matlab、Python等)来实现,或者使用专用的数字信号处理器(DSP)来进行硬件实现。
实验结果为了评估设计的FIR数字滤波器的性能,我们进行了一系列的实验。
首先,我们使用了一个具有噪声的输入信号,并将其输入到滤波器中。
通过比较滤波器输出信号和原始信号,我们可以评估滤波器对噪声的去除效果。
实验结果显示,设计的FIR数字滤波器能够有效地去除输入信号中的噪声。
滤波后的信号更加平滑,噪声成分明显减少。
此外,滤波器的截止频率也得到了有效控制,滤波器在截止频率之后的信号衰减明显。
讨论与总结通过本次实验,我们深入了解了FIR数字滤波器的设计和实现过程。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言:数字滤波器是一种广泛应用于信号处理和通信系统中的重要工具。
其中,有一类常见的数字滤波器是FIR(Finite Impulse Response)数字滤波器。
FIR数字滤波器具有线性相位特性、稳定性好、易于设计和实现等优点,被广泛用于音频处理、图像处理、通信系统等领域。
本实验旨在通过设计一个FIR数字滤波器,探索其设计原理和实际应用。
一、实验目的本实验的目的是通过设计一个FIR数字滤波器,实现对特定信号的滤波处理。
具体来说,我们将学习以下几个方面的内容:1. FIR数字滤波器的基本原理和特点;2. FIR数字滤波器的设计方法和流程;3. 使用MATLAB软件进行FIR数字滤波器的设计和仿真。
二、实验原理1. FIR数字滤波器的基本原理FIR数字滤波器是一种线性时不变系统,其输出仅与当前输入和过去若干个输入有关,没有反馈回路。
这种特性使得FIR数字滤波器具有线性相位特性,适用于对信号的频率响应要求较高的应用场景。
FIR数字滤波器的输出可以通过卷积运算来计算,即将输入信号与滤波器的冲激响应进行卷积运算。
2. FIR数字滤波器的设计方法FIR数字滤波器的设计方法有很多种,常见的包括窗函数法、频率采样法和最优化方法等。
在本实验中,我们将使用窗函数法进行FIR数字滤波器的设计。
窗函数法的基本思想是将理想滤波器的频率响应与一个窗函数相乘,从而得到实际可实现的滤波器。
三、实验步骤1. 确定滤波器的设计要求在设计FIR数字滤波器之前,我们首先需要明确滤波器的设计要求。
包括滤波器的通带、阻带、过渡带的频率范围和响应要求等。
2. 选择窗函数和滤波器的阶数根据设计要求,选择合适的窗函数和滤波器的阶数。
常见的窗函数有矩形窗、汉宁窗、汉明窗等。
不同的窗函数对滤波器的性能有一定影响,需要根据实际情况进行选择。
3. 计算滤波器的冲激响应利用所选窗函数和滤波器的阶数,计算滤波器的冲激响应。
fir数字滤波器的设计实验报告
fir数字滤波器的设计实验报告FIR数字滤波器的设计实验报告引言:数字信号处理在现代通信、音频处理、图像处理等领域中起着至关重要的作用。
而数字滤波器作为数字信号处理的核心组成部分之一,其设计和性能对于信号处理的质量和效果有着直接的影响。
本实验旨在探究FIR(有限脉冲响应)数字滤波器的设计原理和实践操作,以及对其性能进行评估。
一、实验目的本实验的主要目的是掌握FIR数字滤波器的设计方法和实现过程,具体包括以下几个方面:1. 了解FIR数字滤波器的基本原理和特点;2. 学习FIR滤波器的设计方法,包括窗函数法和频率采样法;3. 实现FIR滤波器的设计和编程,掌握滤波器的参数配置;4. 评估FIR滤波器的性能,包括幅频响应、相频响应、群延迟等。
二、实验原理FIR数字滤波器是一种线性时不变系统,其传输函数的脉冲响应是有限长的。
因此,FIR滤波器的设计主要涉及到确定滤波器的脉冲响应系数,即滤波器的冲击响应。
常用的FIR滤波器设计方法有窗函数法和频率采样法。
窗函数法通过选择一个窗函数,将其与理想滤波器的冲击响应进行卷积,从而得到实际的滤波器冲击响应。
常见的窗函数有矩形窗、汉宁窗、海明窗等。
频率采样法则是通过在频域上对理想滤波器的频率响应进行采样,然后进行反变换得到滤波器的冲击响应。
三、实验过程1. 确定滤波器的设计规格,包括截止频率、通带衰减和阻带衰减等参数;2. 选择设计方法,如窗函数法或频率采样法;3. 根据设计方法,计算滤波器的冲击响应系数;4. 利用编程软件,如MATLAB或Python,实现滤波器的设计和编程;5. 根据设计的滤波器参数,绘制滤波器的幅频响应和相频响应曲线;6. 进行滤波器性能评估,包括群延迟、阻带衰减等指标。
四、实验结果与分析本实验以MATLAB为例,使用窗函数法设计了一个FIR低通滤波器。
滤波器的设计规格为:截止频率为1kHz,通带衰减为0.5dB,阻带衰减为40dB。
选择了汉宁窗作为窗函数,并利用MATLAB的fir1函数进行滤波器设计。
FIR滤波器的设计报告
- - -.《数字信号处理课程设计》课程设计报告专业:电子信息工程班级:xxxx学号:xxxxx姓名:xx指导教师:xxxxxxxx2011年 6 月28日目录1、课程设计目的22、课程设计题目描述和要求22.1题目描述22.2设计要求33、课程设计报告内容33.1总体设计33.1.1 采集声音信号33.1.2声音信号的时域与频谱分析33.1.3 对声音信号加噪53.1.4 滤波器设计53.1.5 加噪信号的滤波与回放63.2软件仿真调试结果分析73.2.1 原始信号的读取与分析73.2.2 加噪信号的时域与频域分析83.2.3 滤波器的设计及分析93.2.4 加噪信号的滤波与图形分析103.3 设计中出现的问题与解决方案124、设计总结12参考文献13附录:(源程序代码)131、课程设计目的通过对课程设计任务的完成,使学生进一步巩固数字信号处理的基本概念、理论、分析方法和实现方法;使学生掌握的基本理论和分析方法方面的知识得到进一步扩展;使学生能有效地将理论和实际紧密结合;增强学生软件编程实现能力和解决实际问题的能力。
要求学生能够熟练地用Matlab 语言编程实现IIR 数字滤波器和FIR 数字滤波器,进一步明确数字信号处理的工程应用。
2、课程设计题目描述和要求2.1题目描述FIR 数字滤波器:FIR 数字滤波器的冲激响应()h n 的Z 变换为:11(1)0()()(0)(1)(1)N n N n H z h n z h h z h N z -----===+++-∑…其中滤波器最重要的两个特性为线性相位特性和幅度特性。
本次课程设计要求录制一段自己的语音信号后,格式为WAV 。
在MATLAB 软件中采集语音信号、回放语音信号。
画出语音信号的时域波形和频谱图,对所采集的信号加入干扰噪声,对加入噪声进行播放,并进行时域和频谱分析;对比早前后的时域图和频谱图即对比加噪声音信号和通过低通滤波器处理的音频信号不同的时域和频域波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林建筑大学电气与电子信息工程学院数字信号处理课程设计报告设计题目:FIR数字滤波器的设计专业班级:学生姓名:学号:指导教师:设计时间:目录一、设计目的 (3)二、设计内容 (3)三、设计原理 (3)3.1 数字低通滤波器的设计原理 (3)3.1.1 数字滤波器的定义和分类 (3)3.1.2 数字滤波器的优点 (3)3.1.3 FIR滤波器基本原理 (4)3.2变换方法的原理 (7)四、设计步骤 (8)五、数字低通滤波器MATLAB编程及幅频特性曲线 (9)5.1 MATLAB语言编程 (9)5.2 幅频特性曲线 (10)六、总结 (11)七、参考文献 (13)一、设计目的课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。
本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充二、设计内容(1)设计一线性相位FIR 数字低通滤波器,截止频率,过渡带宽度 ,阻带衰减dB A s 30>。
(2)设计一线性相位FIR 数字低通滤波器,截止频率,过渡带宽度,阻带衰减dB A s 50>。
三、设计原理3.1数字低通滤波器的设计原理3.1.1 数字滤波器的定义和分类数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。
因此,数字滤波器本身既可以是用数字硬件装配成的一台完成给定运算的专用的数字计算机,也可以将所需要的运算编成程序,让通用计算机来执行。
从数字滤波器的单位冲击响应来看,可以分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。
滤波器按功能上分可以分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF) [4]。
3.1.2 数字滤波器的优点相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用将会越来越广泛。
同时DSP 处理器(Digital Signal Processor)的出现和FPGA(FieldProgrammable Gate Array)的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。
数字滤波器具有以下显著优点:精度高:模拟电路中元件精度很难达到10-3,以上,而数字系统17位字长就可以达到10-5精度。
因此在一些精度要求很高的滤波系统中,就必须采用数字滤0.2c ωπ=0.4ωπ∆<0.2c ωπ=0.4ωπ∆<波器来实现。
灵活性大:数字滤波器的性能主要取决于乘法器的各系数,而这些系数是存放在系数存储器中的,只要改变存储器中存放的系数,就可以得到不同的系统,这些都比改变模拟滤波器系统的特性要容易和方便的多,因而具有很大的灵活性。
可靠性高:因为数字系统只有两个电平信号:"1”和“0",受噪声及环境条件的影响小,而模拟滤波器各个参数都有一定的温度系数,易受温度、振动、电磁感应等影响。
并且数字滤波器多采用大规模集成电路,如用CPLD或FPGA来实现,也可以用专用的DSP处理器来实现,这些大规模集成电路的故障率远比众多分立元件构成的模拟系统的故障率低。
易于大规模集成:因为数字部件具有高度的规范性,便于大规模集成,大规模生产,且数字滤波电路主要工作在截止或饱和状态,对电路参数要求不严格。
因此产品的成品率高,价格也日趋降低。
相对于模拟滤波器,数字滤波器在体积、重量和性能方面的优势己越来越明显。
比如在用一些用模拟网络做的低频滤波器中,网络的电感和电容的数值会大到惊人的程度,甚至不能很好地实现,这时候若采用数字滤波器则方便的多。
并行处理:数字滤波器的另外一个最大优点就是可以实现并行处理,比如数字滤波器可采用DSP处理器来实现并行处理。
TI公司的TMS320C5000系列的DSP 芯片采用8条指令并行处理的结构,时钟频率为100MHZ的DSP芯片,可高达100MIPs(即每秒执行百万条指令)。
3.1.3 FIR滤波器基本原理①FIR数字滤波器的特点及结构在数字信号处理应用中往往需要设计线性相位的滤波器,FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
FIR滤波器不断地对输入样本x(n)延时后,再作乘法累加算法,将滤波结果y(n)输出,因此,FIR实际上是一种乘法累加运算。
在数字滤波器中,FIR滤波器的最主要的特点是没有反馈回路,故不存在不稳定的问题,同时,可以在幅度特性是随意设置的同时,保证精确的线性相位。
稳定和线性相位特性是FIR滤波器的突出优点。
另外,它还有以下特点:设计方式是线性的;硬件容易实现;滤波器过渡过程具有有限区间;相对IIR滤波器而言,阶次较高,其延迟也要比同样性能的IIR滤波器大得多。
[3]FIR数字滤波器系统的传递函数为:(3.1) 通过反z变换,数字滤波器的差分方程为:(3.2)由此得到系统的差分方程:(3.3)由上式可以得出如下图 3.1所示的直接型结构,这种结构又可以称为卷积型结构。
将转置理论应用于图3.1可以得到转置直接型结构。
将式中的系统函数H(z)分解成若干一阶和二阶多项式的连乘积:(1.4)(3.4)则可构成如图 1.1所示的级联型结构。
其中为一阶节; 为二阶节。
每个一阶节、二阶节可用图3.2所示的直接型结构实现。
当M1 = M2时,即得到图3.3所示的具体结构。
这种结构的每一节都便于控制零点,在需要控制传输零点时可以采用。
但是它所需要的系数a比直接型的h(n)多,所需要的乘法运算也比直接型多。
在对滤波器计算时间没有特殊要求的时候可以采用这种形式。
若需要严格考虑滤波器的计算时间则需要折衷它们的优点和缺点来设计。
这在算法设计时候要使用软件编辑环境来计算运行的时间问题。
通常FIR的计算时间都较长。
很多时候我们需要牺牲时间来获得想要得到的滤波器功能。
图3.1 FIR滤波器直接型结构图图3.3 级联型具体结构② FIR滤波器的优点:可以在幅度特性随意设计的同时,保证精确、严格的线性相位;由于FIR滤波器的单位脉冲h(n)是有限长序列,因此FIR滤波器没有不稳定的问题;由于FIR滤波器一般为非递归结构,因此,在有限运算下不会出现递归型结构中的极限振荡等不稳定现象误差较小;FIR滤波器可以采用FFT 算法实现,从而提高了运算效率。
③ FIR和IIR滤波器的比较在很多实际应用中如语音和音频信号处理中,数字滤波器来实现选频功能。
因此,指标的形式应为频域中的幅度和相位响应。
在通带中,通常希望具有线性相位响应。
在FIR滤波器中可以得到精确的线性相位。
在IIR滤波器中通带的相位是不可能得到的,因此主要考虑幅度指标。
IIR数字滤波器的设计和模拟滤波器的设计有着紧密的联系,通常要设计出适当地模拟滤波器,再通过一定的频带变换把它转换成为所需要的数字IIR滤波器。
此外,任何数字信号处理系统中也还不可避免地用到模拟滤波器,比如A/D变换器前的抗混叠滤波器及D/A转换后的平缓滤波器,因此模拟滤波器设计也是数字信号处理中应当掌握的技术。
从性能上来说,IIR数字滤波器传递函数包括零点和极点两组可调因素,对极点的唯一限制是在单位圆内。
因此可用较低的阶数获得高的选择性,所用的存储单元少、计算量小、效率高。
但是这个高效率是以相位的非线性为代价的。
选择性越好,则相位非线性越严重。
FIR滤波器传递函数的极点是固定在原点,是不能动的,它只能靠改变零点位置来改变它的性能,所以要达到高的选择性,必须用高的阶数,对于同样的滤波器设计指标,FIR滤波器所要求的阶数可能比IIR 滤波器高5-10倍,结果成本高信号延时也较大,如果按线性相位要求来说,则IIR 滤波器就必须加全通网络进行相位校正,同样大大增加了滤波器的阶数和复杂性。
而FIR滤波器却可以得到严格的线性相位。
从结构上看,IIR滤波器必须采用递归结构来配置极点,并保证极点位置在单位圆内。
由于有限字长效应,运算过程中将对系数进行舍入处理,引起极点的偏移,这种情况有时会造成稳定性问题,甚至造成寄生振荡。
相反,FIR滤波器只要采用非递归结构,不论在理论上还是实际的有限精度运算中都不存在稳定性问题,因此造成的频率特性误差也较小。
此外FIR滤波器可以采用快速傅立叶变换算法,在相同的阶数条件下运算速度可以快的多。
3.2变换方法的原理FIR 滤波器目前常用的设计方法有窗函数法和频率采样法,窗函数法是从时域进行设计,而频率采样法是从频域进行设计。
窗函数法由于简单、物理意义清晰,因而得到了较为广泛的应用。
窗函数法设计的基本思想是:首先根据技术指标要求,选取合适的阶数 N 和窗函数的类型 w(n),使其幅频特性逼近理想滤波器幅频特性。
其次,因为理想滤波器的 hd(n)是无限长的,所以需要对 hd(n) 进行截断,数学上称这种方法为窗函数法。
简而言之,用窗函数法设计FIR滤波器是在时域进行的,先用傅里叶变换求出理想滤波器单位抽样相应hd(n),然后加时间窗w(n)对其进行截断,以求得FIR 滤波器的单位抽样响应h(n)。
四、设计步骤凯塞窗-57 12π/Ν -80表4.1 6种窗函数的基本参数(1)根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口长度N 。
先按照阻带衰减选择窗函数的类型。
原则是在保证阻带衰减满足要求的情况下,尽量选择主瓣窄的窗函数。
然后根据过渡带宽度估计窗口长度N 。
待求滤波器的过渡带宽度B,近似等于窗函数的主瓣宽度,且近似与窗口长度Ni 成反比。
矩形窗的A=4π,哈明窗的A=8π等。
(2)构造希望逼近的频率响应函数jw d e H (),即所谓的“标准窗函数法”,就是选择jw d e H ()为线性相位理想滤波器(理想低通、理想高通、理想带通、理想带阻)。
以低通滤波器为例,)(w H dg 应满足:理想滤波器的截止频率c w 近似于最终设计的FIRDF 的过渡带的中心频率点,幅度函数衰减一半。
所以如果设计指标给定通带边界频率和阻带边界频率p w 和s w ,一般取(3)计算)(n h d 。
如果给出待求滤波器的频响函数为)(jw d e H ,那么单位脉冲响应用下式求出:如果)(jw d e H 较复杂,或者不能用封闭公式表示,则不能用上式求出)(n h d 。
我们可以对)(jw d e H 从w=0到w=2π采样M 点,采样值为,k=0,1,2,…,M-1,进行M点IDFT(IFFT),得到:根据频域采样理论,与应满足如下关系:因此,如果M选的较大,可以保证在窗口内)h d。