展开与折叠-练习题

合集下载

四年级上数学8、展开与折叠(练习)

四年级上数学8、展开与折叠(练习)

八、展开与折叠 ——正方体展开图的规律1. 判断下列平面图形能折叠成正方体吗?( ) ( ) ( ) ( ) ( ) ( )1.在下面的12个展开图中,哪些可以做成没有顶盖的小方盒?()()()()()()()()()()()()2. 将下图中左边的图形折叠起来围成一个正方体,应该得到右图中的( ),先想一想,再做一做。

3.(1)如果“你”在前面,那么谁在 (2)“坚”在下,“就”在后,胜后面? 利在哪里?4.如下图是一个正方体的展开图,图中已标出三个滚动思考组号 学号 姓名利胜持是就坚太了你棒!们AB CDFR实践百花园面在正方体中的位置,F :前面;R :右面;D :下面。

试判定另外三个面A 、B 、C 在正方体中的位置。

5.如右图是一个正方体的展开图,每个面内部都标注了字母, 请根据要求填空: (1)如果D 面在左面,那么F 面在( );(2)如果B 面在后面,从左面看是D 面,那么上面是()。

6.将下面两幅图沿虚线折成一个正方体,图1相交于一个顶点处的三个面上的数字之和的最大值是多少?图2相对两个面上的数字之和最大是几?653432452611图1 图21. 在下图中所示的一个立方体的六个面上分别写有A 、B 、C 、D 、E 五个字母,其中两个面写有相同的字母。

下面是它的三种放置图,请问:哪个字母写了两遍?AC B(1)BCD(2)DEC(3)2.有四枚相同的骰子,展开图如下,将这四枚骰子 依次码好,由上往下数,第二、三、四枚骰子的上 顶面的点数之和是多少?想做就做怪味豆七嘴八舌说说你的收获!生活随处课件几何形体,我们会根据展开图判断各个面的位置,还能确定正方体展开图上各个面的位置。

我还知道六连方图中能折成正方体的规律是我觉得这节课我的表现可以评 ( ) ( ) ( )A BC DEF。

《展开与折叠》专题训练

《展开与折叠》专题训练

1.2 展开与折叠专题一正方体的展开与折叠1.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B. C.D.2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考3.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG4.如图,有一正方体的房间,在房间内的一角A处有一只蚂蚁,它想到房间的另一角B处去吃食物,试问它采取怎样的行走路线是最近的?如果一只蜜蜂,要从A到B 怎样飞是最近呢?请同学们互相讨论一下.BA专题二三棱柱、圆柱与圆锥的展开与折叠5.左图是一个三棱柱,下列图形中,能通过折叠围成该三棱柱的是()A.B.C.D.6.如下图所示的平面图形中,不可能围成圆锥的是()A. B.C.D.状元笔记:【知识要点】1.掌握正方体的展开与折叠,能根据所给平面图形判断是否能折叠成正方体.2.根据简单立体图形的形状画出它的展开图,根据展开图判断立体图形的形状.【温馨提示】1.长方体有8个顶点,12条棱,6个面,且每个面都是长方形(正方形是特殊的长方形).长方体是四棱柱,但四棱柱不一定是长方体,四棱柱的两个底面是四边形,不一定是长方形.2.一个平面展开图,折成立体图形的方式有两种:一种是向里折,一种是向外折,一般易忽略其中一种,造成漏解.3.棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图;圆柱的表面展开图是由两个相同的圆形和一个长方形连成的;圆锥的表面展开图是由一个圆形和一个扇形连成的.【方法技巧】确定正方体展开图的方法以口诀的方式总结出来:正方体经7刀剪,可得六面十四边;中间并排达四面,两旁各一随便站;三面并排在中间,单面任意双面偏;三层两面两层三,好似阶梯入云天;再问邻面何特点,“间二”“拐角”是关键;“隔1”、“Z端”是对面,识图巧排“七”“凹”“田”.参考答案:1.D 解析:选项A 、B 、C 都可以折叠成一个正方体;选项D ,有“田”字格,所以不能折叠成一个正方体.故选D .考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.2.B 解析:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对.3.A 解析:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE .考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题,注意找准红心“”标志所在的相邻面.4.解:如图(1)所示,线段AB 是蚂蚁行走的最近路线;如图(2)所示,线段AB 是蜜蜂飞的最近路线.(1)(2)5.B 解析:A .折叠后有二个侧面重合,不能得到三棱柱; B .折叠后可得到三棱柱;C .折叠后有二个底面重合,不能得到三棱柱; D .多了一个底面,不能得到三棱柱.6.D 解析:根据圆锥的侧面展开图是扇形,可以直接得出答案,D 选项不符合要求.。

小学五年级数学下册正方体《展开与折叠》专项练习题

小学五年级数学下册正方体《展开与折叠》专项练习题

正方体《展开与折叠》专项练习题
一、在展开图中填空(填“上”、“右”、“前”)。

二、选一选。

1.下面图形不是正方体展开图的是()。

2.亲爱的同学们,这是你进入中学后的首次大考,老师送给你一个正方体礼品盒(如图),六面上各有一字,连起来是“预祝考试成功”.其中“预”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()。

A. B. C. D.
3.不能折成长方体盒子的是()。

A. B. C. D.
4.如图,若要把一个正方体纸盒沿棱剪开,平铺在桌面上,则至少需要剪开的棱的条数是()。

A.5条
B.6条
C.7条
D.8条
三、连一连。

四、在展开图上找出相对的面,并用上、下、左、右标出,再用a、b、h标出三条边。

五、请在如边长为1厘米的方格里画出左面长方体的一种展开图,并找出相对的面,分别做上不同的记号.(大面画“√”,中面画“○”,小面画“×”)。

几何图形的折叠与展开题目

几何图形的折叠与展开题目

几何图形的折叠与展开题目1. 下列哪个图形通过折叠可以得到一个正方形?A. 三角形B. 圆形C. 矩形D. 正方形2. 一个正方形纸片沿着对角线折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形3. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形4. 下列哪个图形通过折叠可以得到一个三角形?A. 正方形B. 圆形C. 矩形D. 菱形5. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形6. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形7. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形8. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形9. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形10. 下列哪个图形通过折叠可以得到一个菱形?A. 正方形B. 三角形C. 圆形D. 矩形11. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形12. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形13. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形14. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形15. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形C. 矩形D. 圆形16. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形17. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形18. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形19. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形20. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形21. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形22. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形23. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形24. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形25. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形26. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形C. 圆形D. 菱形27. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形28. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形29. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形30. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形31. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形32. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形33. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形34. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形35. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形36. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形37. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形38. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形39. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形40. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形41. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形42. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形43. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形44. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形45. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形46. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形47. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形48. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形C. 矩形D. 菱形49. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形50. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形。

展开与折叠 同步练习北师大版七年级数学上册

展开与折叠 同步练习北师大版七年级数学上册

北师大版七上 1.2 展开与折叠一、选择题(共15小题)1. 如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数互为相反数,则x,y,z的值分别为( )A. 2,−3,−10B. −10,2,−3C. −10,−3,2D. −2,3,−102. 如图所示的立体图形,它的展开图是( )A. B.C. D.3. 下列图形中,是圆锥的侧面展开图的为( )A. B.C. D.4. 下列四个图形中是三棱柱的表面展开图的是( )A. B.C. D.5. 如图,如果把一个圆锥的侧面沿图示中的线剪开,则得到的图形是( )A. 三角形B. 圆C. 圆弧D. 扇形6. 如图所示的图形,是下面哪个正方体的展开图( )A. B.C. D.7. 如图中的圆柱体,表面展开后得到的平面图形是( )A. B.C. D.8. 下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A. B.C. D.9. 如图为一直棱柱,其底面是三边长分别为5,12,13的直角三角形.若下列选项中的图形均由三个长方形与两个直角三角形组合而成,且其中一个为如图所示的直棱柱的展开图,则根据图形中标示的边长与直角符号判断,此展开图为( )A. B.C. D.10. 如图所示的正方体的展开图是( )A. B.C. D.11. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A. B.C. D.12. 某个几何体的展开图如图所示,该几何体是( )A.长方体B.圆柱体C.球体D.圆锥体13. 一个正方体的六个面上分别写有六个字“建”、“设”、“生”、“态”、“密”、“云”.将这个正方体展开后如图所示,则该正方体在展开前,与“建”字所在面相对的面上的字是( )A. 生B. 态C. 密D. 云14. 如图是某种几何体的表面展开图,这个几何体是( )A. 圆锥B. 球C. 圆柱D. 棱柱15. 如图中,不可能围成正方体的是()A. B.C. D.二、填空题(共10小题)16. 若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=.17. 小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是.(填写序号)18. 一个几何体的表面展开图如图所示,则这个几何体是.19. 长方体的表面沿某些棱剪开,展开成平面图形,共有个形,其中剪的过程中,需要剪条棱.20. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的.(填写字母)21. 下列各图是几何体的表面展开图,请写出对应的几何体的名称.①②③22. 如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是.23. 如图所示的两个平面图形分别是两种包装盒的展开图,这两个包装盒的形状分别是,.24. 圆柱的侧面展开图是形.25. 一个正方体的展开图已有一部分(如图),还有一个正方形未画,现有10个位置可供选择,请问:放在哪些位置能围成正方体,放在哪些位置不能围成正方体?仔细观察下图,或许你还要动手做做呢!放在可围成正方体,放在不可以围成正方体.三、解答题(共5小题)26. 如图,在一个正方体的上面、前面、右面分别标有数字1,2,3.1的对面标有数字4,2的对面标有数字5,3的对面标有数字6.(1)求与数字3所在平面垂直的面的数字之积.(2)如果与一个面垂直的面上的数字之和是14,那么这个面上的数字是多少?27. 给出一张正方形纸片(见图),要求将其剪拼成一个上、下底面均为正方形的直四棱柱模型,使它的表面积与原正方形的面积相等.请设计一种剪拼方法,在图中用虚线标示,并作简要说明.28. 四棱柱按如图所示粗线剪开一些棱,展成平面图形,请画出平面图.29. 将一个正方体的表面沿某些棱剪开,展成以下平面图形,先想一想,再动手剪.30. 下图是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)根据图中所标的尺寸,计算这个几何体的侧面积.答案1. B 【解析】x与10为对面,y与−2为对面,z与3为对面,∴x=−10,y=2,z=−3.2. C3. A【解析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.4. A5. D6. D【解析】根据正方体的展开图可得选D.7. B8. C【解析】把三棱柱纸盒往上打开为上底面,同时展开侧面,上面阴影正好与下面空白在最左边,且三角形垂直于矩形,利用空间想象能力,可以确定,C选项符合该展开图.9. D【解析】A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形的直角边不能与对应的棱完全重合,不合题意;C选项中,展开图下方的直角三角形的直角边不能与对应的棱完全重合,不合题意;D选项中,展开图能折叠成一个如题图所示的直棱柱,符合题意.10. C【解析】有图案的三个面是相邻的,可以排除B、D.对于A,如果三角形和圆正确的,那么棋盘格的方向反了.11. B【解析】选项A和C中涂有颜色的一个面是底面,不能折叠成题图中的几何体;选项B能折叠成题图中的几何体;D选项中有5个三角形,故不是这个几何体的表面展开图.12. B13. D14. A【解析】圆锥的展开图为一个扇形和一个圆,故这个几何体是圆锥.故选A.15. D【解析】【分析】此题需利用正方体及其表面展开图的特点解答即可得出答案.【解析】解:选项A,B,C折叠后都可以围成一个正方体,只有D折叠后有两个面重合,不能折成正方体.故选:D.【点评】本题考查了平面图形的折叠及正方体的展开图,解决此题的关键是记住正方体展开图的基本类型1−4−1型,2−3−1型,2−2−2型,3−3型.16. 817. (1)18. 四棱锥19. 6,长方,720. A、B、E【解析】将原图沿右底面棱剪开,可得到图A所示形状;将原图沿右侧面开,可得如图B示形状;将原图沿后方底面棱剪开,可得如图E所示形状.21. 圆锥,三棱锥,圆柱22. 8【解析】根据所给出的图形可得:2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,则原正方体相对两个面上的数字和最大值是8.23. 长方体,正方体24. 长方25. ①⑦⑧⑨,②③④⑤⑥⑩26. (1)40(2)2或5的正方形,再沿虚线折叠,即可构成一个缺少上27. 在正方形的四个角上剪出四个边长为原正方形边长的14底,而下底为正方形的直四棱柱,而剪下的四个正方形恰好能拼成这个四棱柱的上底,如图所示.28.展成平面图如图所示.29. 分别沿虚线剪开即可.30. (1) 这个几何体是六棱柱.(2) 侧面积 =(2+4)ab =6ab .。

1.2 展开与折叠(1)练习

1.2 展开与折叠(1)练习

1.2 展开与折叠(1)练习一、基础过关1.在棱柱中,叫做棱,相邻两个侧面的叫做侧棱.2.人们通常根据将棱柱分为三棱柱、四棱柱等……长方体和正方体都是 .3.矩形绕其一边旋转一周形成的几何体叫__________,直角三角形绕其中一个直角边旋转一周形成的几何体叫__________.4.将一个无底无盖的长方体沿一条棱剪开得到的平面图形为_____________________.5.将一个无底无盖的圆柱剪开得到一个矩形,其中圆柱的_____________________等于矩形的一个边长,矩形的另一边长等于 .6.长方体共有_____________个顶点____________个面,其中有__________对平面相互平行.7.球面上任一点到球心的距离 .8.如下图,由6个边长相等的正方形组成的长方形ABCD中,包含*在内的正方形与长方形共________个.9.如果长方体从一点出发的三条棱长分别为2,3,4,则该长方体的表面积为______,体积为__________.10.用一个宽2cm,长3cm的矩形卷成一个圆柱,则此圆柱的侧面积为_______________.11.现实生活中的油桶、水杯等都给人以__________的形象.二、能力提升12.侧面展开图是一个长方形的几何体是( )A.圆锥B.圆柱C.四棱锥D.球13.侧面展开图是一个扇形的几何体是( )A.球B.圆柱C.棱柱D.圆锥14.在图中,( )是四棱柱的侧面展开图15.下面两个图中所示的平面图形是什么图形的表面展开图.16.下列图形不能够折叠成正方体的是( )17.在下列各平面图形中,是圆锥的表面展开图的是( )18.如图,把左边的图形折叠起来,它会变为 ( )19.用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.20.用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积分别是多少平方厘米?(取3.14)三、聚沙成塔朋友,上次的小问题解决了吗?好,快看看这次的“数学魔术”,面积怎么就少“一块”?。

立体图形的折叠与展开

立体图形的折叠与展开

立体图形的折叠与展开一.选择题(共3小题)1.下列展开图中,不能围成一个封闭的几何体的是()A.B.C.D.2.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.3.将如图所示的正方体展开,可能正确的是()A.B.C.D.二.填空题(共3小题)4.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=.5.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是.6.小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).三.解答题(共3小题)7.(1)请写出对应几何体的名称:①;②;③.(2)图③中,侧面展开图的宽(较短边)为8cm,圆的半径为2cm,求图③所对应几何体的表面积.(结果保留π)8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示.(1)在图②所示的正方体骰子中,1点对面是点;2点的对面是点(直接填空);(2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是点;连续完成2016次翻转后,骰子朝下一面的点数是点(直接填空).9.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列A、B分别是题(2)中长方体的一种表面展开图,已知求得图A的外围周长为52,请你帮助求出图B的外围周长;(4)第(2)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.参考答案一.选择题(共3小题)1.下列展开图中,不能围成一个封闭的几何体的是()A.B.C.D.【解答】解:A、是圆柱的展开图,能围成封闭几何体,不符合题意;B、是三棱柱的展开图,能围成封闭几何体,不符合题意;C、不能围成封闭几何体,符合题意;D、是三棱柱的展开图,能围成封闭几何体,不符合题意.故选:C.2.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.【解答】解:根据正方体展开图的特点可得:两个三角形相邻.故选:D.3.将如图所示的正方体展开,可能正确的是()A.B.C.D.【解答】解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B、D都不符合,所以能得到的图形是C.故选:C.二.填空题(共3小题)4.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c= 14.【解答】解:∵长方体的表面展开图,相对的面之间一定相隔一个长方形,∴“﹣1”与“a”是相对面,“3”与“c”是相对面,“2”与“b”是相对面,又∵相对的两个面上的数字之和等于6,∴a=7,b=4,c=3,∴a+b+c=7+4+3=14,故答案为:14.5.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是乐.【解答】解:“新”字一面的相对面上的字是:乐,故答案为:乐.6.小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).【解答】解:答案不唯一,如图所示:三.解答题(共3小题)7.(1)请写出对应几何体的名称:①圆锥;②三棱柱;③圆柱.(2)图③中,侧面展开图的宽(较短边)为8cm,圆的半径为2cm,求图③所对应几何体的表面积40π.(结果保留π)【解答】解:(1)请写出对应几何体的名称:①圆锥;②三棱柱;③圆柱,故答案为:圆锥,三棱柱,圆柱;(2)圆柱的表面积为πr2+πr2+2πrh=4π+4π+32π=40π,故答案为:40π.8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示.(1)在图②所示的正方体骰子中,1点对面是6点;2点的对面是5点(直接填空);(2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是3点;连续完成2016次翻转后,骰子朝下一面的点数是4点(直接填空).【解答】解:(1)根据正方体的表面展开图,相对的面之间一定相隔一个正方形,所以在图②所示的正方体骰子中,1点对面是6点;2点的对面是5点;故答案为:6、5;(2)正方体的表面展开图,相对的面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,∵2016÷4=504,∴完成2016次翻转为第504组,∴骰子朝下一面的点数是4.故答案为:3、4.9.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是B(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有①②③(填序号)(3)下列A、B分别是题(2)中长方体的一种表面展开图,已知求得图A的外围周长为52,请你帮助求出图B的外围周长;(4)第(2)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.【解答】解:(1)A折叠后不可以组成正方体;B折叠后可以组成正方体;C都是“2﹣4”结构,出现重叠现象,不能折成正方体,即不是正方体的表面展开图,故错误;D折叠后不可以组成正方体;故答案为B.(2)可能是该长方体表面展开图的有①②③.故答案为①②③.(3)图B的外围周长=3×6+4×4+4×6=58.(4)观察展开图可知,外围周长为6×8+4×4+3×2=48+16+6=70.。

展开与折叠的练习题

展开与折叠的练习题

展开与折叠的练习题一、选择题1、在下面的图形中,()是正方体的表面展开图.2、下面的图形通过折叠不能围成一个长方体的是()3、如图1–10所示的立方体,若是把它展开,能够是以下图形中的()4、圆锥的侧面展开图是()A、三角形B、矩形C、圆D、扇形二、填空题1、人们通常依照底面多边形的_将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体和正方体都是_____棱柱2、若是一个棱往是由12个面围成的,那么那个棱柱是____棱柱.3、一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,那么它的所有侧面的面积之和为______.4、哪一种立体图形的表面能展开成下面的图形?5、一个直棱柱共有n个面,那么它共有______条棱,______个极点三、想一想.1、底面是三角形、四边形、八边形的棱柱各有多少条棱?2、下面10个图形中哪些能够折成没有盖子的五个面的小方盒?请指明.长方体表面积的练习题一、填空。

一、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个极点。

二、因为正方体是长、宽、高都()的长方体,因此正方体是()的长方体。

3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,那个正方体的棱长总和是()厘米。

4、相交于一个极点的()条棱,别离叫做长方体的()、()、()。

五、一根长96厘米的铁丝围成一个正方体,那个正方体的棱长是()厘米。

六、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。

高是()厘米。

7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

八、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

九、一个长方体最多能够有()个面是正方形,最多能够有()条棱长度相等。

二、应用题。

一、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?二、用一根铁丝恰好焊成一个棱长8厘米的正方体框架,若是用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深米,在游泳池的周围和池底砌瓷砖,若是瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,能够切割成多少块?五、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,能够做如此的硬纸盒多少个?(不计接口)六、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?7、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?八、.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?九、一只无盖的长方形鱼缸,长米,宽米,深米,做这只鱼缸至少要用玻璃多少平方米?10、.用36厘米的铁丝焊接成一个正方体框架,那个正方体棱长是多少?若是用纸糊满框架的表面,至少需要纸多少平方厘米?1二、.用一根铁丝恰好焊成一个棱长8厘米的正方体框架,若是用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?13、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做如此一对鱼缸需要多少平方厘米的玻璃?14、楼房外壁用于流水的水管是长方体。

5.3 图形的展开与折叠课时训练(含答案)

5.3 图形的展开与折叠课时训练(含答案)

5.3展开与折叠姓名_____________班级____________学号____________分数_____________一、选择题1 .如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( )A.和B.谐C.社D.会2.下列各图中,( )是长方体的展开图A、B、C、D、3 .圆锥侧面展开图可能是下列图中的()4 .下列图形中,是正方体表面展开图的是( ).(A) (B) (C) (D)A.B.C.D.图1图25.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )二、填空题6.一个长、宽、高分别为15cm ,10cm ,5cm 的长方体包装盒的表面积为________cm 2. 7.将一个立方体展开后如图所示 ,请在空格处填上适当的整数,使相对的面的两数积为-24(要求数字不能重复使用)。8.如图,长方体的长BE =5cm ,宽AB =3cm ,高BC =4cm ,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是___________cm 。EDCBA9.如图是一个正方体的表面展开图,已知正方体相对两个面上的数字互为倒数,则a =_______,b =_______,c =_________.三、解答题10.如图是一个多面体展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A 在多面体的底部,那么在上面的一面是_____ (2)如果面F 在前面,从左面看面B ,那么在上面的一面是___OOO OABCD图4 abc12.53A B CDEF13cm14cm高长 宽(3)从右面看是面C ,面D 在后面,那么在上面的一面是____11.某长方体包装盒的展开图如图所示.如果长方体盒子的长比宽多4cm ,求这个包装盒的体积.。

展开与折叠训练题(含答案)

展开与折叠训练题(含答案)

展开与折叠训练一、选择题1.在下面的图形中,()是正方体的表面展开图.2.下列各图经过折叠不能围成一个正方体的是()A. B. C. D.3.如果有一个正方体,它的展开图可能是下面四个展开图中的()4.下面的图形经过折叠不能围成一个长方体的是()5.六棱柱的棱数有()A.6条B.12条C.18条D.24条6.圆锥的侧面展开图是()A.圆B.扇形C.三角形D.长方形7.能把表面依次展开成如图所示的图形的是()A.球体、圆柱、棱柱B.球体、圆锥、棱柱C.圆柱、圆锥、棱锥D.圆柱、球体、棱锥8.下列平面图形,不能沿虚线折叠成立体图形的是( )A .B .C .D .9.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“数”相对的字是( ) A .喜 B .欢 C .学 D .我10.如图是一个正方体的表面展开图,把它折叠成一个正方体时,与点M 重合的点是( )A .点A 和点HB .点K 和点HC .点B 和点HD .点B 和点L二、填空题11. 人们通常根据底面多边形的边数将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体和正方体都是_______棱柱.12.n 棱柱有_____条棱,______个顶点,________个面.13. 如果一个棱往是由10个面围成的,那么这个棱柱是 棱柱,它共有______条棱,______个顶点. 14.一个直棱柱共有n 个面,那么它共有______条棱,______个顶点.15.如右图,若要使得图中平面图按虚线折叠成正方体后对面上的两个数之和为8,图中的x ,y 的值应分别为x =________,y =________.三、解答题16.如右图,将一块长方形铁皮的四个角分别剪去一个边长 为4cm 的正方形,正好可以折成一个无盖的铁盒,这个铁盒 表面积是多少?(可尝试两种计算方法)17.用一根铁丝刚好焊成一个棱长10厘米的正方体框架,如果用这样长的一根铁丝焊成一个长12厘米、宽10厘米的长方体框架,它的高应该是多少厘米?这个框架形成的长方体的体积是多少?我 喜欢 学数 学123x y展开与折叠训练参考答案二、填空题 11.四;12.3n ,2n ; 13.8,24,16;14.3(2)n -,2(2)n -; 15.7x =,5y =.三、解答题 16.21136cm .17.8cm ;3960V cm =.。

初一数学展开与折叠试题

初一数学展开与折叠试题

初一数学展开与折叠试题1.右图是一个由相同小正方体搭成的几何体俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何题的主视图是 ( )【答案】A【解析】本题考查的是三视图俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是3,2,1个正方形.由俯视图中的数字可得:主视图有3列,从左到右分别是3,2,1个正方形.故选A.2.如图是正方体的平面展开图,每个面上标有一个汉字, 与“油”字相对的面上的字是( )A.北B.京C.奥D.运【答案】A【解析】本题考查了正方体的的表面展开图正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.因为正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“油”字相对的字是“北”.故选A.3.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )【答案】B【解析】本题考查的是正方体的展开图根据图中符号所处的位置关系作答.三角形图案的顶点应与圆形的图案相对,而选项A,C与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B,故选B.4.圆锥侧面展开图可能是下列图中的( )【答案】D【解析】本题考查的是圆锥的侧面展开图根据圆锥的侧面展开图是一个扇形即可得到结果。

圆锥的侧面展开图是一个扇形,故选D。

5.将圆柱形纸筒沿母线剪开铺平,得到一个矩形(如图).如果将这个纸筒沿线路剪开铺平,得到的图形是A.矩形B.半圆C.三角形D.平行四边形【答案】D【解析】此题主要考查了图形的剪拼利用展开图可以得出将这个纸筒沿线路B→M→A剪开铺平时,AB与另对应点仍然连接,得出得到的图形是平行四边形.∵将圆柱形纸筒沿母线AB剪开铺平,则得到一个矩形(如图).若将这个纸筒沿线路B→M→A剪开铺平,AB与另对应点仍然连接,∴得到的图形是平行四边形.故选D.6.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体。它会变成右边的【答案】C【解析】本题考查正方体的表面展开图及空间想象能力在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据展开图中各种符号的特征和位置,可得能变成的是C.故选C.7.小红将考试时自勉的话“细心·规范·勤思”写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“细”相对的字是__________.【答案】范【解析】本题考查了正方体的的表面展开图正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.因为正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“细”字相对的字是“范”.8.圆锥侧面展开图可能是下列图中的()【答案】D【解析】本题考查的是圆锥的侧面展开图根据圆锥的侧面展开图是一个扇形即可得到结果。

立体图形的展开与折叠综合测试题

立体图形的展开与折叠综合测试题

立体图形的展开与折叠综合测试题一、选择题(每小题3分,共30分)1. 【导学号31100748】下列几何图形中为圆柱体的是()A B C D2. 【导学号31100613】在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱C.圆锥D.球3. 【导学号31100765】如图是一个三棱柱笔筒,则该物体的主视图是()A B C D 第3题图4. 【导学号31100997】如图是一个正方体,则它的表面展开图可以是()A B C D 第4题图5. 【导学号31100764】下列选项中的图形,绕其虚线旋转一周能得到如图所示的图形的是()A B C D 第5题图6. 【导学号31100217】房间窗户的边框形状是矩形,在阳光的照射下边框在房间地面上形成了投影,则投影的形状可能是()A.三角形B.平行四边形C.圆D.梯形7. 【导学号31100750】我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()A.y=x B.y=x+3C.y=3xD.y=(x-3)2+3第7题图8. 【导学号31100769】一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3πC.2π+4 D.3π+4第8题图第10题图9. 【导学号31100752】一个直角三角形的三条边分别为3,4,5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是()A.12π B.16πC.12π或16π D.36π或48π10. 【导学号31100742】如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个二、填空题(每小题4分,共32分)11. 【导学号31100759】把如图形状的硬纸板折成一个四棱锥,那么与E点重合在一起的是_____________.第11题图第12题图12. 【导学号31100996】如图是一个三棱柱,它的正投影是下图中的________(填序号).13. 【导学号31100763】星期天,小明和小华在村后的小山岭上玩,突然,小明说“我捡到了一块非常好看的石头,它类似于我们刚学过的棱柱.”小华问:“几棱柱啊?”小明说:我说不上来,只知道它有9个面,14个顶点,21条棱.小华说:“我知道了,它是_______棱柱.”14. 【导学号31100957】图①是一个正方体的展开图,该正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.①②第14题图15.【导学号31100751】如图,一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为____________cm.第15题图第16题图16. 【导学号31100757】如图是由若干个棱长为1cm的小正方体堆砌而成的几何体,那么其三视图中面积最小的是_________cm217. 【导学号31100745】如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:cm),这个几何体的体积为__________cm3;表面积为__________cm2.第17题图第18题图18. 【导学号31100744】如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:_____________.三、解答题(共58分)19.【导学号31100741】(10分)画出下面几何体的三种视图.第19题图20.【导学号31100755】(12分)在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65米的黄丽同学(BC)的影长BA为1.1米,与此同时,测得教学楼DE的影长DF为12.1米,如图.(1)请你在图中画出此时教学楼DE在阳光下的投影DF;(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).第20题图21.【导学号31100369】(12分)如图,某同学想测量旗杆的高度,他在某一时刻测得1m长的竹竿竖直放置时影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21m,留在墙上的影高为2m,求旗杆的高度.第21题图22.【导学号31100304】(12分)如图是一个包装纸盒的三视图(单位:cm)(1)该包装纸盒的几何形状是__________;(2)画出该纸盒的平面展开图.,精确到个位)(3)计算制作一个纸盒所需纸板的面积.(3 1.73第22题图23.【导学号31100879】(12分)如图,某光源下有三根杆子,甲杆GH的影子GM,乙杆EF的影子一部分是照在地面上的EA,一部分是照在斜坡AB上的AD.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面上的影子.(2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面夹角为60°,AD=1米,AE=2米,请求出乙杆EF的高度.(结果保留根号)第23题图立体图形的展开与折叠综合测试题一、1.C 2.C 3.C 4.B 5.C 6.B 7.D 8.D 9.C 10.A二、11. A和C 12. ②13. 七14. 我15.81316. 3 17. 3318+2318. ①②③三、19. 解:20.解:(1)连接AC,过点E作EF∥AC交AD于点F,则DF即为所求,如图所示.第20题图(2)由题意,得1.121.165.1DE =,解得DE=18.15≈18.2.所以教学楼DE 的高度约为18.2米. 21.解:过C 作CE ⊥AB 于E ,如图.∵CD ⊥BD ,AB ⊥BD ,∴∠EBD=∠CDB=∠CEB=90°.∴四边形CDBE 为矩形,则BD=CE=21,CD=BE=2. 设AE=xm ,则1:1.5=x:21,解得x=14. 故旗杆高AB=AE+BE=14+2=16(m ).第21题图 第22题图22. 解:(1)正六棱柱(2)如图所示:(3)由图可知正六棱柱的侧面是边长为5的正方形,上、下底面是边长为5的正六边形, 侧面面积:6×5×5=150(cm 2),底面积:2×6×21×5×235=753,制作一个纸盒所需纸板的面积:150753+≈280(cm 2). 23. 解:(1)如图,QN 即为PQ 在地面的影子.(2)分别延长FD 、EA 交于点S.在Rt △ADS 中,∠ADS=90°,∠DAS=60°,所以∠S=30°. 又AD=1,∴AS=2.∴ES=AS+AE=2+2=4.在Rt △EFS 中,∠FES=90°,EF=ES•tan ∠FSE=4•tan30°=4×33=433(米). 所以乙杆EF 的高度为433米.第23题图。

七年级数学上册综合训练几何体的展开与折叠习题新版新人教版

七年级数学上册综合训练几何体的展开与折叠习题新版新人教版

几何体的展开与折叠(习题)巩固练习1.下列图形经过折叠不能围成一个棱柱的是()A.B.C.D.2.下列图形中,是三棱柱的表面展开图的有()A.1 个B.2 个C.3 个D.4个3. 如图是一个正方体纸盒的表面展开图,则这个正方体是( )A .B .C .D .4. 如图是一个正方体纸盒,这个正方体的表面展开图可能是( )A .B .C .D .思路分析首先根据“相对面不可能相邻”,排除 . 其次研究棱的对应,排除 ,应选 .5. 如图是一个表面带有图案的正方体,则其表面展开图可能是( )A .B .C .D .6. 过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,则其展开图可能为( )A .B .C .D .12 9 8 7 1 4 5 6 A D D' A'B C C' B 7. 如图是一个正方体纸盒的表面展开图,当折叠成纸盒时,标号为 1 的点与标号为 的点重合,标号为 10 的点与标号为 的点重合.11 102 38. 图 1 是一个正方体,△EFG 表示用平面截正方体的截面.请在图 2 中的表面展开图上画出△EFG 的三条边.D''图 1 图 29. 将棱长为 a cm 的小正方体组成如图所示的几何体,已知该几何体共由 5个小正方体组成.(1)画出这个几何体的三视图;(2)求该几何体的表面积.E A' F10.在平整的地面上,由 10 个完全相同的棱长为 1 cm 的小正方体堆成一个几何体,如图所示.(1)画出这个几何体的三视图;(2)求该几何体的表面积.思考小结1.图形是由_、、构成的,而我们研究几何体特征的思考顺序是先研究面(、),再研究和.2.正方体的面、棱、顶点的特征:①面:一个面与个面相邻,与个面相对;②棱:一条棱与个面相连,一条棱被剪开成为条边;③顶点:一个顶点连着条棱,一个点属于个面.【参考答案】巩固练习1.B2.B3.C4.B思路分析:A、D;C;B 5.C6.B7.2 和 6,88.略9.(1)略;(2)22a2 cm210.(1)略;(2)38 cm2思考小结1.点、线、面底面、侧面棱顶点2.①4,1;②2,2;③3,3。

五年级数学下册 2.2展开与折叠 (含答案)(北师大版)

五年级数学下册  2.2展开与折叠  (含答案)(北师大版)

北师大版五年级数学下册一课一练 2.2展开与折叠(含答案)一、单选题1.下面的图形不是正方体展开图的是()。

A. B. C. D.2.制作一个长方体,下面几种规格的纸板,选()组能组成长方体。

(单位:cm)A. ①②③ ④ ⑤和⑥B. ②③ ⑤⑥⑦和⑧C. ①③ ④ ⑥⑦和⑧D. ①②③ ④⑦和⑧3.左图是一个正方体,正方体展开有6个面,中间图给出了其中的5个面,请从右图①~④中选一个形成正方体展开图,这个面是()。

A. ①B. ②C. ③D. ④4.下面的图形中,不能围成正方体的是()。

A. B. C. D.5.用做一个,数字4的对面是()。

A. 2B. 3C. 6二、判断题6.如果一个长方体有一组相对的面是正方形,则其余四个面完全相同。

()7.下面的图形折叠后可以围成一个正方体。

()8.折一折,用做一个,“3”的对面是4。

()9.如图,阴影部分5个小正方形是一个正方体展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体展开图的有4种。

()三、填空题10.把折成一个,数字“1”的对面是数字“”,数字“5”的对面是数字“”。

11.有一个正方体,将它的各个面分别标上字母a ,b ,c ,d ,e,f .有甲、乙、丙三个同学站在不同的角度观察,结果如图,问这个正方体标有字母a 的对面上的字母是。

12.下图是一个正方体六个面的展开图,这六个面分别是A、B、C、D、E、F,三组对应的面中,C对;E对。

13.一个正方体木块的六个面上分别写着1、2、3、4、5、6,现在把它分别按图1、图2、图3的样子摆放,那么1的对面是,2的对面是,3的对面是。

四、连线题14.15.把下面的正方体、长方体与对应的展开图连起来。

五、综合题16.四块正方体积木,每块积木的6个面上分别写着字母A、B、C、D、E、F;每块积木上字母的排列顺序相同。

请仔细观察,推断。

(1)C对面的字母是________。

(2)A对面的字母是________。

《展开与折叠》同步练习1

《展开与折叠》同步练习1

2.张开与折叠一.填空:1.如 1,折叠后是一个体;2.在棱柱中,任何相的两个面的交都叫做______,相的两个面的交叫做 _______;3.从一个多形的某个点出,分接个点和其余各点,能够把个多形切割成十个三角形,个多形的数_____;4.若是一个棱往是由12 个面成的,那么个棱柱是____棱柱;5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面都是5cm,棱 4cm,它的所有面的面之和______;6.三棱柱有 5 个面 6 个点 9 条棱,四棱柱有 6 个面 8 个点 12 条棱,五棱柱有 7 个面 10 个点 15 条棱,⋯⋯,由此能够推n棱柱有 _____个面,____个点, _____条棱;7.张开一个棱柱的面是,分棱柱和棱柱;8.如 2 是一个几何体的表面展成的平面形,个几何体是;9.把一个方形卷起来,可卷成个不相同柱;10.一个六棱柱有个面、条棱和个点;二.:11.的面张开是〔〕图 2〔 A〕三角形〔B〕矩形〔C〕〔D〕扇形12.如,四个三角形均等三角形,将形折叠,获取的立体形是〔〕〔A〕三棱〔B〕体〔C〕棱体〔D〕六面体13.柱的面张开是〔〕〔A〕形〔B〕扇形〔C〕三角形〔D〕四形14.下面的形中,是三棱柱的面张开的〔〕〔A〕〔B〕〔C〕〔D〕15.棱柱的侧面都是〔〕〔A〕正方形〔B〕长方形〔C〕五边形〔D〕菱形16.以以下图的立方体,若是把它张开,能够是以以下图形中的〔〕17.以下平面图形中不能够围成正方体的是〔〕〔A〕〔B〕〔C〕〔D〕18.下面几何体的表面不能够张开成平面的是〔〕〔A〕正方体〔B〕圆柱〔C〕圆锥〔D〕球19.下面几何体中,表面都是平的是〔〕〔A〕圆柱〔B〕圆锥〔C〕棱柱〔D〕球20.以以下图形经过折叠不能够围成棱柱的是〔〕〔A〕〔B〕〔C〕〔D〕三.解答题:BC21.如图,沿长方形纸片上的边线剪下的阴影部D分,恰好能围成一圆柱,中间的四边形恰好是正方形,设圆半径为 r〔 1〕用含 r 的代数式表示圆柱的体积;〔 2〕当 r=3 cm,圆周率取时,求圆柱的体积〔保存整数〕。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展开与折叠
1、小丽制作了一个如图所示的正方体礼盒,其对面图案都相同,那么这个展开图可能是()
2、如图,把图形折叠起来围成一个正方体,应该得到右图中的()
3、下列平面图形,不能沿虚线折叠成立体图形的是()
4、如图,把图形折叠起来,它会成为下边的正方体()
5、将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()
6、以下各图均有彼此连接的六个小正方形片组成,其中不能折叠成正方体的是()
7、骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“*”所代表的数是()
8、如图,一个正方体纸盒的表面展开图,去掉其中一个正方形,可以折成一个无盖的正方体盒子,去掉的这个正方形的编号是()
9、将如图所示的正方体的展开图重新折叠成正方体后,和“应”相对面上的汉字是()
10、如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是____
11、如图是正方体的展开图,请根据要求回答下列问题:
(1)如果A在正方体的底面,谁在上面?()
(2)如果F在正方体的前面,谁在后面?()
(3)如果C在正方体的右面,谁在左面?()。

相关文档
最新文档