大学物理热力学基础习题 共56页

合集下载

大学物理第九章热力学基础习题答案精品.doc

大学物理第九章热力学基础习题答案精品.doc

习题九9-1 一系统由图示的状态。

经Q&/到达状态。

,系统吸收了320J热量,系统对外作功126J。

⑴若。

沥过程系统对外作功42J,问有多少热量传入系统?(2)当系统由b沿曲线ba返回状态。

,外界对系统作功84 J,试问系统是吸热还是放热?热量是多少?懈]由热力学第一定律Q = \E + A p得星=。

-4在a<b过程中,E b - E = M = 0 - A = 320 -126 = 194/在讪过程中Q2 =^ + 4 = 194 + 42 = 236/o在ba过程中Q, = E. - E b + & = -AE + & = -194-84 = -278J本过程中系统放热。

9-2 2mol氮气由温度为300K,压强为 1.013x10*)(latm)的初态等温地压缩到 2.026 xl05Pa(2atm)o求气体放出的热量。

[解]在等温过程中气体吸收的热量等于气体对外做的功,所以Q T=A=/?TIn-^- = 2x8.3lx300x In-= -3.46x 103JM ]P,2mol 2即气体放热为3.46x103, o9-3 一定质量的理想气体的内能E随体积的变化关系为E- V图上的一条过原点的直线,如图所示。

试证此直线表示等压过程。

[证明]设此直线斜率为奴则此直线方程为E = ki,又E随温度的关系变化式为E = M—Cv ・T = k'TM mo i所以kV = k'T因此堂= C = C(C为恒量)T k又由理想气体的状态方程知,华=。

'(C'为恒量)所以P为恒量即此过程为等压过程。

9-4 2mol氧气由状态1变化到状态2所经历的过程如图所示:⑴沿I一所一2路径。

(2)1 — 2 直线。

试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。

[解](1)在1-初一2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。

《大学物理》热力学基础 自学练习题

《大学物理》热力学基础 自学练习题

《大学物理》热力学基础 自学练习题9-1下列表述是否正确?为什么?并将错误更正. (1)A E Q ∆+∆=∆ (2)⎰+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η 解:(1)不正确,A E Q +∆=(2)不正确, ⎰+=V p E Q d Δ(3)不正确,121Q Q -=η (4)不正确,121Q Q -=不可逆η 9-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关.9-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图9-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两 个交点.题7-4图解:1.由热力学第一定律有A E Q +∆= 若有两个交点a 和b ,则 经等温b a →过程有0111=-=∆A Q E 经绝热b a →过程012=+∆A E 022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 9-5 一循环过程如题7-5图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图;(3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数. 解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率 由vRT pV = 得KvR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5) abca bc abQ Q Q Q e -+=题7-5图 题7-6图9-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同. 9-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程 虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 9-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为 :⎰=-BA AB T Q S S 可逆d ,如果P 为不可逆过程,其熵变为⎰=-B A A B T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P 为可逆过程其熵变为:⎰=-BA AB TQ S S 可逆d ,如果过程P 为不可逆过程,其熵变为⎰>-BA AB TQ S S 不可逆d9-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差 A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热9-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆=吸热 )(2)(1212V T T R iT T C E Q -=-=∆=υυ 25.623)300350(31.823=-⨯⨯=∆=E Q J 对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热 75.1038)300350(31.825=-⨯⨯=Q J )(12V T T C E -=∆υ 内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J 9-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得内能增加,温度变化2V 21mu T C M m E =∆=∆ )1(211212mol V 2mol -==∆γu M RC u M T 9-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积 3211210101.0101-⨯=⨯==p V p V 3m 对外作功21112ln lnp pV p V V VRT A == 01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V =57=γ 由绝热方程 γγ2211V p V p = γγ/12112)(p V p V =1121/12112)()(V p pp V p V γγγ==3411093.101.0)101(-⨯=⨯=m 由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q 所以 )(12molT T C M MA V --= RT M MpV mol =,)(2512111T T R RT V p A --= 35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J9-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγVV p p 111= ⎰=21d V V V p A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV V V p 又 )(1111211+-+----=γγγγV V V p A112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A9-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab 过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为 02V T K =得过程方程 V V T K 02=由状态方程 RT pV υ= 得 VRTp υ=ab 过程气体对外作功⎰=02d V v V p A⎰⎰⎰====00000020002202d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A9-16 某理想气体的过程方程为a a Vp ,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v V p A⎰-=-==-2121)11()(d 2121222V V V V V V a V a V V a A 9-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη 答:等体过程吸热 )(12V 1T T C Q -='υ)(1221V 11RV p R V p C Q Q -='= 绝热过程 03='Q 等压压缩过程放热 )(12p 2T T C Q -='υ )(12P 22T T C Q Q --='=υ )(2212P RV p R V p C -= 循环效率 121Q Q -=η )1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图 题7-19图****************************************************************************** 9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。

(完整word版)大学物理学热力学基础练习题

(完整word版)大学物理学热力学基础练习题

《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。

问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( )A ()C ()B ()D ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( )(A )2000J ; (B )1000J ; (C )4000J ; (D )500J 。

(完整word版)大学物理学热力学基础练习题

(完整word版)大学物理学热力学基础练习题

大学物理学》热力学基础、选择题A)b1a 过程放热、作负功,B)b1a 过程吸热、作负功,C)b1a过程吸热、作正功,D)b1a 过程放热、作正功,【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b1a过程作的负功比b2a过程作的负功多,由Q W E知b2a过程放热,b1a过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B,且他们的压强相等,即P A P B。

问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然(A )对外作正功;(B )内能增加;(C)从外界吸热;(D )向外界放热。

【提示:由于TA T B,必有EA E B;而功、热量是过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为()A)6J ;(B)3J;(C)5J;(D)10J 。

13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是13-1 .如图所示,bca 为理想气体的绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是()b2a 过程放热、作负功;b2a 过程放热、作负b2a 过程吸热、作负功;b2a 过程吸热、作提示:等体过程不做功,有Q E ,而EMMmolR T,所以需传5 J 】2【提示: (A ) 绝热线应该比等温线陡,( B )和( C )两条绝热线不能相交】13-5.一台工作于温度分别为 327℃和 27℃的高温热源与低温热源之间的卡诺热机,一个循环吸热 2000J ,则对外做功( )( A ) 2000 J ; (B ) 1000 J ;(C ) 4000 J ;(D ) 500 J 。

【卡诺热机的效率为 1T 2,W,可求得 1300 50% ,则W Q 1000J 】T 1Q60013-6.根据热力学第二定律()A )自然界中的一切自发过程都是不可逆的;B )不可逆过程就是不能向相反方向进行的过程;C )热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体;D )任何过程总是沿熵增加的方向进行。

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题

《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。

问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( )A ()C ()B ()D ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( )(A )2000J ; (B )1000J ; (C )4000J ; (D )500J 。

2022大学物理B-第8章热力学基础答案 (1)

2022大学物理B-第8章热力学基础答案 (1)

第8章 热力学基础练习题一、选择题1、一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中[A ](A) 气体向外界放热 (B) 气体对外界作正功(C) 气体内能增加 (D) 气体内能减少2、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度[B ] (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定.3、一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为[B ] (A) –1200 J . (B) –700 J.(C) –400 J . (D) 700 J .4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是[B ] (A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.5、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于[D ] (A) 2/3. (B) 1/2.(C) 2/5. (D) 2/7.6、有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是[A ](A) 6 J. (B) 5 J.(C) 3 J. (D) 2 J. 解:这是等容过程,做功为零,根据热力学第一定律:Vp S 1S 2)(21212T T R iE E Q -=-=ν氢气为双原子分子,自由度为5,氨气为多原子分子,自由度为6,体积、压强和温度相等,意味着两者摩尔数相同氢气吸热为5)(2512121=-=-=T T R E E Q ν氨气吸热为)(2612122T T R E E Q -=-=ν有5612=Q Q ,故62=Q 7、一定量某理想气体所经历的循环过程是:从初态(V 0,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等体升温回复到初态温度T 0,最后经等温过程使其体积回复为V 0,则气体在此循环过程中[B ] (A) 对外作的净功为正值. (B) 对外作的净功为负值. (C) 内能增加了. (D) 从外界净吸的热量为正值.8、某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是[A ] (A) 等压过程. (B) 等体过程.(C) 等温过程. (D) 绝热过程.9、一定质量的理想气体完成一循环过程.此过程在V -T 图中用图线1→2→3→1 描写.该气体在循环过程中吸热、放热的情况是[ C ](A) 在1→2,3→1 过程吸热;在2→3 过程放热 (B) 在2→3 过程吸热;在1→2,3→1 过程放热 (C) 在1→2 过程吸热;在2→3,3→1 过程放热 (D) 在2→3,3→1 过程吸热;在1→2 过程放热10、关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是平衡过程;②平衡过程一定是可逆过程;③不可逆过程发生后一定找不到另一过程使系统和外界同时复原;④非平衡过程一定是不可逆过程.以上说法,正确的是[ C ](A) ①②③. (B) ②③④.(B) ①③④. (D) ①②③④.11、如图所示为一定量的理想气体的p —V 图,由图可得出结论[ C ](A) ABC 是等温过程. (B) B A T T >. (C) B A T T <.(D) B A T T =.12、一摩尔单原子理想气体从初态(1p 、1V 、1T )准静态绝热压缩至体积为2V 其熵[ A ](A) 增大. (B) 减小.(C) 不变. (D) 不能确定.二、填空题1、已知一定量的理想气体经历p -T 图上所示的循环过程,图中各过程的吸热、放热情况为: (1) 过程1-2中,气体__________. (2) 过程2-3中,气体__________.(3) 过程3-1中,气体__________. 答案:吸热;放热;放热2、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是__________过程; (2) 气体吸热的是__________过程.答案: BM 、CM ;CM解:如果以C Q B T A T T T T T ,,,,分别表示A 、T 、B 、Q 、C 点的温度,显然C Q B T A T T T T T >>>>,而MT 是等温线,T M T T =故有:M A T T >,AM 是降温过程C B M T T T >>,BM 、CM 是升温过程A E E Q +-=12三个过程中,体积是被压缩的,A 都是负的,即A<0, AM 过程是降温过程,p TO1 23)33m -0)(2<-=-A M A M T T R iE E ν0<+-=A E E Q A M AM ,AM 过程是放热的 BM 过程是升温的0)(2>-=-B M B M T T R iE E ν功为过程曲线所围面积QM BM A A >=)(2Q M Q M T T R iE E -=-ν 由于Q B T T >所以Q M B M T T T T -<-B M B M Q M Q M E E T T R iT T R i E E -=->-=-)(2)(2νν 即B M BM E E A ->0<+-=BM B M BM A E E QBM 过程是放热的 CM 过程是升温的0)(2>-=-C M C M T T R iE E νQM CM A A <=)(2Q M Q M T T R iE E -=-ν 由于Q C T T <Q M C M T T T T ->-C M C M Q M Q M E E T T R iT T R i E E -=-<-=-)(2)(2νν 即C M CM E E A ->0>+-=CM C M CM A E E QCM 过程是吸热的3、有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量 Q _______Q ab . (填入:>,<或=) 答案:<解:根据热力学第一定律,循环过程内能变化为零,循环过程的净吸热量为该循环过程曲线所围面积))(2(21)2(212122a c ab a b P P V V V V r Q --=-==πππ)(41)2)(2(21a b a a a a b V V P P P V V -=--=ππ 而等压过程的吸热为:(22)(,R i T T C Q a b m p ab +=-=νν 4、 一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.答案: 500 7005、一定量的理想气体,从p ─V 图上状态A 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试画出这三种过程的p ─V 图曲线.在上述三种过程中: (1) 气体对外作功最大的是___________过程; (2) 气体吸热最多的是____________过程.答案:等压;等压。

热力学基本定律练习题

热力学基本定律练习题

热力学基本定律练习题1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。

试计算此过程Q,W,ΔU和ΔH值。

解:等温等压相变。

n/mol =100/78 , ΔH = Q = n= 39.5 kJ ,W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1 ·mol-1。

)解:理想气体等压升温(n变)。

,=1.2×107 J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。

计算该过程的Q、W、ΔU和ΔH。

(C p ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。

ΔU=W,即nC V,m(T2-T1)= - p2 (V2-V1),因V2= nRT2/ p2 , V1= nRT1/ p1 ,求出T2=384K。

ΔU=W=nC V,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为,若为;(1)可逆膨胀 (2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。

(已知Cp ,m=2.5 R)。

解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀 ,利用ΔU=W,即nC V,m(T2-T1)= -p2 (V2-V1) ,求出T2=198.8K。

《大学物理》热力学基础练习题

《大学物理》热力学基础练习题

《大学物理》热力学基础练习题一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。

2、从增加内能来说,做功和热传递是等效的。

但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。

3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。

比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。

4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。

”此说法对吗? 为什么?答:不对。

对外做功,则内能减少,温度降低。

5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。

V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。

答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。

不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。

摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。

两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。

8、简述热力学第二定律的两种表述。

答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。

克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。

9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。

大学物理热力学基础习题

大学物理热力学基础习题
P (×105 Pa)
2
b
c
1
a
d
2
3
V (× 10 −2 m3 )
(2)气体循环一次做的净功为图中矩形面积 气体循环一次做的净功为图中矩形面积
W = Pb (Vc − Vb ) − Pd (Vd − Va ) = 100 J
P (×105 Pa)
2
b
c
1
a
d
2
3
V (× 10 −2 m3 )
(3)证明 aTc=TbTd 证明T 证明
6.一定量某理想气体所经历的循环过程是: 一定量某理想气体所经历的循环过程是: 一定量某理想气体所经历的循环过程是 从初态( 开始, 从初态(V0,T0)开始,先经绝热膨胀使 其体积增大 1 倍,再经等容升温回复到初 态温度 T0,最后经等温过程使其体积回复 则气体在此循环过程中: 为 V0,则气体在此循环过程中: (A)对外作的净功为正值; )对外作的净功为正值; (B)对外作的净功为负值; )对外作的净功为负值; (C)内能增加了; )内能增加了; (D)从外界净吸的热量为正值。 )从外界净吸的热量为正值。 [B]
解:(1)第二个循环热机的效率 )
W T2 η= =1− T1 Q1
T2 ∴ Q1 = W 1 − T1
−1
Q 2 T2 且 = Q1 T1
T2 T2 T2 W 即 Q2 = 1 − ⋅ W = T1 − T2 T1 T1
= 2.4 × 10 J
4
又:第二个循环所吸的热 Q1 ' = W1 '+Q2 ' = W '+Q2
b
V1
c
V2 V
在 ca 的过程

大学物理章-热力学基础-试题

大学物理章-热力学基础-试题

第9章 热力学基础一、选择题1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是[ ] (A) 准静态过程一定是可逆过程(B) 可逆过程一定是准静态过程(C) 二者都是理想化的过程(D) 二者实质上是热力学中的同一个概念2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关(B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对3. 有关热量, 下列说法中正确的是[ ] (A) 热是一种物质(B) 热能是物质系统的状态参量(C) 热量是表征物质系统固有属性的物理量(D) 热传递是改变物质系统内能的一种形式4. 关于功的下列各说法中, 错误的是[ ] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样(D) 系统具有的能量等于系统对外作的功5. 理想气体状态方程在不同的过程中有不同的微分表达式,[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 表示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式V p p V MR T d d d +=μ表示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 任意过程9. 热力学第一定律表明:[ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量(B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功不等于系统传给外界的热量(D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是[ ] (A) 等温膨胀 (B) 等容膨胀(C) 等压膨胀 (D) 绝热膨胀11. 对理想气体的等压压缩过程,下列表述正确的是[ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0(C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 012. A p V V =⎰d 适用于[ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为[ ] (A) 121ln V V RT (B) 211ln V V RT(C) )(121V V p - (D) 1122V p V p -15. 如果W 表示气体等温压缩至给定体积所作的功, Q 表示在此过程中气体吸收的热量, A 表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [ ] (A) W +Q -A (B) Q -W -A (C) A -W -Q (D) Q +A -W16. 理想气体内能增量的表示式T C E V ∆=∆ν适用于[ ] (A) 等体过程 (B) 等压过程 (C) 绝热过程 (D) 任何过程17. 刚性双原子分子气体的定压比热与定体比热之比在高温时为[ ] (A) 1.0 (B) 1.2 (C) 1.3 (D) 1.418. 公式R C C V p +=在什么条件下成立?[ ] (A) 气体的质量为1 kg (B) 气体的压强不太高(C) 气体的温度不太低 (D) 理想气体19. 同一种气体的定压摩尔热容大于定体摩尔热容, 其原因是[ ] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要作功 (D) 分子引力不同20. 摩尔数相同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体,从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体[ ] (A) 从外界吸热和内能的增量均相同(B) 从外界吸热和内能的增量均不相同(C) 从外界吸热相同, 内能的增量不相同(D) 从外界吸热不同, 内能的增量相同21. 两气缸装有同样的理想气体, 初态相同.经等体过程后, 其中一缸气体的压强变为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热[ ] (A) 相同 (B) 不相同, 前一种情况吸热多(C) 不相同, 后一种情况吸热较多 (D) 吸热多少无法判断22. 摩尔数相同的理想气体H 2和He, 从同一初态开始经等压膨胀到体积增大一倍时[ ] (A) H 2对外作的功大于He 对外作的功(B) H 2对外作的功小于He 对外作的功(C) H 2的吸热大于He 的吸热(D) H 2的吸热小于He 的吸热23. 摩尔数相同的两种理想气体, 一种是单原子分子, 另一种是双原子分子, 从同一状态开始经等压膨胀到原体积的两倍.在此过程中, 两气体[ ] (A) 对外作功和从外界吸热均相同(B) 对外作功和从外界吸热均不相同(C) 对外作功相同, 从外界吸热不同(D) 对外作功不同, 从外界吸热相同24. 摩尔数相同但分子自由度不同的两种理想气体从同一初态开始作等温膨胀, 若膨胀后体积相同, 则两气体在此过程中[ ] (A) 对外作功相同, 吸热不同(B) 对外作功不同, 吸热相同(C) 对外作功和吸热均相同(D) 对外作功和吸热均不相同25. 两气缸装有同样的理想气体, 初始状态相同.等温膨胀后, 其中一气缸的体积膨胀为原来的两倍, 另一气缸内气体的压强减小到原来的一半.在其变化过程中, 两气体对外作功[ ] (A) 相同 (B) 不相同, 前一种情况作功较大(C) 不相同, 后一种情况作功较大 (D) 作功大小无法判断26. 理想气体由初状态( p 1、V 1、T 1)绝热膨胀到末状态( p 2、V 2、T 2),对外作的功为 [ ] (A) )(12T T C MV -μ(B) )(12T T C M p -μ (C) )(12T T C M V --μ (D) )(12T T C M p --μ27. 在273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.将此气体绝热压缩至体积为16.8升, 需要作多少功?[ ] (A) 330 J (B) 680 J (C) 719 J (D) 223 J28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同(C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同29. 如果使系统从初态变到位于同一绝热线上的另一终态则[ ] (A) 系统的总内能不变(B) 联结这两态有许多绝热路径(C) 联结这两态只可能有一个绝热路径(D) 由于没有热量的传递, 所以没有作功30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时,绝热压缩比等温压缩的终态压强[ ] (A) 较高 (B) 较低 (C) 相等 (D) 无法比较31. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大, 这个过程应是[ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可32. 视为理想气体的0.04 kg 的氦气(原子量为4), 温度由290K 升为300K .若在升温过程中对外膨胀作功831 J, 则此过程是[ ] (A) 等体过程 (B) 等压过程(C) 绝热过程 (D) 等体过程和等压过程均可能33. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的?[ ] (A) 等温压缩 (B) 等体降压(C) 等压压缩 (D) 等压膨胀34. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V .在这个循环中, 气体必然[ ] (A) 内能增加 (B) 内能减少(C) 向外界放热 (D) 对外界作功35. 提高实际热机的效率, 下面几种设想中不可行的是[ ] (A) 采用摩尔热容量较大的气体作工作物质(B) 提高高温热源的温度(C) 使循环尽量接近卡诺循环(D) 力求减少热损失、摩擦等不可逆因素36. 在下面节约与开拓能源的几个设想中, 理论上可行的是[ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100%(B) 利用海面与海面下的海水温差进行热机循环作功(C) 从一个热源吸热, 不断作等温膨胀, 对外作功(D) 从一个热源吸热, 不断作绝热膨胀, 对外作功37. 下列说法中唯一正确的是[ ] (A) 任何热机的效率均可表示为吸Q A=ηT 9-1-34图(B) 任何可逆热机的效率均可表示为高低T T -=1η (C) 一条等温线与一条绝热线可以相交两次(D) 两条绝热线与一条等温线可以构成一个循环38. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成(B) 完成一次卡诺循环必须有高温和低温两个热源(C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界作的净功一定大于039. 在功与热的转变过程中, 下面说法中正确的是[ ] (A) 可逆卡诺机的效率最高, 但恒小于1(B) 可逆卡诺机的效率最高, 可达到1(C) 功可以全部变为热量, 而热量不能全部变为功(D) 绝热过程对外作功, 系统的内能必增加40. 两个恒温热源的温度分别为T 和t , 如果T >t , 则在这两个热源之间进行的卡诺循环热机的效率为 [ ] (A)t T T - (B) t t T - (C) T t T - (D) Tt T + 41. 对于热传递, 下列叙述中正确的是[ ] (A) 热量不能从低温物体向高温物体传递(B) 热量从高温物体向低温物体传递是不可逆的(C) 热传递的不可逆性不同于热功转换的不可逆性(D) 理想气体等温膨胀时本身内能不变, 所以该过程也不会传热42. 根据热力学第二定律可知, 下列说法中唯一正确的是[ ] (A) 功可以全部转换为热, 但热不能全部转换为功(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体(C) 不可逆过程就是不能沿相反方向进行的过程(D) 一切自发过程都是不可逆过程43. 根据热力学第二定律判断, 下列哪种说法是正确的[ ] (A) 热量能从高温物体传到低温物体, 但不能从低温物体传到高温物体(B) 功可以全部变为热, 但热不能全部变为功(C) 气体能够自由膨胀, 但不能自由压缩(D) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能量不能变为有规则运动的能量44. 热力学第二定律表明:[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功(B) 在一个可逆过程中, 工作物质净吸热等于对外作的功(C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体45. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外作功.”对此说法, 有以下几种评论, 哪一种是正确的?[ ] (A) 不违反热力学第一定律, 但违反热力学第二定律(B) 不违反热力学第二定律, 但违反热力学第一定律(C) 不违反热力学第一定律, 也不违反热力学第二定律(D) 违反热力学第一定律, 也违反热力学第二定律46. 有人设计了一台卡诺热机(可逆的).每循环一次可从400K 的高温热源吸收1800J的热量, 向300K 的低温热源放热800J, 同时对外作功1000J .这样的设计是[ ] (A) 可以的, 符合热力学第一定律(B) 可以的, 符合热力学第二定律(C) 不行的, 卡诺循环所作的功不能大于向低温热源放出的热量(D) 不行的, 这个热机的效率超过了理论值47. 1mol 的单原子分子理想气体从状态A 变为状态B, 如果变化过程不知道, 但A 、B两态的压强、温度、体积都知道, 则可求出[ ] (A) 气体所作的功 (B) 气体内能的变化(C) 气体传给外界的热量 (D) 气体的质量48. 如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的功和热机效率变化情况是:[ ] (A) 净功增大,效率提高(B) 净功增大,效率降低(C) 净功和效率都不变(D) 净功增大,效率不变49. 用两种方法: 使高温热源的温度T 1升高△T ;使低温热源的温度T 2降低同样的△T 值;分别可使卡诺循环的效率升高1η∆和 2η∆,两者相比:[ ] (A) 1η∆>2η∆ (B) 2η∆>1η∆(C) 1η∆=2η∆ (D) 无法确定哪个大50. 下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号.[ ]T9-1-48图 2T 1T a b b 'c 'c d VO O V p (D)等温 绝热 绝热O V p (C) 绝热 绝热等压(A)等温等容 绝热OV p (B)等温 绝热容等OV p51. 在T9-1-51图中,I c II 为理想气体绝热过程,I a II和I b II 是任意过程.此两任意过程中气体作功与吸收热量的情况是:[ ] (A) I a II 过程放热,作负功;I b II 过程放热,作负功 (B) I a II 过程吸热,作负功;I b II 过程放热,作负功 (C) I a II 过程吸热,作正功;I b II 过程吸热,作负功 (D) I a II 过程放热,作正功;I b II 过程吸热,作正功52. 给定理想气体,从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到3倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为(为比热比) [ ] (A) 01)31(T T -=γ, 0)31(p p γ= (B) 0)31(T T γ=,01)31(p p -=γ (C) 0)31(T T γ-=,01)31(p p -=γ (D) 01)31(T T -=γ,0)31(p p γ-=53. 甲说:“由热力学第一定律可证明任何热机的效率不可能等于1.”乙说:“热力学第二定律可表述为效率等于 100%的热机不可能制造成功.”丙说:“由热力学第一定律可证明任何卡诺循环的效率都等于)1(12T T -.”丁说:“由热力学第一定律可证明理想气体卡诺热机(可逆的)循环的效率等于)1(12T T -.”对以上说法,有如下几种评论,哪种是正确的? [ ] (A) 甲、乙、丙、丁全对 (B) 甲、乙、丙、丁全错(C) 甲、乙、丁对,丙错 (D) 乙、丁对,甲、丙错54. 某理想气体分别进行了如T9-1-54图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源处吸的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量为Q ',则 [ ] (A) Q Q '<'<,ηη (B) Q Q '>'<,ηη (C) Q Q '<'>,ηη (D) Q Q '>'>,ηη55. 两个完全相同的气缸内盛有同种气体,设其初始状态相同.今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:[ ] (A) 气缸1和气缸2内气体的温度变化相同 T9-1-51图 a b II I c V OT9-1-54图a b b 'c 'c d V O p a 'd '(B) 气缸1内的气体较气缸2内的气体的温度变化大(C) 气缸1内的气体较气缸2内的气体的温度变化小(D) 气缸1和气缸2内的气体的温度无变化二、填空题1. 不等量的氢气和氦气从相同的初态作等压膨胀, 体积变为原来的两倍.在这过程中, 氢气和氦气对外作的功之比为 .2. 1mol 的单原子分子理想气体, 在1atm 的恒定压力下从273K 加热到373K, 气体的内能改变了 .3. 各为1摩尔的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积变为2V , 氦气膨胀后压强变为2p , 则氢气和氦气从外界吸收的热量之比为 . 4. 两个相同的容器, 一个装氢气, 一个装氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等.现将6J 热量传给氦气, 使之温度升高.若使氢气也升高同样的温度, 则应向氢气传递的热量为 .5. 1摩尔的单原子分子理想气体, 在1个大气压的恒定压力作用下从273K 加热到373K, 此过程中气体作的功为 .6. 273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为 .7. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外作功300 J . 若冷凝器的温度为7C, 则热源的温度为 .8. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为1S 和2S ,则二者的大小关系是 .9. 一卡诺机(可逆的),低温热源的温度为C 27 ,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .p V 1S 2S O T9-2-8图10. 一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷系数212T T T w -=,则η与w 的关系为 .11. 1mol 理想气体(设V P C C =γ为已知)的循环过程如T -V 图所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:=C V , =C T , =C p . 12. 一定量的理想气体,从A 状态),2(11V p 经历如T9-2-12图所示的直线过程变到B 状态),(11V p ,则AB 过程中系统作功___________, 内能改变△E =_________________.13. 质量为M 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .14. 有ν摩尔理想气体,作如T9-2-14图所示的循环过程abca ,其中acb 为半圆弧,b -a 为等压过程,a c p p 2=,在此循环过程中气体净吸热量为Q νC p )(a b T T -(填入:> , <或=).15. 一定量的理想气体经历acb 过程时吸热550 J .则经历acbea 过程时,吸热为 .16. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程: 等压过程;等温过程; 绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多. T 1T V 1V 2A B C O 2T T9-2-11图A p 121B 1V 12V V O T9-2-12图p c p V O b V c a b a p a V T9-2-14图 Pa 105⨯p 33m 10-O 4c a b 1T9-2-15图 1d e pVO a1VT9-2-17图2V17. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在T9-2-17图中示意地画出这三种过程的p -V 图曲线.在上述三种过程中:(1) 气体的内能增加的是__________过程;(2) 气体的内能减少的是__________过程.18. 如T9-2-18图所示,已知图中两部分的面积分别为S 1和S 2. 如果气体的膨胀过程为a 1b ,则气体对外做功W =________; 如果气体进行a 1b 2a 的循环过程,则它对外做功W =_______________.19. 如T9-2-19图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化E ∆.则Q 和E ∆ >0或<0或= 0的情况是:Q _________, E __________.20. 将热量Q 传给一定量的理想气体,(1) 若气体的体积不变,则其热量转化为 ; (2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 . 21. 一能量为1012eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K .(1 eV =1.60×1019J ,普适气体常量R =8.31 J/(mol K))22. 有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3kg mol -1,普适气体常量R =8.3111K mol J --⋅⋅)23. 一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热c V=0.314 k J ·kg 1·K 1,则氩原子的质量m =__________.三、计算题1. 1 mol 刚性双原子分子的理想气体,开始时处于p),(22V p ),(11V p 13p p =OVI IIp OabT9-2-18图21S 2S 1pVO abT9-2-19图cPa 1001.151⨯=p 、331m 10-=V 的状态,然后经图示直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV =21(常量)的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求:(1) 在过程I 中气体吸的热量; (2) 整个过程气体吸的热量.2. 1 mol 的理想气体,完成了由两个等容过程和两个等压 过程构成的循环过程(如T9-3-2图),已知状态1的温度为1T , 状态3的温度为3T ,且状态2和4在同一等温线上.试求 气体在这一循环过程中作的功.3. 一卡诺热机(可逆的),当高温热源的温度为C 127、低温热源温度为C 27 时,其每次循环对外作净功8000J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外作净功10000J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环热机的效率;(2) 第二个循环的高温热源的温度.4. 某种单原子分子的理想气体作卡诺循环,已知循环效率%20=η,试问气体在绝热膨胀时,气体体积增大到原来的几倍?5. 1mol 双原子分子理想气体作如T9-3-5图所示的可逆循环过程,其中1-2为直线,2-3为绝热线,3-1为等温线.已知13128,2V V T T ==,试求:(1) 各过程的功,内能增量和传递的热量;(用1T 和已知常数表示) (2) 此循环的效率η.(注:循环效率1Q A =η,A 为每一循环过程气体对外所作的功,1Q 为每一循环过程气体吸收的热量)6. 如T9-3-6图所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环.(1) 试在p -V 图上画出相应的理想循环曲线;T9-3-2图123T9-3-5图T9-3-6图(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化?(已知冰的熔解热=λ 3.35×105 J·kg -1,普适气体常量 R = 8.31J·mol -1·K -1)7. 比热容比=γ 1.40的理想气体,进行如T9-3-7图所示的abca 循环,状态a 的温度为300 K . (1)求状态b 、c 的温度; (2) 计算各过程中气体所吸收的热量、气体所作的功和气体内能的增量; (3) 求循环效率.8. 一台冰箱工作时,其冷冻室中的温度为-10℃,室温为15℃.若按理想卡诺致冷循环计算,则此致冷机每消耗J 102的功,可以从冷冻室中吸出多少热量?9. 一可逆卡诺热机低温热源的温度为7.0℃,效率为40%;若要将其效率提高50%,则高温热源温度需提高几度?10. 绝热容器中有一定量的气体,初始压强和体积分别为0p 和0V .用一根通有电流的电阻丝对它加热(设电阻不随温度改变).在加热的电流和时间都相同的条件下,第一次保持体积0V 不变,压强变为1p ;第二次保持压强0p 不变,而体积变为1V .不计电阻丝的热容量,求该气体的比热容比.11. 空气中的声速的表达式为u κρ=,其中是气体密度,κ是体弹性模量,满足关系式Vp Vκ∆∆=-.就下列两种情况计算其声速: (1) 假定声波传播时空气的压缩和膨胀过程是一个等温过程(即等温声速模型,亦称为牛顿模型);(2) 假定声波传播时空气的压缩和膨胀过程是一个绝热过程(即绝热声速模型); 比较这两个结果你得出什么结论?(设空气中只有氮气)12. 某热机循环从高温热源获得热量Q H ,并把热量Q L 排给低温热源.设高、低温热源的温度分别为T H =2000K 和T L =300K ,试确定在下列条件下热机是可逆、不可逆或不可能存在的.(1) Q H =1000J ,A =900J ;(2) Q H =2000J ,Q L =300J ;(3) A =1500J ,Q L =500J .13. 研究动力循环和制冷循环是热力学的重要应用之一T9-3-7图2)3V 6Pa)10(2⨯p a bc4.内燃机以气缸内燃烧的气体为工质.对于四冲程火花塞点燃式汽油发动机来说,它的理想循环是定体加热循环,称为奥托循环(Otto cycle ).而对于四冲程压燃式柴油机来说,它的理想循环是定压加热循环,称为狄塞耳循环(Diesel cycle ).如T9-3-13图所示,往复式内燃机的奥托循环经历了以下四个冲程:(1)吸气冲程(0→1):当活塞由上止点T 向下止点B 运时,进气阀打开,在大气压力下吸入汽油蒸气和空气的混合气体.(2)压缩冲程:进气阀关闭,活塞向左运行,混合气体被绝热压缩(1→2);活塞移动T 点时,混合气体被电火花点燃迅速燃烧,可以认为是定体加热过程(2→3),吸收热量1Q .(3)动力冲程:燃烧气体绝热膨胀,推动活塞对外作功(3→4);然后,气体在定体条件下降压(4→1),放出热量2Q .(4)排气冲程:活塞向左运行,残余气体从排气阀排出.假定内燃机中的工质是理想气体并保持定量,试求上述奥托循环1→2→3→4→1的效率η.14. 绝热壁包围的气缸被一绝热的活塞分成A ,B 两室,活塞在气缸内可无摩擦自由滑动,每室内部有1摩尔的理想气体,定容热容量R c V 25=.开始时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.(1) 加热结束后,B 室中气体的温度和体积? (2) 求加热之后,A 、B 室中气体的体积和温度; (3) 在这过程中A 室中的气体作了多少功? (4) 加热器传给A 室的热量多少?15. 如T9-3-15图所示,器壁与活塞均绝热的容器中间被一隔板等分为两部分,其中右边贮有1摩尔处于标准状态的氦气(可视为理想气体),左边为真空.现先把隔板拉开,待气体平衡后,再缓慢向右推动活塞,把气体压缩到原来的体积.求氦气的温度改变量.16. 如T9-3-15图所示,一固定绝热隔板将某种理想气体分成A 、B 两部分,B 的外侧是可动活塞.开始时A 、B 两部分的温度T 、体积V 、压强p 均相同,并与大气压强相平衡.现对A 、B 两部分气体缓慢地加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5.(1) 求该气体的定体摩尔热容C V 和定压摩尔热容C p ;(2) B 室中气体吸收的热量有百分之几用于对外作功?17. 有两个全同的物体,其内能为(u CT C =为常数),初始时两物体的温度分别为21T T 、.现以两物体分别为高、低温热源驱动一卡诺热机运行,最后两物体达到一共同温度f T .求(1)f T ;(2)求卡诺热机所作的功.18. 温度为25℃、压强为1atm 的1mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)T9-3-15图T9-3-17图。

热力学基础习题、答案及解法(2011.1.6)

热力学基础习题、答案及解法(2011.1.6)

热力学基础习题、答案及解法一、选择题1. 如图一所示,一定量的理想气体,由平衡状态A 变到平衡状态B (b a P P =),则无论经过的是什么过程,系统必然 【B 】(A )对外做正功 (B )内能增加 (C )从外界吸热 (D )向外界吸热2. 对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比Q W 等于 【C 】 (A )32 (B )21 (C )52 (D )72参考答案:T R MW p ∆=μT R i M Q p ∆⎪⎭⎫⎝⎛+=22μ522222=+=∆⎪⎭⎫ ⎝⎛+∆=i T R i M TR MQ W pp μμ3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为 【C 】 (A )1:1 (B )5:9 (C )5:7 (D )9:5参考答案:T R i M Q p ∆⎪⎭⎫ ⎝⎛+=22μ RT M pV μ=氦氧T T ∆⎪⎭⎫⎝⎛+=∆⎪⎭⎫ ⎝⎛+223225 P VA∙B∙O1图75=∆∆氦氧T T T R M W p ∆=μ 75=∆∆=氦氧氦氧T T W W p p 4. 在下列理想气体过程中,哪些过程可能发生? 【D 】 (A )等体积加热时,内能减少,同时压强升高 (B )等温压缩时,压强升高,同时吸收 (C )等压压缩时,内能增加,同时吸热 (D )绝热压缩时,压强升高,同时内能增加参考答案:0=dV 0=W T R i M E Q ∆⎪⎭⎫⎝⎛=∆=2μ 0=dT 0=∆E !11!2ln lnp p RT M V V RT MW Q μμ=== 0=dp T R i M Q ∆⎪⎭⎫ ⎝⎛+=22μ T R i M E ∆⎪⎭⎫ ⎝⎛=∆2μ T R MV p W ∆=∆=μ 0=dQ 0=Q ⎰⎪⎪⎭⎫⎝⎛--=-=∆⎪⎭⎫⎝⎛=-=∆--1011001112γγγγμV V V p pdV T R i M W E5. 分别在等温、等压、等容情况下,将400J 的热量传给标准状态下的2mol 氢气,关于3个过程热量和内能的变化说法正确的是【D 】 (A )等容过程做功最多,等压过程内能增加最多 (B )等压过程做功最多,等容过程内能增加最多 (C )等温过程做功最多,等压过程内能增加最多 (D )等温过程做功最多,等容过程内能增加最多参考答案:0=dV 0=W T R i M E Q ∆⎪⎭⎫⎝⎛=∆=2μ 0=dT 0=∆E !11!2ln lnp p RT M V V RT MW Q μμ===0=dp T R i M Q ∆⎪⎭⎫ ⎝⎛+=22μ T R i M E ∆⎪⎭⎫ ⎝⎛=∆2μ T R MV p W ∆=∆=μ 6. 如图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化ΔE ,则以下哪种说法是正确的? 【A 】 (A )系统从外界吸收热量,内能增大; (B )系统从外界吸收热量,内能减少; (C )系统向外界放出热量,内能增大; (D )系统向外界放出热量,内能减少。

大学物理热力学基础习题

大学物理热力学基础习题

图示过程中的各值
解:AB等体
m
QE2E1MC Vm TBTA P ATA34K0
查表得 C Vm 1.5 2J2mo K1 l
CTC33K0
Q ( 7 放热J 5,E 0 内2 能E 1 减少)o
BTB31 K0 V
BC等压 Q E 2 E 1 P V 2 V 1 QM mCPm TCTBE 2 8E 31J2M mCVm TCTB50J0
E0
P-V图上为一闭合曲线(正、逆循环) 曲线面积为循环的净功
2、热机与致冷机
热机效率:吸热 Q 1 ,放热 Q 2 ,
(1)对外做功
W
WQ1Q2 1Q2
Q1 Q1
Q1
高温热源
Q1
热机
W
Q2
低温热源
(2)致冷机 致冷系数(作逆循环)
从低温热源吸热Q 2 , 向高温热源放热Q 1 ,外 界作功W eQ2 Q2
A 22.4
DV103m
33.6
放热 CD Q2 M mCVm TCTD
DA Q2 M mCPm TDTA Q 1 Q 1 Q 2 Q 2 1.5 2%
Q 1 Q 1
或 W
Q1
W P 2 P 1V 2 V 1
如果将机器适当“换向”,一机就能两
3、卡诺定理
(1)在同样高低温度之间工作
的一切卡诺机(可逆机),其
效率都相等
1
T2
T1
(2)在同样高低温度之间工作的一切不可
逆机效率 1 T2
T1
给出提高热机效率的途径和提高效率
的局限。
五、热力学第二定律
1、定律的引出
热机效率

大学物理热力学基础习题与解答 PPT

大学物理热力学基础习题与解答 PPT

QAB

m M
CP (TB
TA )
8 V/m3

5 2
( pBVB

p AVA )
14.9 105 J
全过程:Q QBC QAB 14.9 10 5 J 由图得, TA TC
E 0
W Q E 14.9105 J
3. 图所示,有一定量的理想气体,从初状态 a


3 4
ln
4

p1V1
净热量为
Q
W


3 4

ln
4

p1V1
4. 设燃气涡轮机内的理想气体作如图所示的循环过程, 其中 1 2 ,3 4 为绝热过程;2 3 ,4 1 为 等压过程,证明此循环的效率为
1
1 p1 p2
解:在等压过程中吸热为
T3
p2
由上述二式得: T1 T4 T4 T1 T2 T3 T3 T2
从而证得循环的效率为
1
1 T1
T2
1
p1 p2


[B ]
8. 如图,一卡诺机由原来采用循环过程 a b c d a
改为采用循环过程 ab' c' da ,则循环过程 的
(A)净功增大,效率提高; (B)净功增大,效率降低; (C)净功和效率都不变; (D)净功增大,效率不变
Wabcd Wab'c' d
1 T2
T1
[D]
p a
b b
E E3 E4 1246 .5 J
2. 一定量的单原子分子理想气体,从A态出发经过等压过 程膨胀到B态,又经过绝热过程膨胀到C态,如图所示。 试求这全过程中,该气体对外所做的功、内能的增量以及 吸收的热量。

《大学物理》热力学基础自学练习题

《大学物理》热力学基础自学练习题

《大学物理》热力学基础自学练习题《大学物理》热力学基础自学练习题9-1下列表述是否正确?为什么?并将错误更正.(1)A E Q ?+?=? (2)?+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η 解:(1)不正确,A E Q +?=(2)不正确, ?+=V p E Q d Δ(3)不正确,121Q Q -=η (4)不正确,121Q Q -=不可逆η 9-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关.9-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图9-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题7-4图解:1.由热力学第一定律有A E Q +?= 若有两个交点a 和b ,则经等温b a →过程有0111=-=?A Q E 经绝热b a →过程012=+?A E 022<-=?A E从上得出21E E ?≠?,这与a ,b 两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律.9-5 一循环过程如题7-5图所示,试指出:(1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图;(3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得KvR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5) abca bc abQ Q Q Q e -+=题7-5图题7-6图9-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问:(1)它们吸热和放热的差值是否相同;(2)对外作的净功是否相等;(3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同. 9-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功;(2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 9-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为:=-BA AB T Q S S 可逆d ,如果P 为不可逆过程,其熵变为?=-B A A B T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P为可逆过程其熵变为:=-BA AB TQ S S 可逆d ,如果过程P 为不可逆过程,其熵变为>-BA AB TQ S S 不可逆d9-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差 A E Q +?=224126350=-=-=?A Q E Jabd 过程,系统作功42=A J26642224=+=+?=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+?=A E Q J 系统放热9-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变.解:(1)等体过程由热力学第一定律得E Q ?=吸热 )(2)(1212V T T R iT T C E Q -=-=?=υυ 25.623)300350(31.823=-??==E Q J 对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热 75.1038)300350(31.825=-??=Q J )(12V T T C E -=?υ 内能增加 25.623)300350(31.823=-??=E J对外作功 5.4155.62375.1038=-=?-=E Q A J 9-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得内能增加,温度变化2V 21mu T C M m E =?=? )1(211212mol V 2mol -==γu M RC u M T 9-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功.解:(1)等温压缩300=T K 由2211V p V p = 求得体积3211210101.0101-?=?==p V p V 3m 对外作功21112ln lnp pV p V V VRT A == 01.0ln 01.010013.115=31067.4?-=J(2)绝热压缩R C 25V =57=γ 由绝热方程γγ2211V p V p = γγ/12112)(p V p V =1121/12112)()(V p pp V p V γγγ==3411093.101.0)101(-?=?=m 由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=?==--T p p T T γγγγ热力学第一定律A E Q +?=,0=Q 所以 )(12molT T C M MA V --= RT M MpV mol =,)(2512111T T R RT V p A --= 35105.23)300579(25300001.010013.1?-=--=A J9-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明:由绝热方程C V p V p pV ===γγγ2211 得γγVV p p 111= ?=21d V V V p A-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV V V p 又 )(1111211+-+----=γγγγV V V p A112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A9-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab 过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为 02V T K =得过程方程 V V T K 02=由状态方程RT pV υ= 得 VRTp υ=ab 过程气体对外作功=02d V v V p A====00000020002202d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A9-16 某理想气体的过程方程为a a Vp ,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功=21d V v V p A-=-==-2121)11()(d 2121222V V V V V V a V a V V a A 9-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη 答:等体过程吸热 )(12V 1T T C Q -='υ)(1221V 11RV p R V p C Q Q -='= 绝热过程 03='Q 等压压缩过程放热 )(12p 2T T C Q -='υ )(12P 22T T C Q Q --='=υ )(2212P RV p R V p C -= 循环效率 121Q Q -=η )1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图题7-19图*************************************************************** *************** 9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。

大学物理答案第七章热力学基础-习题解答

大学物理答案第七章热力学基础-习题解答

展望
学习方法建议
多做习题,提高解题能力 和综合分析能力。
加强理论学习,深入理解 热力学的物理意义和数学 表达。
关注学科前沿,了解热力 学在最新科研和技术中的 应用。
THANK YOU
感谢聆听
•·
热力学第一定律是能量守恒定律 在热学中的具体表现,它指出系 统能量的增加等于传入系统的热 量与外界对系统所做的功的和。
功的计算:在封闭系统中,外界 对系统所做的功可以通过热力学 第一定律进行计算,这有助于理 解系统能量的转化和利用。
能量平衡:利用热力学第一定律 ,可以分析系统的能量平衡,判 断系统是否处于热平衡状态。
热力学第二定律
热力学第二定律
描述了热力过程中宏观性质的自然方向性,即不可能把热量从低温物体传到高温物体而不引起其它变 化。
表达式
不可能通过有限个步骤将热量从低温物体传到高温物体而不引起其它变化。
03
热力学基础习题解答
热力学第一定律的应用
热量计算:通过热力学第一定律 ,可以计算系统吸收或放出的热 量,进而分析系统的能量变化。
热力学第二定律的应用
01
02
热力学第二定律指出,自
•·
发过程总是向着熵增加的
方向进行,即不可逆过程
总是向着宏观状态更混乱
、更无序的方向发展。
03
04
05
熵增加原理:根据热力学 第二定律,孤立系统的熵 永不减少,即自发过程总 是向着熵增加的方向进行 。
热机效率:利用热力学第 二定律,可以分析热机的 效率,探讨如何提高热机 的效率。
100%
制冷机效率的影响因素
制冷机效率受到多种因素的影响 ,如制冷剂的性质、蒸发温度和 冷凝温度、压缩机和冷却剂的流 量等。

(完整版)大学物理热学习题附答案

(完整版)大学物理热学习题附答案

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题《大学物理学》热力学基础一、选择题13-1.如图所示,bcab 1a 和b 2a 功与吸收热量的情况是( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功;(B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功;(C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功;(D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B 状态A 和状态B 过程,气体必然 ( )(A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循)A ()B ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( ) (A )2000J ; (B )1000J ; (C )4000J ; (D )500J。

大学物理热力学基础习题课

大学物理热力学基础习题课

答案:B 9、下列说法中,哪些是正确的
1、可逆过程一定是准静态过程;2、准静态过程一定是可逆的 4、不可逆过程一定是非准静态过程;4、非准静态过程一定是 不可逆的。
A、(1,4);B、(2,3);C、(1,3);D、(1,2,3,4)
答案:A
10、根据热力学第二定律,下列那种说法正确
A.功可一全部转换成热,但热不可以全部转换成功 B.热可以从高温物体传递到低温物体,反之则不行
Q QBC QAB 14.9 105 J 由图得, TA TC 全过程:
E 0
W Q E 14.9 105 J
3. 图所示,有一定量的理想气体,从初状态 a (P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环 过程中系统对外做的功 A 和吸收的热量 Q .
a
T2 300 1 1 25% T1 400
c
d
300 400
T(K)
8. 一卡诺热机在每次循环中都要从温度为 400 K 的高温热源吸热 418 J ,向低温热源放 热 334.4 J ,低温热源的温度为 320 K 。如 果将上述卡诺热机的每次循环都逆向地进行, 从原则上说,它就成了一部致冷机,则该逆向 4 卡诺循环的致冷系数为 。
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同

p1 p1V1 V2 4 V2 4V1
循环过程 E 0 , Q W
而在 a b 等容过程中功 W1 0 在 b c 等压过程中功
p1 p1 3 W2 V2 V1 4V1 V1 p1V1 4 4 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图示过程中的各值
解:AB等体
m
QE2E1MC Vm TBTA P ATA34K0
查表得 C Vm 1.5 2J2mo K1 l
CTC33K0
Q ( 7 放热J 5,E 0 内2 能E 1 减少)o
BTB31 K0 V
BC等压 Q E 2 E 1 P V 2 V 1 QM mCPm TCTBE 2 8E 31J2M mCVm TCTB50J0
o
V
例2、已知5mol的氢气 并压缩至 V2 V110
P1
1.013´105 Pa,T1
293K
所做的功(1)等温过程(2)
绝热过程
P
解:⑴等温过程
绝热线
⑵Q 绝1 热W 1过程M m (R 外l界Tn V V 对1 2气2体.8作 0140 J
等温线
o V2
V1
V
功又)TVrW 1 2 常ET22TM m 1VVC12Vm rT 2 1 T7153K
第六章
热力学基础
前言:
热力学研究对象:物质的热运动 (另一种运动形式)
热运动:(固体、液体、气体)大量微粒 (原子,分子等)不停地无规则运动
研究对象(系统)的复杂性:
大量微粒1023;速度102—103ms-1;线 度10-10m;质量10-26kg;每秒碰撞次 数—109
研究方法(气体):
1、能量观点出发,以实验方 法研究热现象的宏观规律 (热力学) 2、应用统计方法(大量无规律运动微粒的 集体行为)研究其微观本质(气体动理论)
o
M
V
m—气体质量M , —气体的摩尔质量,
(摩R 尔8.气3体J1m 常量o K )1l
二、热力学中的几个基本概念 和重要物理量
1、热力学系统:研究的对象 孤立系统:不受外界任何影响的系统 开放系统:与外界有能量等交换的系统
2、热力学过程:系统从一个平衡态到另 一个平衡态的变化过程
平衡(准静态)过程:过程的中间 状态都可以看作平衡状态
WQE33J2
讨论:① BC先计算
W P V CV BM mR T CT B33 J 2
再由E计算 Q(或由Q 计算E )
②从P-V图上直接判断各 量的正负
P
ATA34K0
③注意
普遍适应
m EMCVmT2T1
CTC33K0
BTB31 K0
卡诺热机效率 1
T2
T1
仿上得 卡诺致冷机
A D C B A
eQ2 Q2 T2
W Q1Q2 T1T2
PA
2、讨论
T1
(1)这是完成一个循环所需
B D T2
的最少热源(高温热源T1 和低
C
温热源T 2 )
o V1 V4 V2 V 3 V
(2)提高热机效率的途径T1 或降低T2
A 22.4
DV103m
33.6
放热 CD Q2 M mCVm TCTD
DA Q2 M mCPm TDTA Q 1 Q 1 Q 2 Q 2 1.5 2%
Q 1 Q 1
或 W
Q1
W P 2 P 1V 2 V 1
P-V图上可用一条曲线表
示—过程曲线 准静态过程是理想过程
3、热力学的几个重要物理量 P A
(1)功(体积变化所作的功)
W F lp S lpdV
B
W pdV
o
V
PA
P-V图上过程曲线
下所包
(2)热量:系统与外界由于 温差而传递的能量
1、等体过程
(1)特点:V=常量,dW0 P-V图上过程线图示
PA
过程方程 =常量P T (2)热力学第一定律
B
o
V
QV E2E1 dQ VdE
系统(气体)吸收的热量全部用来增加
气体的内能
(3)定体摩尔热容量 定义 CVm ddQTV(1摩尔)(查表)
Q VC Vm T 2T 1(1摩尔) 对质量m气体 Q VM mC Vm T2T1E2E1
W 2 E 2 4 .7 1 04J 0
(外界对气体作功)
讨论: ① W2 W1 ②两者压强变化
由 PV=常量 PT P1VV121.013104Pa
r
由PVr1 =常量 Pa P1VV12 2.55104Pa
Pa PT
四、循环过程:系统经历一系 列状态变化后,又回到原来状 态 1、循环过程的特点:
AB
dV Q dE dW o
V
系统吸收热量是一部分增加气体的内能,
另一部分气体对外做功
(3)定压摩尔热容量
定义
CPm

dQP dT
(1摩尔)
所以Q PC Pm T 2T 1 QPM mCPmT2T1
此时 E2E1M mCVm T2T1(查表)
由第一定律得
M m C PT m 2 T 1 M m C VT m 2 T 1 M m R T 2 T 1
六、卡诺循环
问题:如何提高热机效率?热 机效率能否达到100%?
从一个理想的热机循环着手
1、卡诺循环:两个等温过程(T1,T2 )和两
个绝热过程组成。
PA
其效率:Q1Q2 1Q2
T1 B
Q1
Q1
D T2
AB等温(T1 )吸热
Q1

m M
RT1lnVV12
C
o V1 V4 V2 V 3 V
重要说明:内能增量只与状态有关与过程
无关,所以 E2E1M mCVm T2T1
是计算内能的普遍表示式,适用于任何过程
2、等压过程 (1)特点:P=常量
W P -V V V12 p 图d 上 V 过p程V曲2线V 1图 示
过程方程 =常量
V T
P
(2)热力学第一定律
Q P E 2 E 1 P V 2 V 1
(2)热力学第一定律
PA
0dEdW
W 或 0P M mC dVm V T2M m C T1V m T2PT d1Vo
B V
绝热过程外界对气体做功使气体内能增加
讨论
(1)绝热过程的绝热方 程的推导(略)
P
(2)P-V图上绝热线和
A
等温线的比较
等温线
绝热线
PV=常量, dP
PA
(2)热力学第一定律
Q TWV V 12pdV V V 12M mRd T VVo
B V
mR T lnV2 mR T lnP1
M V1 M P2
气体吸收的热量全部用来对外做功
4、绝热过程
(1)特点:dQ0 P-V图上过程曲线(?) 过程方程
Pr V 常 V r 1 , T 常 ,P r 1 T r 常 (?)
热机吸收的热量不能全部转换为功
不违背第一定律却又不能实现
自然界是还存在着其它的定律和规律
什么规律?
(1)除热力学第一定律外,还 得有另一规律使更为完善,缺 一不可!
(2)功可以全部转换为热,但热不能全部 转换为功,这里有一个条件和方向性的问 题
2、热力学第二定律的两种表述 开尔文:不可能制造出一种循环工作热机, 它只使单一热源冷却来作功,而不 放出热量给其它物体,或者说不使 外界发生任何变化
解:冰箱的致冷系数
e0.55T1T2T2 10.2
由e的定义 e Q2
Q1 Q2
其中Q 2 为从低温热源吸收的 热量,则
Q22.0107J(每天) 所以 Q1ee1Q22.2170J(每天) 又因为 Q1Q2W
W Q 1Q 20.2 17J (0每天)
功率 PW 23W (瓦)
t
即一昼夜耗电约0.6度
(3)“冷泵”与“热
泵致”冷机向高温热源放出热量 Q1Q2W 降低了低温热源的温度——“冷
泵”
而从另一角度来看,所放出的热量是可
以利用的,把它送到高温热源中去,又是
一个“热泵” 高温热源
高温热源
Q1
热机
W
致冷机
Q1
W
Q2
Q2
低温热源
低温热源
复习:热量 Q m T 2 c T 1
热容
CmcC

dQ dt
★热量传递与过程有关,也是过程量
(3)内能:系统内部的能量 是描述系统状态的一个物理量(系统内所 有分子热运动的能量)
★内能是状态量,内能的变化(增量)
与经历过程无关
★理想气体内能只是温度
的单值函数 ET
4、热力学第一定律 (1)定律:系统从外界吸收热量,使系 统内能增加和系统对外做功
(提高e:T1,T2 )
(3)卡诺热机的效率
100%
即热机效率不能达到100%(?)
例如:南京发电厂某台机组
t 1 5 c ( 8 T 1 8 0 K ) 5 t 2 ,3 c ( T 0 2 3K ) 0
则其效率为1T2 60%
T1
实际上约30%!
又例:一台致冷机(冰箱),其致 冷系数约是卡诺致冷机的55%, 今在如下情况下工作: 室温200C(293K)冰箱冷室50C(278K) 欲使从室内传入冰箱的热量(每天2.0×107J) 不断排出,该冰箱的功率为多大?


PA
o
(曲线斜率)
V
V
dVA VA
PV

=常量,

dP
dVA

PA VA
曲线斜率
因为 1,绝热线比等温线陡!
解释:在改变相同的体积 下,绝热过程中压强的变 化要大些
P A
等温线
绝热线
相关文档
最新文档