人工智能之与或图搜索问题

合集下载

《人工智能及其应用》(蔡自兴)课后习题答案第3章

《人工智能及其应用》(蔡自兴)课后习题答案第3章

第三章搜索推理技术3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?图搜索的一般过程如下:(1) 建立一个搜索图G(初始只含有起始节点S),把S放到未扩展节点表中(OPEN表)中。

(2) 建立一个已扩展节点表(CLOSED表),其初始为空表。

(3) LOOP:若OPEN表是空表,则失败退出。

(4) 选择OPEN表上的第一个节点,把它从OPEN表移出并放进CLOSED表中。

称此节点为节点n,它是CLOSED表中节点的编号(5) 若n为一目标节点,则有解并成功退出。

此解是追踪图G中沿着指针从n到S这条路径而得到的(指针将在第7步中设置)(6) 扩展节点n,生成不是n的祖先的那些后继节点的集合M。

将M添入图G中。

(7) 对那些未曾在G中出现过的(既未曾在OPEN表上或CLOSED表上出现过的)M成员设置一个通向n的指针,并将它们加进OPEN表。

对已经在OPEN或CLOSED表上的每个M成员,确定是否需要更改通到n的指针方向。

对已在CLOSED表上的每个M成员,确定是否需要更改图G中通向它的每个后裔节点的指针方向。

(8) 按某一任意方式或按某个探试值,重排OPEN表。

(9) GO LOOP。

重排OPEN表意味着,在第(6)步中,将优先扩展哪个节点,不同的排序标准对应着不同的搜索策略。

重排的原则当视具体需求而定,不同的原则对应着不同的搜索策略,如果想尽快地找到一个解,则应当将最有可能达到目标节点的那些节点排在OPEN表的前面部分,如果想找到代价最小的解,则应当按代价从小到大的顺序重排OPEN表。

3-2 试举例比较各种搜索方法的效率。

宽度优先搜索(1) 把起始节点放到OPEN表中(如果该起始节点为一目标节点,则求得一个解答)。

(2) 如果OPEN是个空表,则没有解,失败退出;否则继续。

(3) 把第一个节点(节点n)从OPEN表移出,并把它放入CLOSED扩展节点表中。

(4) 扩展节点n。

人工智能第4章图搜索技术

人工智能第4章图搜索技术
OPEN表的首部,转步2。
例4.4 对于八数码问题,应用
深度优先搜索策略,可得如图4—
6所示的搜索树。
283
深度优先搜索亦称为纵向搜 1 4 765
索。由于一个有解的问题树可能
含有无穷分枝,深度优先搜索如
果误入无穷分枝(即深度无限,但
解不在该分支内),则不可能找到
目标节点。所以,深度优先搜索
策略是不完备的。另外,应用此
例4.6 设A城是出发地,E城是目的地,边上的数字代表 两城之间的交通费。试求从A到E最小费用的旅行路线。
B 4
6
A
3
4
A
E
C 3
D1
3
4
D2 23
E1 3
C
D
2
(a)
E2
B2 6
深度优先搜索算法:
步1 把初始节点S0放入OPEN表中; 步2 若OPEN表为空,则搜索失败,退出。
步3 取OPEN表头节点N放入CLOSED表中,并冠以顺序编号n;
步4 若目标节点Sg=N,则搜索成功,结束。 步5 若N不可扩展,则转步2; 步6 扩展N,将其所有子节点配上指向N的返回指针依次放入
2831 14 765
第4章 图搜索技术
2 283
14 765
6 83
214 765
7 283 714 65
14 83 214 765
15 283 714 65
22 83 214 765
23 813 24 765
3 23 184 765
8 23
1 84 7 65
9 23 184 765
16 1 23
第4章 图搜索技术
步1 把S0放入OPEN表中,置S0的深度d(S0)=0; 步2 若OPEN表为空,则失败,退出。 步3 取OPEN表头节点N,放入CLOSED表中,并 冠以顺序编号n; 步4 若目标节点Sg=N,则成功,结束。 步5 若N的深度d(N)=dm(深度限制值),或者若N无 子节点,则转步2; 步6 扩展N,将其所有子节点Ni配上指向N的返回 指针后依次放入OPEN表中前部,置d(Ni)=d(N)+1,转 步2。

《人工智能导论》第3章 图搜索与问题求解

《人工智能导论》第3章 图搜索与问题求解
(4)对其余子节点配上指向N的返回指针后放入OPEN表中 某处, 或对OPEN表进行重新排序, 转步2。
第 3 章 图搜索与问题求解 图 3-5 修改返回指针示例
第 3 章 图搜索与问题求解
说明:
(1) 这里的返回指针也就是父节点在CLOSED表中的编 号。
(2) 步6中修改返回指针的原因是, 因为这些节点又被第 二次生成, 所以它们返回初始节点的路径已有两条, 但这两 条路径的“长度”可能不同。 那么, 当新路短时自然要走 新路。
第 3 章 图搜索与问题求解
3.1.5 加权状态图搜索
1.加权状态图与代价树
例3.6 图3-9(a)是一个交通图,设A城是出发地,E城 是目的地, 边上的数字代表两城之间的交通费。试求 从A到E最小费用的旅行路线。
第 3 章 图搜索与问题求解 图 3-9 交通图及其代价树
第 3 章 图搜索与问题求解
第 3 章 图搜索与问题求解
3. 状态图表示
一个问题的状态图是一个三元组 (S, F, G)
其中S是问题的初始状态集合, F是问题的状态转换 规则集合, G是问题的目标状态集合。
一个问题的全体状态及其关系就构成一个空间, 称为状态空间。所以,状态图也称为状态空间图。
第 3 章 图搜索与问题求解
例 3.7 迷宫问题的状态图表示。
的返回指针和f(x)值, 修改原则是“抄f(x)
”。
(2)对其余子节点配上指向N的返回指针后放入OPEN表中, 并对OPEN表按f(x)值以升序排序, 转步2。
第 3 章 图搜索与问题求解
算法中节点x的估价函数f(x)的计算方法是 f(xj)=g(xj)+h(xj) =g(xi)+c(xi, xj)+h(xj) (xj是xi的子节点)

第二章 人工智能搜索

第二章 人工智能搜索

搜索法中的问题表示
• 对问题进行形式化描述,便于计算机处理。 • 描叙方法对搜索效率有很大的影响。 • 一般用状态空间来表示待求解的问题。
状态空间法(1)
• 找到一个数,该数大于等于13548并且能够被
• • •
13547整除。 问题的论域为【13548,+∞】,为了计算机处 理,可以选择一个足够大的数。 因此,问题的状态空间可以定义为【13548, 1E20】。所有的状态空间构成一个连续自然数序 列。 用状态空间表示法描叙问题时,要定义状态空间, 表示问题的全部可能状态和相互关系。
能找到 • 搜索的效率,避免生成或扩展无用的点。 • 控制开销。即控制策略的开销要尽可能小。
• 几个目标之间有冲突,在以上几个目标中
寻求平衡。
1.1 回溯策略
• 例:皇后问题
Q Q Q Q
()
Q ()
((1,1))
Q () Q
((1,1))
((1,1) (2,3))
Q ()
((1,1))
((1,1) (2,3))
搜索图与搜索树的比较
• 如果采用广度优先搜索算法,优点为实现
简单,但是有可能需要重复处理多次。 • 如果采用深度优先搜索算法,有可能陷入 死循环。需要采用一定的策略避免。 • 图搜索需要额外的计算去检查下一个节点 是否已经生成过。(可以使用广度或深度 优先来遍历图产生生成树)
搜索算法的衡量标准
• 搜索算法的完备性,即只要有解,就一定
– 盲目搜索 – 启发式搜索
• 关键问题:
如何利用知识,尽可能有效地找到问题 的解(最佳解)。
搜索问题(续2)
• 讨论的问题:
– 有哪些常用的搜索算法。 – 问题有解时能否找到解。 – 找到的解是最佳的吗? – 什么情况下可以找到最佳解? – 求解的效率如何。

第3章 图搜索与问题求解

第3章 图搜索与问题求解

( 4 )对其余子节点配上指向 N 的返回指针后放入 OPEN 表 中某处,或对OPEN表进行重新排序,转步2。
3.1.2 状态图搜索

树式算法的几点说明


返回指针指的是父节点在CLOSED表中的编号。 步6中修改指针的原因是返回初始节点的路径有两 条,要选择“短”的那条路径。 这里路径长短以节点数来衡量,在后面将会看到以 代价来衡量。按代价衡量修改返回指针的同时还要 修改相应的代价值。
3.1.2 状态图搜索
1 搜索方式


树式搜索 在搜索过程中记录所经过的所有节点和边。树式搜 索所记录的轨迹始终是一棵树,这棵树也就是搜索过 程中所产生的搜索树。 线式搜索 在搜索过程中只记录那些当前认为在所找路径上的 节点和边。

不回溯线式搜索 可回溯线式搜索
3.1.2 状态图搜索
2 搜索策略
3.1.2 状态图搜索



搜索:从初始节点出发,沿着与之相连的边试探 地前进,寻找目标节点的过程。 搜索过程中经过的节点和边,按原图的连接关系, 便会构成一个树型的有向图,这种树型有向图称 为搜索树。 搜索进行中,搜索树会不断增长,直到当搜索树 中出现目标节点,搜索便停止。这时从搜索树中 就可很容易地找出从初始节点到目标节点的路径 (解)来。
八数码深度优先搜索

3.1.4 启发式搜索
• 启发式搜索的目的 利用知识来引导搜索,达到减少搜索范围,降低问题复 杂度。 • 启发性信息的强弱 强:降低搜索的工作量,但可能导致找不到最优解。 弱:一般导致工作量加大,极限情况下变为盲目搜索, 但可能可以找到最优解。
3.1.4 启发式搜索

启发函数
步5 扩展N,选取其一个未在CLOSED表中出现过的

人工智能06-07期末试题答案

人工智能06-07期末试题答案

只有一个孤独的影子,她,倚在栏杆上;她有眼,才从青春之梦里醒过来的眼还带着些朦胧睡意,望着这发狂似的世界,茫然地像不解这人生的谜。

她是时代的落伍者了,在青年的温馨的世界中,她在无形中已被摈弃了。

她再没有这资格,心情,来追随那些站立时代前面的人们了!在甜梦初醒的时候,她所有的惟有空虚,怅惘;怅惘自己的黄金时代的遗失。

咳!苍苍者天,既已给与人们的生命,赋与人们创造社会的青红,怎么又吝啬地只给我们仅仅十余年最可贵的稍纵即逝的创造时代呢?。

人工智能基础与应用-人工智能人脸识别-人工智能机器也认识你-人工智能案例照片智能搜索

人工智能基础与应用-人工智能人脸识别-人工智能机器也认识你-人工智能案例照片智能搜索

授课人:目录01提出问题02预备知识任务2——利用训练好的模型来辨识照片030405任务1——训练目标人脸识别模型解决方案随时人民生活水平的提高和手机照相功能的日趋完美,我们不经意中拍摄了很多值得回忆的时刻,一场说走就走的旅行途中也记录下许多令人心动的瞬间,不知不觉之中,我们身边保存了大量的生活相片。

然而,每当你想重温你或者他的系列照片时,或者想分享一张你特别满意的靓照,从众多的照片中一遍遍翻找这些照片的确是一件费时费力的事情。

这时,你可能会问:既然AI无时不在我们身边,能否借助AI的人脸识别技术来帮助我自动整理出我想要的照片,实现照片的智能搜索呢?答案无疑是肯定的。

下面,我们就利用人脸识别技术和OpenCV工具,对相册中的照片进行自动挑选以解决上述问题。

帮人从相册中找出指定人物的系列照片,对于人工操作而言,并不是一件困难的事情,但整理的效率可能不尽人意,毕竟手动翻阅每张照片是个耗时费力的事。

让计算机替代人来完成这个事,难点在于如何从被检照片中识别与目标人脸高度相似的人脸,如果被检照片中有此人,说明该照片就是你想要的那一张,否则,该照片被忽视。

因此,一种可行的方案是:首先训练计算机认识不同式样的同一系列人脸,让它知道其实这些照片上的人物是同为一个人,从而得到目标人脸训练模型;其次,遍历相册中的每张照片,检测出该照片上所有的人脸,提取人脸特征值,然后用目标人脸训练模型依次对人脸特征值进行预测比对,如果两者之间只要有一次高度匹配,就保留该照片,立即进入下一张照片的搜索,如果均不匹配,则忽视该照片,进行下一张搜索,直至搜索完所有的照片;最后得到的所有保留照片就是智能搜索的结果,至此,整个智能搜索照片过程结束。

问题的解决方案如下图所示。

解决方案利用OpenCV来智能搜索相片,有两个重要的环节,一是人脸区域的检测,这要用到前面提到的人脸检测器;二是基于人脸区域数据的人脸识别,这要用到人脸识别模型,下面分别来了解OpenCV中人类检测器和人脸识别模型的使用。

第3章 图搜索与问题求解

第3章 图搜索与问题求解
(1) 把初始节点So放入CLOSED表中。 (2) 令N=So。 (3) 若N是目标节点,则搜索成功,结束。 (4) 若N不可扩展,则搜索失败,退出。 (5) 扩展N,选取其一个未在CLOSED表中出现过的子节 点N1放入CLOSED表中, 令N=N1, 转步(3)。
第 3 章 图搜索与问题求解
第 3 章 图搜索与问题求解
3.1.4 启发式搜索 1. 问题的提出
2. 启发性信息 按其用途划分, 启发性信息可分为以下三类: (1) 用于扩展节点的选择, 即用于决定应先扩展哪一个节 点, 以免盲目扩展。 (2) 用于生成节点的选择,即用于决定应生成哪些后续节点, 以免盲目地生成过多无用节点。 (3) 用于删除节点的选择,即用于决定应删除哪些无用节点, 以免造成进一步的时空浪费。
第 3 章 图搜索与问题求解
代价树的搜索。所谓代价,可以是两点之间的距离、交 通费用或所需时间等等。通常用g(x)表示从初始节点So到 节点x的代价, 用c(xi,xj)表示父节点xi到子节点xj的代价,即边 (xi,xj)的代价。从而有
g(xj)=g(xi)+c(xi, xj)
而 g(So)=0
第 3 章 图搜索与问题求解 2.深度优先搜索
第 3 章 图搜索与问题求解
深度优先搜索算法: (1) 把初始节点So放入OPEN表中。 (2) 若OPEN表为空, 则搜索失败, 退出。 (3) 取OPEN表中前面第一个节点N放入CLOSED表中,并 冠以顺序编号n。 (4) 若目标节点Sg=N, 则搜索成功,结束。 (5) 若N不可扩展, 则转步(2)。 (6) 扩展N, 将其所有子节点配上指向N的返回指针依次放 入OPEN表的首部, 转步(2)。
第 3 章 图搜索与问题求解
3. 最近择优法(瞎子爬山法) 把局部择优法算法中的h(x)换成g(x)就可得最近择优 法的算法。 例:用代价树搜索求解例3-6中给出的问题。 用分支界限法得到的路径为

人工智能第三版课件第4章 图搜索策略

人工智能第三版课件第4章 图搜索策略
b.若Path1的代价≥Path2的代价时,原路径 较好,不改变p的指针。
4.1 图搜索策略
(2)若p∈M且在closed表中,这说明: a. p在n之前已是某一节点m的后继,所以需 要作如(1)同样的处理,如下图右部。 b.p在closed表中,说明p的后继也在n之前 已生成,我们称为Ps,那么对Ps同样可能由 于n→p这一路径的加入又必须比较多条路径 代价后而取代价小的一条,如下图左部。
但由命题3可知:A*终止前,open表上必 存在一点n’,满足
f(n’)≤f*(S0) 即open表不会空,所以,不会终止于第3步。
推论2 凡open表中任一点n,若f(n)< f*(S0), 最终都将被A*算法挑选出来求后继,也 即被挑选出来进行扩充。
证:用反证法,设f(n)< 来作后继
f*(S0)且n没有被选出
证明: 在证明之前需要说明,在图搜索过程中, 若 某一点有几个先辈节点,则只保留最小费用的那 条路,所以A1 和A2搜索的结果是树而不是图。
下面以A2搜索树中节点的深度来归纳证明。
归纳基础 设A2扩充的点n的深度d=0,即n=S0, 显然A1也扩充点n,因为A1 、A2都要从S0开始。
归纳假设 假设A1扩充了A2搜索树中一切深度 d≤k的节点。
4.1.2 A算法与A*算法
1.A算法与A*算法定义
或图通用算法在采用如下形式的估计函数时, 称 为A算法。
f(n)=g(n)+h(n)
其中g(n)表示从S0到n点费用的估计,因为n为当 前节点,搜索已达到n点,所以g(n)可计算出。 h(n)表示从n到Sg接近程度的估计,因为尚未 找到解路径,所以h(n)仅仅是估计值。
命题3 若问题有解,在A* 终止前,open表上

人工智能练习题解读

人工智能练习题解读
3、人类智能的特性表现在哪4个方面。(B)
A、聪明、灵活、学习、运用。
B、能感知客观世界的信息、能对通过思维对获得的知识进行加工处理、能通过学习积累知识增长才干和适应环境变化、能对外界的刺激作出反应传递信息。
C、感觉、适应、学习、创新。
D、能捕捉外界环境信息、能够利用利用外界的有利因素、能够传递外界信息、能够综合外界信息进行创新思维。
4、人工智能的目的是让机器能够( D),以实现某些脑力劳动的机械化。
A、具有智能B、和人一样工作
C、完全代替人的大脑D、模拟、延伸和扩展人的智能
5、下列关于人工智能的叙述不正确的是(C)。
A、人工智能技术它与其他科学技术相结合极大地提高了应用技术的智能化水平。
B、人工智能是科学技术发展的趋势。
C、因为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要。
C、图灵D、冯.诺依曼
10、下列哪个不是人工智能的研究领域(D)。
A、机器证明B、模式识别
C、人工生命D、编译原理
11、AI是(B)的英文缩写。
A、Automatic IntelligenceB、Artifical Intelligence
C、Automatice InformationD、Artifical Information
21、规则演绎系统根据推理方向可分为(规则正向演绎系统)、(规则逆向演绎系统)以及(规则双向演绎系统)等。
22、计算智能是人工智能研究的新内容,涉及(神经计算)、(模糊计算)和(进化计算)等。
23、启发式搜索是一种利用(启发式信息)的搜索,估价函数在搜索过程中起的作用是(估计节点位于解路径上的希望)。
D、人工智能有力地促进了社会的发展。
6、人工智能研究的一项基本内容是机器感知。以下列(C)不属于机器感知的领域。

人工智能如何提升网络搜索与信息检索的效率

人工智能如何提升网络搜索与信息检索的效率

人工智能如何提升网络搜索与信息检索的效率随着互联网的快速发展,我们每天都在面对大量的信息,如何快速准确地搜索和检索所需的信息成为了一项重要的技能。

近年来,人工智能技术的发展让我们能够更高效地进行网络搜索和信息检索。

本文将探讨人工智能如何提升网络搜索与信息检索的效率。

一、智能推荐系统智能推荐系统是人工智能在网络搜索和信息检索中的一项重要应用。

通过分析用户的搜索行为、兴趣爱好和历史记录,智能推荐系统可以根据个人化的需求呈现相关的搜索结果或推荐相关的信息。

这样,用户可以更快速地找到符合自己需求的信息,节省了大量的时间和精力。

此外,智能推荐系统还可以根据用户的反馈不断优化搜索结果,提供更加精准和个性化的服务。

二、自然语言处理自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解和处理人类的自然语言。

在网络搜索和信息检索中,NLP技术可以帮助我们更准确地表达搜索需求,提高搜索结果的匹配度。

例如,当我们输入一个问题进行搜索时,传统的搜索引擎往往只能匹配关键词,而无法理解句子的语义。

而有了NLP技术,搜索引擎可以更好地理解搜索意图,提供更精准的搜索结果。

同时,NLP技术还可以帮助搜索引擎识别并纠正拼写错误,提高搜索结果的准确性。

三、图像搜索技术除了文字搜索,图像搜索也是网络搜索与信息检索中不可忽视的一部分。

人工智能的发展使得图像搜索技术得到了极大的改善。

传统的图像搜索往往需要用户输入相关的关键词来进行搜索,这对于那些无法准确描述图像的用户来说是一种挑战。

而有了人工智能技术的支持,图像搜索引擎可以通过分析图像的特征,自动识别图像内的物体、场景和情绪等信息,从而为用户提供更准确的搜索结果。

图像搜索技术的发展不仅可以提升用户的搜索效率,还可以帮助用户快速找到感兴趣的商品、景点等相关信息,提供更加智能化的搜索服务。

四、语音识别与搜索语音识别是人工智能技术在网络搜索与信息检索中的又一重要应用。

4-与或图搜索

4-与或图搜索
全信息
对垒过程中,双方都了解当前格局及过去的历史
非偶然
双方都是理智的分析决定自己的行动,不存在“碰运气”的偶然因

11
人工智能
sspu 王帅
博弈树
在博弈过程中,任何一方都希望自己取得胜利。因此,在 某一方当前有多个行动方案可供选择时,他总是挑选对自 己最有利而对对方最不利的那个方案行动。 如果我们站在A方立场,则可供A选择的若干方案之间是 “或”关系,因为主动权在A方手里,他或者选择这个方 案,或者选择另一个方案,完全由A决定 但若B也有若干可供选择的方案,则对A来说这些方案之间 是“与”关系,因为这时主动权在B,这些可供选择的方 案中的任何一个都可能被B选中,A必须考虑对自己最不利 的情况的发生 把上述博弈过程用图表示出来,得到的是一棵“与/或” 树 注意:该“与/或”树是始终站在某一方(例如A方)的 立场上得出的,不能一会站在A方立场,一会又站在B方 立场
24
人工智能 sspu 王帅
极大极小法—计算倒推值示例
1
b
0
1
a
0
3
1
6
极大
极小
0
-3
3
-3
-3
-2
1
-3
6
-3
0
5
-3
3
3
-3
0
2
2
-3
0
-2
3 5 4
1
-3
0 6
8 9
-3
25
人工智能
sspu 王帅
-剪枝
S0
3 ≥3 S2 ≤2
S1
3
3 5 S3 S4
2 S5 S6
设有博弈树,各端点的估值如 图所示,其中S6还没计算估值。 由S3与S4的估值得到S1的倒推 值为3,这表示S0的倒推值最小 为3。另外,由S5的估值得知S2 的倒推值最大为2,因此S0的倒 推值为3。 这里,虽然没有计算S6的估值, 仍然不影响对上层节点倒推值 的推算,这表示S6这个分枝可 以从博弈树中剪去

人工智能复习题和答案

人工智能复习题和答案

一、单选题1. 人工智能的目的是让机器能够(D ),以实现某些脑力劳动的机械化。

A. 具有完全的智能B. 和人脑一样考虑问题C. 完全代替人D. 模拟、延伸和扩展人的智能2. 下列关于人工智能的叙述不正确的有( C )。

A. 人工智能技术它与其他科学技术相结合极大地提高了应用技术的智能化水平。

B. 人工智能是科学技术发展的趋势。

C. 因为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要。

D. 人工智能有力地促进了社会的发展。

3. 自然语言理解是人工智能的重要应用领域,下面列举中的(C)不是它要实现的目标。

A. 理解别人讲的话。

B. 对自然语言表示的信息进行分析概括或编辑。

C. 欣赏音乐。

D. 机器翻译。

4. 下列不是知识表示法的是()。

A. 计算机表示法B. 谓词表示法C. 框架表示法D. 产生式规则表示法5. 关于“与/或”图表示知识的叙述,错误的有(D )。

A. 用“与/或”图表示知识方便使用程序设计语言表达,也便于计算机存储处理。

B. “与/或”图表示知识时一定同时有“与节点”和“或节点”。

C. “与/或”图能方便地表示陈述性知识和过程性知识。

D. 能用“与/或”图表示的知识不适宜用其他方法表示。

6. 一般来讲,下列语言属于人工智能语言的是(D )。

A. VJB. C#C. FoxproD. LISP7. 专家系统是一个复杂的智能软件,它处理的对象是用符号表示的知识,处理的过程是(C )的过程。

A. 思考B. 回溯C. 推理D. 递归8. 确定性知识是指(A )知识。

A. 可以精确表示的B. 正确的C. 在大学中学到的知识D. 能够解决问题的9. 下列关于不精确推理过程的叙述错误的是( B )。

A. 不精确推理过程是从不确定的事实出发B. 不精确推理过程最终能够推出确定的结论C. 不精确推理过程是运用不确定的知识D. 不精确推理过程最终推出不确定性的结论10. 我国学者吴文俊院士在人工智能的( A )领域作出了贡献。

状态空间与图搜索

状态空间与图搜索
有向图:每条边都有方向;无向图:每条边都无方向。 树是包含n(n>0)个结点的有穷集合,其中:
(1)每个元素称为结点(node,或节点); (2)有一个特定的结点被称为根结点或树根。 (3)除根结点外的其余数据元素被分为m(m≥0)个互不相 交的集合T1,T2,……Tm-1,其中每一个集合Ti(1<=i<=m) 本身也是一棵树,被称作原树的子树(subtree)。
《人工智能》
Q ()
((1,1))
((1,2))
((1,1) (2,3)) ((1,1) (2,4))
((1,1) (2,4) (3.2))
《人工智能》
() ((1,1))
((1,2))
Q Q
((1,1) (2,3)) ((1,1) (2,4))
((1,2) (2,4))
((1,1) (2,4) (3.2))
人工智能(Artificial Intelligence)
《人工智能》
第一章 搜索问题
内容: 状态空间的搜索问题。
搜索方式:
盲目搜索 启发式搜索
关键问题: 如何利用知识,尽可能有效地找到问题的 解(最佳解)。
《人工智能》
搜索问题(续1)
S0
Sg
搜索的含义
基本概念
依问题寻找可用的知识,构造代价少的推理路径从而解决问题的过程
《人工智能》
Q () ((1,1)) ((1,1) (2,3))
注: (2,3)不存在可用规则,故而又回溯到(1,1);
《人工智能》
() ((1,1)) ((1,1) (2,3)) ((1,1) (2,4))
Q Q
《人工智能》
() ((1,1)) ((1,1) (2,3)) ((1,1) (2,4)) ((1,1) (2,4) (3.2))

人工智能参考题目2020年

人工智能参考题目2020年

1、人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是:(图灵)2、神经网络研究属于下列(连接主义)学派。

3、产生式系统的推理不包括(简单推理)。

4、下列不在人工智能系统知识包含的4个要素中(关系)。

5、要想让机器具有智能,必须让机器具有知识。

因此在人工智能中有一个研究领域,主要眼球计算机如何自动获取知识和技能,实现自我完善,这门研究分支学额叫(机器学习)。

6、一些聋哑人为了能方便与人交流,利用打手势来表示自己的想法,这是智能的(行为能力)方面。

7、下述(形象描写表示法)不是人工智能中常用的知识格式话表示方法。

8、专家系统是以(知识)为基础,以推理为核心的系统。

9、可信度方法中,若证据A的可信度CF(F)=0,这意味:(对证据A一无所知)。

10、利用已有知识、经验,根据问题的实际情况,不断寻找可利用知识,从而构造(一条代价最小的推理路线),使问题得以解决的过程称为搜索。

11、如果把知识按照作用来分类,下述(可以通过文字、语言、图形、声音等形式编码记录和传播的知识,即显性知识)不在分类的范围内。

12、下述(复杂性和明确性)不是知识的特征。

13、人类智能的特性表现在哪4个方面(能感知客观世界的信息、能对通过思维对获得的知识进行加工处理、能通过学习积累知识增长才干和适应环境变化、能对外界的刺激作出反应传递信息。

)14、人工智能的目的是让机器能够(模拟、延伸和扩展人的智能),以实现某些脑力劳动的机械化。

15、下列关于人工智能的叙述不正确的是(以为人工智能的系统研究是从上世纪五十年代才开始的,非常新,所以十分重要)。

16、人工智能研究的一项基本内容是机器感知。

以下列(使机器具有能够获取新知识、学习新技巧的能力)不属于机器感知的领域。

17、被誉为国际“人工智能之父”的是:(图灵(Turing))。

18、下列哪个不是人工智能的研究领域(编译原理)。

19、为了解决如何模拟人类的感性思维,例如视觉理解、直觉思维、悟性等,研究这找到一个重要的信息处理机制是(人工神经网络)。

人工智能问答

人工智能问答

人工智能问答1.什么是人工智能?人工智能就是人造智能,英文表示“ArtificialIntelligence”,“人工智能”一词目前是指用计算机模拟或实现的智能,因此人工智能又称为机器智能。

2.什么是启发函数和启发搜索?启发式搜索就是利用启发性信息进行制导的搜索。

启发式信息就是有利于尽快找到问题直接的信息。

在启发式搜索中,通常用所谓启发函数来表示启发性信息,启发函数是用来估计搜索树上节点某与目标节点Sg接近程度的一种函数,通常记为h(某)。

3.深度优先和广度优先优缺点深度优先:优点:效率高缺点:不一定能找到解,且找到的解也不一定是最佳解。

广度优先:缺点:效率低优点:有解且能找到最佳解4.什么是与或图与或图是描述问题求解的另一种有向图。

与或图一般表示问题的变化过程,而不是状态变化。

具体来说,他是从原问题出发,通过运用某些规则不断进行问题分解(得到与分支)和变化(得到或分支),而得到一个与或图。

5.化解子聚集的步骤(1)消去蕴涵词和等值词(2)缩小否定词的作用范围,直到其仅作用于原子公式(3)适当改名,使量词间不含同名指导变元和约束变元(4)消去存在量词(5)消去所有全称量词(6)化公式为合取范式(7)适当改名,使子句间无同名变元(8)消去合取词,以子句为元素组成一个集合S6.如何利用归结原理求解先为待求解的问题找一个合适的求证目标谓词;再给增配(以析取形式)一个辅助谓词,且该辅助谓词中的变元必须与对应目标谓词中的变元完全一致;然后进行归结,当某一步的归结式刚好只剩下辅助谓词时,辅助谓词中原变元位置上的项(一般是常量)就是所求的问题答案。

7.人工智能有哪些应用?1.难题求解2.自动规划,调度和配置3.机器定理证明4.自动程序设计5.机器翻译6.智能控制7.智能管理8.智能决策9.智能通信10.智能仿真11.智能CAD12.智能制造13.智能CAI14.智能人体接口15.模式识别16数据挖掘与数据库中的知识发现17.计算机辅助创新18.计算机文艺创作19.机器博弈20.智能机器人。

人工智能基础及应用(微课版) 习题及答案 第3章 智能搜索策略

人工智能基础及应用(微课版) 习题及答案 第3章 智能搜索策略

习题一、选择题1 .关于“与/或”图表示法的叙述中,正确的是()A用“AND”和“OR”连续各部分的图形,用来描述各部分的因果关系B用“AND”和“OR”连续各部分的图形,用来描述各部分之间的不确定关系C是用“与”节点和“或”节点组合起来的树形图,用来描述某类问题的求解过程D是用“与”节点和“或”节点组合起来的树形图,用来描述某类问题的层次关系2 .在与或树和与或图中,把没有任何父辈节点的节点叫做:A叶节点B端节点C根节点D起始节点3 .启发式搜索中,通常OPEN表上的节点按照它们的估价函数f值的()顺序排列:A递增B平均值C递减D最小4 .启广度优先搜索方法能够保证在搜索树种找到一条通向目标节点的()路径(如果有路径存在时)。

A可行B最短C最长D解答5 .下列属于遗传算法的基本内容的是()A图像识别B遗传算子C语音识别D神经调节6 .A*算法是一种()。

A图搜索策略B有序搜索算法C盲目搜索D启发式搜索二、简答题1 .什么是搜索?有哪两大类不同的搜索方法?两者的区别是什么?2 .什么是与树?什么是或树?什么是与/或树?什么是可解节点?什么是解树?3 .何为股价函数?估价函数中,g(n)和h(n)各起什么作用?4 .什么是遗传算法?简述其基本思想和基本结构。

5 .常用的适应度函数有哪几种?参考答案一、选择题1. D2.C3.D4.A5.B6.D二、简答题1 .向这种根据世界情况,不断寻找可利用知识,从而构造一条代价最小的推理路线,使问题得以解决的过程称为搜索。

简单地说,搜索就是利用已知条件在(知识)寻求解决问题办法的过程。

根据是否采用智能方法,搜索算法分为盲目搜索算法和智能搜索算法。

3 .用于估价结点重要性的函数称为估价函数,其一般形式为:/(n)=gQ)+h(n)其中,g(〃)是代价函数,表示从初始结点S。

到结点〃已经实际付出的代价;力(〃)是启发式函数,表示从结点〃到目标结点Sg的最优路径的估计代价。

人工智能作业题解答

人工智能作业题解答

人工智能作业题解答第三章图搜索与问题求解1、何为状态图和与或图?图搜索与问题求解有什么关系?解:按连接同一节点的各边间的逻辑关系划分,图可以分为状态图和与或图两大类。

其中状态图是描述问题的有向图。

在状态图中寻找目标或路径的基本方法就是搜索。

2、综述图搜索的方式和策略。

解:图搜索的方式有:树式搜索,线式搜索。

其策略是:盲目搜索,对树式和不回溯的线式是穷举方式,对回溯的线式是随机碰撞式。

启发式搜索,利用“启发性信息”引导的搜索。

3、什么是问题的解?什么是最优解?解:能够解决问题的方法或具体做法成为这个问题的解。

其中最好的解决方法成为最优解。

4、什么是与或树?什么是可解节点?什么是解树?解:与或树:一棵树中的弧线表示所连树枝为“与”关系,不带弧线的树枝为或关系。

这棵树中既有与关系又有或关系,因此被称为与或树。

可解节点:解树实际上是由可解节点形成的一棵子树,这棵子树的根为初始节点,叶为终止节点,且这棵子树一定是与树。

解树:满足下列条件的节点为可解节点。

①终止节点是可解节点;②一个与节点可解,当且仅当其子节点全都可解;③一个或节点可解,只要其子节点至少有一个可解。

5、设有三只琴键开关一字排开,初始状态为“关、开、关”,问连接三次后是否会出现“开、开、开”或“关、关、关”的状态?要求每次必须按下一个开关,而且只能按一个开关。

请画出状态空间图。

注:琴键开关有这样的特点,若第一次按下时它为“开”,则第二次按下时它就变成了“关”。

解:设0为关,1为开6、有一农夫带一只狼、一只羊和一筐菜欲从河的左岸乘船到右岸,但受下列条件限制:1)船太小,农夫每次只能带一样东西过河。

2)如果没农夫看管,则狼要吃羊,羊要吃菜。

请设计一个过桥方案,使得农夫、狼、羊、菜都不受损失地过河。

画出相应状态空间图。

提示:(1)用四元组(农夫、狼、羊、菜)表示状态,其中每个元素都可为0或1,用0表示在左岸,用1表示在右岸。

(2)把每次过河的一次安排作为一个算符,每次过河都必须有农夫,因为只有他可以划船。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3,1,1,1,1)
(2,2,1,1,1) 我方必胜
(2,1,1,1,1,1) 30
对于比较复杂的博弈问题,只能模拟人的思维 “向前看几步”,然后作出决策,选择最有利自 己的一步。即只能给出几层走法,然后按照一定 的估算办法,决定走一好招。
31
中国象棋
一盘棋平均走50步,总状态数约为10的161 次方。
(2,2,2,1,MAX)
(2,2,1,1,1,MIN)
(2,1,1,1,1,1,MAX)
注:如果MAX走红箭头的分法,必定获胜。 29
分钱币问题
对方先走
(7)
(6,1) (5,2)
(4,3)
(5,1,1) (4,2,1) (3,2,2)
(3,3,1)
(4,1,1,1) (3,2,1,1) (2,2,2,1)
6
普通图搜索的情况
s
n
f(n) = g(n) + h(n) 对n的评价实际是对从s到n这条路 径的评价
7
与或图: 对局部图的评价
初始节点
c
a b
目标
目标
8
两个过程
图生成过程,即扩展节点
从最优的局部途中选择一个节点扩展
计算耗散值的过程
对当前的局部图从新计算耗散值
9
n1 n3 n6
n7 目标
44
步2
Open为空,即已经扩展完节点
5、若CLOSED表为空,则转8;否则取出
CLOSED表中的第一个节点,记为 np;
45
6、若 np 属于MAX层,且对于它的属于MIN层
的子节点 nci 的 e ( nci )有值,则: e ( np ) =max { nci }
46
(续) 若 np 属于MIN层,且对于它的属于MAX层的子 节点 nci 的 e ( nci )有值,则:
用博弈树来表示,它是一种特殊的与或树。节点 代表博弈的格局(即棋局),相当于状态空间中 的状态,反映了博弈的信息, 并且与节点、或 节点隔层交替出现。
20
为什么与节点、或节点隔层交替出现?
假设博弈双方为:MAX和MIN 在博弈过程中,规则是双方轮流走步。在博弈 树中,相当于博弈双方轮流扩展其所属节点。
21
从MAX方的角度来看:
MIN
所有MIN方节点都是与节点
好招
理由:
因为MIN方必定选择最不利于MAX方的方式来 扩展节点,只要MIN方节点的子节点(下出棋 局)中有一个对MAX方不利,则该节点就对 MAX方不利,故为“与节点”。
22
MAX
从MAX方的角度来看:
所有属于MAX方的节点都是或节点
好招
假设1毫微秒走一步,约需10的145次方年。 结论:不可能穷举。
32
在人工智能中可以采用搜索方法 来求解博弈问题,下面就来讨论 博弈中两中最基本的搜索方法。
33
极大极小过程
对于复杂的博弈问题,要规定搜索深度与时间, 以便于博弈搜索能顺利进行。
假设由MAX来选择走一步棋,问题是: MAX如何来选择一步好棋?
OO
OO
OO
XX
XX
XX
XXO
X
XO
X
OX
-
1
0
1
OOO
OO
OO
OO
XX OXX
XX
XX
X
-
X
1
XO
1
X
O
1
OO
X
-
X
X
OOO
OO
OO
OO
X
OX
X
XO
X
XX
X XOX X
X
-
1
2
2
OO O
OO
OO
OO
X
OX
X
XO
XX
XX
XXO XX
-
0
2
1
59
但是,从MAX的角度出发,所有使MAX获胜的 状态格局都是本原问题,是可解节点,而使MIN 获胜的状态格局是不可解节点。
25
博弈树特点
(1)博弈的初始状态是初始节点; (2)博弈树的“与”节点和“或”节点是逐层交替出
现的; (3)整个博弈过程始终站在某一方的立场上,所以能
使自己一方获胜的终局都是本原问题,相应的节 点也是可解节点,所有使对方获胜的节点都是不 可解节点。
34
极大极小过程
极大极小过程是考虑双方对弈若干步之后, 从可能的走法中选一步相对好的走法来走, 即在有限的搜索深度范围内进行求解。
需要定义一个静态估价函数e,以便对棋局 的态势做出评估。
35
极大极小过程的基本思路:
① 对于每一格局(棋局)给出(定义或者倒推) 一个静态估价函数值。值越大对MAX越有利,反 之越不利;
目标
n4(1) n8(0)
n7(0)
红色:5
黄色:6
13
n1 n3 n6
n7目标
n0
初始节点
n0
初始节点
n2 n5
n1 5
n4 n2(4) n5(1) 2
n3(4) n6(2) n8
目标
1 n4(1)
n8(0)
n7(0)
红色:5
黄色:6
14
2.3 博弈树搜索
博弈 是一类具有竞争性的智能活动
双人博弈:即两位选手对垒,轮流依次走步,
n4(1) n5(1)
红色:4 黄色:3
11
n1 n3 n6
n7目标
n0
初始节点
n0
初始节点
n2 n5
n1 5
n4 n2(4)
n3(4)
n5(1)
n4(1)
n8
目标
红色:4 黄色:6
12
n1 n3 n6
n7目标
n0
初始节点
n0
初始节点
n2 n5
n1 5
n4 n2(4) n5(1) 2
n3(4) n6(2) n8
28
现在取 N=7 的简单情况,并由MIN先分
(7,MIN)
所有可能的分法
(6,1,MAX)
(5,2,MAX)
(4,3,MAX)
(5,1,1,MIN)
(4,2,1,MIN)
(3,2,2,MIN)
(3,3,1,MIN)
(4,1,1,1,MAX) (3,1,1,1,1,MIN)
(3,2,1,1,MAX)
41
极大极小过程的基本思想:
(1)当轮到MIN走步的节点时,MAX应考虑最 坏的情况(即f(p)取极小值);
(2)当轮到MAX走步的节点时,MAX应考虑最 好的情况(即f(p)取极大值);
(3)评价往回倒推时,相应于两位棋手的对 抗策略,交替使用(1)和(2)两种方 法传递倒推值。
42
极大极小搜索过程为: 1、将初始节点 S 放入 OPEN 表中,开始时搜索
0
O OX X
2
O XX
O
2
O X XO
3
O
O
OO
XX
XXO XX
O
0
1
1
O
1
X
O
O
OO
X
X
XO
X
X
OX
X
O
1
2
2
X
X
OO
O
O
X
OX
X
0
1X
1X
0O X
58
XOO
1
X
X
OO
1
X
X
第三步
OO
X X -
X
XOO XOO XOO XOO
OX
X
X
XO
X
XO
X
OX
1
2
1
1
OO
- X X
OO X
X
XX
-
OOO
利的,不存在对双方均有利或均无利的棋,对 弈的结果是一方赢,而另一方输,或者双方和 棋。
17
博弈的特点:
双方的智能活动,任何一方都不能单独控制 博弈过程,而是由双方轮流实施其控制对策 的过程。
18
人工智能中研究的博弈问题:
如何根据当前的棋局,选择对自己最有利的 一步棋 ?
中国象棋
19
博弈问题(求解过程)的表示:
e ( np )=min{ nci }
47
7、转5; 8、根据 e (S) 的值,标记走步或者结束(-∞,
∞或 0)。
48
算法分成两个阶段:
第一阶段为1、2、3、4步,用宽度优先算法生成 规定深度 k 的全部博弈树,然后对其所有端节点 计算 e(P);
第二阶段为5、6、7、8步,是自下而上逐级求节 点的倒推估价值,直至求出初始节点的 e(S) 为止, 再由 e(S) 选得相对较好的走法,过程结束。
53
② 若 P 是MAX获胜,则 e(P)=+∞
③ 若 P 是MIN获胜,则 e(P)=-∞
54
例:计算下列棋局的静态估价函数值
O ×
棋局
e(P)=6-4=2
×O× × ×× × ××
行=2 列=2 对角=2
OOO O×O OOO
行=2 列=2 对角=0
55
利用棋盘的对称性,有些棋局是等价的
O ×
树 T 由初始节点 S 构成;
2、若 OPEN 表为空(节点扩展结束),则转5;
3、将 OPEN 表中第一个节点 n 移出放入
CLOSED 表的前端;
43
4、若 n 可直接判定为赢、输、或平局,则令对应的
e(n)=∞,-∞或 0,并转2;否则扩展 n,产生 n 的 后继节点集 { ni },将{ ni }放入搜索树 T 中。此时, 若搜索深度d{ ni }小于预先设定的深度 k,则将 { ni }放入OPEN表的末端,转2;否则,ni 达到深 度k,计算e ( ni ),并转2;
相关文档
最新文档