金属学第七、八章作业

合集下载

金属学作业

金属学作业

一、金属材料1.定义:凡由金属元素或以金属元素为主而形成的,并具有一般金属特性的材料称为金属材料。

2.纯金属与合金纯金属:基本上由一种金属元素组成的材料或物质。

杂质:无益的、偶尔混入的或难于净除而存留下来的元素。

(合金也含)合金:将两种或两种以上的金属元素或金属与非金属元素,经熔炼、烧结或其它方法形成具有金属特性的新物质称为合金。

合金元素:有益的、有意的加入或存留在某一金属材料中的一定数量的元素。

二、金属材料的一般性能1.工艺性能:在冷、热加工条件下表现出来的性能,在于能不能保证生产和制作的问题。

如铸造性、锻造性、焊接性、冲压性能、切削性及热处理性能等。

2.使用性能:在使用条件下表现出来的性能,在于保证能不能应用的问题。

(1)机械性能:材料受不同外力时所表现出来的特性,叫材料的力学性能又称机械性能。

(2)物理性能:包括密度、熔点、膨胀系数、导热性、电磁性等。

(3)化学性能:主要指常温或高温下工作时抵抗各种化学作用的能力。

三、决定金属材料性能的一般因素包括成分、组织、结构。

1.成分:组成金属材料的成分不同,性能不同;2.组织:指用肉眼或借助于各种不同放大倍数的显微镜所观察到的金属材料的内部情景,如晶粒的大小、形状、种类以及各种晶粒之间的相对数量和相对分布。

a)组织的分类:根据放大倍数的不同将组织分为三类:低倍组织或宏观组织:用肉眼或几十倍的放大镜所观察到的组织。

高倍组织或显微组织:用放大100--2000倍的显微镜所观察到的组织。

电镜显微组织或精细组织:用放大几千倍到几十万倍电子显微镜所观察到的组织。

b)有关组织的几个基本概念晶粒:组织的基本组成单位。

晶界:晶粒之间的界面。

亚晶粒:晶粒中的晶粒。

亚晶界:亚晶粒之间的界面。

3.结构:指原子集合体中各原子的具体组合状态。

对组织结构不敏感的性能:当化学成分给定时,金属材料的某些性能对结构的变化,特别是对组织的变化很不敏感,以致从应用角度,可忽略不记,这类性能为对组织结构不敏感性能。

《金属学与热处理》课后答案完整版.docx

《金属学与热处理》课后答案完整版.docx

第一章金属的晶体结构1-1作图表示出立方晶系( 1 2 3[-2 1 1]、[3 4 6]等晶向。

)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、答:1-2 立方晶系的 {1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

答:{1 1 1} 晶面共包括( 1 1 1 )、(-1 1 1 )、(1 -1 1 )、(1 1 -1 )四个晶面,在一个立方晶系中画出上述四个晶面。

1-3某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠ c,c=2/3a 。

今有一晶面在 X、Y、Z 坐标轴上的结局分别为 5 个原子间距、 2 个原子间距和 3个原子间距,求该晶面的晶面指数。

答:由题述可得: X 方向的截距为×2a/3=2a 。

取截距的倒数,分别为1/5a ,1/2a ,1/2a5a, Y 方向的截距为2a,Z 方向截距为3c=3化为最小简单整数分别为故该晶面的晶面指数为(2,5,5 255 )1-4 体心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。

答:H( 1 0 0) ==a/2 H( 1 1 0) ==√2a/2H)==√3a/6(111面间距最大的晶面为( 1 1 0 )1-5 面心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。

答:H( 1 0 0) ==a/2H( 1 1 0) ==√2a/4H( 1 1 1) ==√3a/3面间距最大的晶面为( 1 1 1 )注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时 H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。

1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。

金属工艺学各章节习题测试题含答案

金属工艺学各章节习题测试题含答案

金属工艺学各章节习题测试题含答案第一部分章节习题第一章金属的力学性能一、填空题1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。

2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性,另一类叫__________,反映材料在加工过程中表现出来的特性。

3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。

4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。

5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。

6、常用的硬度表示方法有__________、___________和维氏硬度。

二、单项选择题7、下列不是金属力学性能的是()A、强度B、硬度C、韧性D、压力加工性能8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金属的()A、强度和硬度B、强度和塑性C、强度和韧性D、塑性和韧性9、试样拉断前所承受的最大标称拉应力为()A、抗压强度B、屈服强度C、疲劳强度D、抗拉强度10、拉伸实验中,试样所受的力为()A、冲击B、多次冲击C、交变载荷D、静态力11、属于材料物理性能的是()A、强度B、硬度C、热膨胀性D、耐腐蚀性12、常用的塑性判断依据是()A、断后伸长率和断面收缩率B、塑性和韧性C、断面收缩率和塑性D、断后伸长率和塑性13、工程上所用的材料,一般要求其屈强比()A、越大越好B、越小越好C、大些,但不可过大D、小些,但不可过小14、工程上一般规定,塑性材料的δ为()A、≥1%B、≥5%C、≥10%D、≥15%15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是()A、布氏硬度B、洛氏硬度C、维氏硬度D、以上方法都可以16、不宜用于成品与表面薄层硬度测试方法()A、布氏硬度B、洛氏硬度C、维氏硬度D、以上方法都不宜17、用金刚石圆锥体作为压头可以用来测试()A、布氏硬度B、洛氏硬度C、维氏硬度D、以上都可以18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而()A、变好B、变差C、无影响D、难以判断19、判断韧性的依据是()A、强度和塑性B、冲击韧度和塑性C、冲击韧度和多冲抗力D、冲击韧度和强度20、金属疲劳的判断依据是()A、强度B、塑性C、抗拉强度D、疲劳强度21、材料的冲击韧度越大,其韧性就()A、越好B、越差C、无影响D、难以确定三、简答题22、什么叫金属的力学性能?常用的金属力学性能有哪些?23、什么是疲劳断裂?如何提高零件的疲劳强度?四、计算题24、测定某种钢的力学性能时,已知试棒的直径是10mm,其标距长度是直径的五倍,Fb=33.81KN,Fs=20.68KN,拉断后的标距长度是65mm。

金属工艺学各章习题及思考题

金属工艺学各章习题及思考题

第一篇机械工程材料基础金属材料的力学性能1.机器零件或构件工作时,通常不允许发生塑性变形,所以多以σS作为强度设计的依据。

(判断)2.一般来说,硬度越高,耐磨性越好,强度也越高。

(判断)3.材料的δ值越大,其塑性就越好。

(判断)4.材料承受小能量的多次重复冲击的能力,主要取决于冲击韧度值,而不是决定于强度。

(判断)5.金属材料发生疲劳断裂前有显著的塑性变形,且断裂是突然发生的,因此危险性很大。

(判断)6.锉刀硬度的测定方法常用()。

(单选)A、HBS硬度测定法B、HBW硬度测定法C、HRB硬度测定法D、HRC硬度测定法7.表示金属材料屈服点的符号是()。

(单选)A、σeB、σSC、σbD、σ-18.下列可用来作为金属材料塑性好坏的判据的是()。

(单选)A、σbB、ψC、HBSD、HRC9.HRC硬度测定法中,所用压头是()。

(单选)A、φ1、588mm钢球B、1200金钢石圆锥C、锥面夹角为136°的金刚石正四棱锥体D、硬质合金球10.下列说法错误的是()。

(单选)A、金属材料的强度、塑性等可通过拉伸试验来测定B、普通铸铁可以进行压力加工C、布氏硬度实验测定的数据准确、稳定、数据重复性好D、疲劳强度常用来作为受循环交变载荷作用的零件选材、检验的依据铁碳合金1.金属结晶时,冷却速度越快,则晶粒越细。

(判断)2.金属的同素异晶转变过程实质上也是一种结晶过程。

(判断)3.固溶强化是指因形成固溶体而引起的合金强度、硬度升高的现象。

(判断)4.碳的质量分数对碳钢力学性能的影响是:随着钢中碳的质量分数的增加,其钢的硬度、强度增加,塑性、韧性也随着增加。

(判断)5.钢中磷的质量分数增加,其脆性增加(判断)6.凡是由液体凝固成固体的过程都是结晶。

(判断)7.结晶就是原子从不规则排列(液态)过渡到按一定几何形状做有序排列(固态)的过程。

(判断)8.在其他条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更粗。

(判断)9.在其他条件相同时,浇注时采用振动的铸件晶粒比不采用振动的铸件晶粒更细。

金属学及热处理习题参考答案(1-9章)

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构一、名词解释:1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。

2.非晶体:指原子呈不规则排列的固态物质。

3.晶格:一个能反映原子排列规律的空间格架。

4.晶胞:构成晶格的最基本单元。

5.单晶体:只有一个晶粒组成的晶体。

6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。

7.晶界:晶粒和晶粒之间的界面。

8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

9.组元:组成合金最基本的、独立的物质称为组元。

10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。

12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。

二、填空题:1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。

2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。

3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。

4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。

5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。

6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。

7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。

8.金属晶体中最主要的面缺陷是晶界和亚晶界。

9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。

10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)、(201)、(201)、(012)、(012)、(021)、(021)、等晶面。

金属学与热处理第七章扩散习题与思考题word精品

金属学与热处理第七章扩散习题与思考题word精品

第七章扩散习题与思考题(一)选择题1 •菲克第一定律描述了稳态扩散的特征,即浓度不随(A 距离B 2原子扩散的驱动力是(A 组元的浓度梯度 (二)问答题1何谓扩散,固态扩散有哪些种类 ?2何谓上坡扩散和下坡扩散 ?试举几个实例说明之。

3扩散系数的物理意义是什么 ?影响因素有哪些?4固态金属中要发生扩散必须满足哪些条件。

5铸造合金均匀化退火前的冷塑性变形对均匀化过程有何影响6巳知铜在铝中的扩散常数 D o = 0.84X 10-5m 2/ s , Q = 136 X 103j /mol ,试计算在477C 和 497 C 时铜在铝中的扩散系数。

7有一铝一铜合金铸锭,内部存在枝晶偏析,二次枝晶轴间距为0. 01cm ,试计算该铸锭 在477C 和497C 均匀化退火时使成分偏析振幅降低到 1 %所需的保温时间。

8可否用铅代替铅锡合金作对铁进行钎焊的材料,试分析说明之。

9铜的熔点为1083C,银的熔点为962C ,若将质量相同的一块纯铜板和一块纯银板紧密 地压合在一起,置于 900 C 炉中长期加热,问将出现什么样的变化,冷至室温后会得到 什么样的组织(图8-37为Cu-Ag 相图)。

10渗碳是将零件置于渗碳介质中使碳原子进入工件表面,然后以下坡扩散的方式使碳原子 从表层向内部扩散的热处理方法。

试问: 时间 C 温度 )B 组元的化学势梯度)变化?是加速还是减缓?为什么。

0005即400 L —止 ・ $Eu 丄0 2Q 3Q图8^17 C<"A g 相图(1)温度高低对渗碳速度有何影响⑵渗碳应当在r-Fe中进行还是应当在a -Fe中进行?3)空位密度、位错密度和晶粒大小对渗碳速度有何影响?。

金属学与热处理第七章

金属学与热处理第七章

第七章金属及合金的回复与再结晶一、形变金属与合金在退火过程中的变化畸变能(晶体缺陷所储存的能量)→驱动力;退火中:回复---再结晶---晶粒长大1、显微组织的变化:导致的原因是畸变能。

2、储存能及内应力的变化3、力学性能的变化4、其他性能的变化5、亚晶粒的尺寸二、回复:冷塑性变形的金属在加热时,在光学显微组织发生改变前(再结晶晶粒形成前)所产生的某些结构和性能的变化。

回复的本质:原子迁移,导致金属内部缺陷减少,储存能下降。

退火温度与时间的影响:温度高,时间长,回复程度高。

亚结构变化:空位、位错的密度降低。

三、回复机制回复过程:空位(低温度)和位错(高温度)的运动,改变了其数量和组态。

回复(再结晶)驱动力:畸变能多边化:冷变形金属加热时,位错滑移和攀移,形成与滑移面垂直的亚晶界的过程。

攀移:正攀移,负攀移四、再结晶过程:新晶粒出现,位错密度明显降低,性能显著变化。

再结晶与同素异构的异同五、再结晶晶核的形成与长大(亚晶长大形核,晶界凸出形核)六、再结晶温度:经过严重冷变形的金属,在1小时保温内完成再结晶的温度,不是常数。

再结晶温度的影响因素:变形量,金属的纯度,晶粒大小,加热速度等。

七、再结晶晶粒大小的控制:;为形核率;G为长大线速度;K为比例常数。

(一)变形量(二)再结晶退火温度(三)原始晶粒大小(四)合金元素及杂质八、晶粒的长大:正常长大:均匀、连续。

反常长大(二次再结晶):不均匀、不连续。

九、晶粒的正常长大(一)晶粒长大的驱动力:界面能差。

与界面能成正比,与曲率半径成反比。

(二)晶粒的稳定形状:三个晶粒的晶界交角趋向120度。

(三)影响晶粒大小的因素:温度;杂质及合金元素(阻碍晶界运动);第二相粒子(阻碍晶界运动.AlN.NbC.VC.TiN.);相邻晶粒的位向。

十、晶粒的反常长大(二次再结晶)特点:没有新的形核过程。

原因:夹杂物、第二相粒子等对晶粒长大的阻碍和分布不均匀。

十一、再结晶退火后的组织:再结晶退火的目的:降低硬度,提高塑性,改善性能。

金属学原理习题及答案

金属学原理习题及答案

1) 2
6
3
a[100] → a [101] + a [101];
2)
2
2
a [112] + a [111] → a [111];
3) 3
2
6
a[100] → a [111] + a [111].
4)
2
2
11. 已知柏氏矢量 b=0.25nm,如果对称倾侧晶界的取向差θ =1°及 10°,求晶界
上位错之间的距离。从计算结果可得到什么结论?
106Nb 中所含空位数目。 2. 若 fcc 的 Cu 中每 500 个原子会失去一个原子,其晶格常数为 0.36153nm,试
求铜的密度。 3. 在铁中形成 1mol 空位的能量为 104.675KJ,试计算从 20℃升温之 850℃时空
位数目增加多少倍? 4. 有两个被钉扎住的刃型位错 A-B 和 C-D,他们的长度 x 相等,且有相同的 b
增大冷变形量至 80%,再于 650℃退火 1 h,仍然得到粗大晶粒。试分析其原 因,指出上述工艺不合理处,并制定一种合理的晶粒细化工艺。 13.灯泡中的钨丝在非常高的温度下工作,故会发生显著的晶粒长大。当形成横 跨灯丝的大晶粒时,灯丝在某些情况下就变得很脆,并会在因加热与冷却时 的热膨胀所造成的应力下发生破断。试找出一种能延长钨丝寿命的方法。
很大变形的原因。(l=0.154nm, h2=nl2) 7. 有两种激活能分别为E1=83.7KJ/mol和E2=251KJ/mol的扩散反应。观察在温度
从 25℃升高到 600℃时对这两种扩散的影响,并对结果作出评述。
第五章
1. 有一根长为 5 m,直径为 3mm 的铝线,已知铝的弹性模量为 70Gpa,求在 200N 的拉力作用下,此线的总长度。

金属工艺学各章节习题、综合测试题(含答案)

金属工艺学各章节习题、综合测试题(含答案)

第一章力学性能及工艺性能习题答案1.何谓金属的力学性能金属的力学性能包括那些答:力学性能又称机械性能,是指金属材料在外力(载荷)作用下所表现出的抵抗变形和破坏的能力。

常用的力学性能有强度、塑性、硬度、冲击韧性和疲劳强度等。

2.何谓强度衡量强度的常用指标有那些各用什么符号表示答:金属材料在外力作用下抵抗永久变形和断裂的能力,称为强度。

工程上常用的强度指标有屈服强度和抗拉强度。

屈服强度σs和抗拉强度σb3.何谓塑性衡量塑性的指标有哪些各用什么符号表示答:塑性是指断裂前材料产生永久变形的能力。

常用的塑性指标是断后伸长率δ和断面收缩率Ψ。

4.某厂购进出一批40钢材,按国家标准规定,其力学性能指标应不低于下列数值:σS=340MPa,σb=540MPa,δ=19%,ψ=45%。

验收时,用该材料制成d0=1×10-2m的短试样(原始标距为5×10-2m)作拉伸试验:当载荷达到28260N时,试样产生屈服现象;载荷加至45530N时,试样发生缩颈现象,然后被拉断。

拉断后标距长为×10-2m,断裂处直径为×10-3m。

试计算这批钢材是否合格。

答; 实际σs = 360MPa >国家标准规定σS=340MPa实际σb = 580MPa>国家标准规定σb=540MPa实际δ=21% >国家标准规定δ=19%实际ψ = % >国家标准规定ψ=45%因此,这批40钢材合格5.何谓硬度常用的硬度指标有哪三种各用什么符号表示HB与HRB有什么区别答:硬度是指材料表面上抵抗局部变形或破坏的能力。

常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

布氏硬度HB,洛氏硬度HR,维氏硬度HV。

HB是布氏硬度指标HRB洛氏硬度。

6.何谓疲劳破坏其产生的原因是什么答:材料在循环应力和应变作用下,在一处或几处产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程称为疲劳破坏。

金属学与热处理课后习题答案(崔忠圻版)-7-10章

金属学与热处理课后习题答案(崔忠圻版)-7-10章

金属学与热处理课后习题答案(崔忠圻版)第十章钢的热处理工艺10-1 何谓钢的退火?退火种类及用途如何?答:钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。

退火用途:1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。

2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-A Ccm(过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。

对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。

3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。

主要用于共析钢、过共析钢和合金工具钢。

其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。

4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。

其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。

5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后缓慢冷却至室温的热处理工艺。

其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。

金属学第七章第九章答案

金属学第七章第九章答案

9-4 试比较贝氏体转变与珠光体转变和马氏体转变的异同。

答:贝氏体转变:是在珠光体转变温度以下马氏体转变温度以上过冷奥氏体所发生的中温转变。

与珠光体转变的异同点:相同点:相变都有碳的扩散现象;相变产物都是铁素体+碳化物的机械混合物不同点:贝氏体相变奥氏体晶格向铁素体晶格改组是通过切变完成的,珠光体相变是通过扩散完成的。

与马氏体转变的异同点(可扩展):相同点:晶格改组都是通过切变完成的;新相和母相之间存在一定的晶体学位相关系。

不同点:贝氏体是两相组织,马氏体是单相组织;贝氏体相变有扩散现象,可以发生碳化物沉淀,而马氏体相变无碳的扩散现象。

9-5 简述钢中板条马氏体和片状马氏体的形貌特征和亚结构,并说明它们在性能上的差异。

答:板条马氏体的形貌特征:其显微组织是由成群的板条组成。

一个奥氏体晶粒可以形成几个位向不同的板条群,板条群由板条束组成,而一个板条束内包含很多近乎平行排列的细长的马氏体板条。

每一个板条马氏体为一个单晶体,其立体形态为扁条状。

在这些密集的板条之间通常由含碳量较高的残余奥氏体分割开。

板条马氏体的亚结构:高密度的位错,这些位错分布不均匀,形成胞状亚结构,称为位错胞。

片状马氏体的形貌特征:片状马氏体的空间形态呈凸透镜状,由于试样磨面与其相截,因此在光学显微镜下呈针状或竹叶状,而且马氏体片互相不平行,大小不一,越是后形成的马氏体片尺寸越小。

片状马氏体周围通常存在残留奥氏体。

片状马氏体的亚结构:主要为孪晶,分布在马氏体片的中部,在马氏体片边缘区的亚结构为高密度的位错。

板条马氏体与片状马氏体性能上的差异: 马氏体的强度取决于马氏体板条或马氏体片的尺寸,尺寸越小,强度越高,这是由于相界面阻碍位错运动造成的。

马氏体的硬度主要取决于其含碳量。

马氏体的塑性和韧性主要取决于马氏体的亚结构。

差异性:片状马氏体强度高、塑性韧性差,其性能特点是硬而脆。

板条马氏体同时具有较高的强度和良好的塑韧性,并且具有韧脆转变温度低、缺口敏感性和过载敏感性小等优点。

各章作业

各章作业
7)材料的静态拉伸试验可以获得的强度指标有()、()和(),获得的塑性指标有()和()。
3.
1)
密度较大的金属是黑色金属,密度较小的金属为有色金属。
( )
2)
因单晶体的性能是各向异性的,所以工业上实际应用的金属材料在各个方向上的性能也各不相同。
( )
3)
所有的金属材料都有明显的屈服现象。
( )
4.
8)α-Fe和γ-Fe的晶体结构分别属于:
再结晶过程是有晶格类型变化的结晶过程。
( )
4.
26)铅在室温下变形(铅熔点327℃):
A.产生加工硬化
B.是冷变形
C.是热变形
D.是弹性变形
27)面心立方晶格与体心立方晶格具有相同数量的滑移系,但其塑性变形能力是不相同的,其原因是面心立方晶格的滑移面上滑移方向的数量比体心立方晶格的滑移方向:
A.少
B.溶质
C.化合物
D.前三者均不对
12)在图纸上出现如下几种硬度技术条件的标注,其中哪一种是对的?
A.800 HBW
B.12 ~ 15 HRC
C.20 ~ 24 HRA
D.230 HBW
13)有一个碳钢支架刚性不足,正确的解决办法是:
A.热处理强化
B.另选合金钢
C.增加支架的截面积
D.用冷加工方法制造
组织:所谓合金组织是用金相显微镜观察法,在金属及合金内部看到的涉及各相(晶体或晶粒)大小,方向、形状、排列状况等组成关系和构造情况。
2.
1)按材料的化学成分和结合键特点,工程材料可以分为(金属材料)、(高分子材料)、(陶瓷材料)和(复合材料)。
2)实际金属中存在(耐蚀性差)、(塑性差)、(韧性差)三类缺陷,晶界是(面)缺陷。晶体中晶粒越细小,晶界面积越(小),材料的强度和硬度越(高),塑韧性越(低)。

各章作业参考答案

各章作业参考答案

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a33a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移 解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10° 时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳.答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大, 故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50%的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II 的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II 的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解(1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L→β;Lβ;2时, 两相平衡共存,0.50.92~2时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--. P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶 L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--IIL d ′ 中共析渗碳体相对量: d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)α(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c1, c2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s 0101111cos ,30011110(1)00111cos ,2001(1)011cos cos ,60.646 1.57 MPa.m mϕλϕλτσ⨯+⨯+⨯==++⨯++⨯-+⨯+⨯==++⨯-++====⨯=即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有立方体心结构, 主要滑移系可表示为{110}<111>, 共有6×2 = 12个; Al具有面心立方结构, 其滑移系可表示为{111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答:孪生与滑移的异同点如附表6-1所示.锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104 J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭ 整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。

金属材料学第7-11章课后习题答案

金属材料学第7-11章课后习题答案

金属材料学第7-11章课后习题答案金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别?(1)白口铸铁:含碳量约%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。

故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。

因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。

大多用作炼钢和可锻铸铁的坯料(2)灰口铸铁;含碳量大于%,铸铁中的碳大部或全部以自由状态片状石墨存在。

断口呈灰色。

它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。

(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在%%之间的铁碳合金。

我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过%。

钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤%,S≤%)②优质钢(P、S均≤%)③高级优质钢(P≤%,S≤%)按照化学成分又分①碳素钢:.低碳钢(C≤%).中碳钢(C≤~%).高碳钢(C≤%)。

②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。

2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口?(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。

其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。

C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。

S是强烈阻碍石墨化元素,降低铸铁的铸造和力学性能,控制其含量。

金属学课后习题答案完整版

金属学课后习题答案完整版

金属学课后答案第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。

S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。

2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。

3.简述合金钢中碳化物形成规律。

答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。

③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。

4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。

S点左移意味着_____减小,E点左移意味着出现_______降低。

(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。

答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。

优先形成碳化物,余量溶入基体。

淬火态:合金元素的分布与淬火工艺有关。

溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。

回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。

非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。

金属学第八章习题答案

金属学第八章习题答案

金属学第八章习题答案思考题与习题8-1.切削加工由哪些运动组成?它们各有什么作用?答:切削运动按其作用不同可分为主运动和进给运动。

(1)主运动切下切屑所必需的基本运动称为主运动。

在切削运动中,主运动的速度最高,消耗功率最大。

(2)进给运动使被切削的金属层不断投入切削的运动称为进给运动。

8-2.切削用量三要素是什么?它们的单位是什么?答:切削用量包括切削速度、进给量、背吃刀量三个要素。

切削速度(m/min 或m/s );车削时进给量的单位是r mm /,刨削的主运动为往复直线运动,其间歇进给的进给量为mm /双行程;背吃刀量(mm )。

8-3. 车外圆时,工件加工前直径为62mm ,加工后直径为56mm ,工件转速为4r/s ,刀具每秒钟沿工件轴向移动2mm ,求Vc 、f 、p a 。

答:见公式,略。

8-4.刀具正交平面参考系由哪些平面组成?它们是如何定义的?答:正交平面参考系由以下三个平面组成:基面r P 是过切削刃上某选定点,平行或垂直于刀具在制造、刃磨及测量时适合于安装或定位的一个平面或轴线,一般来说其方位要垂直于假定的主运动方向。

车刀的基面都平行于它的底面。

主切削平面Ps 是过切削刃某选定点与主切削刃相切并垂直于基面的平面。

正交平面o p 是过切削刃某选定点并同时垂直于基面和切削平面的平面。

8-5.常用刀具的材料有哪几类?各适用于制造哪些刀具?答:刀具材料种类很多,常用的有碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石(天然和人造)和立方氮化硼等。

碳素工具钢(如Tl0A 、T12A )和合金工具钢(9SiCr 、CrWMn ),因其耐热性较差,仅用于低速、手工工具。

陶瓷、金刚石和立方氮化硼由于太脆、工艺性差及价格高等原因,使用范围较小,目前用得最多的还是高速钢和硬质合金。

高速钢是应用较广泛的刀具材料,尤其用于制造结构复杂的刀具,如成形车刀、铣刀、钻头、铰刀、拉刀、齿轮刀具、螺纹刀具等。

金属学原理习题及答案

金属学原理习题及答案
方向必须施加多少的应力才会产生滑移?
5. Zn 单晶在拉伸之前的滑移方向与拉伸轴的夹角为 45°,拉伸后滑移方向与拉 伸轴的夹角为 30°,求拉伸后的延伸率。
6. 试指出Cu和a-Fe两晶体易滑移的晶面和晶向,并求出他们的滑移面间距,滑 移方向上的原子间及点阵阻力。(已知GCu=483GPa,Gα-Fe=81.6GPa,ν=0.3)。
大小和方向(图 3-2)。每个位错都可看作 F-R 位错源。 试分析在其增值过程中两者间的交互作用。若能形成一个大的位错源,使其 开动的 τc 多大?若两位错 b 相反,情况又如何?
图 3-1
图 3-2
图 3-3
5. 如图 3-3 所示,在相距为 h 的滑移面上有两个相互平行的同号刃型位错 A、B。
第二章 1. 试证明四方晶系中只有简单立方和体心立方两种点阵类型。 2. 为什么密排六方结构不能称作为一种空间点阵? 3. 标出面心立方晶胞中(111)面上各点的坐标。 4. 标出具有下列密勒指数的晶面和晶向:a)立方晶系(421),(-123),(130),[2-1-1],
[311];b)六方晶系(2-1-11),(1-101),(3-2-12),[2-1-11],[1-213]。 5. 试计算面心立方晶体的(100),(110),(111),等晶面的面间距和面致密度,并
7. 已知平均晶粒直径为 1mm 和 0.0625mm 的 α-Fe 的屈服强度分别为 112.7MPa 和 196MPa,问平均晶粒直径为 0.0196mm 的纯铁的屈服强度为多少?
8. 铁的回复激活能为 88.9KJ/mol,如果经冷变形的铁在 400℃进行恢复处理, 使其残留加工硬化为 60%需 160 分钟,问在 450℃回复处理至同样效果需要 多少时间?

5-8章作业汇总

5-8章作业汇总

第五章 习题1. 什么是弹性变形?并用双原子模型来解释其物理本质。

2. 为什么滑移面和滑移方向往往是金属晶体中原子排列最密的晶面和晶向?3.将一根长20 m ,直径14.0mm 铝棒,通过孔径12.7mm 的模具拉拔,求: (1)这根铝棒拉拔后的尺寸;(2)这个铝棒承受的工程线应变和真应变。

4.锌单晶在拉伸前拉力轴与滑移方向的夹角为45°,拉伸后力轴与滑移方向的夹角为30°,试求试样拉伸后的延伸率。

5.已知铜单晶体临界分切应力为1MPa ,设拉力轴在图6-1有阴影的三角形中,(1)求使该晶体开始滑移的最小拉应力,并在阴影三角形中,示意标出最小应力所对应的拉力轴的位置。

(2)当拉力轴位于什么取向的时候,所需拉应力为最大?说明理由。

6. 试述孪晶与滑移的异同,比较它们在塑变过程中的作用。

7.试用多晶体塑变理论解释,室温下金属的晶粒越细强度越高,塑性也就越好的现象。

8.简述不可形变第二相弥散强化机制。

9. 何谓晶体滑移的临界分切应力?说明测定单晶体临界分切应力的实验方法。

10. 胞状亚结构的形成条件是什么? 11. 简述可形变第二相弥散强化机制?第六章 习题1.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何?2.若在晶体中形成一个半径为r 的球形晶核时,证明临界形核功△Gc 与临界晶核体积Vc 之间的关系为V C C G V G ∆-=∆21。

3. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。

4.分析纯金属生长形态与温度梯度的关系。

5. 如果纯镍凝固时的最大过冷度与其熔点(T m =1 453℃)的比值为0.18,试求其凝固驱动力。

(ΔH =-18 075 J/mol)6.试分析单晶体形成的基本条件。

7.根据凝固理论,试述细化晶粒的基本途径。

8. 证明均匀形核的临界形核功*G ∆等于表面能的13(注:单位面积表面能用σ表示,单位体积固相与液相的自由能差值用G ∆表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7-6 何谓临界变形度?在工业生产中有何实际意义。 临界变形度:金属在冷塑性变形时,当变形度达到某一数值 (一般金属均在2%-10%范围内)时,再结晶后的晶粒变得 特别粗大。把对应得到特别粗大晶粒的变形度称为临界变形
度。
实际意义:通常,粗大的晶粒对金属的力学性能十分不能, 降低力学性能指标,因此在实际生产时,应当避免在临界变 形度范围内进行压力加工。但是,有时为了某种特殊目的, 需要得到粗晶粒钢时,例如用于制造电机或变压器的硅钢来
差异性:
片状马氏体强度高、塑性韧性差,其性能特点是硬而脆。
板条马氏体同时具有较高的强度和良好的塑韧性,并且具
有韧脆转变温度低、缺口敏感性和过载敏感性小等优点。
9-7 何谓魏氏组织?简述魏氏组织的形成条件、对钢的性能的影响及其消除方 法? 答: 魏氏组织:含碳小于0.6%的亚共析钢或大于1.2%的过共析钢在铸造、锻造、轧制后的空 冷,或者是焊缝热影响区的空冷过程中,或者当加热温度过高并以较快 速度冷却时,先共析铁素体或先共析渗碳体从奥氏体晶界沿一定的晶面向晶内生长,并 且呈针片状析出。在光学显微镜下可以观察到从奥氏体晶界生长出来的近乎平行或其他 规则排列的针状铁素体或渗碳体以及其间存在的珠光体组织,这类组织称为魏氏组织。 前者称铁素体魏氏组织,后者称渗碳体魏氏组织。 魏氏组织的形成条件:魏氏组织的形成与钢中的含碳量、奥氏体晶粒大小及冷却速度有 关。只有在一定含碳范围内并以较快速度冷却时才可能形成魏氏组织,而且当奥氏体晶 粒越细小时,形成魏氏组织的含碳量范围越窄。因此魏氏组织通常伴随奥氏体粗晶组织 出现。 对钢性能的影响:其为钢的一种过热缺陷组织,使钢的力学性能指标下降,尤其是塑韧 性显著降低,脆性转折温度升高,容易引起脆性断裂。需要指出的是,只有当奥氏体晶 粒粗化,出现粗大的铁素体或渗碳体魏氏组织并严重切割基体时降,才使钢的强度和韧 性显著降低。 消除方法:可以通过控制塑性变形程度、降低加热温度、降低热加工终止温度,降低热 加工后的冷却速度,改变热处理工艺,例如通过细化晶粒的调质、正火、完全退火等工 艺来防止或消除魏氏组织。
9-13 阐述获得粒状珠光体的两种方法? 答: 粒状珠光体可以有过冷奥氏体直接分解而成,也可以由片状珠光体球化而成,还 可以由 淬火组织回火形成。原始组织不同,其形成机理也不同。 1、由过冷奥氏体直接分解得到粒状珠光体的过程: 要由过冷奥氏体直接形成粒状珠光体,必须使奥氏体晶粒内形成大量均匀弥散的渗碳体晶 核,即控制奥氏体化温度,使奥氏体内残存大量未溶的渗碳体颗粒;同时使奥氏体内碳浓 度不均匀,存在高碳去和低碳区。再将奥氏体冷却至略低于Ar1以下某一温度缓冷,在过 冷度较小的情况下就能在奥氏体晶粒内形成大量均匀弥散的渗碳体晶核,每个渗碳体晶核 在独立长大的同时,必然使其周围母相奥氏体贫碳而形成铁素体,从而直接形成粒状珠光 体。 2、由片状珠光体直接球化而成的过程: 将片状珠光体钢加热至略低于A1温度长时间保温,得到粒状珠光体。此时,片状珠光体球 化的驱动力是铁素体和渗碳体之间相界面(或界面能)的减少。 3、由淬火组织回火形成的过程 将淬火马氏体钢加热到一定温度以上回火,使马氏体分解、析出颗粒状渗碳体,得到回复 或再结晶的铁素体加粒状渗碳体的组织。
也向晶界偏聚,进一步降低了晶界断裂强度,增加回火脆性。
消除方法: 第一类回火脆性: A、避开脆化温度范围回火 B、用等温淬火代替淬火+回火 C、在钢中加入Nb、V、Ti等细化奥氏体晶粒元素,增加晶界面积 D、降低杂质元素含量 第二类回火脆性: A、高温回火后采用快速冷却方法可以抑制回火脆性,但不适用 于对回火脆性敏感的较大工件 B、在钢中加入Nb、V、Ti等细化奥氏体晶粒元素,增加晶界面积 C、降低杂质元素含量 D、加入适量的Mo、W等合金元素可抑制杂质元素向原奥氏体晶 界的偏聚 E、对亚共析钢可采取A1-A3临界区的亚温淬火方法,使P等杂质 元素溶入残留的铁素体中,减轻它们向原奥氏体晶界的偏聚程度 F、采用形变热处理方法,可以细化晶粒,减轻高温回火脆性
9-5 简述钢中板条马氏体和片状马氏体的形貌特征和亚
结构,并说明它们在性能上的差异。
答:板条马氏体的形貌特征:其显微组织是由成群的板
条组成。一个奥氏体晶粒可以形成几个位向不同的板条
群,板条群由板条束组成,而一个板条束内包含很多近 乎平行排列的细长的马氏体板条。每一个板条马氏体为
一个单晶体,其立体形态为扁条状,宽度在0.025-2.2微
2、 再结晶时晶核长大和再结晶后的晶粒长大。 定义 再结晶晶核长大:是指再结晶晶核形成后长大至再结晶初 始晶粒的过程。其长大驱动力是新晶粒与周围变形基体的 畸变能差,促使晶核界面向畸变区域推进,界面移动的方 向,也就是晶粒长大的方向总是远离界面曲率中心,直至 所有畸变晶粒被新的无畸变晶粒代替。 再结晶后的晶粒长大:是指再结晶晶核长大成再结晶初始 晶粒后,当温度继续升高或延长保温时间,晶粒仍然继续 长大的过程。此时,晶粒长大的驱动力是晶粒长大前后总 的界面能的差,界面移动的方向,也就是晶粒长大的方向 都朝向晶界的曲率中心,直至晶界变成平面状,达到界面 能最低的稳定状态。 本质区别: 1、长大驱动力不同 2、长大方向不同,即晶界的移动方向不同。
7-4.说明以下概念的本质区别: 1)一次再结晶和二次再结晶; 2)再结晶时晶核长大和再结晶后晶粒长大。 定义 一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后, 在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显著 下降,性能发生显著变化恢复到冷变形前的水平,称为(一次)再 结晶。它的实质是新的晶粒形核、长大的过程。 二次再结晶:经过剧烈冷变形的某些金属材料,在较高温度下退火 时,会出现反常的晶粒长大现象,即少数晶粒具有特别大的长大能 力,逐步吞食掉周围的小晶粒,其最终尺寸超过原始晶粒的几十倍 或上百倍,比临界变形后的再结晶晶粒还要粗大得多,这个过程称 为二次再结晶。二次再结晶并不是晶粒重新形核和长大的过程,它 是以一次再结晶后的某些特殊晶粒作为基础而异常长大,严格来说 它是特殊条件下的晶粒长大过程,并非是再结晶过程。 本质区别:是否有新的形核晶粒。
说,晶粒越粗大越好(磁滞损耗小,效应高),可以利用这
种现象,制取粗晶粒甚至单晶。

9-3 试述珠光体形成时钢中碳的扩散情况及片、粒状珠光体的形成 过程? 答: 珠光体形成时碳的扩散:珠光体形成过程中在奥氏体内或晶界上由 于渗碳体和铁素体形核,造成其与原奥氏体形成的相界面两侧形成 碳的浓度差,从而造成碳在渗碳体和铁素体中进行扩散,简言之, 在奥氏体中由于碳的扩散形成富碳区和贫碳区,从而促使渗碳体和 铁素体不断地交替形核长大,直至消耗完全部奥氏体。 片状珠光体形成过程:片状珠光体是渗碳体呈片状的珠光体。 首先在奥氏体晶界形成渗碳体晶核,核刚形成时与奥氏体保持共格 关系,为减小形核的应变能而呈片状。渗碳体长大的同时,使其两 侧的奥氏体出现贫碳区,从而为铁素体在渗碳体两侧形核创造条件, 在渗碳体两侧形成铁素体后,铁素体长大的同时造成其与奥氏体体 界面处形成富碳区,这又促使形成新的渗碳体片。渗碳体和铁素体 如此交替形核长大形成一个片层相间大致平行的珠光体区域,当其 与其他部位形成的珠光体区域相遇并占据整个奥氏体时,珠光体转 变结束,得到片状珠光体组织。
9-3 试述珠光体形成时钢中碳的扩散情况及片、粒状珠光体的形成 过程? 答: 粒状珠光体的形成过程:粒状珠光体是渗碳体呈颗粒状分布在铁素 体基体上。 粒状珠光体可以有过冷奥氏体直接分解而成,也可以由 片状珠光体球化而成,还 可以由淬火组织回火形成。原始组织不同, 其形成机理也不同。 这里只介绍由过冷奥氏体直接分解得到粒状珠光体的过程: 要由过冷奥氏体直接形成粒状珠光体,必须使奥氏体晶粒内形成大 量均匀弥散的渗碳体晶核,即控制奥氏体化温度,使奥氏体内残存 大量未溶的渗碳体颗粒;同时使奥氏体内碳浓度不均匀,存在高碳 区和低碳区。再将奥氏体冷却至略低于Ar1以下某一温度缓冷,在 过冷度较小的情况下就能在奥氏体晶粒内形成大量均匀弥散的渗碳 体晶核,每个渗碳体晶核在独立长大的同时,必然使其周围母相奥 氏体贫碳而形成铁素体,从而直接形成粒状珠光体。
9-14 金属和合金的晶粒大小对力学性能有何影响?获得细晶粒的方法? 答:此题主要是指奥氏体晶粒 晶粒大小对力学性能影响: 奥氏体晶粒小:钢热处理后的组织细小,强度高、塑性好,冲击韧性高。 奥氏体晶粒大:钢热处理后的组织粗大,显著降低钢的冲击韧性,提高钢的韧脆 转变温度,增加淬火变形和开裂的倾向。当晶粒大小不均匀时, 还显著降低钢的结构强度,引起应力集中,容易产生脆性断裂。 获得细晶粒的方法: 1、降低加热温度,加快加热速度,缩短保温时间,采用快速加热短时保温的奥 氏体化工艺。 2、冶炼过程中用Al脱氧或在钢种加入Zr、Ti、Nb、V等强碳化物形成元素, 能形成高熔点的弥散碳化物和氮化物,可以细化奥氏体晶粒。 3、细小的原始组织可以得到细小的奥氏体晶粒,可以采用多次快速加热-冷却的 方法细化奥氏体晶粒。 4、采用形变热处理可以细化奥氏体晶粒。
片状马氏体的亚结构:主要为孪晶,分布在马氏体片的
中部,在马氏体片边缘区的亚结构为高密度的位错。
板条马氏体与片状马氏体性能上的差异: 马氏体的强度取决于马氏体板条或马氏体片的尺寸,尺寸 越小,强度越高,这是由于相界面阻碍位错运动造成的。 马氏体的硬度主要取决于其含碳量。 马氏体的塑性和韧性主要取决于马氏体的亚结构。
9-12 比较过共析钢的TTT曲线和CCT曲线的异同点。为什么在连续冷却过程 中得不到贝氏体组织?与亚共析钢的CCT曲线中Ms线相比,过共析钢的Ms线有何不同点, 为什么? 答: TTT曲线和CCT曲线的异同点: 相同点: 1、都具有渗碳体的先共析线。 2、相变都有一定的孕育期。 3、曲线中都有一条相变开始线和一条相变完成线。 不同点: 1、CCT曲线中无贝氏体转变区。 2、CCT曲线中发生相变的温度比TTT曲线中的低 3、CCT曲线中发生相变的孕育期比TTT曲线中长。 得不到贝氏体组织的原因: 在过共析钢的奥氏体中,碳浓度高,使贝氏体孕育期大大延长,在连续冷却转变时贝氏 体转变来不及进行便冷却至低温。 Ms线的不同点及原因: 不同点:亚共析钢的CCT曲线中的Ms线右端呈下降趋势,而过共析钢的CCT曲线中的Ms 线右端呈上升趋势。 原因:这是因为在亚共析钢中由于先共析铁素体的析出和贝氏体转变,造成周围奥氏体 的富碳,从而导致Ms线下降。而过共析钢由于先共析渗碳体的析出,而且在连续冷却过 程中也无贝氏体转变,使周围奥氏体贫碳,导致Ms线上升。
相关文档
最新文档