五年级奥数上第4讲-环形路线
五年级奥数行程环形跑道教师版
![五年级奥数行程环形跑道教师版](https://img.taocdn.com/s3/m/ae2b0f1708a1284ac95043c8.png)
五年级奥数行程环形跑道教师版The document was prepared on January 2, 2021本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差 nS nS +相对(反向):路程和nS【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】☆☆【题型】解答例题精讲知识框架环形跑道【解析】黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
五年级高斯奥数之行程问题四含答案
![五年级高斯奥数之行程问题四含答案](https://img.taocdn.com/s3/m/01ec50c8b9f3f90f77c61b0f.png)
第5讲行程问题四内容概述流水行船问题与环形问题.流水行船问题中,注意水速对实际速度酌影响,初步了解速度酌相对性;环形问题中,注意相遇和逼及酌同期性.典型问题兴趣篇1.一条船顺流行驶40千米需要2小时.水流速度为每小时2千米.这条船逆流行驶40千米需要多少小时?2.7两地相距480千米,一艘轮船在两地之间往返航行,顺流行驶一次需要16小时,逆流返回需要20小时,该轮船在静水中的速度是多少?水流速度是多少?3.A、B两港相距560千米,甲船在两港间往返一次需105小时,其中逆流航行比顺流航行多用了35小时,乙船的静水速度是甲船静水速度的2倍,乙船在两港间往返一次需要多少小时?4.A、B两个码头间的水路为90千米,其中A码头在上游,B码头在下游,第一天,水速为每小时3千米,甲、乙两船分别从A、B两码头同时起航同向而行,3小时后乙船追上甲船,已知甲船的静水速度为每小时18千米,乙船的静水速度是多少?第二天由于涨水,水速变为每小时5千米,甲、乙两船分别从A、B两码头同时起航相向而行,出发多长时间后相遇?5.一条小河流过A、B、C三镇,其中A、B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米;B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3:5千米.已知A、C两镇水路相距45千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用了7小时.请问:A、B两镇间的距离是多少于米?6.甲、乙两人骑自行车从环形公路上同一地点同时出发,背向而行,这条公路长2400米,甲骑一圈需要10分钟.如果第一次相遇时甲骑了1440米,请问:乙骑一圈需要多少分钟?再过多久他们第二次相遇?7.甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出.1分钟后,乙从起点同向跑出.又过了5分钟,甲追上乙.请问:乙每分钟跑多少米?如果他们的速度保持不变,甲还需要再过多少分钟才能第二次追上乙?8.甲、乙两人在环形跑道上训练,他们从同一地点同时出发,背向而行.两人相遇后立即调头,继续前进,一开始甲的速度是每分钟160米,乙的速度是每分钟120米,调头后甲的速度提高了一半,乙的速度提高了三分之一.若跑道长500米,甲、乙两人第一次相遇地点与第二次相遇地点相距多远?(环形路线上两点的距离指沿跑道的最短距离)9.如图7-1,四边形ABCD是一个边长为100米的正方形,甲、乙两人同时从A点出发,甲沿逆时针方向每分钟行75米,乙沿顺时针方向每分钟行45米.请问:两人第一次在CD 边(不包括C、D两点)上相遇,是出发以后的第几次相遇?10.如图7-2,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重,甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?拓展篇1.甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水7小时后到达乙河,共航行133千米.这艘船在乙河逆水航行84千米,需要花多少小时?2.一艘飞艇,顺风6小时行驶了900公里;在同样的风速下,逆风行驶600公里,也用了6小时.那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?3.甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达廖港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?4.轮船从A城行驶到B城需要3天,而从B城回到A城需要4天.请问:在A城放出一个无动力的木筏,它漂到B城需多少天?5.一艘游艇装满油,能够航行180个小时.已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且中途没有油料补给.请问:这艘游艇最多能够开出多远?6.某人在河里游泳,逆流而上.他在A处丢失一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.7.黑、白两只小猫在周长为300米的湖边赛跑,黑猫的速度为每秒5米,白猫的速度为每秒7米,若两只小猫同时从同一地点出发,背向而行.多少秒后两只小猫第一次相遇?如果它们继续不停跑下去,2分钟内一共相遇多少次?8.在400米长的环形跑道上,甲、乙两人分别从A、B两地同时出发,同向而行.4分钟后,甲第一次追上乙,又经过10分钟甲第二次追上乙.已知甲的速度是每秒3米,那么乙的速度是多少?A、B两地相距多少米?9.有一个周长40米的圆形水池.甲沿着水池边散步,每秒钟走1米;乙沿着水池边跑步,每秒跑3.5米.甲、乙两人从同一地点同时出发,同向而行,当乙第8次追上甲时,他还需要跑多少米才能回到出发点?10.甲、乙两人在一条圆形跑道上锻炼,他们分别从跑道某条直径的两端同时出发,相向而行,当乙走了100米时,他们第一次相遇.相遇后两人继续前进,在甲走完一周前60米处第二次相遇,求这条圆形跑道的周长.11.如图7-3,甲、乙两辆汽车在周长为360米的圆形道上行驶,甲车每分钟行驶20米.它们分别从相距90米的A、B两点同时出发,背向而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车经过B点后恰好又回到A点,此时甲车立即调头前进,乙车经过B点继续行驶,请问:再过多少分钟甲车与乙车再次相遇?12.如图7-4,一个正方形房屋的边长为10米,甲、乙两人分别从房屋的两个墙角同时出发,沿顺时针方向前进.甲每秒行5米,乙每秒行3米.问:出发后经过多长时间甲第一次看见乙?超越篇1.甲、乙两艘游船顺水航行的速度均是每小时7千米,逆水航行的速度均是每小时5千米.现在甲、乙两船从某地同时出发,甲先逆流而上再顺流而下,乙先顺流而下再逆流而上,1小时后它们都回到了出发点.请问:在这1小时内有多少分钟两船的行进方向相同?2.甲、乙两船分别在一条河的A、B两地同时相向而行,甲船顺流而下,乙船逆流而上.相遇时,甲、乙两船的航程是相等的,相遇后两船继续前进.甲船到达B地、乙船到达A地后,都立即按原来的路线返航,两船第二次相遇时,甲船比乙船少行1000米,如果从两船第一次相遇到第二次相遇间隔1小时20分,那么河水的流速为每小时多少千米?3.一条河上有甲、乙两个码头,甲码头在乙码头的上游50千米处,一艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同,客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后掉头追赶此物品,追上时恰好和货船相遇,求水流的速度.4.在一条圆形跑道上,甲、乙两人分别从A、B两点同时出发,反向而行.6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇,甲、乙两人绕跑道环行一周各需要多少分钟?5.有一条长度为4200米的环形车道,甲车从A点出发35秒后,乙车从A点反向出发,两车在B点第一次迎面相遇,如果乙车出发的时候变换方向,即出发的时候和甲车保持同向,那么乙车将行驶完一圈之前追上甲车,并且追上甲车的地点恰好还在B点.乙车追上甲车之后立刻折返,甲车继续前进,那么两车会在距离A点300米的地方迎面相遇.求乙车的速度.6.如图7-5,8时10分,甲、乙两人分别从相距60米的A、B两地出发,按顺时针方向沿长方形ABCD的边走向D点,甲、乙两人的速度相同.甲8时20分到D点后,丙、丁两人立即从D点出发.丙由D向A走去,8时24分与乙在E点相遇;丁由D向C走去,8时30分在F点被乙追上.丙、丁两人的速度也相同.问:三角形BEF的面积是多少平方米?7.A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行,从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍.试问:今天两船的相遇地点与12月2号相比,将变化多少千米?8.有甲、乙两名选手在一条河中进行划船比赛.如图7-6,赛道是在河中央的长方形ABCD,其中,AD=100米,AB= 80米.已知水流从左到右,速度为每秒l米.甲、乙两名选手从A处同时出发,甲沿A→B→C→D→A的方向划行,乙沿A→D→C→B→A的方向划行,若已知甲船在静水中的速度比乙船在静水中的速度每秒快1米(注:两船在AB1和CD上的划行速度视为静水速度),且两人第一次相遇在图中CD的P处,且CP=4 CD.问:在比赛开始5分钟内两人一共相遇多少次?第7讲行程问题四内容概述流水行船问题与环形问题.流水行船问题中,注意水速对实际速度的影响,初步了解速度的相对性;环形问题中,注意相遇和追及的周期性.典型问题兴趣篇1.一条船顺流行驶40千米需要2小时.水流速度为每小时2千米.这条船逆流行驶40千米需要多少小时?解:顺=40÷2=20(千米/小时)船顺水=20–2=18(千米/小时)逆=40÷(18-2)=2.5(小时)2.两地相距480千米,一艘轮船在两地之间往返航行,顺流行驶一次需要16小时,逆流返回需要20小时,该轮船在静水中的速度是多少?水流速度是多少?解:顺=480÷16=30(千米/小时)逆=480÷20=24(千米/小时)船=(顺+逆)÷2=(30+24)÷2 =27(千米/小时)水=(顺-逆)÷2=(30-24)÷2=3(千米/小时)3.A、B两港相距560千米,甲船在两港间往返一次需105小时,其中逆流航行比顺流航行多用了35小时,乙船的静水速度是甲船静水速度的2倍,乙船在两港间往返一次需要多少小时?解:甲顺+甲逆=105甲逆甲顺=35有:甲逆=70(小时),甲顺=35(小时)甲逆=560÷70=8(千米/小时),甲顺=560÷35=16(千米/小时)甲=(16+8)÷2=12(千米/小时),水=(16-8)÷2=4(千米/小时)乙=12×2=24(千米/小时)乙逆=24-4=20(千米/小时),乙顺=24+4=28(千米/小时)乙=560÷20+560÷28=48(小时)4.A、B两个码头间的水路为90千米,其中A码头在上游,B码头在下游,第一天,水速为每小时3千米,甲、乙两船分别从A、B两码头同时起航同向而行,3小时后乙船追上甲船,已知甲船的静水速度为每小时18千米,乙船的静水速度是多少?第二天由于涨水,水速变为每小时5千米,甲、乙两船分别从A、B两码头同时起航相向而行,出发多长时间后相遇?解:易知,流水行船中的追及与相遇问题,速度差与速度和都与水速无关。
五年级奥数专题第四讲 火车行程问题
![五年级奥数专题第四讲 火车行程问题](https://img.taocdn.com/s3/m/cdf870ec88eb172ded630b1c59eef8c75fbf95af.png)
五年级奥数专题第四讲火车行程问题【一】一列火车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间?练习1、一列火车长200米,每秒行20米,这列火车通过400米长的大桥,需要多少时间?2、一列火车车长360米,每秒行15米,全车通过一个山洞需40秒。
这个山洞长多少米?【二】一列火车通过一座长456米的桥需要80秒,用同样的速度通过一条长399米的隧道要77秒。
求这列火车的速度。
练习1、一列火车通过一座长446米的桥需要57秒,用同样的速度通过一条长1654米隧道要208秒。
求这列火车的速度。
2、一列火车以同一速度通过两座大桥,第一座桥长360米,用了24秒,第二座桥长480米,用了28秒,这列火车长多少米?【三】甲火车长210米,每秒行18米,乙火车长140米,每秒行13米。
乙火车在前,两火车在双轨车道上行驶。
求甲火车从后面追上到完全超过乙火车要用多少秒?练习1、一列快车长150米,每秒行22米,一列慢车长100米,每秒行14米。
快车从后面追上慢车到超过慢车,共需多少秒钟?2、小红以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长144米的火车,火车每秒行18米,问:火车追上小红到完全超过小红共用了多少秒钟?【四】一列火车长180米,每秒钟行25米。
全车通过一条长120米的山洞,需要多少时间?练习1、一列火车长360米,每秒行18米。
全车通过一座长90米的大桥,需要多长时间?2、一座大桥长2100米。
一列火车以每分钟800米的速度通过这座大桥,从车上桥到车尾离开共用3.1分钟,这列火车长多少米?【五】有两列火车,一车长130米,每秒行23米,另一车长250米,每秒行15米,现在两车相向而行,问从相遇到离开需要几秒钟?练习1、有两列火车,一车长360米,每秒行18米,另一车长216米,每秒行30米,现在两车相向而行,问从相遇到离开一共需要几秒钟?2、有两列火车,一列长220米,每秒行22米,另一列长200米迎面开来,两车从相遇到离开共用了10秒钟,求另一列火车的速度?【六】一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。
五年级奥数之《环形道路上的行程问题》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快
![五年级奥数之《环形道路上的行程问题》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快](https://img.taocdn.com/s3/m/96f661c7172ded630b1cb65b.png)
五年级奥数
环形道路上的行程问题
在环形道路上的行程问题,本质上讲就是追及问题或相遇问题。
当两人(或物)同向运动时就是追及问题,追及距离就是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇距离是两人从出发到相遇所行路程和。
例1:
如图,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同向同地出发,45分钟后甲追上了乙.如果两人同时同地反向而跑,经过多少分钟后两人相遇?
例2:
如图,是一个圆形的中央花园,A、B是直径的两端.小军在A点,小勇在B点,同时出发相向而行.他俩第1次在C点相遇,C点离A点有50米;第2次在D点相遇,D点离B点有30米.这个花园一周长多少米?
随堂练习1
1、甲、乙两名运动员在周长400米的环形跑道上同向竞走.已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.几分钟后,甲第一次追上乙?
2、如图,A、B是圆直径的两端点,亮亮在点A,明明在点B,相向而行.他们在C点第一次相。
五年级 奥数行程问题
![五年级 奥数行程问题](https://img.taocdn.com/s3/m/b60e8b043b3567ec102d8a99.png)
第二讲行程(1)相遇问题知识链接:相遇问题是研究两个物体共同走一段路程的运动。
可分为相向,相背,环行运动等相遇问题。
行程问题基本数量关系式:路程=速度×时间相遇问题基本关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间超级课堂1. 甲乙两车同时从两地相对开出,经过5小时后相遇。
甲车每小时行70千米,乙车每小时行65千米,问:甲,乙两地相距多少千米?2. 甲,乙两人同时从两地出发,相向而行,距离是50千米。
甲每小时走3千米,乙每小时走2千米。
甲带一只狗,每小时跑5千米,这只狗同甲一起出发,当它碰到乙后便转回头跑向甲…如此下去,直到两人碰到头为止。
问这只狗一共跑了多少千米?3. 甲,乙两辆货车分别同时从A,B两个城市相向开出,甲车每小时行60千米,乙车每小时行50千米,两车在距离两城中点25千米处相遇。
那么A,B两个城市间的路程是多少千米?4. A,B两城相距60千米,甲,乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?5. 客车和货车早上8时分别从甲,乙两个城市同时出发相向而行,到上午10时两车相距120千米,两车继续行驶到下午1时,两车又相距120千米,那么甲,乙两城之间路程是多少千米?6. A,B两地相距1100米,甲从A地,乙从B地同时出发,相向而行,甲每分钟行90米,乙每分钟行70米,第一次在C处相遇,AC之间距离是多少米?相遇后继续前进,分别到达A,B两地后立即返回,第二次相遇于D处,CD之间的距离是多少米?超级练习1. 电气机车和磁悬浮列车各一列,从相距298千米的两面地同时相向而行,磁悬浮列车的速度比电气机车的速度的5倍还快20千米每小时,半小时后两车相遇。
则电气机车和磁悬浮列车的速度分别是多少?2. 两支部队从相距50千米的甲,乙两地同时相对而行,一名通信员骑车以每小时20千米的速度在两支部队间不断往返联络。
五年级奥数-环形道路上的行程问题
![五年级奥数-环形道路上的行程问题](https://img.taocdn.com/s3/m/95ec099676a20029bd642db4.png)
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
![最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】](https://img.taocdn.com/s3/m/41696fe1a0116c175e0e4825.png)
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数.行程.环形跑道.学生版
![五年级奥数.行程.环形跑道.学生版](https://img.taocdn.com/s3/m/946cb5843b3567ec102d8afb.png)
五年级奥数.行程 .环形跑道.学生版(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用: 路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点 直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和 nS nS-0.5S【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【例 2】【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
例题精讲知识框架环形跑道【例 3】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【例 4】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟【例 5】【例 6】【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【巩固】【例 7】两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【例 8】【巩固】两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
五年级奥数试题- 环形跑道
![五年级奥数试题- 环形跑道](https://img.taocdn.com/s3/m/45fde77a87c24028915fc3bd.png)
环形跑道学生姓名授课日期教师姓名授课时长本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
在做出线段图后,反复的在每一段路程上利用路程和=相遇时间×速度和路程差=追及时间×速度差1.解环形跑道问题的一般方法环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决2.重点难点解析(1).环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2).环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次(3).用比例解环形跑道问题3.竞赛考点挖掘(1).环形跑道与数论的结合(2).用比例解环形跑道问题【试题来源】【题目】一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇【试题来源】【题目】林琳在450米长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒?【试题来源】【题目】甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。
求此圆形场地的周长?【试题来源】【题目】两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇【试题来源】【题目】下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?【试题来源】【题目】甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇。
高斯小学奥数五年级上册含答案_环形路线
![高斯小学奥数五年级上册含答案_环形路线](https://img.taocdn.com/s3/m/d7b5157ace2f0066f433225c.png)
第四讲环形路线广:!口正在进行的是万米赛跑比赛,运动员们正 在跑道上奋力拼搏!同学们,解说员 说的情况真的会出现 吗? 大家快看.最后一 名超过了第一名!为什么会出现最后一名超过第一名的现象呢?同学们可能已经想清楚了,这是因为跑道是一个圆•今天我们就来学习一下环形路线问题.顾名思义,环形路线的运动路径是一个封闭的曲线,这就意味着从一个点出发,跑完一圈之后会回到出发点,这是完全不同于直线运动的. 同样的,环形中的相遇问题与直线形问题也是略有不同的.如图所示,从一个点出发,背向而行的两人,会在圆周上的一点相遇. 这时他们走过的路程和为一个圆周. 而如果他们从同一个点出发同向而行,慢的那个人会在圆周上的一点被快的那人追上•这时他们走过的路程之差是一个圆周.相向而行同向甲起点路程和是跑道的周长起点路程差是跑道的周长相遇时间=周长 *(甲速+乙速)追及时间=周长 +(乙速一甲速)这里要特别说明,在圆周上两点之间的距离是这样定义:两点间较短一段圆弧的长度•如右图,AB两点间的距离就是AB间粗实线的长度.例题1.黑、白两只小猫沿着周长为300 米的湖边跑,黑猫的速度为每秒5米,白猫的速度为每秒7米•若两只小猫同时从同一点出发,背向而行,那么多少秒后第1次相遇?如果它们继续不停跑下去,2分钟内一共会相遇多少次?最后一次相遇时距离出发点多远?「分析」请同学们在右边的圆上,画出两只猫运动的过程.两只小猫第一次相遇需要多长时间?第二次相遇需要多长时间?那两分钟之内相遇多少次呢?练习1.在420米的圆形跑道上,甲、乙两人从同一点出发,背向而行.甲的速度是8米/秒,乙的速度是6米/秒,那么两人第8次相遇时,距离出发点多远?从例题1可以看出,两只小猫从出发到第一次相遇需要25秒•第一次相遇时两只小猫在一起,继续出发的话,到下一次相遇仍然需要25秒.由此可见,环形路线上的相遇问题也具有周期性.同样的,环形路线上的追及问题也具有周期性. 若甲、乙两人同地同向出发,甲快乙慢,那么甲第一次追上乙时,恰好比乙多跑一整圈;从此刻开始,甲想要再次追上乙,就必须再多跑一整圈. 如此反复不断地追下去,甲每次追上乙都恰好要多跑一整圈,所以每次追及的路程差是一样的•如果两人的速度差保持不变,那每次追上的时间也就相同了.在环形路线问题中,善用周期性会使一些问题变得简单,特别是一些多次相遇和多次追及的问题.例题2.有一个周长是40米的圆形水池•甲沿着水池散步,每秒钟走1米;乙沿着水池跑步,每秒跑3.5米,甲、乙从同一地点同时出发,同向而行•当乙第8次追上甲时,他还要跑多少米才能回到出发点?「分析」在环形路线上,快的每追上一次慢的,就要多跑一圈.本题乙第8次追上甲时,就比甲多跑了8圈,这时怎么确定两人的位置?练习:2.环形跑道周长400米,甲、乙两名运动员同时顺时针自起点出发,甲每分钟跑300米,乙每分钟跑275米.甲第4次追上乙时距离起点多少米?如果不是同地出发,这样的环形路线问题还具有周期性吗?例题3.甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出.1分钟后,乙以每分钟280米的速度从起点同向跑出.请问:甲出发后多少分第一次追上乙?如果追上后他们的速度保持不变,甲还需要再过多少分钟才能第10次追上乙?「分析」从乙出发到甲第一次追上乙,跟从甲第一次追上乙到第二次追上乙,间隔的时间一样吗?从第几次追上开始就具有周期性了?练习:3.周长为400米的圆形跑道上,有相距100米的A, B两点.甲、乙两人分别从A、B 两点同时相背而跑,速度分别是3米/秒和2米/秒.多少秒后两人第一次相遇?如果相遇后两人的速度保持不变,再过多少秒两人第10次相遇?总的来说,环形上的行程问题比直线上的情况变化更多,更繁琐.在运动过程较复杂的题目中,我们必须认真画图,仔细分析每一段运动过程.例题4. 如图,甲、乙两人分别从一圆形场地的直径两端点开始,形路线运动.当乙走了100米以后,他们第一次相遇,在甲走完一周前遇.求此圆形场地的周长.「分析」题目中的已知条件很少,只知道两个与路程有关的量,我们很难直接计算周长,先画图分析一下运动过程.观察你所画出的示意图,题目给出的100米和60米是图中的哪一段?如何利用这两段长度?同时匀速反向绕此圆60米处又第二次相练习4.如图,有一个环形跑道,甲、乙二人分别从A、B两地出发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB 长是跑道总长的四分之B一,请问跑道周长为多少米?D如图,一个正方形房屋的边长为12米•阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3米•问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?【分析】阿呆第一次看见阿瓜的时候, 定是刚到达某个墙角的时候. 应该是哪个墙角呢?4. 如图,有一个环形跑道,甲、乙二人分别从A、B 两地出C发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长是跑道总长的四分之B一,请问跑道周长为多少米?D例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快. 如果从同一起点出发背向而行,1 小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过 1 小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少. 想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?例题6如图,一个正方形房屋的边长为12 米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3 米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长是跑道总长的四分之B分析】阿呆第一次看见阿瓜的时候,定是刚到达某个墙角的时候. 应该是哪个墙角呢?4. 如图,有一个环形跑道,甲、乙二人分别从A、B 两地出C一,请问跑道周长为多少米?D例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快. 如果从同一起点出发背向而行,1 小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过 1 小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少. 想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?例题6如图,一个正方形房屋的边长为12 米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3 米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长是跑道总长的四分之B一,请问跑道周长为多少米?D 分析】阿呆第一次看见阿瓜的时候,定是刚到达某个墙角的时候. 应该是哪个墙角呢?4. 如图,有一个环形跑道,甲、乙二人分别从A、B 两地出C例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快. 如果从同一起点出发背向而行,1 小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过 1 小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少. 想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?例题6如图,一个正方形房屋的边长为12 米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3 米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长是跑道总长的四分之B一,请问跑道周长为多少米?D例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快. 如果从同一起点出发背向而行,1 小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过 1 小时才第一次追上.请问,小分析】阿呆第一次看见阿瓜的时候,定是刚到达某个墙角的时候. 应该是哪个墙角呢?4. 如图,有一个环形跑道,甲、乙二人分别从A、B 两地出C鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少. 想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?例题6如图,一个正方形房屋的边长为12 米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3 米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长是跑道总长的四分之B一,请问跑道周长为多少米?D例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快. 如果从同一起点出发背向而行,1 小时后正好第5 次相遇;如果从同一起点出发同向而行,那么经过 1 小时才第一次追上.请问,小分析】阿呆第一次看见阿瓜的时候,定是刚到达某个墙角的时候. 应该是哪个墙角呢?4. 如图,有一个环形跑道,甲、乙二人分别从A、B 两地出C鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少. 想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?例题6如图,一个正方形房屋的边长为12 米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5 米,阿瓜每秒钟行3 米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?发相向而行,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长是跑道总长的四分之B一,请问跑道周长为多少米?D例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快. 如果从同一起点出发背向而行,1 小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过 1 小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少. 想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?分析】阿呆第一次看见阿瓜的时候,定是刚到达某个墙角的时候. 应该是哪个墙角呢?4. 如图,有一个环形跑道,甲、乙二人分别从A、B 两地出C例题6如图,一个正方形房屋的边长为12 米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3 米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?分析】阿呆第一次看见阿瓜的时候,定是刚到达某个墙角的时候. 应该是哪个墙角呢?。
五年级奥数专题-行程问题
![五年级奥数专题-行程问题](https://img.taocdn.com/s3/m/50c617e9376baf1ffc4fadd9.png)
五年级奥数专题-行程问题行程问题(一)【专题导引】行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
【典型例题】【例1】甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?【试一试】1、小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校至少年宫有多少米?2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米,甲、乙两地相距多少千米?【例2】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?【试一试】1、兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?【例3】甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?【试一试】1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。
小红每分钟走多少千米?【例4】甲、乙两队学生从相距18千米的两地同时出发,相向而行。
第4讲 行程问题
![第4讲 行程问题](https://img.taocdn.com/s3/m/7a81743c43323968011c9280.png)
第4讲行程问题教学目标1、理解行程应用题的基本数量关系,正确的解决相遇、追及……等问题。
2、掌握用“转化、假设……”等方法把复杂的数量关系转化为简单的数量关系。
重点用线段图、示意图分析数量关系。
难点用类比法把行程问题转化成“和差、盈亏、工程……”等问题来解决。
教学内容【内容概述】行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间=追及距离÷速度差解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,简化数量关系,把一个复杂的问题转化为几个简单的问题逐一进行解决。
【典型问题-1】相遇问题例1、货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。
东西两地相距多少千米?分析:货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。
每小时货车比客车多行48-42=6千米,即可求出两车相遇的时间。
解: 18×2÷(48-42)=6(小时)(48+42)×6=540(千米)练习1、快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。
慢车每小时行多少千米?【典型问题-2】例2 、甲乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米。
整修路面的一段路长多少千米?分析:假如这8小时都是每小时行60千米,就比实际行的路程多出了60×8-420=60千米。
在8小时里,只要有1小时行驶在整修路面的公路上,汽车就少行60-20=40千米,60里面有1.5个40,因此,汽车在整修路面的公路上行驶了1.5小时,路长20×1.5=30千米。
五年级奥数行程问题——环形路(教师版)
![五年级奥数行程问题——环形路(教师版)](https://img.taocdn.com/s3/m/998a90cd680203d8ce2f24b4.png)
行程问题——环形路(教师版)一、【本讲知识点】在环行道路上的行程问题本质上讲是追及问题或相遇问题。
当二人(或物)同向运动就是追及问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。
二、【本讲经典例题】【铺垫】如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250÷(250-200)=2250÷50=45(分钟),即45分钟后甲第1次追上乙;2250÷(250+200)=2250÷450=5(分钟),即5分钟后甲、乙第1次相遇.【例1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,45分钟后甲追上了乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1)(2)分析与解答:根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。
(250-200)×45=2250(米)。
同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。
如图(2),2250÷(250+200)=5(分钟)即经过5分钟两人相遇。
【随堂练习1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,54分钟后甲追上乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?分析与解答:具体分析见例题。
环形跑道周长:(250-200)×54=2700(米),两人相遇时间:2700÷(250+200)=2700÷450=6(分钟),即经过6分钟后两人相遇。
【拓展】甲、乙两运动员在周长为400米环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处。
高思奥数导引小学五年级含详解答案第04讲:包含与排除
![高思奥数导引小学五年级含详解答案第04讲:包含与排除](https://img.taocdn.com/s3/m/763dc804876fb84ae45c3b3567ec102de2bddf0a.png)
⾼思奥数导引⼩学五年级含详解答案第04讲:包含与排除第4讲包含与排除内容概念:有重叠部分的若⼲对象的计数问题,能利⽤⽂⽒图进⾏辅助分析,弄清⽂⽒图中每部分的含义;结合⽂⽒图理解两个对象和三个对象的容斥原理;灵活处理具有⼀些不确定性的计数问题,以及其他形式的重复计数问题。
典型问题:兴趣篇:1.暑假⾥,⼩悦和冬冬⼀起讨论“⾦陵⼗⼋景”。
他们发现⼗⼋景中的每⼀处都有⼈去过,⽽且有五处是两⼈都去过的。
如果⼩悦去过其中的⼗⼆景,那么冬冬去过其中的⼏景?2.在⼀群⼩朋友中,有12⼈看过动画⽚《⿊猫警长》,有21⼈看过动画⽚《⼤闹天宫》,并且有8⼈两部动画⽚都看过。
请问:⾄少看过其中⼀部的⼩朋友有多少⼈?3、五年级⼀班45个学⽣参加期末考试。
成绩公布后,数学得满分的有10⼈,数学及语⽂均得满分的有3⼈,这两科都没有得满分的有29⼈。
请问:语⽂成绩得满分的有多少⼈?4.某餐馆有27道招牌菜。
⼩悦吃过其中的13道,冬冬吃过其中的7道,⽽且有2道菜是两⼈都吃过的。
请问:有多少道招牌菜是两⼈都没有吃过的?5.如图4-1,已知甲、⼄、丙三个圆的⾯积均为30,甲与⼄、⼄与丙、甲与丙重合部分的⾯积分别为6、8、5,同时被这三个圆覆盖的部分的⾯积为2。
请问:(1)只被甲或⼄覆盖,却不被丙覆盖的部分的⾯积是多少?(2)只被这3个圆中某⼀个圆覆盖的部分的⾯积是多少?6.在⼀个由30⼈组成的合唱队中,每个⼈都爱喝红茶、绿茶、花茶中的⼀种或者⼏种。
其中有10个⼈爱喝红茶,12⼈不爱喝红茶却爱喝绿茶。
请问:只爱喝花茶的有多少⼈?7.光明⼩学五年级课外活动有体育、⾳乐、书法三个⼩组,参加的⼈数分别是54⼈、46⼈、36⼈。
同时参加体育⼩组和⾳乐⼩组的有4⼈,同时参加体育⼩组和书法⼩组的有7⼈,同时参加⾳乐⼩组和书法⼩组的有10⼈,三组都参加的有2⼈。
光明⼩学五年级参加课外活动的⼀共有多少⼈?8.卫⽣部对120种⾷物是否含有维⽣素A、C、E进⾏调查,结果发现:含维⽣素A的有62种,含维⽣素C的有90种,含维⽣素E 的有68种,同时含维⽣素A和C的有48种,同时含维⽣素A和E的有36种,同时含维⽣素C和E的有50种,同时含这三种维⽣素的有25种。
五年级奥数:行程问题
![五年级奥数:行程问题](https://img.taocdn.com/s3/m/77c8c2e5b52acfc789ebc9f0.png)
五年级奥数:行程问题(总14页) -本页仅作为预览文档封面,使用时请删除本页-行程问题(一)讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。
行程问题内容丰富多彩、千变万化。
主要有一个物体的运动和两个或几物体的运动两大类。
两个或几个物体的运动又可以分为相遇问题、追及问题两类。
这一讲我们学习一个物体运动的问题的一些简单的相遇问题。
例题与方法:例1.小明上学时坐车,回家时步行,在路上一共用了90分。
如果他往返都坐车,全部行程需30分。
如果他往返都步行,需多少分?例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。
汽车行驶了一半路程,在中途停留30分。
如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?例3.一列火车于下午1时30分从甲站开出,每小时行60千米。
1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。
甲、乙两站相距多少千米?例4.苏步青教授是我国著名的数学家。
一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米。
甲带着一只狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。
小朋友们,你能解答这道题吗?例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
东、西两地相距多少千米?练习与思考:1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行千米。
五年级奥数.行程-.环形跑道(C级).-学生版
![五年级奥数.行程-.环形跑道(C级).-学生版](https://img.taocdn.com/s3/m/6ded7bf2a1c7aa00b52acbca.png)
本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
知识框架环形跑道【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?【巩固】 周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?例题精讲【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?【例 3】下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?【巩固】如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【例 4】如图,长方形ABCD中AB∶BC=5∶4。
五年级奥数——环形路上的的行程问题
![五年级奥数——环形路上的的行程问题](https://img.taocdn.com/s3/m/c1b41db64431b90d6d85c753.png)
年 级五年级 授课日期 授课主题 第7讲——环形路上的行程问题教学内容i.检测定位在环形道路上的行程问题本质上就是追及问题或相遇问题.当两人(或物)同向运动时就是追及问题,追及距离是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇问题是两人从出发到相遇所行路程和.【例1】如图7-1,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同地同向出发,45分钟后甲追上了乙.如果两人同时同地反向跑,经过多少分钟后两人相遇?分析与解 根据图7-1①用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长..225045200-250(米))(=⨯ 同理在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长.(图7-1②).52002502250(分钟))(=+÷即经过5分钟两人相遇.随堂练习1甲乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.问几分钟后,甲第1次追上乙?【例2】如图7-2是一个圆形中央花园,A 、B 是直径的两个端点.小军在A 点,小勇在B 点,同时出发相向而行.他俩第一次在C 点相遇,C 点离A 点有50米;第2次在D 点相遇,D 点离B 点有30米.问这个花园一周长多少米?分析与解 第1次相遇,两人合起来走了半周长,从C 点开始第2次在D 点相遇两人走了一周长,两次共走了一周长半.小军从A →C →D 走了50米的3倍,即走了.150350(米)=⨯去掉BD 之间30米的距离,就是半个圆周的长,所以一周的长度为.240230-150米)(=⨯ 随堂练习2如图7-3,A 、B 是圆直径的两个端点,亮亮在A 点,明明在B 点,相向而行.他们在C 点第一次相遇,C 点离A 点有100米;在D 点第2次相遇,D 点离B 点有80米.求圆的周长.【例3】如图7-4,一个边长为100米的正方形跑道.甲从A 点出发,乙从C 点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米.他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?分析与解 如图7-4,由题意知甲(在后)、乙(在前)相距200米(即追及距离200米)且甲第一次追及乙要多拐两个弯,即要多休息.1025秒=⨯设甲纯跑步时间为y 秒,则乙纯跑步时间为秒10+y .则有,200)10(57+⨯-y y解得 ).(125秒=y甲应跑路程为.8757125米=⨯当甲跑了800米又到达A 点时,用时为秒,28.149757800≈⨯+÷他将在A 点逗留5秒,到秒28.154528.149=+又离开A 点.而乙跑完600(=800-200)米到达A 点时,用时.145555600秒=⨯+÷而在第秒1505145=+时离开A 点.因此,从起跑到149.28秒至150秒的间隔内甲、乙都在A 点,即甲第1次追上乙,此时乙跑了600米.随堂练习3如图7-5,有一条长方形跑道,甲从A 点出发,乙从C 点出发,同时按逆时针方向奔跑.甲速每秒6025米,乙速每秒5米.跑道长100米,宽为60米.当甲、乙每次跑到拐点A 、B 、C 、D 时都要停留5秒.问当甲第1次追上乙时,甲、乙各跑了多少米?【例4】图7-6所示是一个玩具火车轨道,A 点有个变轨开关,可以连结B 或者C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上册 在线课堂
第4讲
环形路线
• 行程问题专题
今天的主角是箭 头哥和跑道君,所有 的故事都围绕着它们 两个......
知识精讲
在环形路线中,跑道君的气质不同啦! 顾名思义,环形路线的运动路径是一个封闭的曲线,这就意味着从一个点出发 ,跑完一圈之后会回到出发点,这就意味着环形路线中的相遇和追及问题,肯定是 与直线型中有不同的。
路程差=跑道周长 追及时间=周长÷速度差(两人速度之差)
知识精讲
总结一下
环形相遇:背向运动, 路程和=跑道周长 相遇时间=周长÷速度和(两人速度之和)
环形追及:同向运动, 路程差=跑道周长 追及时间=周长÷速度差(两人速度之差)
例题一:
小紫和小蓝沿着周长为300米的操场跑步,小紫的速度为5m/s,小蓝的速度为7m/s, 若两人同时从同一点出发,背向而行,那么多少秒后第一次相遇。如果他们继续不 停跑下去,两分钟内一共会相遇多少次?最后一次相遇时距离出发点多远? 【分析】请同学们在右边的圆上画出两人运动的过程,两人第一次相遇需要多长时 间呢?第二次相遇需要多长时间?那两分钟之内相遇多少次呢?
练习二:
一环形跑道,周长为400米,甲、乙两名运动员,同时顺时针自起点出发,甲每分 钟跑300米,乙每分钟跑275米,甲第四次追上乙时距离起点多少米?
如果不是同地出发,环形 路线问题还具有周期性吗?
例题三:
甲、乙两人在400米长的环形跑道上跑步,甲以每分钟300米的速度从起点跑出,一 分钟后,乙以每分钟280米的速度从起点同向跑出,请问甲出发后多少分钟第一次 追上乙?如果追上后他们的速度保持不变,甲还需要再过多少分钟才能第10次追上 乙? 【分析】从乙出发到甲第一次追上乙。与从甲第一次追上乙到第二次追上乙间隔的 时间一样吗?从第几次追上开始就具有周期性了?
(2)甲、乙两人在一个周长为180米的圆形跑道上跑步,甲每秒跑5米,乙每秒跑4米,如果两 人从同一点同时出发,反向跑步多少秒后,第一次相遇再过多少秒两人第二次相遇,在10分钟 内,两人相遇多少次?
(3)有一个圆形跑道,甲、乙两人同时从同一点沿同一方向出发,当甲跑完7圈到达出发点时 恰好第二次追上乙,如果甲的速度是14米每秒,那么乙每秒跑多少米?
例题二:
有一个周长是40米的圆形水池,甲沿着水池散步,每秒钟走1米。乙沿着水池跑步, 每秒钟跑3.5米。甲、乙从同一地点同时出发,同向而行,当乙第8次追上甲时,他 还要跑多少米才能回到出发点? 【分析】在环形路线上,快的每追上慢的一次就要多跑一圈,本题乙第8次追上甲 时,就比甲多跑了8圈,这时怎么确定两人的位置?
课堂检测
(4)有一个周长是80米的圆形水池,甲沿着水池散步,速度为1米每秒,乙沿着水池跑步,速 度为2.2米每秒,并且与甲的方向相反,如果他俩从同一地点同时出发,那么当乙第8次遇到甲时 还要跑多少米才能回到出发点?
(5)甲、乙两人分别从一圆形场地的直径两端点A、B开始,同时匀速反向绕此圆形路线运动。 当甲走了160米后,他们第一次相遇。在乙走过A后20米的D处又第二次相遇,求此圆形场地的周 长?
练习一:
在420米的圆形跑道上,甲、乙两人从同一点出发,背向而行,甲的速度是8m/s的 速度;乙是6m/s,那么两人第8次相遇时距离出发点多远?
知识精讲
从例题1可以看出,每相遇一次就要 跑一个圆周,那么多次相遇就是跑多个 圆周,所以环形跑道中相遇问题是有周 期性的,同样的,追及问题肯定也是有 周期性的。这样善用周期性,我们解决 多次相遇或追及问题就简单多了!
练习三:
周长为400米的圆形跑道上有相距100米的A、B两点,甲、乙两人分别从A、B两点 同时相背而跑,速度分别是3米/秒和2米/秒,多少秒后两人第一次相遇,如果相遇 后,两人的速度保持不变,再过多少秒两人第10次相遇?
总的来说,环形上的行程 问题比直线上的情况变化更多 更繁琐,在运动过程较复杂的 题目中,我们必须认真画图, 仔细分析每一段运动过程。
例题四:
如图甲、乙两人分别从一圆形场地的直径两端点A、B开始,同时匀速反向绕此圆形 路线运动。当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处第二次 相遇,求此圆形场地的周长? 【分析】题目中的已知条件很少,知道两个与路程有关的量,我们很难直接计算周 长,先画图分析一下运动过程,观察你所画出的示意图,题目给出的100米和60米 是图中的哪一段?如何利用这从A点出发 背向走,结果会在B点相遇。咱们仔细观察就会 发现,两人走过的路程之和就是一个圆周长。 也就是说:
路程和=跑道周长 相遇时间=周长÷速度和(两人速度之和)
知识精讲
A C
如左图,两个小人在环形跑道上从A点出发 同向走,结果跑得快的会在C点追上跑得慢的。 咱们仔细观察就会发现,两人走过的路程之差就 是一个圆周长。 也就是说:
A
B
练习四:
有一个环形跑道,甲、乙两人分别从A、B两地出发,相向而行,乙的速度快于甲, 第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的地点,已知 A、B长是跑道总长的四分之一,请问跑道周长为多少米?
A C
B
D
挑战极限
例题五:
小鹿和小山羊在某个环形跑道上练习跑步项目,小鹿比小山羊稍快,如果从同一起 点出发背向而行,1小时后正好第5次相遇,如果从同一起点出发,同向而行,那么 经过1小时才第1次追上,请问小鹿和小山羊跑一圈各需要多长时间? 【分析】题目中并没有告诉环形跑道的周长是多少,想一想跑道的周长是一个确定 的数吗?如果不是,那么周长的取值不同,对于结果有没有影响?
挑战极限
例题六:
如图一个正方形房屋的边长为12米,阿呆阿瓜两人分别从房屋的两个墙角出发,阿 呆每秒钟行5米,而阿瓜每秒钟行3米,问阿呆第一次看见阿瓜时阿瓜距离出发点多 少米? 【分析】第一次看见阿瓜的时候,一定是刚到达某个墙角的时候,应该是哪个墙角 呢?
课堂检测
(1)甲、乙两人在600米长的环形跑道上,各自以不变的速度慢跑,如果两人同时从同地相背 而跑,四分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多长时间?