如何构建载体和转化体检测
重组载体构建的方法和步骤
重组载体构建的方法和步骤全文共四篇示例,供读者参考第一篇示例:重组载体构建是基因工程领域中非常重要的一项技术,它可以用来将特定的基因插入到目标细胞中,实现基因的转移和表达。
在科学研究、医学诊断和治疗等领域中都有广泛的应用。
下面我们来详细介绍一下重组载体构建的方法和步骤。
一、选择载体首先我们需要选择一个适合的载体作为基础,常见的载体有质粒、病毒、原核生物等。
在选择载体时需要考虑载体的大小和特性,以及目标基因的大小和需要表达的水平。
同时还需要考虑载体的复制原点、抗生素抗性基因等相关元件。
二、线性化载体接下来我们需要将选择的载体进行线性化处理,以便将目标基因插入到载体中。
线性化可以通过受控的限制酶酶切处理来实现,将载体的环状DNA骨架切割成线性DNA片段。
三、插入目标基因将目标基因与线性化的载体进行连接。
目前常用的方法包括:内切酶切割连接法、PCR扩增连接法、接头连接法等。
这些方法可以有效地将目标基因插入到载体中,并确保插入的正确性和稳定性。
四、转化目标宿主将构建好的重组载体导入到目标宿主细胞中,使其稳定地存在和复制。
转化的方法多样,包括热激转化、电穿孔转化、化学法转化等。
转化效率和载体稳定性是评价转化效果的主要因素。
五、筛选重组子对转化后的细胞进行筛选,筛选出含有目标基因的重组子。
常用的筛选方法包括抗生素筛选、荧光筛选、酵素检测等。
筛选过程中需要注意筛选压力和筛选条件的优化,以提高筛选效率。
六、鉴定重组子对筛选出的重组子进行鉴定,确保其构建正确。
常用的鉴定方法包括PCR扩增、酶切鉴定、序列分析等。
通过这些方法可以验证重组子的结构和功能是否正确,确保后续实验的准确性和可靠性。
七、表达目标基因对鉴定合格的重组子进行表达。
通过选用适当的启动子和调控元件,可以实现目标基因的高效表达。
表达的方法有多种选择,包括转染法、感染法、转基因法等。
表达的效果可以通过荧光显微镜观察、酶活性测定、Western blot等方法进行检测和验证。
载体构建基本步骤
载体构建基本步骤
载体构建基本步骤
1.选定目的基因,设计特异性引物,利用高保真酶进行PCR扩增
2.对扩增结果进行琼脂糖凝胶电泳检测(1%),若检测结果正确,测
序结果之后进行胶回收目的片段
3.通过平末端连接将目的基因连接到克隆载体(PMD-18T)
4.转化DH5α,根据载体抗性涂板37度过夜培养
5.挑取阳性克隆进行PCR验证,PCR验证后挑取阳性克隆进行大摇并
提取质粒、双酶切,同时取500微升菌液送测序
6.测序结果正确后对提取的质粒进行双酶切回收目的片段
7.对表达载体用同样的限制性内切酶双酶切之后回收大片段
8.将目的片段与表达载体的大片段用T4DNA连接酶连接后转化DH5
α,涂板37度过夜
9.挑取阳性克隆大摇酶切验证,若结果正确,则载体构建完毕。
PCR、载体构建及转化
挑菌
准备工作: 1、提前打开37℃摇床,开紫外灯杀菌。 2、灭菌的带盖的刻度试管,试管架,消毒的黄枪头, 镊子,Amp抗性的LB液体培养基。 步骤: 1、将Amp抗性的LB液体培养基分装入试管,每管46ml。 2、用黄色的枪头挑白色的单克隆,连带枪头放入试 管中。 3、盖上试管盖,置摇床中,37℃,170转摇培过夜 (16-18小时)。
1在超净台内将试管中的菌液移入15ml离心管中21000rpm离心10min其间取si和rnase3弃上清留沉淀4每管加入100lsi和rnase04lrnasea浓度为100mgml可提前算好总的si和rnasea用量混匀后分装于离心管中5充分涡旋均匀6计算好sii用量临时将04nnaoh2sds等体积混合于灭菌的三角7每管加入混合好的sii200l轻轻上下颠倒几次dna8插入冰盒中静置5min此时菌液变的清亮粘稠9每管加入siii150l上下颠倒数次此时有白色絮状沉淀出现
引物设计常用软件: DNAstar:序列分析
Primer5.0:引物设计
DNAman:序列比对 在线引物设计: http://bioinfo.ut.ee/primer3-0.4.0/primer3/
2. 载体构建
T-Vector连接
反应体系: • 2×Ligation Buffer 2.5µl • Inset fraction 1.5µl • T-easy vector 0.5µl • T4-ligase 0.5µl 混匀后置16℃连接0.5- 小时。
蓝白斑筛选:
• 野生型大肠杆菌产生的β-半乳糖苷酶可以将无色化合物Xgal切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。
•设计适用于蓝白斑筛选的基因工程菌为β-半乳糖苷酶缺陷型 菌株,无法作用于X-gal产生蓝色物质。 •操作中,添加IPTG以激活lacz‘中的β-半乳糖苷酶的启动子, 在含有X-gal的固体平板培养基中菌落呈现蓝色(空载)。 •当外源DNA与含lacz‘的载体连接时,会插入进MCS,这种 重组质粒不再表达α 肽链,不产生活性β-半乳糖苷酶,即不可 分解培养基中的X-gal产生蓝色,培养表型即呈现白色菌落。
载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定
实验一载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定一、实验目的1.CaCl2法制备感受态细胞2.目的基因与载体连接(c-myc+pSV2;粘端连接)3.重组质粒转化大肠杆菌并筛选转化体(HB101;Amp r)4.质粒DNA的小量快速制备5.质粒DNA的限制性内切酶酶切6.DNA的琼脂糖凝胶电泳二、实验原理通过粘端连接法将具有相同粘性末端的DNA分子连接在一起,通过碱基配对氢键形成一个相对稳定的结构,利用连接酶发挥间断修复的功能,从而获得重组的DNA分子。
受体细胞经处理后(电击或CaCl2等处理),细胞膜通透性发生变化,从而使外源的载体分子通过感受态细胞,并使受体细胞获得新的稳定遗传的性状,该过程称为转化。
由于本实验种pSV带有抗氨苄青霉素的基因,因而转化后的细胞在含氨苄青霉素的平板上培养可以筛选出转化成功的受体细胞。
分离质粒DNA的步骤包括:培养细菌使质粒扩增、收集和裂解细菌以及分离和纯化质粒DNA。
SDS可以使细胞壁裂解,碱变性抽提质粒DNA的原理是利用染色体DNA与质粒DNA的变性复性的差异达到分离目的,当pH>12.6时,染色体DNA氢键断裂,双螺旋结构解开而变性,质粒DNA由于超螺旋共价闭合环状结构,两条互补链不会完全分离。
当采用pH 4.8的NaAc高盐缓冲液调节pH至中性时,质粒DNA恢复原有的构型,而染色体DNA则不能复性而缠绕形成网状结构。
通过离心可将染色体DNA及大分子RNA、蛋白质等去除。
三、实验器材和试剂1.器材恒温摇床、电热恒温培养箱、电热恒温水浴、台式离心机、低温离心机、涡旋振荡器、移液枪及枪头、1.5 ml离心管、制冰机、三角推棒、酒精灯、细菌培养管、电泳槽及电泳仪、凝胶成像系统等。
2.试剂1)用BamH I和Xba I处理的线状pSV质粒DNA (20 ng/ul)2)用BamH I 和Xba I 处理的4.8 kb c-myc DNA 片段(20 ng/ul)3)已连接好c-myc目的片段的pSV重组质粒DNA (5 ng/ul)4)T4 DNA连接酶(5 U/ul)及10X连接酶缓冲液(Thermo公司)5)LB培养基以及含琼脂的LB培养基铺制的平板(含抗生素)6)0.1 mol/L CaCl/溶液7)AxyPrep质粒DNA小量试剂盒(Axygen公司产品)8)无水乙醇9)BamH I (10 ug/ul)及Xbal I (10 ug/ul) (NEB 公司产品)10)10X Buffer 4 (NEB 公司产品)11)1X TAE ( 0.04 mol/L Tris-乙酸;0.001 mol/L EDTA)12)Y DNA Hind III Markers (0.1 ug/ul) (Thermo 公司)13)6X凝胶加样缓冲液(0.25%溴酚蓝;40% (w/v)蔗糖水溶液)14)氨苄青霉素储存液(100 mg/ml)15)CelRed 核酸染料(10000X in water) (Biotium 公司产品) 四、实验步骤1.目的基因c-myc与pSV质粒载体的连接目的基因片段(4.8 kb),25 ng/ul 4 ul载体DNA (3.5 kb), 25 ng/ul 4 ul10X buffer 1 ulT4 DNA 连接酶(5 U/ul) 0.5 ulddH2O 0.5 ul总体积:10 ul 混匀,16℃水浴锅温浴2. CaCl 法制备感受态细胞21)取0.1 ml大肠杆菌HB101培养物,加至3 ml LB培养液中,37℃振摇约2 h,细胞长至云雾状。
载体构建的基本步骤
载体构建的基本步骤Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT载体构建一、原理依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
二、操作步骤1、摇菌(制作感受态细胞备用)取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。
2、提质粒(也就是载体)依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。
3、酶切(双酶切产生粘性末端)反应所需试剂体积(单位:ul)质粒 10所需内切酶反应缓冲液 2所需限制性内切核酸酶 1H2O 7将加好的EP管置于37℃保温1-2h。
(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度)4、电泳检测将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。
回收胶:琼脂糖与缓冲液一比一制胶,经过切胶回收目的产物,也有目的产物纯化的功能;检测胶:琼脂糖与缓冲液一比二制胶,为了检测目的条带与预期是否相符。
切胶回收与产物纯化是差不多的过程,所达到的目的是一样的:切胶回收也是一种纯化过程,它能去除非目的片段,然后用回收试剂盒进行纯化,能将很不纯的DNA溶液纯化;产物纯化是将较纯的DNA溶液进一步除去多余的杂质,用纯化试剂盒,你会发现纯化试剂盒和回收试剂盒的步骤几乎一样。
5、载体与目的基因连接如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接。
置于温箱,12-16℃,保温8-16h6、转化(连接产物转化到感受态细胞中)依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,12-16h。
7、单克隆检测(1)挑单克隆先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的AMP,用枪头混匀;取 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。
基因工程步骤
筛选和鉴定:使用分子生物学技术筛选和 鉴定克隆成功的细胞
添加 标题
添加 标题
添加 标题
添加 标题
添加 标题
添加 标题
CRISPR/Cs9技术: 一种高效的基因 编辑技术通过引 导RN和Cs9蛋白 对目标基因进行
切割和编辑
基因敲除:通 过CRISPR/Cs9 技术将目标基 因敲除研究基
因功能
基因敲入:通 过CRISPR/Cs9 技术将目标基 因敲入研究基
因功能
基因突变:通 过CRISPR/Cs9 技术对目标基 因进行突变研
究基因功能
基因沉默:通 过CRISPR/Cs9 技术对目标基 因进行沉默研
究基因功能
基因过表达:通 过CRISPR/Cs9技 术对目标基因进 行过表达研究基
因功能
选择合适的载体:根据实验目的选择合适的载体如质粒、病毒等 构建目的基因:将目的基因插入到载体中形成重组载体
转化宿主细胞:将重组载体导入到宿主细胞中使目的基因在宿主细胞中表达
筛选和鉴定:通过筛选和鉴定确定目的基因是否成功表达以及表达的效果如何
目的基因:需要转入到受体细胞中的基因 载体:用于携带目的基因进入受体细胞的工具 连接方式:常用的有DN重组技术、基因编辑技术等 连接结果:形成重组DN分子用于转化受体细胞
步骤:设计siRN序 列合成siRN转染到 细胞中观察沉默效 果
应用:研究基因功 能治疗遗传性疾病 农业生产等
注意事项:选择合 适的siRN序列避免脱 靶效应确保实验结 果的准确性
基因突变:可能导致生物体出现异 常现象
伦理问题:可能引发伦理争议如基 因编辑婴儿等
添加标题
添加标题
添加标题
基因工程操作的主要步骤
基因工程操作的主要步骤基因工程操作的主要步骤基因工程是一种通过改变生物体的基因组来实现对其性状和功能的调控的技术。
它主要包括以下几个步骤:第一步:选择目标基因在进行基因工程之前,需要先选择目标基因。
目标基因可以是任何对生物体有影响的基因,例如控制某种性状或功能的基因、导致某种疾病的基因等。
第二步:克隆目标基因克隆是指将目标基因从生物体中分离出来,并将其复制成为足够多的数量。
这个过程通常使用PCR(聚合酶链式反应)技术进行。
第三步:构建载体构建载体是指将克隆得到的目标基因插入到一个能够被细胞识别并且能够承载目标基因的载体中。
常用的载体有质粒、病毒和人工染色体等。
第四步:转化宿主细胞转化宿主细胞是指将构建好的载体送入到一个接受该载体并且能够表达目标蛋白质的宿主细胞中。
这个过程通常使用电穿孔、化学转化或者病毒介导等技术进行。
第五步:筛选转化细胞筛选转化细胞是指通过一系列的方法,将已经成功转化的细胞从未转化的细胞中筛选出来。
这个过程通常使用抗生素筛选、荧光标记等技术进行。
第六步:分离目标基因分离目标基因是指将已经成功表达目标蛋白质的细胞从其他细胞中分离出来,并且提取出目标蛋白质。
这个过程通常使用离心、层析等技术进行。
第七步:检测目标基因检测目标基因是指通过一系列的方法,对已经分离出来的目标蛋白质进行检测和鉴定。
这个过程通常使用SDS-PAGE、Western blotting 等技术进行。
总结基因工程操作是一项复杂而又精密的操作,需要在实验室环境下仔细地进行。
以上步骤只是基本流程,具体实验还需要根据不同情况进行调整和改进。
T-16srDNA载体构建及转化实验步骤
T-16srDNA载体构建及转化实验步骤16SrDNA文库中的蓝藻种类与培养出来的蓝藻很不一致发现了一个新的且在该环境中占优势的微生物类群SAR11与传统的分离培养的方法相比,更全面得揭示了微生物多样性。
这一方法目前已经广泛运用于土壤、海洋、湖泊、肠道等多种生态系统中微生物多样性的调查揭示了环境当中前所未知的微生物的多样性。
实验原理:
16S rDNA是基因组的“biomarker",核糖体RNA是蛋自质合成必需的,16S rDNA广泛存在于所有原核生物的基因组中。
16S rDNA的序列中包括保守区和可变区。
序列变化比较缓慢,与物种的形成速度相适应,而且一般不发生水平转移。
实验步骤:
制备大肠杆菌感受态细胞。
首先16S rDNA扩增及胶纯化,接着16S rDNA 扩增产物与T载体连接。
下一步连接产物转化大肠杆菌,克隆文库的筛选,ARDAR分型与测序,最后克隆文库的统计分析。
载体构建方法
载体构建方法
载体构建方法是指通过合适的技术手段,创建出用于携带DNA等遗传物质的载体。
常见的载体包括质粒、噬菌体、大肠杆菌、酵母等微生物,以及病毒等。
以下是一些常用的载体构建方法:
1. 质粒构建方法:质粒是一种环状DNA分子,可用于携带外源DNA。
通常采用PCR扩增和限制性酶切等技术将外源DNA插入到质粒中,然后转化到宿主细胞中。
2. 噬菌体构建方法:噬菌体是一种寄生于细菌的病毒,可用于携带外源DNA并转化到宿主细胞中。
常用的噬菌体构建方法包括重组噬菌体技术和噬菌体展示技术等。
3. 大肠杆菌构建方法:大肠杆菌是一种常见的细菌,可用于携带外源DNA并表达目的蛋白。
常用的大肠杆菌构建方法包括转化、电转化、化学转化等。
4. 酵母构建方法:酵母是一种单细胞真核生物,可用于携带外源DNA并表达目的蛋白。
常用的酵母构建方法包括转化、电转化、融合等。
5. 病毒构建方法:病毒是一种寄生于细胞的微生物,可用于携带外源DNA并转化到宿主细胞中。
常用的病毒构建方法包括重组病毒技术、腺病毒技术、AAV技术等。
以上是一些常见的载体构建方法,不同的载体构建方法适用于不同的实验需求。
在选择合适的载体构建方法时,需要考虑到载体的稳定性、转化效率、表达效率等因素。
转基因技术操作方法
转基因技术操作方法转基因技术是一种通过改变生物体的基因组来获得特定性状的技术。
它主要包括选择外源基因、构建基因载体、转化外源基因、筛选转基因体和鉴定转基因体等步骤。
下面将详细介绍转基因技术的操作方法。
首先,选择外源基因是进行转基因技术的第一步。
外源基因是指从其他物种中获得的具有特定功能的基因。
选择外源基因的关键是在于确定需要转入的目的基因以及该基因的结构和功能。
常用的外源基因包括耐草甘膦基因、抗虫基因、抗病基因等。
根据所需的特性选择不同的外源基因。
第二步是构建基因载体。
基因载体是转基因技术中用来携带外源基因并将其导入到目标生物体中的工具。
常用的基因载体包括质粒、噬菌体等。
构建基因载体的关键是将外源基因插入到载体的适当位置,使其能够稳定传递给目标生物体。
这可以通过DNA重组技术来实现,常用的方法有限制性内切酶切割、连接酶连接等。
第三步是转化外源基因。
转化是指将构建好的基因载体导入到目标生物体中,并使其外源基因在目标生物体中表达。
转化的方法有多种,常用的方法包括冲击法、电穿孔法、生物微粒子轰击法等。
不同的转化方法适用于不同的目标生物体。
例如,冲击法适用于细菌和植物细胞的转化,电穿孔法适用于动物细胞的转化。
第四步是筛选转基因体。
在转化过程中,只有少部分目标生物体会成功地接受并稳定表达外源基因。
因此,需要通过筛选来寻找具有所需特性的转基因体。
筛选的方法有多种,常用的方法包括PCR检测、酶切分析、荧光标记等。
通过这些方法可以筛选出带有外源基因的转基因体。
最后一步是鉴定转基因体。
鉴定转基因体是为了确定转基因体中的外源基因是否能够正常表达,并检测其是否对目标生物体产生了预期的效应。
鉴定的方法包括Western blot分析、RT-PCR检测、功能测定等。
通过这些方法可以判断外源基因是否在转基因体中表达,并评估其对目标生物体所产生的影响。
以上就是转基因技术的操作方法。
通过选择外源基因、构建基因载体、转化外源基因、筛选转基因体和鉴定转基因体等步骤,可以有效地获得具有特定性状的转基因生物体。
(精选)如何构建载体和转化体检测
如何构建载体1 启动子的选用和改造外源基因表达量不足往往是得不到理想的转基因植物的重要原因。
由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。
目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。
在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。
然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。
为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。
已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。
例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。
这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。
例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。
在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。
对现有启动子进行改造,构建复合式启动子将是十分重要的途径。
例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。
吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。
构建载体-个人总结
构建载体抽质粒载体→酶切载体与外源DNA→载体的去磷酸化→连接载体与外源DNA→制备感受态细胞→连接子转化感受态细胞→重组子筛选及鉴定(PCR检测,酶切检测,测序检测)。
(二)具体步骤及相应原理A.质粒抽提1)原理细菌培养物的生长(从平板上挑取单菌落接种于含相应抗生素的培养基中,培养至对数生长后期即可)→细菌的收集(离心)及裂解(离子型或非离子型去污剂、有机溶剂、碱处理或加热处理等方法,方法取决于质粒的大小、大肠杆菌菌株及裂解后纯化质粒的方法)→质粒DNA的分离和纯化(1)碱裂解法solution I :重悬细菌solution II:其中的SDS破坏细胞壁、膜,使细胞内容物释放出来,NaOH 使DNA变性、碱基对打开,使宿主染色体DNA双链分开,而闭合环状的质粒DNA处于拓扑缠绕状态,两个环并不分开solution III:中和作用,宿主DNA由于很大,碱基还未来得及配就在冰冷的条件下与SDS、蛋白质、高分子量的RNA等缠绕在一起沉淀下来,而质粒DNA由于很小且双链未分开,能够迅速配对重新形成超螺旋,处于溶解状态。
Solution I: Tris.HCl (pH 7.5)50 mMEDTA 10 mM螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNase作用时需要一定的金属离子作辅基\;EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境RNase A 100 µg/ml建议:检查配送的RNAse A是否完全加入到Buffer A1中,加入RNAse A后,Buffer A1/RNAse A应该存放在4度,如果存放时间过长,或者没有正确存放,请重新加入RNAse A;Solution II: NaOH 0.2 M(促使染色体DNA与质粒DNA的变性)SDS 1 %(变性沉淀蛋白质,但SDS抑制核糖核酸酶,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。
酵母菌表面展示操作步骤之载体选择与构建
酵母菌表面展示操作步骤之载体选择与构建酵母菌表面展示是一种重要的生物工程技术,在生物学研究、抗原制备和疫苗研发等领域有广泛应用。
在进行酵母菌表面展示实验前,我们需要选择适合的载体并进行构建,以实现目标蛋白的表面展示。
本文将介绍酵母菌表面展示实验的载体选择与构建步骤。
一、载体选择在酵母菌表面展示实验中,常用的载体有质粒和整合载体两类。
质粒载体是通过直接瞬时表达目标蛋白来实现表面展示的,而整合载体则是通过将目标蛋白融合到约束表面展示区域的酵母细胞膜蛋白上,以实现表面展示。
根据实验要求和目标蛋白的特性,我们可以选择适合的载体进行后续实验。
二、质粒载体构建1. 提取质粒:选择适合的质粒载体并进行提取,一般可使用常见的质粒提取试剂盒进行操作,并按照试剂盒说明书进行操作。
2. 构建质粒:将提取的载体与目标蛋白基因进行连接。
可以选择PCR扩增、酶切和连接等方法进行操作。
在连接时注意选择合适的连接酶,避免不必要的损失和错误连接。
3. 转化酵母细胞:将构建好的质粒导入酵母细胞内。
可以采用电穿孔、化学转化等方法进行转化。
转化后,将转化后的细胞分别接种于含有适当选择压力的培养基上,筛选出含有目标质粒的酵母菌株。
三、整合载体构建1. 目标蛋白选择:根据实验需要选择合适的约束表面展示区域的酵母细胞膜蛋白,并设计引物进行PCR扩增。
2. 构建整合载体:将扩增得到的目标蛋白基因与整合载体中相应的表达位点进行连接,常用的有插入杂交、连接酶法等。
连接后的整合载体经测序确认无误后,可继续进行后续实验。
3. 酵母细胞转化:通过适当的方法,将构建好的整合载体导入酵母细胞内,使其整合到酵母细胞染色体上。
4. 酵母菌培养与筛选:将转化后的酵母菌培养在选择性培养基上,筛选出能够稳定表达目标蛋白的酵母菌株。
四、确认载体构建效果1. PCR鉴定:通过PCR方法对含有目标蛋白基因的质粒或整合载体进行鉴定。
根据目标蛋白的特异性引物,可以进行PCR扩增,并通过电泳分析判断目标蛋白基因的连接情况。
载体构建的基本步骤
载体构建的基本步骤集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-载体构建一、原理依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
二、操作步骤1、摇菌(制作感受态细胞备用)取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。
2、提质粒(也就是载体)依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。
3、酶切(双酶切产生粘性末端)反应所需试剂体积(单位:ul)质粒 10所需内切酶反应缓冲液 2所需限制性内切核酸酶 1O 7H2将加好的EP管置于37℃保温1-2h。
(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度)4、电泳检测将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。
回收胶:琼脂糖与缓冲液一比一制胶,经过切胶回收目的产物,也有目的产物纯化的功能;检测胶:琼脂糖与缓冲液一比二制胶,为了检测目的条带与预期是否相符。
切胶回收与产物纯化是差不多的过程,所达到的目的是一样的:切胶回收也是一种纯化过程,它能去除非目的片段,然后用回收试剂盒进行纯化,能将很不纯的DNA溶液纯化;产物纯化是将较纯的DNA溶液进一步除去多余的杂质,用纯化试剂盒,你会发现纯化试剂盒和回收试剂盒的步骤几乎一样。
5、载体与目的基因连接如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接。
置于温箱,12-16℃,保温8-16h6、转化(连接产物转化到感受态细胞中)依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,12-16h。
7、单克隆检测(1)挑单克隆先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的AMP,用枪头混匀;取1.5 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。
构建基因表达载体的步骤
构建基因表达载体的步骤基因表达载体是用来将外源基因转录和翻译为蛋白质的重要工具。
构建一个高效的基因表达载体是基因工程的重要一步。
下面将介绍构建基因表达载体的步骤。
第一步:选择合适的表达载体在构建基因表达载体之前,需要选择适合自己研究对象的表达载体。
一般来说,常用的表达载体有质粒、病毒载体和细胞质表达系统等。
对于不同的表达载体,其表达效率和表达特点也有所不同,需要根据自己的实验需要进行选择。
第二步:选择合适的启动子和信号序列在表达载体中,启动子和信号序列是控制基因表达的关键元素。
启动子是转录起始位点上游的DNA序列,可以控制基因的转录水平;信号序列则可以控制基因的翻译和定位。
因此,在构建基因表达载体之前,需要选择适合自己实验需要的启动子和信号序列。
第三步:克隆外源基因在构建基因表达载体时,需要将外源基因克隆到载体中。
一般来说,可以使用PCR扩增方法或限制性内切酶切割方法将外源基因克隆到载体中。
此外,还需要选择合适的克隆位点,以便快速筛选出正确的克隆子。
第四步:构建表达载体在将外源基因克隆到载体中后,需要构建表达载体。
具体操作包括将启动子和信号序列插入到载体中,以实现对基因表达的控制。
此外,还需要进行质粒线性化和酶切等操作,以实现转染或转化细胞。
第五步:筛选表达载体在构建表达载体后,需要进行筛选,以确定正确的表达载体。
此时可以通过限制性内切酶酶切、PCR扩增和测序等方法进行筛选,以确保表达载体的正确性。
第六步:转染或转化细胞在确定正确的表达载体后,需要将其转染或转化到细胞中。
转染方法包括热激转染、电穿孔转染和基因炮转染等;转化方法则包括化学转化和电转化等。
根据自己的实验需要选择合适的转染或转化方法。
第七步:检测基因表达在转染或转化细胞后,需要检测外源基因的表达情况。
检测方法包括Western blotting、RT-PCR和荧光显微镜等。
根据自己的实验需要选择合适的检测方法。
总结构建基因表达载体是基因工程研究的重要一步。
构建载体的实验流程
构建载体的实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!构建载体是分子生物学中常用的实验技术之一,以下是构建载体的一般实验流程:1. 目的基因的获取:通过 PCR 扩增、基因克隆或化学合成等方法获得目的基因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何构建载体1 启动子的选用和改造外源基因表达量不足往往是得不到理想的转基因植物的重要原因。
由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。
目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。
在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。
然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。
为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。
已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。
例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。
这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。
例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。
在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。
对现有启动子进行改造,构建复合式启动子将是十分重要的途径。
例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。
吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。
在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。
2 增强翻译效率为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容:2.1添加5`-3`-非翻译序列许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。
例如,在烟草花叶病毒(TMV)的126kDa蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。
目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。
Ingelbrecht等曾对多种基因的 3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。
另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。
2.2 优化起始密码周边序列虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。
例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。
Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。
该序列被后人称为Kozak序列,并被应用于表达载体的构建中。
例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍。
因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造。
2.3对基因编码区加以改造如果外源基因是来自于原核生物,由于表达机制的差异,这些基因在植物体内往往表达水平很低,例如,来自于苏云金芽孢杆菌的野生型杀虫蛋白基因在植物中的表达量非常低,研究发现这是由于原核基因与植物基因的差异造成了mRNA稳定性下降。
美国Monsanto公司Perlak等人在不改变毒蛋白氨基酸序列的前提下,对杀虫蛋白基因进行了改造,选用植物偏爱的密码子,增加了GC含量,去除原序列下影响mRNA稳定的元件,结果在转基因植株中毒蛋白的表达量增加了30~100倍,获得了明显的抗虫效果。
3 消除位置效应当外源基因被移人受体植物中之后,它在不同的转基因植株中的表达水平往往有很大差异。
这主要是由于外源基因在受体植物的基因组内插入位点不同造成的。
这就是所谓的"位置效应"。
为了消除位置效应,使外源基因都能够整合在植物基因组的转录活跃区,在目前的表达载体构建策略中通常会考虑到核基质结合区以及定点整合技术的应用。
核基质结合区(matrix association region,MAR)是存在于真核细胞染色质中的一段与核基质特异结合的DNA序列。
一般认为,MAR序列位于转录活跃的DNA环状结构哉的边界,其功能是造成一种分割作用,使每个转录单元保持相对的独立性,免受周围染色质的影响。
有关研究表明,将MAR置于目的基因的两侧,构建成包含MAR-gene-MAR结构的植物表达载体,用于遗传转化,能明显提高目的基因的表达水平,降低不同转基因植株之间目的基因表达水平的差异,减少位置效应。
例如,Allen等人研究了异源MAR(来自酵母)和同源MAR(来自烟草)对Gus基因在烟草中表达的影响,发现酵母的MAR能使转基因表达水平平均提高12倍,而烟草本身的MAR能使转基因的表达水平平均提高60倍。
使用来源于鸡溶菌酶基因的MAR也可起到同样作用。
另一可行的途径是采用定点整合技术,这一技术的主要原理是,当转化载体含有与寄主染色体同源的DNA片段时,外源基因可以通过同源重组定点整合于染色体的特定部位。
实际操作时首先要分离染色体转录活性区域的DNA片段,然后构建植物表达载体。
在微生物的遗传操作中,同源重组定点整合已成为一项常规技术,在动物中外源基因的定点整合已获得成功,而在植物中除了叶绿体表达载体可实现定点整合以外,细胞核转化中还很少有成功的报道。
4 构建叶绿体表达载体为了克服细胞核转化中经常出现的外源基因表达效率低,位置效应及由于核基因随花粉扩散而带来的不安全性等问题,近几年出现的一种新兴的遗传转化技术--叶绿体转化,正以它的优越性和发展前景日益为人们所认识并受到重视。
到目前为止,已在烟草、水稻、拟南芥、马铃薯和油菜(侯丙凯等,等发表)5种植物中相继实现了叶绿体转化,使得这一转化技术开始成为植物基因工程中新的生长点。
由于目前多种植物的叶绿体基因组全序列已被测定,这就为外源基因通过同源重组机制定点整合进叶绿体基因组奠定了基础,目前构建的叶绿体表达载体基本上都属于定点整合载体。
构建叶绿体表达载体基本上都属于定点事例载体。
构建叶绿体表达载体时,一般都在外源基因表达盒的两侧各连接一段叶绿体的DNA序列,称为同源重组片段或定位片段(Targeting fragment)。
当载体被导入叶绿体后,通过这两个片段与叶绿体基因组上的相同片段发生同源重组,就可能将外源基因整合到叶绿体基因组的特定位点。
在以作物改良为目的的叶绿体转化中,要求同源重组发生以后,外源基因的插入既不引起叶绿体基因原有序列丢失,又不致于破坏插入点处原有基因的功能。
为满足这一要求,已有的工作都选用了相邻的两个基因作为同源重组片段,例如rbcL/accD,16StrnV/rpsl2rps7,psbA/trnK,rps7/ndhB。
当同源重组发生以后,外源基因定点插入在两个相邻基因的间隔区,保证了原有基因的功能不受影响。
最近,Daniel等利用烟草叶绿体基因trnA和trnI作为同源重组片段,构建了一种通用载体(universal vector)。
由于trnA和trnI的DNA序列在高等植物中是高度保守的,作者认为这种载体可用于多种不同植物的叶绿体转化。
如果这种载体的通用性得到证实,那么这项工作无疑为构建方便而实用的新型叶绿体表达载体提供了一个好的思路。
由于叶绿体基因组的高拷贝性,定点整合进叶绿体基因组的外源基因往往会得到高效率表达,例如McBride等人首次将Bt CryIA(c)毒素基因转入烟草叶绿体,Bt毒素蛋白的表达量高达叶子总蛋白的3%~5%,而通常的核转化技术只能达到0.001%~0.6%。
最近,Kota等将Bt Cry2Aa2蛋白基因转入烟草转入烟草叶绿体,也发现毒蛋白在烟草叶子中的表达量很高,占可溶性蛋白的2%~3%,比细胞核转化高出20~30倍,转基因烟草不仅能抗敏感昆虫,而且能够百分之百地杀死那些产生了高抗性的昆虫。
Staub等最近报道,将人的生长激素基因转入烟草叶绿体,其表达量竟高达叶片总蛋白的7%,比细胞核转化高出300倍。
这些实验充分说明,叶绿体表达载体的构建和转化,是实现外源基因高效表达的重要途径之一。
5 定位信号的应用上述几种载体优化策略主要目的是提高外源基因的转录和翻译效率,然而,高水平表达的外源蛋白能否在植物细胞内稳定存在以及积累量的多少是植物遗传转化中需要考虑的另一重要问题。
近几年的研究发现,如果某些外源基因连接上适当的定位信号序列,使外源蛋白产生后定向运输到细胞内的特定部位,例如:叶绿体、内质网、液泡等,则可明显提高外源蛋白的稳定性和累积量。
这是因为内质网等特定区域为某些外源蛋白提供了一个相对稳定的内环境,有效防止了外源蛋白的降解。
例如,Wong等将拟南芥rbcS亚基的转运肽序列连接于杀虫蛋白基因之前,发现杀虫蛋白能够特异性地积累在转基因烟草的叶绿体内,外源蛋白总的积累量比对照提高了10~20倍。
最近,叶梁、宋艳茹等也将rbcS亚基的转运肽序列连接于PHB合成相关基因之前,试图使基因表达产物在转基因油菜种子的质体中积累,从而提高外源蛋白含量。
另外,Wandelt等和Schouten等将内质网定位序列(四肽KDEL的编码序列)与外源蛋白基因相连接,发现外源蛋白在转基因植物中的含量有了显著提高。
显然,定位信号对于促进蛋白质积累有积极作用,但同一种定位信号是否适用于所有的蛋白还有待于进一步确定。
6 内含子在增强基因表达方面的应用内含子增强基因表达的作用最初是由Callis等在转基因玉米中发现的,玉米乙醇脱氢酶基因(Adhl)的第一个内含子(intron 1)对外源基因表达有明显增强作用,该基因的其他内含子(例如intron8,intron9)也有一定的增强作用。