中国光纤通信的发展历程

合集下载

光纤通信发展简史

光纤通信发展简史

光纤通信发展简史光纤通信发展简史伴随社会的进步与发展,以及人们日益增长的物质与文化需求,通信向大容量,长距离的方向发展已经是必然的发展趋势。

由于光波具有极高的频率(大约3 亿兆赫兹),也就是说是具有极高的宽带从而可以容纳巨大的通信信息,所以用光波作为载体来进行通信一直是人们几百年来追求的目标所在。

1、光纤通信的里程碑在六十年代中期以前,人们虽然历经苦心研究过光圈波导、气体透镜波导、空心金属波导管等,想用它们作为传送光波的媒体以实现通信,但终因它们或者衰耗过大或者造价昂贵而无法实用化。

也就是说历经几百年人们始终没有找到传输光波的理想传送媒体。

一九六六年七月,英藉、华裔学者高锟博士(K.C.Kao)在PIEE 杂志上发表了一篇十分著名的文章《用于光频的光纤表面波导》,该文从理论上分析证明了用光纤作为传输媒体以实现光通信的可能性,并设计了通信用光纤的波导结(即阶跃光纤)。

更重要的是科学地予言了制造通信用的超低耗光纤的可能性,即加强原材料提纯,加入适当的掺杂剂,可以把光纤的衰耗系数降低到20dB/km以下。

而当时世界上只能制造用于工业、医学方面的光纤,其衰耗在1000dB/km以上。

对于制造衰耗在20dB/km 以下的光纤,被认为是可望不可及的。

以后的事实发展雄辩地证明了高锟博士文章的理论性和科学大胆予言的正确性,所以该文被誉为光纤通信的里程碑。

2、导火索一九七0年美国康宁玻璃公司根据高锟文章的设想,用改进型化学相沉积法(MCVD 法)制造出当时世界上第一根超低耗光纤,成为使光纤通信爆炸性竞相发展的导火索。

虽然当时康宁玻璃公司制造出的光纤只有几米长,衰耗约20dB/km,而且几个小时之后便损坏了。

但它毕竟证明了用当时的科学技术与工艺方法制造通信用的超低耗光纤是完全有可能的,也就是说找到了实现低衰耗传输光波的理想传输媒体,是光通信研究的重大实质性突破。

3、爆炸性发展自一九七0年以后,世界各发达国家对光纤通信的研究倾注了大量的人力与物力,其来势之凶,规模之大、速度之快远远超出了人们的意料之外,从而使光纤通信技术取得了极其惊人的进展。

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--学号:013本科学年论文学院物理电子工程学院专业电子科学与技术年级 2008级姓名王震论文题目光纤通信技术发展历程、特点及现状指导教师张新伟职称讲师成绩2012年1月10日目录摘要 (1)Abstract (1)绪论 (1)1光纤通信发展历程 (1)世界光纤通信发展史 (1)中国光纤通信发展史 (2)2 光纤通信技术的特点 (3)频带极宽,通信容量大 (3)损耗低,中继距离长 (3)抗电磁干扰能力强 (3)无串音干扰,保密性好 (3)3 不断发展的光纤通信技术 (3)SDH系统 (3)不断增加的信道容量 (3)光纤传输距离 (4)向城域网发展 (4)互联网发展需求与下一代全光网络发展趋势 (4)4 结束语 (4)参考文献 (4)光纤通信技术发展历程、特点及现状摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。

光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。

关键词:光纤通信;发展历程;特点;发展现状绪论光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。

光电子技术将继微电子技术之后再次推动人类科学技术的革命。

有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。

光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。

光纤通信技术发展历程及趋势

光纤通信技术发展历程及趋势

光纤通信技术发展历程及趋势光纤通信技术是二十世纪末开始普及的通信技术,其独特的优势和快速的发展速度,使得它成为了现代社会最重要的通信技术之一。

本文将会阐述光纤通信技术的发展历程,并且对未来的趋势进行探讨。

一、光纤通信技术的发展历程1960年代,光纤通信技术的概念首次被提出。

但是,由于当时无法制造出高质量的光纤,这项技术一直处于实验室阶段。

直到20世纪70年代,美国贝尔实验室首次成功制造出了质量优良的光纤,使得光纤通信技术才开始出现了真正的应用。

比较典型的是,1977年美国AT&T公司在美国第一次开通了一条光纤通信线路,同时也标志着光纤通信技术进入了商业化运营的阶段。

20世纪80年代,光纤通信技术迅速发展。

国外厂商加强了对光纤技术的研究和开发,并成立了多个光纤通信领域的国际标准组织,比如ITU和FSAN等。

国内也于1984年开始进入光纤通信技术的领域,并发起了“863计划”,同时成立了多家研究机构和起步公司,加快了国内的光纤通信技术的发展。

20世纪90年代,在无线通信和传统有线通信技术的双重推动下,光纤通信技术得到了更广泛的应用。

比如,在网络终端之间的传输和银行间仪表的交换等领域,光纤通信技术的应用得到了广泛的推广。

此外,同时成立的一些国际合作组织,如CORBA、WAP等,也为光纤通信技术的发展提供了更加优质的平台。

二、光纤通信技术的现状与趋势目前,光纤通信技术已经成为现代化电信网络的基石,且持续不断地得到进一步的扩展和升级。

因此,我们现在需要了解的是光纤通信技术未来的趋势和现状。

1. 高速化和可靠化对于当前的光纤通信技术来说,高速化和可靠化是最重要的趋势。

从20世纪90年代以来,光纤通信技术经过了多次升级和更新,使得光纤传输速度提高了许多倍。

未来,光纤通信技术还将进一步提高传输速度和可靠性,以满足不断增长的通信需求。

2. 光纤无源器件的发展光纤无源器件是光纤通信技术中的关键部件,包括了二分束器、可控式衰减器、晶格光纤等等。

光纤通信技术的发展历程,应用方向及未来发展趋势

光纤通信技术的发展历程,应用方向及未来发展趋势

光纤通信技术的发展历程,应用方向及未来发展趋势
光纤通信技术是指利用光纤作为传输介质进行信息传输的技术。

该技术的发展历程可以追溯至20世纪60年代初期,当时科学家们开始研究光的传输特性并提出了使用光纤进行通信的想法。

随着技术的发展和突破,光纤通信开始进入实用化阶段。

1977年,一家名为Corning Glass Works的公司成功地开发出了低损耗的光纤,使得光纤通信技术得以大规模应用。

此后,光纤通信技术得到了快速的发展,并催生了众多相关产业的兴起。

目前,光纤通信技术广泛应用于通信、互联网、医疗、军事等众多领域。

其主要优势在于传输速度快、带宽大、抗干扰能力强、数据安全性高等。

同时,光纤通信技术也在不断地发展和完善,未来有望实现更加高速、高效、可靠的传输。

未来发展趋势方面,光纤通信技术将在以下几个方面有所突破: 1.高速传输技术的发展:随着信息量的不断增大,光纤通信技术需要不断提高传输速度。

目前,科学家们正在研究利用光子晶体等材料来实现更高速的传输技术。

2.技术的智能化发展:未来光纤通信技术将越来越具有智能化特征,例如光纤传感技术可以应用于智能家居、智能交通等领域。

3.新型光纤材料的研究:科学家们正在研究开发新型光纤材料,例如光纤光栅等,以提高光纤通信技术的应用范围和效率。

总的来说,光纤通信技术的发展历程和应用方向非常广泛,未来的发展趋势也是非常光明的。

我们有理由相信,在不久的将来,光纤
通信技术将会更好地服务于人类社会的各个领域。

光纤通信技术的发展历程与未来趋势

光纤通信技术的发展历程与未来趋势

光纤通信技术的发展历程与未来趋势一、引言随着信息时代的到来,通讯技术的发展成了人们关注的热点话题。

光纤通信技术作为当前通讯技术中的一种主要技术,不断呈现出愈发强劲的发展势头。

本文旨在从光纤通信技术的发展历程入手,探讨这一技术的未来趋势。

二、光纤通信技术的发展历程光纤通信技术的应用历经了数十年的发展历程。

而其历史起点始于20世纪60年代末期,斯隆研究所(MIT)的研究小组中,第一个提出了利用光纤进行长距离通信的设想。

光纤通信技术的出现,重大地改变了通信的形式,提供了一种可靠、高速的通信技术。

自光纤通信技术推出以来,该技术经历了几个主要的发展阶段:1、单模光纤80年代,单模光纤的发明是光纤通信技术发展历程中的一个重要阶段。

单模光纤技术的出现,使得光纤传输的距离可以大幅度提高,同时传输速度也大幅度提升。

单模光纤技术的应用过程中,稳频激光器的出现加快了单模光纤技术的发展进程。

2、光放大器90年代,光放大器的发展则是光纤通信技术发展中的另一个重要阶段。

光放大器在激光器的基础上设计,能够实现光信号的增强,进而达到信号的延迟和放大。

由此,提高了信号传输距离和曲速度。

3、密集波分复用技术21世纪初,密集波分复用技术的出现,则是又一个从技术层面实现带宽网络的重要进展。

密集波分复用技术通过同时采用多个波长信号在一根光纤中进行数据传输,从而大大提高了通信采用覆盖面积、传输速度等数据指标。

4、全光网络服务2010年起,全光网络服务成为了新一代光纤通信技术的主流趋势,其基本思路是要建立一种从任何东西到任何东西的全光网络服务体系,实现“数字万物互联”。

全光网络服务为客户提供了卓越性能的网络服务,使得人们的信息互联更具广阔的前景与可持续性。

三、光纤通信技术的未来趋势随着科学技术的不断进步和发展,光纤通信技术未来还有许多可期的趋势,包括:1、纳秒级别低延迟传输技术:该技术可以优化公网的时延,从而更加精准地将信息传输到需要地地方。

光纤通信技术

光纤通信技术

光的全反射与光纤的导光原理
光的全反射
当光线从一种介质射入另一种介质时,如果入射角大于某一临界角,光波将在第二种介质表面发生全 反射,即所有的光线都将被反射回第一种介质,而不会进入第二种介质。全反射是光纤导光的物理基 础。
光纤的导光原理
光线在光纤中传播时,由于光的全反射作用,光波被限制在光纤的纤芯中传播,从而实现光的定向传 输。光纤的导光原理是光纤通信中的核心技术之一。
光子集成电路与光子晶体光纤
总结词
光子集成电路和光子晶体光纤是光纤通信技术的两个重 要发展方向。
详细描述
光子集成电路是一种集成了多种光器件的光子回路,具 有高度集成、低能耗、高速传输等优点。而光子晶体光 纤则是一种新型的光纤结构,具有高非线性、高色散等 特性,为光通信带来了新的可能性。
光纤网络的可靠性、稳定性与安全性
光检测器与光接收机
光检测器
光检测器是光纤通信系统的接收端,用于将光信号转换为电信号。常用的光检 测器有光电二极管和雪崩光电二极管。
光接收机
光接收机是将光信号转换为电信号的设备,它包括光检测器、信号处理电路和 放大器等。
光纤与光缆
光纤
光纤是光纤通信系统的传输介质,用于传输光信号。光纤由纤芯和包层组成,纤 芯负责传输光信号,包层则起到保护和折射的作用。
物联网与智能交通
实时数据传输
光纤通信技术能够为智能 交通系统提供实时、可靠 的数据传输服务,支持交 通流量的监控和调度。
车辆安全与控制
光纤通信技术可以用于实 现车辆之间的信息交互, 提高车辆行驶的安全性和 控制精度。
智能停车系统
光纤通信技术可以支持智 能停车系统的建设,实现 车位信息的实时更新和车 辆快速定位。
光纤通信技术的发展历程

光纤通信发展概述PPT(共-54张)

光纤通信发展概述PPT(共-54张)
1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。 在以后的 10 年中,波长为1.55 μm的光纤损耗: 1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km, 接近了光纤最低损耗的理论极限。
Business
WDM
25.6 Tb/s (3.2 bits/Hz)
Single Mode Fiber
DFB Laser
Optical Amplifier
AWG
TDM
WDM
PSK Multi-Level
Coherent OFDM
第一波, 1996-2001年 密集波分复用技术大发展。传输距离虽不长,一条光纤中的复用波长却越来越多,以2001年日本NEC公司的10.92Tbps系统,复用273个波长, 波长间隔0.4ns, 每波长 40Gb/s,使用S, C, L三个波段为高峰。 第二波,2002年-2005年 超长距离光纤技术大发展。在波长不多的系统中试验各种延长中继段和系统总长度的技术。以美国Tyco公司的11,000~ 13,100km太平洋海底光缆系统为代表。使用掺铒光纤放大器(EDFA)、喇曼放大器(RFA)及其结合,利用光DPSK和光QPSK来提高带宽效率。
在大气光通信受阻之后,人们将研究的重点转入到地面光波通信的实验,先后出现过反射波导和透镜波导等地面通信的实验。
早期的光通信
由于没有找到稳定可靠和低损耗的传输介质, 对光通信的研究曾一度走入了低潮。
早期的光通信
早期的光通信 光纤通信主要部件的发展 光纤通信系统的发展 国内外光纤通信发展现状和趋势

光纤通信技术的研究现状与发展趋势

光纤通信技术的研究现状与发展趋势

光纤通信技术的研究现状与发展趋势随着信息时代的到来,通信技术的发展已成为国家战略和经济发展的重要支撑。

在众多通信技术中,光纤通信技术以其巨大的通信带宽和高速可靠的传输速度,成为目前最为先进的通信技术之一,广泛应用于通信网络、数据中心、高清视频传输等领域。

一、光纤传输技术的发展历程光纤通信技术起源于20世纪60年代初期,当时科学家们开始尝试利用光信号传输信息。

1970年代,光纤通信得到进一步发展,其通信速度更是达到了每秒数百兆位的水平,再到80年代,光纤通信技术已经成为商用网络的通信标准。

而在90年代末期,光纤通信技术则被大规模使用于互联网、手机网络和有线电视领域,8兆,34兆,155兆三种速率牢牢占据了主流地位。

而时至今日,光纤传输技术已经发展到了每秒T范围,甚至更高的级别,将传输速度推向了前所未有的高度。

二、光纤通信技术的技术优势相比于传统的有线传输技术,光纤通信技术得到了极大的发展和新突破。

光纤传输技术具有传输速度快、带宽大、抗电磁干扰、可靠性高、保密性好等优势,主要包括以下几个方面:1、高速率:光纤传输技术可以在非常短的时间内通过巨大的带宽进行数据传输,这一优势为整个数字社会的前进提供了重要的支撑。

2、稳定可靠:光纤传输技术能够实现长距离的传输,而不受距离影响;同时,它还不会受电磁干扰和同轴电缆的交叉干扰。

3、生命长,性价比高:光纤传输技术的寿命长达数十年,这相比于其他传输技术具备极大的优势;同时它需要更少的维护和更少的能源,更加节省地球上的宝贵资源。

三、光纤传输技术发展趋势在当今数字时代,信息的产生、传输、存储和计算的速度都在不断加快。

因此,如何提高通信传输速度和数据传输的效率成为新时期光纤通信技术的关键问题。

从技术角度,光纤传输技术未来的发展趋势主要有以下几个方面:1、以太网技术的升级:随着视频、云计算、物联网革命的不断推进,以太网技术也必须不断升级。

例如结合40GBASE-SR4带宽的高速光纤通信技术,将是未来数据中心十分优秀的选择;2、光子编码技术的推广:随着量子信息技术的发展,依托光子编码技术的数据传输方式正在变得越来越重要。

光纤通信技术的发展和趋势分析

光纤通信技术的发展和趋势分析

光纤通信技术的发展和趋势分析随着科技的高速发展,我们的通信方式也在不断地进行着创新。

现在,人们一般使用的通信方式有很多,如手机、固定电话、互联网等等。

从过去的电话、传真、电报到现在的短信、社交软件、视频通话等等,通信方式的变化是轻而易举的。

其中,光纤通信技术的出现可以说是通信技术的一大进步。

本文将分析光纤通信技术的发展历程及未来发展趋势。

一、光纤通信技术的发展历程光纤通信技术起源于20世纪60年代,其初衷是为了解决交通信号传输的问题。

由于传统的传输方式会受到电磁干扰,光纤通信技术在传输信息的同时还可以有效消除这种干扰。

随着技术的不断进步,光纤通信技术也得到了广泛的应用。

其中最具代表性的就是1996年开始的全球光纤通信网络建设。

这个网络使得跨国通信变得更加便捷,成为人们交流信息的主要方式之一。

光纤通信技术的发展可分为三个阶段:1. 初期阶段(1965-1980年代)光纤通信的理论研究是在1960年代初开始的。

早期的光纤通信主要是对光纤的性质和结构进行探究。

直到1970年初,美国宝洁公司研究员理查德·埃皮斯泰因首次成功地利用光纤传输了人类的语音信息,标志着光纤通信进入实用化时代。

2. 建设阶段(1980-1990年代)与传统的电缆相比,光纤通信的优势非常明显,在传输质量和传输速度方面都要更加稳定和高效。

1980年代起,世界各国开始兴建光纤传输网络。

其中最为著名的就是1996年开始的全球光纤通信网络建设。

在这个过程中,各家通信技术公司纷纷加入到光纤通信技术的研制中。

3. 完善阶段(2000年至今)随着技术的不断发展,光纤通信的传输速率也越来越快。

从最初的几千比特每秒到现在的几十兆比特每秒,甚至可以达到百兆比特以上的速率。

此外,光纤通信也进一步应用于各种领域,如银行交易、商业交流、远程医疗等等,成为一项不可或缺的通讯技术。

二、光纤通信技术的未来发展趋势光纤通信技术在数字时代的发展日益迅速,已经成为信息技术领域的重要组成部分。

光纤的发展进程

光纤的发展进程

信息科学前沿讲座——浅谈光纤通信技术的发展一、光纤通信的发展历程1966年英籍华人高馄发表了论文——《光频率介质纤维表面波导》,提出能够用石英制作光导纤维,其损耗可以控制在20 dB/km的范围内,可实现大容量的光纤通信。

当时,世界上只有英国的标准电信实验室(STL)、美国的康宁(Corning)玻璃公司,美国贝尔(Bell)实验室等几个少数机构的领导相信该理论的可实施性。

1970年,康宁公司研制出损失低达20dB/km,长约30 m的石英光纤(据说花费了3000千万美元)。

1976年,贝尔实验室建立了一条从华盛顿到亚特兰大实验线路,传输速率仅45Mb/s,只能传输数百路电话,此时若使用同一级别的同轴电缆,可传输1800路电话。

当时尚无适用于光纤通信的激光器,只能使用发光二极管(LED)做光纤通信的光源,这便是导致光纤传输速率低于同轴电缆的原因。

1984年左右,适用于光纤通信的半导体激光器研制成功,使得光纤通信的数据传输速率达到144 Mb/s,可同时传输1920路电话。

到了1992年,一根光纤的数据传输速率达到了2.5Gb/s,相当3万余路电话。

1996年,各种波长的激光器相继研制成功,这使得光纤通信可实现多波长多通道的数据传输,即所谓“波分复用(CWDM)”技术,也就是在1根光纤内,传输多个不同波长的光信号,于是光纤通信的传输容量倍增。

在2000年的时候,利用WDM技术,一根光纤的传输速率已经能够达到640 Gb/s。

在提出光纤通信理论之后的几十年里,高锟的理论成为了现实,光纤通信得到了飞速的发展。

2010年,高馄因在光纤通信领域做出的巨大贡献获得了诺贝尔奖。

有人对高馄1976年发明了光纤,而2010年才获得诺贝尔奖有很大的疑问。

事实上,从以上光纤发展史可以看出,尽管光纤的容量很大,没有高速度的激光器和微电子仍不能发挥光纤超大容量的作用。

现在,电子器件的传输速率只能达到Gb/s量级,而各种波长的高速激光器的出现使光纤的传输速率已经达到了Tb/s量级(C1 Tb/s=1000 Gb/s),人们认识到了——光纤的发明引发了通信技术的一场革命!二、我国光纤通信的发展历程我国于20世纪70年代初就开始了光纤通信的基础研究。

我国光纤光缆发展历史

我国光纤光缆发展历史

我国光纤光缆发展历史光纤通信的起步光纤通信是一种以激光为光源,以光纤为传输介质的现代信息传输技术。

即先将待传输的语言、图像、数据等信号转换成光信号,再通过光纤传输,在光纤的另一端进行光电转换。

激光是一种谱线窄、方向性好、频率和相位一致的相干光。

011966年,高锟和英国人霍克曼共同提出用玻璃纤维作为光传输介质。

低损耗光纤(简称光纤)的概念应运而生。

021970年,美国康宁公司研制成功了损耗小于20dB/km(633nm)的石英单模光纤。

该光纤直径只有人的头发丝那么细,且柔软可挠;1972年,康宁又把光纤的损耗降到7dB/km。

031973年,贝尔实验室发明MCVD法制造光纤,使光纤的损耗又降到2.5dB/km。

041976年,美国首先在亚特兰大成功地进行了44.736Mb/s传输10km的光纤通信系统现场试验,使光纤通信向实用化迈出了第一步。

051977年,美国在芝加哥两个电话局之间开通世界上第一个使用多模光纤商用光纤通信系统(距离7km,波长850nm,速率44.736Mb/s)。

之后日本、德国、英国也先后建起了光缆线路。

061979年,单模光纤通信系统进入外场测试。

之后,光纤通信在世界范围内迅速发展。

中国光纤光缆行业发展历程我国光纤光缆事业的发展主要经历了下述四个阶段:启动阶段(1978~1982)、开始实用化与产业化(1983-1987)、干线大建设与产业跟进阶段(1988~1998)、成为世界制造大国(1999-至今)1启动阶段1978年,全国科学大会召开,光纤通信被列为优先发展的几项新技术之一。

年,邮电部、上海市、电子工业部相继成立了光纤通信战役领导小组。

在这一阶段,上海硅酸盐所GeO2-P2O5-SiO2系梯度型多模光纤研制成功;上海科大、上海石英玻璃厂研制出单模光纤;武汉邮科院研制出多模光纤。

此外,上海、北京、天津、武汉等城市相继建设了电话干线光缆试验段。

2开始实用化与产业化1983年,武汉市话中继光缆系统(13.5km、0.85μm、多模3.5dB/km、8Mb/s)正式投入电话网使用,标志着中国光纤通信走向实用化阶段,1985年该系统扩容到34Mb/s。

光纤通信技术的发展历程

光纤通信技术的发展历程

光纤通信技术的发展历程光纤通信技术是一项高科技、高效能的通信技术,已经成为了人类通信活动的主要方式之一。

它以光纤为媒介,将信息以光的形式传输,具有带宽大、信噪比高、抗干扰性强、保密性好等优点,广泛应用于通信、网络、医疗、石油、军事等领域。

下面,我们来看一下光纤通信技术的发展历程。

光纤通信技术的前身是电传输技术,它以电线、电缆为传输媒介,利用电磁场传送信息。

20世纪50年代中期,人们开始研究将光信号送入电缆中传输,在1960年代初期出现了光导纤维,但由于光纤的光衰减和色散严重,无法将信号传输到远距离。

到了1970年代,随着半导体器件的发展,光纤内芯的材料和制备技术得到了极大的提升。

1977年,美国贝尔实验室研制成功了有光衰减400分贝/km的单模光纤,使得光信号能够传输到100公里以上。

1980年代初期,光纤通信技术开始大规模商用,光纤的压缩量和价格逐年下降。

1988年,美国全光纤通信网实现了面向用户的科学试验,使得全球的光纤通信技术迈上了新的台阶。

90年代,ATM(异步传输模式)技术和WDM(波分多路复用)技术的提出和应用,使得光纤传输的带宽不断提高,从几百兆比特每秒到几千兆比特每秒,甚至更高。

21世纪以来,随着人工智能、互联网、大数据等新兴产业的快速发展,对于通信技术的需求越来越大。

在此背景下,光纤通信技术也得到了快速发展。

2001年,我国开始发展光纤通信技术,我们在技术开发上取得了很大进展。

经过多年的技术攻关和累积,我国的光纤通信技术目前已经达到了国际领先水平。

未来,光纤通信技术的发展可能在以下几个方面取得重大进展:一是设备小型化、智能化和网格化,二是光与物质更好的结合,三是云计算、5G、物联网等应用场景下的新型光纤通信技术。

光纤通信技术的发展,将会给社会带来更高速、更稳定、更安全的通讯服务,为数字化、智能化、网络化进程提供更好的支撑。

总之,光纤通信技术的发展历程凝聚了科学家们多年的心血和努力。

光纤的发展进程

光纤的发展进程

信息科学前沿讲座——浅谈光纤通信技术的发展一、光纤通信的发展历程1966年英籍华人高馄发表了论文——《光频率介质纤维表面波导》,提出能够用石英制作光导纤维,其损耗可以控制在20 dB/km的范围内,可实现大容量的光纤通信。

当时,世界上只有英国的标准电信实验室(STL)、美国的康宁(Corning)玻璃公司,美国贝尔(Bell)实验室等几个少数机构的领导相信该理论的可实施性。

1970年,康宁公司研制出损失低达20dB/km,长约30 m的石英光纤(据说花费了3000千万美元)。

1976年,贝尔实验室建立了一条从华盛顿到亚特兰大实验线路,传输速率仅45Mb/s,只能传输数百路电话,此时若使用同一级别的同轴电缆,可传输1800路电话。

当时尚无适用于光纤通信的激光器,只能使用发光二极管(LED)做光纤通信的光源,这便是导致光纤传输速率低于同轴电缆的原因。

1984年左右,适用于光纤通信的半导体激光器研制成功,使得光纤通信的数据传输速率达到144 Mb/s,可同时传输1920路电话。

到了1992年,一根光纤的数据传输速率达到了2.5Gb/s,相当3万余路电话。

1996年,各种波长的激光器相继研制成功,这使得光纤通信可实现多波长多通道的数据传输,即所谓“波分复用(CWDM)”技术,也就是在1根光纤内,传输多个不同波长的光信号,于是光纤通信的传输容量倍增。

在2000年的时候,利用WDM技术,一根光纤的传输速率已经能够达到640 Gb/s。

在提出光纤通信理论之后的几十年里,高锟的理论成为了现实,光纤通信得到了飞速的发展。

2010年,高馄因在光纤通信领域做出的巨大贡献获得了诺贝尔奖。

有人对高馄1976年发明了光纤,而2010年才获得诺贝尔奖有很大的疑问。

事实上,从以上光纤发展史可以看出,尽管光纤的容量很大,没有高速度的激光器和微电子仍不能发挥光纤超大容量的作用。

现在,电子器件的传输速率只能达到Gb/s量级,而各种波长的高速激光器的出现使光纤的传输速率已经达到了Tb/s量级(C1 Tb/s=1000 Gb/s),人们认识到了——光纤的发明引发了通信技术的一场革命!二、我国光纤通信的发展历程我国于20世纪70年代初就开始了光纤通信的基础研究。

光纤通信技术的发展历程及广泛应用

光纤通信技术的发展历程及广泛应用

光纤通信技术的发展历程及广泛应用提纲:1. 光纤通信技术的发展历程2. 光纤通信技术广泛应用的领域3. 光纤通信技术对建筑行业的影响4. 光纤通信技术的优势与不足5. 光纤通信技术的未来发展趋势一、光纤通信技术的发展历程光纤通信是指在光纤中使用光信号传输信息的一种通信技术。

在20世纪60年代初,科学家们开始研制光波导传输系统,但是由于技术不成熟导致传输距离短、光衰减大等问题,使得光传输技术难以实际应用。

这种情况一直持续到20世纪70年代中期,当时一种叫做单模光纤的新型光纤问世,使得光纤通信技术迎来了发展的春天。

在1977年,美国贝尔实验室成功地进行了一次长距离传输试验,使得光纤通信技术进一步得到了证明。

此后,随着光纤通信技术不断地完善,其安装和维护费用也逐渐降低,从而进一步促进了光通信技术的发展。

到了20世纪80年代,光通信技术经历了一次重大的技术革新,这一革新使得光传输距离、信号传输速度等指标都得到了显著的提升。

随后,光纤通信技术开始被广泛应用于电信行业,在21世纪的今天,光纤通信技术已经成为了全球通信网络的核心技术。

二、光纤通信技术广泛应用的领域光纤通信技术已经成为了现代通信领域最为广泛应用的技术之一,具体的应用领域包括但不限于以下几个方面:1. 数字通信领域。

光纤通信技术以其高速率、宽带、低延迟等特性,被广泛应用于数字通信领域。

如今许多电话、移动、宽带电视等业务都采用了光纤通信技术。

2. 汽车工业。

随着汽车制造工艺技术的不断提高,现代汽车的仪表盘、后视镜、车内娱乐系统等都需要使用到高速稳定的通信传输技术,因此在汽车工业中也广泛应用了光纤通信技术。

3. 医疗保健。

现代医疗设备需要实时传输病历、照片等信息,因此也需要高速、稳定的通信技术,光纤通信就是满足这种需求的最佳选择。

4. 其他。

光纤通信技术还被广泛应用于激光医疗、军事防卫、工程制造等领域。

三、光纤通信技术对建筑行业的影响随着数码化时代的到来,现代建筑在设计与实施过程中也越来越需要使用到先进技术,光纤通信技术就是其中一个不可或缺的部分。

光纤通信的发展解析

光纤通信的发展解析

光纤通信的发展解析
光纤通信是一种基于光技术的高速无线通信技术,早于20世纪60年代被发明,但最终由20世纪80年代开始全面普及。

那么,光纤通信发展到今天到底发生了什么?
一、光纤通信技术的历史发展
在20世纪80年代,为了满足由增长的行业计算机网络的需要,最初的光纤通信技术开始普及。

当时,光纤技术是利用光学布线系统传输数据的,由于它能够提供更高的传输速率和更多的信道,它很快就成为当时最流行的通信技术。

随着技术的不断发展,20世纪90年代开始,基于光学技术的光纤通信迅速发展,在太赫兹带实现了数据传输率较高的目标,多模复用技术也得到了普遍应用。

二、光纤通信技术的近期发展
如今,随着数据通信的需求不断增加,光纤通信技术不断得到进一步改进,包括无线光纤通信技术、光导通信网络等技术。

其中,无线光纤通信技术是近几年最受瞩目的新技术,采用无线光纤技术可以实现超大容量、超高速率的无线传输数据,使无线通信在网络覆盖方面更加方便,可以实现高数据传输率,是无线网络的支撑技术和核心技术之一
此外,由于光纤通信技术可以实现高速、稳定的数据传输,现在也被用来支撑企业网络系统。

光通信的发展历程

光通信的发展历程

光通信的发展历程光通信就是指以光信号为信息载体的通信方式。

光通信是从电通信发展而来的,是成熟的电通信技术与先进的光子技术的结合,在光通信出现之前,人们的通信主要是电通信,与电通信相比较,光通信有容许频带很宽,传输容量很大;损耗很小,中继距离很长且误码率很小;重量轻、体积小;抗电磁干扰性能好;泄漏小,保密性能好;节约金属材料,有利于资源合理使用等很多优点,可以说比电通信有着更加广阔的发展空间。

回顾光通信的发展历史,并以光纤的出现将其分为探索阶段和发展阶段,最后对光通信的发展作简要的展望。

一、探索阶段(一)光通信史的第一步1880年,贝尔发明了一种利用光波作载波传递话音信息的“光电话”,它证明了利用光波作载波传递信息的可能性。

他利用太阳光作光源,大气为传输媒质,用硒晶体作为光接收器件,成功地进行了光电话的实验,通话距离最远达到了213米。

1881年,贝尔宣读了一篇题为《关于利用光线进行声音的产生与复制》的论文,报道了他的光电话装置。

(二)激光器的出现激光器出现之前,光学中普遍使用普通的相干性较差的普通光源,这种光源谱线很宽,无法进行通信。

1960年,美国科学家梅曼(Meiman)发明了第一个红宝石激光器。

与普通光相比,激光谱线很窄,方向性及相干性极好,是一种理想的相干光源和光载波。

由激光发展起来的激光通信有高度的相干性和空间定向性,通信容量大、体积较小并且有较高的保密性。

所以激光是光通信的理想光源,它的出现是光通信发展的重要一步。

二、发展阶段由于光纤的发展,光纤系统也渐渐发展起来。

1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。

1980 年,美国标准化FT - 3光纤通信系统投入商业应用。

1976 年和 1978 年,日本先后进行了速率为34 Mb/s 的突变型多模光纤通信系统,以及速率为100 Mb/s的渐变型多模光纤通信系统的试验。

1983年敷设了纵贯日本南北的光缆长途干线。

光纤的发展历程

光纤的发展历程

光纤的发展历程
20世纪光纤的发展历程具有以下几个重要阶段:
1. 光学通信的开端:20世纪60年代,人们开始考虑使用光纤作为长距离通信的媒介。

此时的光纤是由塑料制成的,并且在光纤中只能传输低速度和短距离的信号。

2. 单模光纤的问世:20世纪70年代,研究人员发现,使用单模光纤可以显著提高通信速度和距离。

这种光纤能够减小色散和损耗,使得信号能够更远、更快地传输。

3. 产业化和商业化:20世纪80年代,随着相关技术的成熟,光纤开始被广泛应用于长距离通信领域。

大规模的光纤布线工程展开,光纤通信逐渐取代了传统的电缆系统。

4. 光纤技术的进一步发展:20世纪90年代至21世纪初,随着光纤技术的不断突破,通信速度得到了显著提升。

光纤通信系统的性能和容量进一步增强,光网络逐渐取代了传统的电信网络。

5. 高速光纤通信的应用扩展:近年来,随着互联网和数字化技术的迅猛发展,对高速、大容量光纤通信的需求不断增长。

人们开始将光纤技术应用于更广泛的领域,包括数据中心、移动通信、光纤传感等。

综上所述,光纤的发展历程经历了从塑料光纤到单模光纤的改进,从产业化到商业化的发展,以及近年来在高速通信和多领
域应用方面的进一步创新和应用扩展。

光纤通信已成为现代通信领域的重要基础设施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国光纤通信的发展历程
光纤通信作为现代通信技术的重要组成部分,已经在中国取得了长足的发展。

下面将从三个阶段来介绍中国光纤通信的发展历程。

一、起步阶段(1970年代-1980年代)
中国光纤通信的起步可以追溯到上世纪70年代。

当时,由于国际形势复杂,中国面临着对外通信受限的困境。

为了摆脱这一局面,中国开始研究光纤通信技术,并在1974年成功研制出了最早的光纤传输系统。

这标志着中国光纤通信技术的起步阶段。

在1980年代,中国光纤通信技术得到了进一步发展。

1987年,中国成功研制出国产化光纤预制棒,实现了光纤通信技术的本土化。

同时,中国也开始建设光纤通信网络,实现了国内光纤通信的初步覆盖。

这一阶段的发展为后续的高速、大容量光纤通信网络的建设打下了坚实的基础。

二、快速发展阶段(1990年代-2000年代)
进入1990年代,中国光纤通信迎来了快速发展的时期。

1992年,中国光纤通信网络迎来了第一次大规模建设的高潮,国内第一条全光纤通信干线投入使用。

这标志着中国光纤通信网络开始进入大规模商用阶段。

在2000年代,中国光纤通信网络得到了进一步的完善和扩展。

2001年,中国首次实现了全国光纤通信网络的覆盖,全面推进了信息高速公路建设。

光纤通信技术在中国的应用越来越广泛,不仅在城市中得到普及,而且逐渐延伸至农村地区。

中国光纤通信网络的建设为信息化社会的发展提供了坚实的基础。

三、创新发展阶段(2010年代至今)
进入21世纪,中国光纤通信进入了创新发展的阶段。

2013年,中国成功研制出世界上第一根光纤光子晶体光缆,实现了光纤通信技术的重大突破。

光子晶体光缆具有更高的传输速率和更大的传输容量,为中国光纤通信技术的发展带来了新的机遇。

在2010年代,中国光纤通信技术得到了广泛应用和推广。

光纤通信网络不仅在城市中得到普及,而且逐渐延伸至乡村和偏远地区。

同时,中国积极推动光纤通信技术与其他领域的融合,如物联网、云计算等,进一步拓展了光纤通信技术的应用领域。

总结起来,中国光纤通信经历了起步阶段、快速发展阶段和创新发展阶段三个阶段。

从最早的技术引进到独立研发,再到世界领先的创新突破,中国光纤通信在技术和应用方面取得了长足的发展。

未来,中国光纤通信将继续致力于技术创新和应用推广,为推动信息化建设和经济社会发展做出更大贡献。

相关文档
最新文档