蛋白质含量测定方法

合集下载

测量蛋白质含量的方法

测量蛋白质含量的方法

蛋白质含量测定蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。

目前常用的方法有凯氏定氮法(Kjedahl)、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford)。

其中Bradford法灵敏度最高,比紫外吸收法灵敏10~20倍Biuret 法灵敏100倍以上。

凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

1.凯氏定氮法1.1 原理凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4个过程。

其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与—酸作用,变成硫酸铵。

然后加碱蒸馏放出氨,氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。

1.2 特点凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。

该凯氏定氮法适用范围广泛,用于标准蛋白质的准确测定,干扰少,干扰是非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。

费时太长,通常8-10个小时,灵敏度低,测定范围是0.2-1.0mg。

2.双缩脲法2.1 原理双缩脲(N}I3C0NHC0NH 是两个分子脲经180℃左右加热,放出1个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO 形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能够以1个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

2.2特点双缩脲法中样品的取用量对测定结果的准确性有显著影响.采用0.5 g样品,40 mL双缩脲试剂的比例具有较高的检测精度。

双缩脲法对不同的蛋白质产生颜色的深浅相近,不受温度的影响。

可快速测定蛋白质含量,试剂单一,方法简便,干扰物质少,如硫酸铵,Tris缓冲液,某些氨基酸。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内一种重要的有机化合物,具有构建细胞结构、调节生理功能等重要作用。

因此,准确测定蛋白质的含量对于生物科学研究和临床诊断具有重要意义。

本文将介绍几种常用的蛋白质含量测定方法及其原理。

一、比色法比色法是一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂形成显色物,根据显色物的光吸收特性来测定蛋白质的含量。

1. 低里氏法低里氏法是一种经典的蛋白质含量测定方法,其原理是利用试剂双硫苏三唑酮(DTNB)与蛋白质中的半胱氨酸残基反应产生黄色的二硫苏三唑,然后通过分光光度计测定其在412nm处的吸光度,根据标准曲线计算出蛋白质的含量。

2. 伯杰法伯杰法是一种基于酪蛋白与浊度试剂金霉素的显色反应来测定蛋白质含量的方法。

酪蛋白与金霉素结合形成沉淀,通过比色法测定沉淀的光吸收度,再根据标准曲线计算出蛋白质的含量。

3. 白蛋白-酷伊斯基(BCA)法BCA法是一种常用的高灵敏度蛋白质测定方法,其原理是在碱性条件下,蛋白质与BCA试剂中的铜离子络合生成紫色的离子螯合物,通过比色法测定在562nm处的光吸收度,再根据标准曲线计算出蛋白质的含量。

二、光谱法光谱法是一种基于蛋白质在特定波长下的吸收特性来测定蛋白质含量的方法。

1. 紫外吸收法紫外吸收法根据蛋白质中的芳香族氨基酸(如酪氨酸、酪氨酸和色氨酸)在紫外光区域(200-400nm)的吸收特性来测定蛋白质含量。

通过分光光度计测定蛋白质溶液在280nm处的吸光度,再根据标准曲线计算出蛋白质的含量。

2. 近红外光谱法近红外光谱法是一种无损、非破坏性的蛋白质含量测定方法,其原理是利用蛋白质溶液在近红外光区域(700-2500nm)的吸收特性与其含量之间的关系。

通过近红外光谱仪获取蛋白质溶液的光谱图像,然后利用化学计量学方法建立标准模型,通过光谱图像预测蛋白质的含量。

三、生化分析法生化分析法是一种利用生化技术和仪器设备来测定蛋白质含量的方法。

蛋白质的含量测定方法

蛋白质的含量测定方法

蛋白质的含量测定方法一、前言蛋白质是生命体中不可或缺的重要组成部分,对于研究生命科学、医学、农业等领域都有着极为重要的意义。

因此,蛋白质含量测定方法也就成为了这些领域研究的基础之一。

本文将介绍几种常用的蛋白质含量测定方法,并详细说明其原理及操作步骤。

二、生物素-琼脂糖凝胶电泳法1. 原理生物素-琼脂糖凝胶电泳法是一种常用的半定量分析方法,其原理是利用琼脂糖凝胶作为分离介质,通过电泳将样品中的蛋白质分离出来,并利用生物素与特异性抗体结合进行检测。

由于该方法操作简便,需要样品较少且具有较高的灵敏度和特异性,因此被广泛应用于各个领域。

2. 操作步骤(1) 制备琼脂糖凝胶:按比例配制琼脂糖溶液并加入适量缓冲液,混合均匀后加热至溶解,然后冷却至50℃左右,倒入凝胶模具中制备琼脂糖凝胶。

(2) 样品处理:将待测样品加入适量的缓冲液中,使其浓度适当稀释。

(3) 电泳:将处理好的样品加入琼脂糖凝胶槽中进行电泳分离。

电泳条件需要根据不同实验目的进行调整。

(4) 转移:将分离出来的蛋白质转移到聚丙烯酰胺膜上并进行固定。

(5) 检测:利用生物素与特异性抗体结合进行检测。

可以使用化学发光、荧光等方法进行检测。

三、Bradford法1. 原理Bradford法是一种广泛应用于蛋白质含量测定的方法,其原理是利用染料染色反应来检测样品中的蛋白质含量。

该方法操作简便、灵敏度高、特异性好,并且可以适用于各种类型的样品。

2. 操作步骤(1) 制备标准曲线:按比例配制标准蛋白质溶液,并利用Bradford染料对其进行染色反应,制备出标准曲线。

(2) 样品处理:将待测样品加入适量的缓冲液中,使其浓度适当稀释。

(3) 加染料:将Bradford染料加入处理好的样品中进行反应。

(4) 摇动混合:将反应溶液摇动混合均匀。

(5) 测量吸光度:利用分光光度计测量吸光度值,并根据标准曲线计算出样品中蛋白质的含量。

四、Lowry法1. 原理Lowry法是一种经典的蛋白质含量测定方法,其原理是利用酚-硫酸反应来检测样品中的蛋白质含量。

测蛋白质含量方法

测蛋白质含量方法

测蛋白质含量方法测定蛋白质含量是生物化学和生物技术研究中常用的实验手段之一。

蛋白质是生物体内重要的组成部分,其含量的准确测定对于研究细胞功能、药物筛选和疾病诊断具有重要意义。

本文将介绍几种常用的测定蛋白质含量的方法。

一、比色法比色法是一种常用的测定蛋白质含量的方法。

其基本原理是利用蛋白质与染色剂之间的化学反应,通过比色计测量吸光度来确定蛋白质的含量。

常用的染色剂有布拉德福试剂、伯胺蓝试剂和康氏试剂等。

比色法测定蛋白质含量的优点是操作简单、结果准确,但对于一些特定蛋白质可能存在一定的误差。

二、生物素标记法生物素标记法是一种利用生物素与蛋白质之间的亲和性进行测定的方法。

生物素通过共价结合到蛋白质上,形成生物素标记的蛋白质。

然后利用生物素与亲和素结合的特异性,使用亲和素结合物进行测定。

这种方法的优点是具有高灵敏度和高特异性,可以测定低浓度的蛋白质。

三、Western blottingWestern blotting是一种常用的蛋白质检测方法。

它通过将蛋白质样品进行电泳分离,然后转移到膜上,并使用特异性抗体与目标蛋白质结合,最后利用染色剂可视化目标蛋白质。

这种方法可以检测特定蛋白质的存在和相对含量,并且可以检测蛋白质的修饰状态,如磷酸化、乙酰化等。

四、质谱法质谱法是一种高灵敏度的蛋白质检测方法。

它通过将蛋白质进行消化,得到肽段,然后利用质谱仪进行分析。

质谱法可以用于鉴定未知蛋白质的结构和确定蛋白质的修饰位点,同时也可以测定蛋白质的相对含量。

测定蛋白质含量的方法有很多种,每种方法都有其特点和适用范围。

在选择方法时,需要根据实验目的、样品的性质和实验条件等因素进行综合考虑。

此外,根据实验的要求和需求,也可以结合多种方法进行蛋白质含量的测定,以提高结果的准确性和可靠性。

三种常见蛋白质含量测定方法

三种常见蛋白质含量测定方法

三种常见蛋白质含量测定方法
蛋白质含量是决定植物质量的重要因素,在植物栽培及种子货架上,精确掌握植物蛋白质含量,进而为植物中品质和效用性提供重要的评价依据。

目前,研究常用的植物蛋白质含量测定方法有Kjeldahl法,Bradford法和Lowry法等三种。

Kjeldahl法是一种多功能性的蛋白质定量方法,它可以测定含氮量甚至微量有机氮,此法在测定蛋白质含量方面易于操作,测试效率高, get精度也较高。

该法简单地以氨作为氮源,以硫酸释放氨,用硫酸钠将氨碱中的氨携带,然后进行缓冲及蒸发水解,最后通过酚酞形成深蓝色络合物对氮进行定量,从而间接的得到蛋白质的含量。

Bradford法同样是一种多用途的法子,它能够直接测定蛋白质中的色氨酸及胆羧酸含量,该方法的操作简便,使用成本低,测试效率高,可在一个小时内达到较高精度的测定结果。

Bradford法原理是将蛋白质及它的沉淀由蛋白质合酶结合至二价铬J络合物,从而形成一种光电的特异性比色反应。

Lowry法也是一种多功能性的定量方法,该方法能测定有机物中蛋白质、氨基酸等氮含量,以及各种物质中的亲合体,操作过程简单,精度也较高,比Kjeldahl法快7倍以上,Lowry法原理是蛋白质分解成其中的氨基酸,通过对色比色反应,底物络合过程自络合金属,再经冷酰膦处理,酰膦中色素降解,形成比色荧光,定量检测氮含量,从而间接得到蛋白质含量。

以上就是蛋白质含量测定常见三种方法。

从Kjeldahl法,Bradford法和Lowry法等三种方法,人们可以很好地掌握植物蛋白质含量,进而为植物中品质和效用性提供重要的评价依据。

蛋白质含量测定方法

蛋白质含量测定方法

蛋白质含量测定方法
一、Lowry法。

Lowry法是一种经典的蛋白质含量测定方法,其原理是利用蛋白质与铜离子和
碱性试剂在碱性条件下发生蓝色化合物的形成,然后通过比色法来测定蛋白质的含量。

这种方法的优点是灵敏度高,适用于各种类型的蛋白质样品,但需要注意的是,样品中的其他成分可能对测定结果产生干扰。

二、Bradford法。

Bradford法是一种快速、简便的蛋白质含量测定方法,其原理是利用共轭蛋白
质与染料结合后产生吸收峰的变化来测定蛋白质的含量。

相比于Lowry法,Bradford法对于样品中存在的干扰物质的耐受性更强,因此在实际应用中更为广泛。

三、BCA法。

BCA法是一种基于铜离子的蛋白质含量测定方法,其原理是利用蛋白质与铜
离子和BCA试剂在碱性条件下发生紫色化合物的形成,然后通过比色法来测定蛋
白质的含量。

与Lowry法相比,BCA法对于一些常见的干扰物质的耐受性更好,
因此在实际应用中也得到了广泛的应用。

四、UV吸收法。

UV吸收法是一种利用蛋白质在280nm处的吸收峰来测定蛋白质含量的方法。

这种方法不需要添加试剂,操作简便,但对于一些特定类型的蛋白质可能存在灵敏度不足的问题。

以上介绍的几种蛋白质含量测定方法各有优缺点,选择合适的方法需要根据具
体的实验要求和样品特性来进行。

在进行蛋白质含量测定时,还需要注意样品的制备、操作的规范性以及仪器的准确性,以确保获得可靠的实验结果。

希望本文介绍的内容能对相关研究工作者有所帮助。

蛋白质含量测定方法汇总[整理]

蛋白质含量测定方法汇总[整理]

蛋白质含量测定方法汇总[整理]蛋白质含量测定是一种用于测定任何生物样品中蛋白质含量的有效测试方法。

此外,蛋白质含量也可以被用于检测不同生物样品中的样本污染程度的指标,以及生物样品中某种从另一个样本污染的量。

现今,存在许多蛋白质含量测定的方法,通常称作“蛋白质测定方法”,它们常用于检测各种类型的高分子生物物质,如蛋白质、核酸、多糖、脂类等。

下面总结了一些常见的蛋白质含量测定方法:1、分子吸光法:分子吸光法是一种常用的蛋白质测定方法,它利用液体或气体样品中分子的光吸收特性来测量蛋白质的含量。

它通过测量样品当量吸收辐射的强度来测量含量,并通过分子结构及激发能获取分子吸收率。

2、酶标法:酶标法是一种常见的蛋白质测定方法,它使用特定酶将蛋白质转化为可测试物质来准确估算样品中蛋白质含量。

此外,也可以用其他物质作为指示物来改变酶反应的速率,从而获取蛋白质含量。

3、体外测定法:体外测定法是一种常见的蛋白质测定方法,它可以任意选择探测,即特定蛋白质向特定外部刺激物反应的速率,以反映样品中的蛋白质含量。

它在分析较新的样品以及批量定量分析中有很大的优势。

4、表面增强拉曼光谱:表面增强拉曼光谱是一种新的蛋白质测定方法,它利用光的调制前后产生的均方根像素来测量蛋白质的含量,这种方法可在低浓度范围内准确定量样品中的蛋白质含量。

5、比多肽配体应答行为水平测定:比多肽配体应答行为水平是一种常见的蛋白质测定方法,它利用特指性多肽核酸探针乙酰化后,在特定条件下发生应答强度及反应速率的改变,从而测量样品中的蛋白质含量。

这是一种可以在短时间内实现高灵敏度和高精度的测定方法。

6、限制性酶体系:限制酶体系是一种常见的蛋白质测定方法,它利用限制性酶来切割或降解蛋白质链,从而得到可用于测定蛋白质含量的切片产物。

限制酶体系也能够有效地检测末端特异性蛋白质种类,以及它们的分布情况。

蛋白质含量测定方法汇总

蛋白质含量测定方法汇总

蛋白质含量测定方法汇总-CAL-FENGHAI.-(YICAI)-Company One1实验七蛋白质含量测定?测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。

[目的要求]1.掌握测定蛋白质的含量基本方法。

2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。

?一、染料法[实验原理]在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。

利用这个原理可以测定蛋白质含量。

该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。

本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。

[器材]吸量管;试管;721型分光光度计[试剂]1.标准牛血清白蛋白溶液:配成ml的溶液。

2.待测蛋白质溶液。

3.染料溶液:称取考马斯亮蓝G-250溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤]按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。

以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。

2.样品测定:取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。

?二、双缩脲(Biuret)法测定蛋白质含量?[实验原理]在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。

凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。

蛋白质含量测定方法

蛋白质含量测定方法

蛋白质含量的测定方法有:凯氏定氮法、双缩脲法、酚试剂法、紫外吸收法、考马斯亮蓝法。

1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。

即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。

由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。

2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。

双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。

当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。

可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。

鉴定反应的灵敏度为5-160mg/ml。

鉴定反应蛋白质单位1-10mg。

3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。

4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。

5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250定量结合。

一般情况,当溶液中的蛋白质浓度增加时,显色液在595nm处的吸光度基
本能保持线性增加,因此可以用考马斯亮蓝G-250显色法来测定溶液中蛋白质的含量。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理一、紫外吸收法。

紫外吸收法是一种常用的蛋白质含量测定方法,其原理是根据蛋白质在280nm波长处的特征吸收峰来进行测定。

在实验中,首先将待测样品溶解于适量的缓冲液中,然后使用紫外可见分光光度计测定样品在280nm处的吸光值,通过标准曲线的对照,可以计算出样品中蛋白质的含量。

二、比色法。

比色法是另一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂发生化学反应后产生显色物质,通过测定显色物质的吸光值来计算样品中蛋白质的含量。

常用的试剂包括布拉德福试剂、伯杰试剂等,不同试剂适用于不同类型的蛋白质测定。

三、BCA法。

BCA法是一种基于铜离子与蛋白质中的蛋白质酰基发生还原反应的测定方法。

其原理是将待测样品与BCA试剂混合后在60℃条件下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

四、Lowry法。

Lowry法是一种以菁蓝G与蛋白质发生化学反应产生显色物质的测定方法。

其原理是将待测样品与碱液、菁蓝G和还原剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

五、总蛋白法。

总蛋白法是一种直接测定样品中总蛋白含量的方法,其原理是将待测样品与总蛋白试剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

总结,蛋白质含量的测定方法及原理有多种,每种方法都有其适用的样品类型和测定条件,研究人员可以根据自己的实验需要选择合适的方法进行蛋白质含量的测定工作。

希望本文所介绍的内容能为相关领域的研究工作提供一定的参考价值。

蛋白含量测定方法

蛋白含量测定方法

蛋白含量测定方法蛋白含量是衡量食品、饲料、化妆品、生物材料等中蛋白质含量的重要参数。

常用的测定方法主要有生物学试剂法、化学试剂法和光谱法。

生物学试剂法是通过酶促反应或免疫反应测定蛋白质含量的方法。

酶促反应常用的是比色法,其中最常用的有布拉德福法和氨基酸分析法。

布拉德福法是利用蛋白质与染色剂结合生成可定量比色产物的原理,通过测定产物的光密度来计算出蛋白质的含量。

氨基酸分析法是将蛋白质水解成氨基酸,再利用比色法测定氨基酸浓度来间接测定蛋白质含量。

化学试剂法是通过化学反应或物理性质的变化来测定蛋白质含量的方法。

常用的化学试剂包括低里德杯法、尼普尔蓝法和比色法。

低里德杯法是利用氨基酸所含的磷酸和无机盐的性质来测定蛋白质含量。

尼普尔蓝法是通过尼普尔蓝与蛋白质之间的氢键结合生成可定量比色产物的原理来测定蛋白质含量。

比色法是将蛋白质溶解后,利用特定试剂与蛋白质发生反应,通过测定反应产物的光密度来计算蛋白质的含量。

光谱法是利用蛋白质的吸收、散射或荧光等性质来测定蛋白质含量的方法。

常用的光谱法有紫外可见光谱法和近红外光谱法。

紫外可见光谱法是通过蛋白质在紫外或可见光区域的吸收特性来测定蛋白质的含量。

近红外光谱法是利用蛋白质在近红外光区域的吸收特性和分子振动谱来测定蛋白质含量。

除了上述常用的方法外,流式细胞术和质谱法也可用于测定蛋白质含量。

流式细胞术是将蛋白质标记上荧光探针,通过流式细胞仪测定荧光强度来计算蛋白质的含量。

质谱法是通过测定蛋白质的质荷比来定量测定蛋白质的含量。

在实际应用中,选择合适的方法来测定蛋白质含量需要考虑多方面因素,包括测定样品的性质和目的、仪器设备的可用性和准确度、测定结果的稳定性和重复性等。

不同的方法有着各自的优缺点,可以根据具体情况选择合适的方法。

总的来说,蛋白含量的测定方法主要包括生物学试剂法、化学试剂法、光谱法、流式细胞术和质谱法等。

根据实际需求和条件,选择合适的方法来测定蛋白质含量是保证测定结果准确和可靠的关键步骤。

测定蛋白质含量的方法

测定蛋白质含量的方法

测定蛋白质含量的方法蛋白质是构成生物体细胞的重要组成部分,对于研究生物体的功能和特性具有重要意义。

测定蛋白质含量的方法有多种,包括经典的定性和定量分析方法以及现代的生物技术方法。

本文将介绍常用的测定蛋白质含量的几种方法。

1. 布里奥涅法(Biuret法)布里奥涅法是一种常用的蛋白质定量方法,基于天冬氨酸和脯氨酸等含有两个或多个肽键的氨基酸能与铜离子络合生成深蓝色的配合物。

在该方法中,首先将待测的蛋白质样品与碱性溶液反应形成紫色复合物,然后通过分光光度计测定样品的吸光度,根据吸光度与样品中蛋白质浓度之间的线性关系,计算出样品中的蛋白质含量。

2. Lowry法Lowry法是另一种经典的蛋白质定量方法。

该方法基于蛋白质与碱性铜离子和碱式离子交互作用而引起的氧化反应。

在测定中,蛋白质样品与碱性铜离子发生氧化反应生成蓝色离子复合物,然后加入离子交换剂将复合物转化为悬浮物,在酸性条件下生成含酚酞的产物。

最后通过分光光度计测定样品的吸光度,根据吸光度与样品中蛋白质浓度之间的线性关系,计算出样品中的蛋白质含量。

3. BCA法(双硫腙法)BCA法是一种具有较高灵敏度的蛋白质定量方法,基于蛋白质与双硫腙反应生成紫色络合物。

在该方法中,蛋白质样品与BCA试剂(含有双硫腙和铜盐)发生化学反应生成紫色络合物,然后通过分光光度计测定样品的吸光度,根据吸光度与样品中蛋白质浓度之间的线性关系,计算出样品中的蛋白质含量。

4. Bradford法Bradford法是一种常用的蛋白质定量方法,根据蛋白质与染料结合产生吸光度变化的原理。

在该方法中,蛋白质样品与Coomassie Brillant Blue染料结合生成蓝色复合物,然后通过分光光度计测定样品的吸光度,根据吸光度与样品中蛋白质浓度之间的线性关系,计算出样品中的蛋白质含量。

以上所述的方法都具有一定的优缺点,根据需要选择适合的测定方法。

另外,近年来,随着生物技术的发展,一些新的方法也被广泛应用于蛋白质定量,例如免疫分析方法(如ELISA)、质谱分析方法等。

蛋白质含量测定方法

蛋白质含量测定方法

蛋白质含量测定方法
蛋白质是生物体内重要的营养成分之一,对于食品、生物医药等领域具有重要意义。

因此,准确测定蛋白质含量是很多领域的研究和生产工作中必不可少的一项内容。

在科学研究、食品加工、药物生产等领域,蛋白质含量的准确测定对于保证产品质量、促进科学研究具有重要作用。

一、总蛋白质含量测定方法。

1. 琼脂糖凝胶电泳法。

琼脂糖凝胶电泳法是一种常用的蛋白质含量测定方法,通过电泳技术将蛋白质在凝胶中进行分离,然后根据蛋白质在凝胶中的迁移距离和分子量进行定量测定。

2. 分光光度法。

分光光度法是利用蛋白质特有的吸收光谱特性来进行测定的方法,通过比较样品溶液和空白溶液的吸光度差异来计算蛋白质含量。

3. 比色法。

比色法是利用蛋白质与某种试剂发生显色反应,然后通过比色计或分光光度计测定溶液吸光度的方法来进行蛋白质含量测定。

二、特定蛋白质含量测定方法。

1. 酶联免疫吸附法(ELISA法)。

ELISA法是一种常用的特定蛋白质含量测定方法,通过将待测蛋白质与特异性抗体结合,然后加入酶标记的二抗来进行测定。

2. 荧光素酶标记法。

荧光素酶标记法是利用荧光素酶标记的抗体与待测蛋白质结合,然后通过荧光素底物的反应来进行蛋白质含量的测定方法。

以上介绍的是一些常用的蛋白质含量测定方法,不同的方法适用于不同的实验目的和样品类型。

在进行蛋白质含量测定时,需要根据实际情况选择合适的方法,并且在测定过程中要严格按照操作规程进行,以保证测定结果的准确性和可靠性。

总之,蛋白质含量的准确测定对于各个领域的研究和生产工作都具有重要的意义,希望本文介绍的方法能够对相关工作者有所帮助。

蛋白质含量的测定方法

蛋白质含量的测定方法

蛋白质含量的测定方法
蛋白质的含量是指在样品中蛋白质的质量或浓度。

测定蛋白质含量是许多生物学和生化实验中常用的实验方法之一,以下是一些常见的测定方法:
1. 布拉德福德法(Bradford法):该方法利用布拉德福德蛋白
质染料与蛋白质形成复合物,并产生特定的颜色,通过比色法测定颜色强度从而确定含量。

2. 低里氏法(Lowry法):该方法基于在碱性条件下,蛋白质
与碱性铜离子复合生成紫色产物的原理,通过比色法定量测定。

3. BCA法(Bicinchoninic Acid法):该方法利用BCA试剂与
蛋白质中的蛋白质产生螯合,形成紫色到蓝色的产物,并通过光度计测定吸光度从而测定含量。

4. 还原硝酸银法:该方法是通过硝酸银与蛋白质中的氨基酸中的硫原子反应产生黑色沉淀,通过沉淀的重量或者比色法测定吸光度来确定蛋白质含量。

5. 紫外吸收法:蛋白质具有特定的紫外吸收峰,在特定波长下进行测定,可以通过比较样品吸光度与标准曲线来计算蛋白质含量。

以上只是一些常见的测定方法,根据具体需要和实验条件的不同,可以选择适合的方法进行蛋白质含量的测定。

蛋白质含量测定方法大全

蛋白质含量测定方法大全

实验一蛋白质含量测定本实验的目的是学会各种蛋白质含量的测定方法。

了解各种测定方法的基本原理和优缺点。

蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。

目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。

另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。

其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。

定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。

每种测定法都不是完美无缺的,都有其优缺点。

在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。

考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

一、微量凯氏(Kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:CH2COOH|+3H2SO4→2CO2+3SO2+4H2O+NH3(1)NH22NH3+H2SO4→(NH4)2SO4(2)(NH4)2SO4+2NaOH→2H2O+Na2SO4+2NH3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

测定蛋白质含量方法

测定蛋白质含量方法

测定蛋白质含量方法
1. 布里亚蛋白定量法:利用蛋白质与荧光素的发光作用。

首先将不同浓度的标准蛋白质与荧光素混合后测定发光强度,制作标准曲线。

然后将待测蛋白质与荧光素混合后测定发光强度,根据标准曲线计算出蛋白质的含量。

2. 低里德蛋白定量法:根据蛋白质中色氨酸、酪氨酸、苯丙氨酸等芳香族氨基酸的特定吸收波长进行测量。

直接或间接测定蛋白质的含量。

3. 比色法:利用蛋白质与染料中亲合基团之间的反应测定蛋白质含量。

如利用布拉德福德染料,将蛋白质溶液与染料反应后测定吸光度,根据标准曲线计算出蛋白质含量。

4. 尿素/巯基乙醇(Urea/ME)法:将蛋白质加入含有尿素和巯基乙醇的缓冲液,等待蛋白质的还原和解离,根据吸光度测定巯基乙醇的浓度,再根据巯基乙醇与蛋白质的比例计算出蛋白质的含量。

5. Kjeldahl法:是一种常用的蛋白质含量分析方法。

将样品加入强酸,使其分解出所有氮,然后用强碱滴定测定氮酸的含量,最后计算出样品中蛋白质的含量。

蛋白质的含量测定方法

蛋白质的含量测定方法

蛋白质的含量测定方法蛋白质是生物体内非常重要的一类有机物质,具有多种功能,包括酶催化、结构支持和信号传导等。

因此,准确测定蛋白质的含量对于生物学、医学以及食品科学等领域的研究具有重要意义。

现在常用的蛋白质含量测定方法主要包括光谱法、生物物化学法和免疫学法。

下面将分别介绍这几种方法。

1. 光谱法光谱法是一种常用的定量测定方法,主要利用波长与物质浓度之间的关系来测定物质的含量。

在蛋白质的测定中,最常用的是紫外吸收光谱法和红外吸收光谱法。

紫外吸收光谱法基于蛋白质中含有色氨酸和酪氨酸等芳香族氨基酸的特性,可以通过测量在280纳米波长处的吸光度来间接估计蛋白质的含量。

这种方法的优点是操作简单、快速且准确性高,但不适用于含有大量非氨基酸物质的样品。

红外吸收光谱法则可以直接测定蛋白质样本中氨基酸的特征吸收峰,从而估计其含量。

这种方法需要使用红外光谱仪进行测定,操作稍微复杂一些,但适用范围广。

2. 生物物化学法生物物化学法是利用蛋白质的化学性质与其他物质进行反应来测定蛋白质含量的方法。

最常用的是比色法和浊度法。

比色法是利用蛋白质与某些染料的反应来测定蛋白质的含量。

最常用的是布拉德福德比色法和低里德尔比色法。

布拉德福德比色法是使用染料布拉德福德蓝与蛋白质发生染色反应,然后通过测定染色溶液的吸光度来估计蛋白质的含量。

低里德尔比色法则是使用染料洛斯隆巴尔尔棕与蛋白质发生比色反应,同样通过测定染色溶液的吸光度来测定蛋白质含量。

浊度法则是利用蛋白质与某些金属离子或染料等物质形成复合物,从而使溶液变得浑浊。

通过测定浊度的变化来估计蛋白质的含量。

这种方法简单、快速且灵敏度高,但对样品的纯度要求较高。

3. 免疫学法免疫学法是利用蛋白质与特异性抗体之间的免疫反应来测定蛋白质含量的方法。

最常用的是酶联免疫吸附试验(ELISA)和西方印迹法。

ELISA是利用酶标记抗体与待测蛋白质结合后,通过测定酶的底物变化来进行定量测定的方法。

ELISA具有高灵敏度和特异性,适用于复杂样品的测定,如血清中的蛋白质含量。

测定蛋白质含量的方法有哪些

测定蛋白质含量的方法有哪些

测定蛋白质含量的方法有哪些测定蛋白质含量是生物化学实验中常见的一项工作,目的在于确定给定样品中蛋白质的含量。

这样的测定对于许多领域的研究和应用都是至关重要的,包括分子生物学、生物医学研究、食品科学和营养学等。

蛋白质含量的测定方法根据原理和技术的不同可以分为多种类型,下面将详细介绍其中常用的方法。

1. 低里斯法(Lowry法):这是一种常用的测定蛋白质含量的光度法。

在这个方法中,样品中的蛋白质与Folin-Ciocalteu试剂中的碱性铜离子形成络合物,这些络合物在碱性条件下在750 nm附近吸收光线。

通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。

2. BCA法(双异硫氰酸铜法):BCA法也是一种常用的光度法,它与低里斯法原理类似。

在这个方法中,蛋白质的还原性氨基酸(主要是赖氨酸、组氨酸和半胱氨酸)与BCA试剂中的铜离子反应生成紫色的络合物,这些络合物在560 nm 处吸收光线。

通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。

3. 线性校正法(Coomassie蓝法):这也是一种常用的光度法。

在这个方法中,蛋白质与Coomassie Brilliant Blue G-250试剂反应生成蓝色络合物,这些络合物在595 nm处吸收光线。

通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。

4. 尿素法:这是一种测定总蛋白质含量的化学方法。

在尿素法中,样品中的蛋白质与硝酸铜溶液反应生成紫色络合物,测定其吸光度从而计算蛋白质的含量。

5. Biuret法:这是一种经典的测定蛋白质含量的光度法。

这个方法利用了蛋白质中的肽键和某些氨基酸(特别是赖氨酸和组氨酸)与碱性铜离子形成紫色络合物的性质。

测定络合物的吸光度从而计算蛋白质的含量。

6. Kjeldahl法:这是一种测定总氮含量的化学方法,因为蛋白质中含有氮元素,所以可以通过测定氮含量来推算蛋白质的含量。

这个方法需要将样品中的蛋白质进行分解、提取和转化,最终测定氮含量,并换算为蛋白质含量。

简述四种测定蛋白质含量的方法及其原理

简述四种测定蛋白质含量的方法及其原理

简述四种测定蛋白质含量的方法及其
原理
蛋白质是生命活动中不可缺少的重要物质,因此测定蛋白质含量对于生命科学研究和医学诊断等领域具有重要的意义。

目前,常用的测定蛋白质含量的方法有四种:浊度法、酶测定法、比色法和免疫测定法。

下面我们将简述这四种方法的原理和基本流程。

1.浊度法
浊度法是利用蛋白质的吸光度特性测定蛋白质含量的方法。

该方法的基本原理是,蛋白质具有较强的吸光性,在紫外到可见光谱范围内均有吸光度。

因此,在适当的光谱范围内测定样品的吸光度,就可以推算出蛋白质的含量。

浊度法的基本流程是:将样品加入溶剂,在适当的光谱范围内测定样品的吸光度,然后按照蛋白质吸光度与蛋白质浓度之间的关系计算出蛋白质的浓度。

2.酶测定法
酶测定法是利用蛋白质所含的氨基酸的特性测定蛋白质含量的方法。

该方法的基本原理是,蛋白质所含的氨基酸中有一类叫做可氧化氨基酸,如组氨酸、苯丙氨酸。

3.硫氰酸法:这种方法利用蛋白质中的硫氰酸氨基酸,将其与特定的试剂反应,产生的反应产物再与染料反应,通过测量吸收光的强度来测定蛋白质含量。

4.光度法:这种方法利用蛋白质与染料反应,产生的反应产物吸收特定波长的光,再通过测量吸收光的强度来测定蛋白质含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质含量测定院系名称食品与生物工程学院学生姓名孙洪磊学号200606021064专业班级生工06 - 2指导教师马美范二○○九年四月一日蛋白质含量测定方法比较蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。

目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。

另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。

其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。

定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。

每种测定法都不是完美无缺的,都有其优缺点。

在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。

考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

一、双缩脲法(Biuret法)(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1~10mg蛋白质。

干扰这一测定的物质主要硫酸铵、Tris缓冲液和某些氨基酸等。

(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。

如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。

牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05N NaOH配制。

(2)双缩脲试剂:称以1.50克硫酸铜(CuSO4•5H2O)和6.0克酒石酸钾钠(KNaC4H4O6•4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。

此试剂可长期保存。

若贮存瓶中有黑色沉淀出现,则需重新配制。

2. 器材:可见光分光光度计、大试管15支、旋涡混合器等。

(三)操作方法1. 标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。

充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。

用未加蛋白质溶液的第一支试管作为空白对照液。

取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。

2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。

注意样品浓度不要超过10mg/ml。

二、Folin—酚试剂法(Lowry法)(一)实验原理这种蛋白质测定法是最灵敏的方法之一。

过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。

此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即Folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。

这两种显色反应产生深兰色的原因是: 在碱性条件下,蛋白质中的肽键与铜结合生成复合物。

‚Folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。

在一定的条件下,兰色深度与蛋白的量成正比。

Folin—酚试剂法最早由Lowry确定了蛋白质浓度测定的基本步骤。

以后在生物化学领域得到广泛的应用。

这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。

对双缩脲反应发生干扰的离子,同样容易干扰Lowry反应。

而且对后者的影响还要大得多。

酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。

浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。

含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。

若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。

(二)试剂与器材1.试剂(1)试剂甲:(A) 10克 Na2CO3,2克 NaOH和0.25克酒石酸钾钠(KNaC4H4O6•4H2O)。

溶解于500毫升蒸馏水中。

(B) 0.5克硫酸铜(CuSO4•5H2O)溶解于100毫升蒸馏水中,每次使用前,将50份(A)与1份(B)混合,即为试剂甲。

(2)试剂乙:在2升磨口回流瓶中,加入100克钨酸钠(Na2WO4•2H2O),25克钼酸钠(Na2MoO4•2H2O)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂(Li2SO4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。

冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。

稀释至1升,过滤,滤液置于棕色试剂瓶中保存。

使用时用标准NaOH滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1N左右。

(3)标准蛋白质溶液:精确称取结晶牛血清清蛋白或 g—球蛋白,溶于蒸馏水,浓度为250 mg/ml左右。

牛血清清蛋白溶于水若混浊,可改用0.9 % NaCl溶液。

2. 器材(1)可见光分光光度计(2)旋涡混合器(3)秒表(4)试管16支(三)操作方法1. 标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。

用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。

再逐管加入0.5毫升试剂乙(Folin—酚试剂),同样立即混匀。

这一步混合速度要快,否则会使显色程度减弱。

然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm 处测定各管中溶液的吸光度值。

以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。

注意:因Lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。

全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。

待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。

每分钟测一个样品。

进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。

表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。

最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。

Folin—酚试剂法实验表格:管号 1 2 3 4 5 6 7 8 9 10 标准蛋白质 0 0.1 0.2 0.4 0.6 0.8 1.0(250mg/ml)未知蛋白质 0.2 0.4 0.6(约250mg/ml)蒸馏水 1.0 0.9 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4试剂甲 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0试剂乙 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5每管中蛋白质的量(mg)吸光度值(A700)2. 样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。

通常样品的测定也可与标准曲线的测定放在一起,同时进行。

即在标准曲线测定的各试管后面,再增加3个试管。

如上表中的8、9、10试管。

根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。

注意,由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。

因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。

三、考马斯亮兰法(Bradford法)(一)实验原理双缩脲法(Biuret法)和Folin—酚试剂法(Lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。

1976年由Bradford建立的考马斯亮兰法(Bradford法),是根据蛋白质与染料相结合的原理设计的。

这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。

这一方法是目前灵敏度最高的蛋白质测定法。

考马斯亮兰G-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。

经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。

在595nm下测定的吸光度值A595,与蛋白质浓度成正比。

Bradford法的突出优点是:(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。

这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。

(2)测定快速、简便,只需加一种试剂。

完成一个样品的测定,只需要5分钟左右。

由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。

因而完全不用像Lowry法那样费时和严格地控制时间。

(3)干扰物质少。

如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。

此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此Bradford法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g—球蛋白为标准蛋白质,以减少这方面的偏差。

(二)试剂与器材1. 试剂:(1)标准蛋白质溶液,用 g—球蛋白或牛血清清蛋白(BSA),配制成1.0mg/ml和0.1mg/ml的标准蛋白质溶液。

相关文档
最新文档