北师大版八年级数学上册《实数》精品教案
北师大版八年级数学上册:2.6实数优秀教学案例
1.生活情境导入:通过利用生活实际情境引出实数的概念,让学生感受到实数与生活的紧密联系,增强了学生的学习兴趣,提高了学生的学习积极性。
2.问题导向:在教学过程中,教师提出引导性问题,鼓励学生提出疑问,引导学生主动发现问题、解决问题,培养学生的批判性思维和问题解决能力。
3.小组合作:教师组织学生进行小组讨论,让学生在合作交流中共同探究实数问题,培养学生的团队合作能力和实践能力。
北师大版八年级数学上册:2.6实数优秀教学案例
一、案例背景
本案例背景以北师大版八年级数学上册第2章第6节“实数”为主题内容。实数作为数学中的基础概念,不仅涉及有理数、无理数等知识,更是学生进一步学习函数、几何等数学分支的基石。对于八年级的学生而言,他们已经具备了有理数的知识基础,但对无理数概念的理解仍较为模糊,特别是对无理数的实际意义和应用认识不足。
2.设计具有探究性的数学活动,如数学实验、数学探究等,让学生在实践中感受实数的形成过程。
3.教师关注学生在小组合作中的表现,及时给予指导和鼓励,提升学生的自信心。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,培养学生自我评价、自我调整的能力。
2.教师通过课堂提问、学生作业等方式,对学生的学习情况进行评价,及时了解学生的知识掌握情况。
1.教师提出引导性问题,引导学生从已知知识出发,逐步探究实数的定义和性质。
2.鼓励学生提出疑问,引导学生主动发现问题、解决问题,培养学生的批判性思维。
3.教师引导学生总结实数的运算规律,帮助学生建立实数知识的体系。
(三)小组合作
1.教师组织学生进行小组讨论,让学生在合作交流中共同探究实数问题,培养学生的团队合作能力。
3.鼓励学生互相评价、互相学习,培养学生的批判性思维和评价能力。
北师大版数学八年级上册2.6《实数》教案
三、教学难点与重点
1.教学重点
-实数的定义:理解实数的概念,掌握实数包括有理数和无理数。
-实数的性质:掌握实数的封闭性、有序性、完备性等核心性质。
-实数的运算:熟练掌握实数的四则运算,特别是乘方和开方的运算规则。
北师大版数学八年级上册2.6《实数》教案
一、教学内容
本节课选自北师大版数学八年级上册第二章第六节《实数》。教学内容主要包括以下几部分:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数等。
2.无理数的概念:介绍无理数的定义,如π、e等,以及无理数的性质和表示方法。
3.实数的性质:探讨实数的封闭性、有序性、完备性等特性。
-实数与数轴的关系:理解实数与数轴上点的对应关系,能够用数轴表示实数。
举例:重点讲解无理数的概念,如π和e,并强调它们是实数的一部分,通过具体的例子(如圆的周长与直径比是π)来加深学生对实数性质的理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-实数的运算:特别是无理数的运算,学生对运算规则和步骤不够熟悉。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和性质这两个重点。对于难点部分,如无理数的理解,我会通过举例(如π、√2等)和比较(无理数与有理数的区别)来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的估算、实数在数轴上的表示等。
-实数与数轴的联系:学生可能难以将实数的概念与数轴上的点联系起来,对数轴上的无理数位置把握不准确。
八年级数学上册实数教案北师大版
八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。
2. 学会实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。
2. 实数的性质:实数的加减法、乘除法、乘方运算。
3. 实数的应用:解决实际问题,如长度、面积、体积等计算。
三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。
2. 难点:实数运算的灵活应用,解决实际问题。
四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。
2. 运用案例分析法,分析实际问题,引导学生运用实数解决。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。
2. 讲解实数的分类:有理数、无理数、实数。
3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。
4. 运用案例分析,让学生体会实数在实际问题中的应用。
5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。
6. 总结本节课内容,布置课后作业。
六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。
2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。
3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。
七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。
2. 探讨实数与生活中的实际问题,提高学生的数学素养。
八、教学资源:1. 教材:八年级数学上册,北师大版。
2. 教案:实数教案。
3. PPT:实数相关内容。
4. 练习题:实数运算练习题。
九、教学时间安排:1. 第一课时:实数的定义与分类。
2. 第二课时:实数的性质与运算。
3. 第三课时:实数的应用与拓展。
十、课后作业:1. 复习实数的定义、性质及运算方法。
2. 完成练习题,巩固所学知识。
八年级数学上册实数教案北师大版
教案:八年级数学上册实数教案北师大版一、教学目标1. 知识与技能:(1)理解实数的定义及分类;(2)掌握实数的性质,如整数、分数、有理数和无理数之间的关系;(3)能够运用实数的性质进行简单的运算和问题解决。
2. 过程与方法:(1)通过实例和问题,引导学生认识实数并进行分类;(2)利用数轴和符号表示实数,帮助学生理解实数的概念和性质;(3)通过小组讨论和探究活动,培养学生的合作能力和问题解决能力。
3. 情感态度与价值观:(1)培养学生的数学思维和逻辑推理能力;(2)激发学生对数学的兴趣和好奇心;(3)培养学生勇于探索和坚持真理的精神。
二、教学重点与难点1. 教学重点:(1)实数的定义和分类;(2)实数的性质和运算;(3)实数在数轴上的表示方法。
2. 教学难点:(1)实数的无理数和无限不循环小数的概念;(2)实数的乘法和除法运算规则;(3)实数在实际问题中的应用。
三、教学准备1. 教师准备:(1)教材和相关参考资料;(2)多媒体教具和教学软件;(3)实数的相关例题和练习题。
2. 学生准备:(1)掌握前置知识,如分数、整数等;(2)准备笔记本和文具;(3)积极参与课堂讨论和实践活动。
四、教学过程1. 导入新课:(1)引导学生回顾前置知识,如分数、整数等;(2)提出问题,引发学生思考:是否存在一种数,它既不是整数也不是分数?(3)引入实数的概念,激发学生的好奇心。
2. 自主学习:(1)学生自主阅读教材,了解实数的定义和分类;(2)学生通过数轴和实例,理解实数的概念和性质;(3)学生完成相关的练习题,巩固所学知识。
3. 课堂讲解:(1)教师讲解实数的定义和分类,如整数、分数、有理数和无理数;(2)教师讲解实数的性质,如加法、减法、乘法和除法运算规则;(3)教师通过实例和问题,引导学生理解和运用实数的性质。
4. 课堂练习:(1)学生完成教材中的练习题,巩固所学知识;(2)学生进行小组讨论和探究活动,解决实际问题;(3)教师给予评价和指导,帮助学生提高解题能力。
北师大版八年级数学上册第二章《实数》教案
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
北师大版八年级数学上册:2.6《实数》教学设计1
北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。
通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。
同时,实数的分类和性质也需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。
2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。
3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。
四. 教学重难点1.实数的概念和分类。
2.实数的性质。
五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。
通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。
六. 教学准备3.练习题。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。
呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。
2.引导学生通过观察和思考,总结实数的性质。
操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。
2.每组选一名代表进行汇报,其他组进行评价和补充。
巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。
2.教师选取部分学生的作业进行点评,指出错误并进行讲解。
拓展(10分钟)1.让学生思考:实数和数轴之间的关系。
2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。
小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。
2.学生分享学习收获和感受。
家庭作业(5分钟)1.完成课后练习题。
6实数-北师大版八年级数学上册教案
6 实数-北师大版八年级数学上册教案一、知识点本章主要涉及以下知识点:1.实数的概念及分类2.实数的四则运算3.实数的比较大小及绝对值二、教学目标1.理解实数的概念及分类2.掌握实数的四则运算方法3.能够比较实数的大小和求出实数的绝对值三、教学重点1.实数的四则运算2.实数的比较大小及绝对值四、教学难点1.实数的概念及分类2.实数的绝对值五、教学过程1. 实数的概念及分类•实数的定义:所有有理数和无理数的并称为实数。
•实数的分类:–有理数:可以表示为两个整数的商的数,包括正有理数、负有理数、零;–无理数:不能表示为两个整数的商的数,包括无限不循环小数和无限循环小数。
2. 实数的四则运算•加法运算:–同号相加,取同号,将绝对值相加,结果的符号不变;–异号相加,取绝对值较大的数的符号,绝对值相减。
•减法运算:变成加法运算。
•乘法运算:–两数符号相同,结果为正,绝对值相乘;–两数符号不同,结果为负,绝对值相乘。
•除法运算:两数相除,商的符号与被除数、除数的符号相同,商的绝对值为两数绝对值的比值。
3. 实数的比较大小及绝对值•比较大小:–同号比大小,绝对值比较大小;–异号比大小,负数小于正数。
•求绝对值:数的绝对值是这个数到原点的距离,非负数的绝对值等于这个数本身,负数的绝对值等于其相反数。
六、教学反思本节课主要讲解了实数的概念、分类、四则运算和比较大小及绝对值等知识点。
针对实数概念分类比较抽象,需要同学们理解,并且注意与有理数、无理数的区别。
四则运算和大小比较以及绝对值的计算需要结合具体的例子,加深同学们的印象。
通过本篇教案的详细讲解,希望同学们可以掌握并应用实数相关的知识点。
北师大版八年级数学上册第二章实数教学设计
北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。
本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。
教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。
二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。
但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。
同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。
三. 教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。
2.实数的运算:加法、减法、乘法、除法、乘方等。
五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。
2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。
3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教材:北师大版八年级数学上册。
2.教案:实数教学设计。
3.PPT:实数相关知识点和案例分析。
4.作业:适量实数运算练习题。
七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。
2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。
3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。
4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。
5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。
最新北师大版八年级数学上册《实数》教学设计(精品教案)
第二章实数6.实数教学目标:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗? 意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)有理数集合无理数集合知识整理:有理数和无理数统称为实数。
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。
北师大版数学八年级上册6《实数》教案2
北师大版数学八年级上册6《实数》教案2一. 教材分析《实数》是北师大版数学八年级上册第六节的内容,本节主要让学生了解实数的概念,掌握实数的性质,并能够进行实数的运算。
实数是数学中非常重要的概念,它包括有理数和无理数两大类,有理数包括整数和分数,无理数主要是无限不循环小数。
本节内容为学生后续学习函数、几何等数学知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的相关知识,对分数、整数有一定的了解,但无理数的概念较为抽象,需要通过实例让学生感受无理数的存在。
同时,学生需要掌握实数的运算方法,如加减乘除等。
三. 教学目标1.了解实数的概念,掌握实数的性质。
2.学会实数的运算方法,能够进行实数运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的概念和性质。
2.实数的运算方法。
3.无理数的理解。
五. 教学方法采用讲授法、案例教学法、问题驱动法、小组合作法等,结合多媒体教学,让学生在实际问题中感受实数的存在,理解实数的性质,掌握实数的运算方法。
六. 教学准备1.PPT课件。
2.教学案例和实际问题。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如计算物体表面积或体积时,会遇到无法精确表示的情况,这时就需要用到实数。
让学生思考:实数是什么?它有哪些特点?2.呈现(10分钟)讲解实数的概念和性质,通过PPT展示实数的分类,如整数、分数、无理数等。
同时,介绍实数的运算方法,如加减乘除等。
3.操练(10分钟)让学生进行实数的运算练习,如计算以下表达式的值:(1)2 + 3 × (-1) ÷ 2 - 1(2)√9 - √16(3)(√3 + √5) × (√3 - √5)4.巩固(10分钟)讲解练习题,让学生巩固实数的运算方法。
同时,通过实例让学生理解无理数的存在,如圆周率π、根号2等。
5.拓展(10分钟)让学生思考:实数在实际生活中有哪些应用?如测量长度、面积、体积等。
实数北师大版数学初二上册教案
实数北师大版数学初二上册教案实数北师大版数学初二上册教案作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。
写教案需要注意哪些格式呢?以下是小编帮大家整理的实数北师大版数学初二上册教案,欢迎阅读,希望大家能够喜欢。
●过程与方法目标在探究、合作活动中,发展学生探究能力和合作意识.●情感与价值观要求通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.教学重点两个公式的逆运用.教学难点灵活地运用公式进行实数运算.教学准备:教材、课件、电脑.电脑软件:Word,Powerpoint.教学过程第一环节:复习引入(2分钟,引导学生复习旧知,导入新课,学生思考解答)内容:复习算术平方根的概念,并提出问题:下面正方形的边长分别是多少?2.6实数:同步测试1.与数轴上的点一一对应的数是( ).A.整数B.有理数C.无理数D.实数2.下列叙述中,不正确的是( ).A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零3.下列说法中①有理数包括整数、分数和零; ②无理数都是开方开不尽的数;③不带根号的数都是有理数;④带根号的数都是无理数;⑤无理数都是无限小数;⑥无限小数都是无理数.正确的个数是( ).A.0个B.1个C.2个D.3个4.下列说法中,正确的是( ).A.任何实数的'平方都是正数B.正数的倒数必小于这个正数C.绝对值等于它本身的数必是非负数D.零除以任何一个实数都等于零《2.6实数》课时练习含答案4.如果一个实数的平方根与它的立方根相等,则这个数是( )A.0B.正整数C.0和1D.1答案:A解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.5.有下列说法正确的是:( )A无理数就是开方开不尽的数;B无理数是无限不循环小数;C带根号的数都是无理数D无限小数都是无理数答案:B解析:解答:根据无理数的定义可以判断,无理数是无限不循环小数;A选项中无理数不仅仅包含开方开不尽的数,还包括如等的数;C 选项带根号的数不一定都是无理数;D选项中无限循环小数不是无理数;故答案选B分析:考察算术平方根的计算.。
2022年北师大版八年级上册《实数》精品教案
6 实数【知识与技能】1.了解实数的意义,在实数范围内,相反数、倒数、绝对值的意义,能对实数按要求分类.2.了解有理数的运算法那么在实数范围内仍然适用.3.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数.【过程与方法】在学习有理数的根底上用类比的方法去解决问题,找规律,用旧知识去探索新知识.【情感态度】通过复习旧知识探索新知识,培养学生学习的生动性,敢于大胆猜测,和同学能积极交流的合作意识.【教学重点】了解实数的意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.【教学难点】用数轴上的点来表示无理数.一、创设情境,导入新课我们以前学过有理数和无理数,那什么叫有理数?什么叫无理数?请举例说明.把以下各数分别填入相应的集合内:【教学说明】在已学的有理数和无理数的根底上,顺其自然地得出实数的概念.学生很容易接受.【归纳结论】有理数和无理数统称实数,即实数可分为有理数和无理数.二、思考探究,获取新知1.在实数概念根底上对实数进行不同分类.无理数与有理数一样,也有正负之分,如3是正的,-π是负的.思考:正有理数:负有理数:有理数:无理数:〔2〕0属于正数吗?0属于负数吗?〔3〕实数除了可以分为有理数与无理数外,实数还可怎样分?【教学说明】“思考〞是使学生明确实数有两种不同的分法,加深了对概念的理解.【归纳结论】实数还可以分为正实数、0、负实数.2.了解实数范围内相反数、倒数、绝对值的意义.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样吗?【教学说明】在有理数的相反数、倒数、绝对值意义的根底上学习实数范围内相反数、倒数、绝对值的意义,毫无疑问地给了学生一把拐杖,为后面的学习起了导航作用.3.有理数的运算法那么和运算律在实数范围内仍然适用.我们在有理数范围内学过运算法那么和运算律是否在实数范围内这些运算法那么和运算律还能继续用呢?【教学说明】使学生明白实数范围内的运算法那么和运算律可以在有理数的根底上直接套用,给他们的学习减轻了不少的麻烦.4.用数轴上的点来表示无理数.〔1〕如图,OA=OB,数轴上点A对应的数是什么?它介于哪两个整数之间?〔2〕你能在坐标轴上找到5对应的点吗?如果将所有的有理数都标到数轴上,那么数轴上被填满了吗?【教学说明】利用数形结合的思想让学生进一步认识了实数的分类.【归纳结论】A2,它介于1与2之间.如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数.每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.一样地,在数轴上,右边的点比左边的点表示的数大.三、运用新知,深化理解1.判断以下说法是否正确:〔1〕无限小数都是无理数;〔2〕无理数都是无限小数;〔3〕带根号的数都是无理数.2.求以下各数的相反数、倒数和绝对值.3.在数轴上作出5对应的点.【教学说明】学生独立完成加深对所学知识的理解和检测对实数分类和有关概念的掌握情况,对学生存的问题及时指导,并进行强化.四、师生互动,课堂小结1.师生共同回忆实数的两种分类,相反数、倒数、绝对值的意义等知识点.2.通过这节课的学习,你掌握了哪些知识?还存在哪些缺乏?【教学说明】引导学生回忆所学知识,进行知识提炼和系统归纳整理,有助于学生加深印象,便于理解.1.习题2.8第1、2、3题.2.完成练习册中本课时相应练习.本节内容并不复杂,很大局部是借助旧知识学习新知识,绝大局部同学掌握得很好.但在个别问题上,如-π属于负无理数,不属于小数或分数的范围,在今后的学习中需不断完善.6.3 从统计图分析数据的集中趋势一、学生知识状况分析学生的知识技能根底:学生在前面的数学学习中,已掌握了条形统计图、扇形统计图等统计图的画法,并能从条形统计图、扇形统计图等统计图表中获取信息,解决一些相关问题。
北师大版数学八年级上册6《实数》教案3
北师大版数学八年级上册6《实数》教案3一. 教材分析北师大版数学八年级上册第六单元《实数》是学生在学习了有理数和无理数的基础上,进一步研究实数的性质和运算。
本节课通过介绍实数的分类、实数与数轴的关系以及实数的运算,使学生对实数有一个全面的认识,培养学生数形结合的数学思想。
二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的了解。
但学生在实数的分类、实数与数轴的关系以及实数的运算方面还存在一定的困难。
因此,在教学过程中,要关注学生的个体差异,针对不同程度的学生进行引导和讲解。
三. 教学目标1.了解实数的分类,掌握实数与数轴的关系。
2.掌握实数的运算方法,能够熟练进行实数的计算。
3.培养学生的数形结合思想,提高学生的数学素养。
四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,分析案例使学生理解实数的性质和运算,小组合作学习提高学生的参与度和合作能力。
六. 教学准备1.教案、PPT、教学素材2.数轴、实数卡片3.学生分组名单七. 教学过程导入(5分钟)1.复习有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?2.引导学生思考实数的定义,引出实数的概念。
呈现(10分钟)1.呈现实数的分类:正实数、负实数和零。
2.介绍实数与数轴的关系,展示数轴,让学生直观地感受实数与数轴的对应关系。
操练(10分钟)1.分组进行实数运算练习,如加减乘除、比较大小等。
2.教师选取每组的代表作品进行点评和讲解。
巩固(10分钟)1.让学生自主完成课后练习,巩固实数的分类和运算。
2.教师巡回指导,解答学生的疑问。
拓展(10分钟)1.引导学生思考实数在实际生活中的应用,如长度、面积等。
2.让学生举例说明实数在其他学科中的应用。
小结(5分钟)1.教师引导学生总结本节课的主要内容和实数的性质。
2.学生分享自己在课堂上的收获和感受。
八年级数学上册《实数》教案北师大版
1)每个正实数有两个平方根,它们互为相反数;
2)0的平方根是0;
3)负实数没有平方根;
4)每个实数有且只有一个立方根。
应用迁移,巩固提高
例1不用计数器,估计 与2哪个大
解:法一:面积法
法二:比较被开方数法
例2不用计数器,估计 与 哪个大
解:作差法
练一练:P15练习1,2T
总结反思,拓展升华
章节
第1章实数
主备
课时分配
Hale Waihona Puke 本课(章节)需10课时本节课为第5课时
为本学期总第5课时
课题
实数
辅备
教学目标
了解实数的运算法则及运算律,会进行实数的运算,能估算无理数的大小
重点
实数的运算法则及运算律
难点
能估算无理数的大小
教学方法
讲练结合、探索交流,
课型
新授课
教具
电脑黑板
教师活动
学生活动
创设情景,导入新课
复习导入:P14做一做
小结:1、实数的运算法则及运算律
2、估算无理数的大小
反馈:1、 是实数,下列命题正确的是()
A. ,则 B.若 ,则
C.若 ,则 D.若 ,则
2、 的相反数是,的相反数是
3、当 时, ,
4、已知 、 、 在数轴上如图,化简
O
5、 在两个连续整数 和 之间,即 ,那么 、 的值是
学生回答
学生自学
学生理解记忆
教学后记
补充:比较被开方数法
1)
2)
1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律
2、用字母表示有理数的加法交换律和结合律
北师大版八年级数学上册《实数》示范课教学设计
第二章实数2.6 实数一、教学目标1.了解实数的概念和意义,能按要求对实数进行分类.2.了解有理数的运算规律在实数范围内仍然适用.3.了解实数和数轴上的点一一对应,能找出实数在数轴上的对应位置.4.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想.二、教学重难点重点:能按要求对实数进行分类,掌握实数的运算规律.难点:利用数轴上的点来表示实数,找出实数在数轴上的对应位置.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计环节二探究新知【合作探究】教师活动:首先设计一个数集分类的活动,让学生对数集进行归类,再让学生尝试自主地进行实数的分类后进行交流.之后引导学生研究实数的其他相关概念和运算.最后设计问题,引导学生探索实数和数轴上的点的对应关系.问题:把下列各数分别填入相应的集合内.分析:(1) 32,7,2,203,5-为开方开不尽的数,所以这五个数是无理数.(2) π,0.3737737773⋅⋅⋅是无限不循环小数,所以这两个数也是无理数.(3)14,52-为分数,所以14,52-是有理数.(4)382-=-为负整数;4293=为分数.所以38-,49是有理数.预设答案:【归纳】实数的定义:有理数和无理数统称为实数,分组操作,探索实数的定义.通过数集分类活动,让学生对不同性质的数进行归类,进一步熟悉有理数和无理数的概念.即实数可以分为有理数和无理数.按定义可以将实数分为:【议一议】提问:下面集合内的数还可以怎样分?教师提示:实数的分类与有理数的分类一样,有两种不同的标准:按定义分类和按符号分类,因此,类比有理数,实数也有正负之分.教师活动:教师先展示课件内容,再让学生将上面的数分成正数集合和负数集合.预设答案:【归纳】结论:实数又可以分为正实数、0和负实数.即按正负分实数可以分为:问题:有理数范围内的一些概念是否适用于实数?预设答案:适用.结论:在实数范围内,相反数、倒数、绝对值的意义,和有理数范围内的相反数、倒数、绝对值的意义完全一样.【想一想】与________互为相反数, a 是一个实数,它的相反数为______;与________互为倒数, 当a ≠0时,那么它的倒数为 _______; |3|=|0|= |π|-=a 是一个实数,它的绝对值为:______. 预设答案: 2 ,-a ;315,1a ; 30,,π.()()()⎪⎩⎪⎨⎧-=>=0000<a a a a a a【做一做】(1)分别写出6π 3.14--,的相反数; (2)求3513--,的倒数; (3)求364-的绝对值. 预设答案:(1)若a 是一个实数,它的相反数为-a ;思考有理数范围内的相关概念在实数范围内的意义.学生思考,解答.研究实数的相反数、绝对值的相关概念和有理数相关概念的联系并得出结论.趁热打铁,进一步熟悉实数范围内相反数、倒数、绝对值的意义.∴ 6-的相反数是6;π-3.14的相反数是3.14-π.(2)当a ≠0时,它的倒数为 ; ∴5-的倒数是15- ; 313-的倒数是3113-.(3)若a 是一个小于0的实数,则其绝对值为: -a . ∴364-的绝对值是4.【观察】观察下列式子,你发现了什么? 2552⋅=⋅113535355⎛⎫⋅⋅=⋅⋅= ⎪⎝⎭()33334272472112+=+=分析:分别用到了有理数运算中的乘法交换律、 乘法结合律、分配律.结论:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.【议一议】(1)如下图,OA=OB ,数轴上点A 对应的数是什么?它介于哪两个整数之间?预设答案:解:(1)根据勾股定理,可得OB 2=12+12=2, ∴OB =2,OA =OB , OA =2.分小组进行探讨实数运算规律与有理数运算规律的联系.通过类比有理数的运算律,探讨实数的运算律、运算法则,明确实数和有理数一样,有完全一样的运算法则和运算律.引导学生探讨实数和数轴上的点的对应关系.实现数与形的结合,为后续的学习打基础.∴数轴上点A对应的数是2.∵2≈1.414,∴点A介于整数1和2之间.(2)你能在数轴上找到5对应的点吗?与同伴进行交流.预设答案:在数轴上数2的对应点处作长度为1的垂线段AB,连接原点O与点B,以原点O为圆心,OB 长为半径画弧交数轴与点2右侧一点C,则点C 即为5的对应点.【归纳】实数与数轴上的点的关系:每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.在数轴上,右边的点表示的数比左边的点表示的数大.【典型例题】1.错,对,错;解析:(1)带根号的数有可能是能开方开得尽的数,所以这句话错误.(2)所有实数的绝对值都是正数或0,而所有的正数都比0大,所以这句话正确.(3)数轴上的每一个点都表示一个实数,实数还包括无理数,所以这句话错误.2.解:在数轴上数3的对应点处作长度为1的垂线段AB,连接原点O与点B,以原点O为圆心,OB长为半径画弧交数轴与点3右侧一点C,则点C即为10的对应点.3.(1) π2,2π-,π2;(2)315-,3115,315.思维导图的形式呈现本节课的主要内容:。
八年级数学上册实数教案北师大版
八年级数学上册实数教案北师大版一、教学目标:1. 让学生理解实数的概念,掌握实数的分类及特点。
2. 能够正确运用实数进行运算,解决实际问题。
3. 培养学生逻辑思维能力,提高学生解决数学问题的能力。
二、教学内容:1. 实数的概念及分类:有理数、无理数、实数。
2. 实数的运算:加法、减法、乘法、除法。
3. 实数在实际问题中的应用。
三、教学重点与难点:1. 实数的分类及特点。
2. 实数的运算规律。
3. 实数在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解实数的概念、分类及运算规律。
2. 利用案例分析法,分析实数在实际问题中的应用。
3. 运用讨论法,引导学生探讨实数问题,培养学生的逻辑思维能力。
五、教学过程:1. 导入:回顾七年级学习的有理数知识,引导学生过渡到实数的学习。
2. 讲解实数的概念,阐述实数的分类及特点。
3. 讲解实数的运算规律,示范运算方法。
4. 运用案例分析,让学生理解实数在实际问题中的应用。
5. 布置作业,巩固所学知识。
7. 课后反思,针对学生的学习情况,调整教学策略。
六、教学评价:1. 课后作业:布置有关实数的运算题目,检验学生对实数运算规律的掌握程度。
2. 课堂练习:设计一些实际问题,让学生运用实数进行解答,评估学生运用实数解决问题的能力。
3. 单元测试:进行一次实数知识点的测试,了解学生对实数概念、分类和运算的掌握情况。
七、教学策略:1. 采用循序渐进的教学方法,由浅入深地引导学生学习实数知识。
2. 利用多媒体教学手段,如图片、视频等,增强课堂趣味性,提高学生的学习兴趣。
3. 创设生活情境,让学生感受到实数在现实生活中的应用,提高学生的学习积极性。
八、教学资源:1. 教材:北师大版八年级数学上册。
2. 教辅资料:实数相关习题集、案例分析资料。
3. 教学工具:黑板、粉笔、多媒体设备等。
九、教学进度安排:1. 第一课时:讲解实数的概念及分类。
2. 第二课时:讲解实数的运算规律。
北师大初中八年级数学上册《实数》教案
实数第一课时教学目标1.了解无理数及实数的意义,并用类比的方法引入实数的相关概念等;2.了解实数的相反数和绝对值的意义,并会求一个实数的相反数和绝对值;3.灵活运用开方的有关知识解决问题;体现从有理数运算到实数运算的自然过渡。
教学重难点1. 无理数和实数的概念;2. 对无理数相反数和绝对值的求法。
教学方法1. n次方根求a的n次方根的运算,叫做把a开n次方,a叫做被开方数,n叫做根指数。
2. 奇次方根和偶次方根将一个数开奇次方时,求得的方根叫做奇次方根;将一个非负数开偶次方时,求得的方根叫做偶次方根。
3. 开方:求一个数的方根的运算,叫做开方。
开n次方与n次乘方互为逆运算。
4. 有理数整数和分数统称为有理数,有理数都可以表示成有限小数或无限循环5. 无理数无限不循环小数叫做无理数(即开不尽方的数)无理数不能表示成分数的形式。
任何一个无理数,都可以用给定精确度的有理数来近似地给予表示。
6. 实数有理数和无理数统称为实数。
每一个实数都可以用数轴上的一个点表示,反之,数轴上的每点又都可以表示一个实数。
(一一对应)7. 实数的相反数如果a 表示一个实数,-a 叫a 的相反数,0的相反数是0。
第二课时教学目标1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .并能用规律进行计算. 教学过程一.新课导入上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.二.新课讲解1.有理数的运算法则在实数范围内仍然适用.大家先回忆一下我们在有理数范围内学过哪些法则和运算律. (加、减、乘、除运算法则,加法交换律,结合律,分配律.)下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅ 所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题.例:计算: (1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 2.做一做(书上48页)请同学们先计算,然后分组讨论找出规律. 通过上面计算的结果,大家认真总结找出规律. 如果把具体的数字换成字母应怎样表示呢? 总结:b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 化简: (1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546. 3.例题讲解[例题]化简:(书上49页例题)三、课堂练习(一)随堂练习(二)补充练习1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积.四、小结五、课后作业:习题2.9。
八年级数学实数教案
八年级数学实数教案一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一、教材分析1、教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。
知识技能:(1)了解无理数和实数的概念以及实数的分类。
(2)知道实数与数轴上的点具有一一对应关系。
数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识。
(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。
解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。
情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用。
(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
3、教学重点、难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
二、学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。
课本对学生掌握实数要求不高。
只要求学生了解无理数和实数的意义。
但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》精品教案
●教学目标:
知识与技能目标:
1、了解实数的意义,能对实数按要求进行分类
2、了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.
3、了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、
绝对值的意义完全一样.
过程与方法目标:
1、在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
2、能够逐步培养分析和归纳概括的能力,了解辩证统一的思想。
情感态度与价值观目标:
1、在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律
类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
2、了解数系扩展对人类认识发展的必要性
●重点:
1、了解实数意义,能对实数进行分类;
2、在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;
3、明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
●难点:
利用数轴上的点表示无理数
●教学流程:
一、课前回顾
1.有理数是如何分类的?分几种情况?
(1)按定义可分为:正整数
整数零
负整数
有理数正分数
分数
负分数
(2)按数的性质可分为:
正整数
正有理数
正分数
有理数零
负整数
负有理数
负分数
任何有理数都可以化成有限小数和无限循环小数的形式
2.什么是无理数?带根号的数都是无理数吗?
无理数是无限不循环小数.
带根号的数不一定是无理数.
无理数一般有哪些形式?
(1)开不尽方的数是无理数。
(
2)π及含有π的数是无理数
(3)有一定的规律,但不循环的无限小数是无理数。
练一练
把下列各数分别填入相应的集合内:
,
1
4
,π,﹣
5
2
0, 0.3737737773……(相邻两个3之间的7的个数逐次加1)
有理数集合无理数集合
二、探究新知
1、实数的定义
有理数和无理数统称为实数 ,即实数可以分为有理数和无理数。
2、实数的分类
(1)按定义可分为: 正有理数 有限小数和无限 有理数 零 循环小数
负有理数 实数
正无理数
无理数 无限不循环小数 负无理数
无理数和有理数一样,也有正负之分
是__正__的,﹣π是__负__的 (2)按数的性质可分为: 正有理数 正实数
正无理数 实数 零
负有理数 负实数
负无理数 三、例题解析
例1、把下列各数填入相应的集合内:
7.5 4 ,2
3
0.31 ,﹣π ,0.15
(1)有理数集合:7.5 ,4 ,
23
,0.31 , 0.15
(2,﹣π
(3)正实数集合:7.5 4 ,2
3
,0.31 , 0.15
(4
在实数范围内 ,相反数、倒数、绝对值的意义 ,和有理数范围内的相反数、倒
数、绝对值的意义完全一样。
互为相反数
|0|=0 |﹣π|=π练一练
1. a是一个实数,它的相反数是﹣a
a a > 0
绝对值是|a|= 0 a = 0
﹣a a < 0
当a ≠0时,它的倒数是1 a
2. 3-π的绝对值是|3-π|=π-3
四、探究新知
想一想
1.在有理数范围内,能进行哪些运算?用哪些运算律?
在有理数范围内,能进行加、减、乘、除、乘方运算
运算律有:加法交换律、加法结合律
乘法交换律、乘法结合律、乘法分配律
2.判断下列各式成立
=成立
==成立
(4+7成立
有理数的运算法则及运算律对实数仍然适用.
议一议
每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?
(1)如图,OA=OB数轴上的点A对应的数是什么?它介于哪两个整数之间?
(2)
.
也就是说:每一个无理数都可以用数轴上的一个点来表示。
数轴上的点有些表示有理数,有些表示无理数
实数与数轴上的点的对应关系:
每一个实数都可以用数轴上的一个点来表示;
反过来,数轴上的每一点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
例2、比较下列各组数中两个数的大小:
(1)3.14与π;(2)
.
解:(1)∵π≈3.141,
∴3.14<π.
(2)∵
≈-1.732,
-1.442
∴
-
<
1 1
五、达标测评
1、判断下列说法是否正确:
(1)带根号的数都是无理数; × (2)绝对值最小的实数是0; √ (3)数轴上的每一个点都表示一个有理数 × 2、在实数0,π
,3.14,
11
12
, 0.3010300100300010003……中,无理数有_3___个。
3、
的相反数是_
__,它的绝对值是
___,
4
的绝对值是
4___,
4. 2
2___
的绝对值是
_。
5.
的所有负整数_﹣3 ,﹣2 ,﹣1 . 【解析】∵ 17>16
<﹣4
_﹣3 ,﹣2 ,﹣1 . 6.(金华·中考)在 -3
,-1, 0 这四个实数中, 最大的是__0____。
【解析】因为 -3
,-1为负数,小于0,所以0最大. 7
六、拓展提升
1、如图,在数轴上点A 和点B 之间的整数是 2 .
【解析】1
<2,2
<3
之间的整数是2. 答案:2 2、已知(x -2)2+|y -
4|+
=0,求xyz 的值
.
【解析】根据题意得x-2=0 y-4=0 z-6=0
∴ x=2 y=4 z=6
∴ xyz=2×4×6=48
七、体验收获
今天我们学习了哪些知识?
1、有理数和无理数统称实数.
2、在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝
对值的意义完全一样.
八、名言警句
没有比脚更长的路,
没有比人更高的山.
九、布置作业
教材40页习题第1、2、3题。