重庆市外国语学校2020年中考数学一诊试卷(含解析)

合集下载

中考数学一模试题(重庆市外国语学校含答案)

中考数学一模试题(重庆市外国语学校含答案)

20XX年中考数学一模试题(重庆市外国语学校含答案)12.从-2、-1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程xx-2 -m-22-x =-1有非负整数解,那么这一个数中所有满足条件的m的个数是()A.1B.2C.3D.4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

13.20XX年重庆新房成交共约305000套,将305000用科学计数法表示为。

14.计算:38 -|-2|+(-14 )-2=;15.如图,在矩形ABCD中,AB=3 ,AD=2,以D为圆心、AD为半径画弧交线段BC于点E,则阴影部分的面积为。

16.有四张形状材质相同的不透明卡片,下面分别写有1、2、-1、-3四个数字。

将这四张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数y=kx+b中的k的值;第二次从余下的三张卡片中再随机抽取一张,上面标有的数字作为b的值,则使该一次函数的图像经过第一、三、四象限的概率为。

17.快、慢两车分别从相距480km的甲、乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到过甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调养时间忽略不计),如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图像,则当两车第一次相遇时,快车距离甲地的路程是千米。

18.如图,正方形ABCD的连长为10 ,对角线AC、BD 相交于点O,以AB为斜边在正方形内部作Rt△ABE,∠AEB=90°,连接OE,点P为边AB上的一点,将△AEP 沿着EP翻折到△GEP,若PG⊥BE于点F,OE=2 ,则S △EPB=。

三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程惴惴不安在答题卡中对应的位置上。

2019-2020重庆市中考数学一模试卷(及答案)

2019-2020重庆市中考数学一模试卷(及答案)
9.A
解析:A 【解析】 【分析】
依据 AB / /CD , EFC 40 ,即可得到 BAF 40 , BAE 140 ,再根据 AG 平 分 BAF ,可得 BAG 70 ,进而得出 GAF 70 40 110 .
连结 BF 交 AC 于点 M,连结 DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB 垂直
平分 OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是
()
A.4 个
B.3 个
C.2 个
D.1 个
12.如图,点 P 是矩形 ABCD 的对角线 AC 上一点,过点 P 作 EF∥BC,分别交 AB,CD 于 E、
25.修建隧道可以方便出行.如图: A , B 两地被大山阻隔,由 A 地到 B 地需要爬坡到山
顶 C 地,再下坡到 B 地.若打通穿山隧道,建成直达 A , B 两地的公路,可以缩短从 A 地 到 B 地的路程.已知:从 A 到 C 坡面的坡度 i 1: 3 ,从 B 到 C 坡面的坡角 CBA 45 , BC 4 2 公里.
吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________
元.(按每吨运费 20 元计算)
20.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2 的值为__________.
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为 30 元/件的文化衫,根据 以往的销售经验,他整理出这种文化衫的售价 y1(元/件),销量 y2(件)与第 x(1≤x<90)天的 函数图象如图所示(销售利润=(售价-成本)×销量). (1)求 y1 与 y2 的函数解析式. (2)求每天的销售利润 W 与 x 的函数解析式. (3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?

2020-2021学年重庆市中考数学第一次模拟试题及答案解析

2020-2021学年重庆市中考数学第一次模拟试题及答案解析

最新重庆市中考数学一模试卷一、选择题:(本大题共12个小题,每小题4分,共48分),在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.下列实数是无理数的是()A.﹣1 B.0 C.πD.2.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60°D.90°3.将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)4.剪纸是中国的民间艺术,剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四副图案中,不能用上述方法剪出的是()A.B.C.D.5.下列计算正确的是()A.(a2)3=a5B.(ab2)2=ab4C.a4÷a=a4D.a2•a2=a46.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则OD的长为()A.1 B.2 C.2.5 D.37.下列说法正确的是()A.四个数2、3、5、4的中位数为4B.了解重庆初三学生备战中考复习情况,应采用普查C.小明共投篮25次,进了10个球,则小明进球的概率是0.4D.从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本8.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个9.关于x的方式方程=3的解是正数,则m可能是()A.﹣4 B.﹣5 C.﹣6 D.﹣710.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40xB.乙组加工零件总量m=280C.经过2小时恰好装满第1箱D.经过4小时恰好装满第2箱11.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP的长度为()A.B.C.D.12.如图,抛物线y=2x2+bx+c的顶点在△OAB的边OB、AB上运动(不经过点O,点A),已知A(0,2),B(﹣2,1),则下列说法错误的是()A.0<b≤8 B.0<c≤9 C.1+2c>b D.b2<8c﹣16二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.2016年9月19日,重庆市第五届运动会开幕式将在溶陵区拉开大幕,组委会面向社会公开征集了主题门号、会徽、会歌,吉祥物等元素,共收到有效作品1600余件,数据1600用科学记数法表示为.14.若实数a,b满足+|b+3|=0,则ab= .15.两张形状大小背面完全相同的卡片上分别标有数字﹣4、﹣3、0、2,将卡片洗匀后背面朝上放在桌面上,从中任意抽取两张,则所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是.16.如图,已知等边△ABC的三边分别与⊙O相切于点D、E、F,若AB=2,则图中阴影部分的面积为.(结果保留π)17.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶上D点处测得条幅顶端A的仰角为36.5°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为64°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度为米.(结果精确到0.1米,参考数据sin36.5°≈0.6,tan36.5°≈0.75,sin64°≈0.9,tan64°≈2.1)18.如图,正方形ABCD,以AB为腰向外作等腰△ABE,连接DE交AB于点F,∠BAE 的平分线交EF于点G,过D点作AG的垂线交GA的延长线于点H,已知tan∠EDA=,S△AEF=9,则AH的长为.三、解答题:(本大题共2个小题,每小题7分,共14分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上19.计算:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2.20.2016年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.四、解答题:(本大题共4个小题,每小题10分,共40分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上21.化简:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2(2)(﹣)÷.22.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B 两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.23.富士康科技机关作为全球最大电子产品制造商,在“机器换人”的建设方面取得巨大进展,今年一月份它在大陆某“工业40”厂区的生产线上有A、B两种机器去组装小米5手机外壳(以下简称“外壳)”.每小时一台A种机器人比一台B种机器人多组装50个外壳,每小时10台A种机器人和5台B种机器人共组装3500个外壳.(1)求今年一月份每小时一台A种机器人,一台B种机器人分别能组装多少个外壳;(2)因市场销售火爆,二月份小米手机厂商决定在该厂区追加订单,该厂区随机对A、B 两种机器人进行技术升级,二月底升级工作全面完成,升级后A种机器人每小时组装的外壳数量增加12%,B种机器人每小时组装的外壳数量增加15%,已知三月份投入生产的A 种机器人的台数比B重机器人台数的2倍还多18台,且A、B两种机器人每小时组装的外壳数量之和不低于27160个,那么三月份该厂区最少应安排多少台B种机器人投入生产.24.如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.五、解答题:(本题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或推理步骤)25.如图,四边形ABCD为矩形,连接AC,AD=2CD,点E在AD边上.(1)如图1,若∠ECD=30°,CE=4,求△AEC的面积;(2)如图2,延长BA至点F使得AF=2CD,连接FE并延长交CD于点G,过点D作DH ⊥EG于点H,连接AH,求证:FH=AH+DH;(3)如图3,将线段AE绕点A旋转一定的角度α(0°<α<360°)得到线段AE′,连接CE′,点N始终为CE′的中点,连接DN,已知CD=AE=4,直接写出DN的取值范围.26.已知抛物线y=﹣x2++4交x轴于点A、B,交y轴于点C,连接AC、BC.(1)求交点A、B的坐标以及直线BC的解析式;(2)如图1,动点P从点B出发以每秒5个单位的速度向点O运动,过点P作y轴的平行线交线段BC于点M,交抛物线于点N,过点N作NC⊥BC交BC于点K,当△MNK与△MPB的面积比为1:2时,求动点P的运动时间t的值;(3)如图2,动点P 从点B出发以每秒5个单位的速度向点A运动,同时另一个动点Q 从点A出发沿AC以相同速度向终点C运动,且P、Q同时停止,分别以PQ、BP为边在x轴上方作正方形PQEF和正方形BPGH(正方形顶点按顺时针顺序),当正方形PQEF和正方形BPGH重叠部分是一个轴对称图形时,请求出此时轴对称图形的面积.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分),在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.下列实数是无理数的是()A.﹣1 B.0 C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,故A选项错误;B、是整数,是有理数,故B选项错误;C、是无理数,故C选项正确;D、是分数,是有理数,故D选项错误.故选:C.2.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60°D.90°【考点】平行线的性质.【分析】由直角三角板的特点可得:∠C=30°,然后根据两直线平行内错角相等,即可求∠CAE的度数.【解答】解:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.3.将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)【考点】坐标与图形变化-平移.【分析】把点(1,﹣2)的横坐标加3,纵坐标不变即可得到对应点的坐标.【解答】解:将点P(1,﹣2)向右平移3个单位,则点横坐标加3,纵坐标不变,即新的坐标为(4,﹣2).故选B.4.剪纸是中国的民间艺术,剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四副图案中,不能用上述方法剪出的是()A.B.C.D.【考点】剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:由题意知,剪出的图形一定是轴对称图形,四个选项中,只有C不是轴对称图形,所以C不能用上述方法剪出.故选C.5.下列计算正确的是()A.(a2)3=a5B.(ab2)2=ab4C.a4÷a=a4D.a2•a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用幂的乘方运算法则、积的乘方运算法则、同底数幂的乘除运算法则计算得出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(ab2)2=a2b4,故此选项错误;C、a4÷a=a3,故此选项错误;D、a2•a2=a4,正确.故选:D.6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则OD的长为()A.1 B.2 C.2.5 D.3【考点】垂径定理.【分析】首先连接OB,由垂径定理即可求得BD的长,然后由勾股定理求得OD的长.【解答】解:连接OB,∵半径OC⊥弦AB,∴BD=AB=×8=4,在Rt△BOD中,OD===3.故选D.7.下列说法正确的是()A.四个数2、3、5、4的中位数为4B.了解重庆初三学生备战中考复习情况,应采用普查C.小明共投篮25次,进了10个球,则小明进球的概率是0.4D.从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本【考点】概率公式;全面调查与抽样调查;总体、个体、样本、样本容量;中位数.【分析】由中位数的定义得出选项A抽取;由调查的方式得出选项B错误;由概率公式得出选项C正确;与样本的定义得出选项D抽取;即可得出结论.【解答】解:A、四个数2、3、5、4的中位数为3.5;故本选项错误;B、了解重庆初三学生备战中考复习情况,应采用抽查;故本选项错误;C、小明共投篮25次,进了10个球,则小明进球的概率是0.4;故本选项正确;D、从初三体考成绩中抽取100名学生的体考成绩,这100名考生的体考成绩是总体的一个样本;故本选项错误;故选:C.8.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个【考点】规律型:图形的变化类.【分析】本题是一道找规律的题目,这类题型在中考中经常出现.【解答】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第8层中含有正三角形个数是6+12×7=90个.故选:B.9.关于x的方式方程=3的解是正数,则m可能是()A.﹣4 B.﹣5 C.﹣6 D.﹣7【考点】分式方程的解.【分析】先求出x的值,再根据解为正数列出关于m的不等式,求得m的取值范围,再得出可能的m的值.【解答】解:去分母得,2x+m=3x﹣6,移项合并得,x=m+6,∵x>0,∴m+6>0,∴m>﹣6,∵x﹣2≠0,∴x≠2,∴m+6≠2,∴m≠﹣4,∴m的取值范围为m>﹣6且m≠﹣4,故选B.10.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40xB.乙组加工零件总量m=280C.经过2小时恰好装满第1箱D.经过4小时恰好装满第2箱【考点】一次函数的应用.【分析】先根据(6,240),利用待定系数法求一次函数解析式进行判断;再利用乙组原来的工作效率得出更换设备后的工作效率,求得乙组加工零件的总量进行判断;最后利用函数解析式列出方程,求得当0≤x≤2时,当2<x≤3时,以及当3<x≤6时x的值,判断是否符合题意即可.【解答】解:∵图象经过原点及(6,240),设解析式为y=kx,则6k=240,解得k=40,∴甲组加工零件数量y与时间x的关系式为y甲=40x(0<x≤6),故(A)正确;∵乙2小时加工100件,∴乙的加工速度是每小时50件,∵乙组更换设备后,乙组的工作效率是原来的1.2倍,∴乙组的工作效率是每小时加工:50×1.2=60件,∴m=100+60×(6﹣3)=280,故(B)正确;乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=100+60(x﹣3)=60x﹣80,当0≤x≤2时,40x+50x=200,解得:x=(不合题意);当2<x≤3时,100+40x=200,解得:x=(符合题意);∴经过2小时恰好装满第1箱,故(C)正确;∵当3<x≤6时,40x+(60x﹣80)=200×2,解得x=4.8(符合题意);∴经过4.8小时恰好装满第2箱,故(D)错误.故选(D)11.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP的长度为()A.B.C.D.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD中,PB′⊥AD,求得△B′CD是直角三角形,继而求得DB′的长,然后设BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.【解答】解:由折叠的性质可得:PB′=PB,∠PB′C=∠B,∵四边形ABCD是平行四边形,PB′⊥AD,∴∠B=∠D,∠PB′A=90°,∴∠D+∠CB′D=90°,∴∠DCB′=90°,∵CD=3,BC=4,∴AD=B′C=BC=4,∴DB′==5,∴AB′=DB′﹣AD=1,设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,PA2=AB′2+PB′2,∴x2+12=(3﹣x)2,解得:x=,∴BP=,故选A.12.如图,抛物线y=2x2+bx+c的顶点在△OAB的边OB、AB上运动(不经过点O,点A),已知A(0,2),B(﹣2,1),则下列说法错误的是()A.0<b≤8 B.0<c≤9 C.1+2c>b D.b2<8c﹣16【考点】二次函数图象与系数的关系.【分析】根据对称轴为x=﹣判断A,根据x=﹣2,y=1判断B,根据x=﹣时,y>0判断C,根据抛物线与x轴无交点判断D.【解答】解:∵﹣2≤﹣<0,∴0<b≤8,A正确;∵x=﹣2,y=1,∴8﹣2b+c=1,∴2b=7+c,∵0<2b≤16,∴0<7+c≤16,又c>0,∴0<c≤9,B正确;当x=﹣时,y>0,∴﹣b+c>0,∴1+2c>b,C正确;∵抛物线与x轴无交点,∴b2﹣4ac<0,∴b2﹣8c<0,D错误,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.2016年9月19日,重庆市第五届运动会开幕式将在溶陵区拉开大幕,组委会面向社会公开征集了主题门号、会徽、会歌,吉祥物等元素,共收到有效作品1600余件,数据1600用科学记数法表示为 1.6×103.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据1600用科学记数法表示为1.6×103,故答案为:1.6×103.14.若实数a,b满足+|b+3|=0,则ab= ﹣6 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出算式求出a、b的值,计算即可.【解答】解:由题意的,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则ab=﹣6,故答案为:﹣6.15.两张形状大小背面完全相同的卡片上分别标有数字﹣4、﹣3、0、2,将卡片洗匀后背面朝上放在桌面上,从中任意抽取两张,则所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是.【考点】列表法与树状图法.【分析】首先解方程,进而用树状图表示出所有的可能,进而利用概率公式求出答案.【解答】解:x2+2x﹣8=0(x﹣2)(x+4)=0,解得:x1=2,x2=﹣4,如图所示:,由树状图可得一共有12种可能,符合题意的有2种情况,故所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是:=.故答案为:.16.如图,已知等边△ABC的三边分别与⊙O相切于点D、E、F,若AB=2,则图中阴影部分的面积为π.(结果保留π)【考点】扇形面积的计算;等边三角形的性质;切线的性质.【分析】根据等边△ABC的三边分别与⊙O相切于点D、E、F,于是得到BD=BE,CE=CF,∠B=∠C=60°,BC=AB=2,推出△BDE和△CEF是等边三角形,根据等边三角形的性质得到∠BED=∠CEF=60°,BE=CE=,然后由扇形的面积公式即可得到结论.【解答】解:∵等边△ABC的三边分别与⊙O相切于点D、E、F,∴BD=BE,CE=CF,∠B=∠C=60°,BC=AB=2,∴△BDE和△CEF是等边三角形,∴∠BED=∠CEF=60°,BE=CE=,∴∠DEF=60°,DE=BE=,∴阴影部分的面积==π,故答案为:π.17.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶上D点处测得条幅顶端A的仰角为36.5°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为64°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度为7.8 米.(结果精确到0.1米,参考数据sin36.5°≈0.6,tan36.5°≈0.75,sin64°≈0.9,tan64°≈2.1)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】要求AB的长,只要构造出直角三角形,利用锐角三角函数进行求解即可,作DF ⊥AB于点F,然后根据题目中的数量关系,可以表示出关于AB的等式,从而可以得到AB 的值.【解答】解:作DF⊥AB于点F,如右图所示,由题意可得,DF=CB,∵台阶DE的坡度为1:2,DC=2米,∴CE=2CD=4米,∵∠AFD=90°,∠ADF=36.5°,DC=2米,tan∠ADF=,∴tan36.5°=,即DF=,又∵∠ABE=90°,∠AEB=64°,CE=4米,CB=DF,tan∠AEB=,∴BE=,即DF﹣4=,∴﹣4=,解得,AB≈7.8米,故答案为:7.8.18.如图,正方形ABCD,以AB为腰向外作等腰△ABE,连接DE交AB于点F,∠BAE 的平分线交EF于点G,过D点作AG的垂线交GA的延长线于点H,已知tan∠EDA=,S△AEF=9,则AH的长为.【考点】正方形的性质;等腰三角形的性质;解直角三角形.【分析】由于△AEB是等腰三角形,AG是△AEB的平分线,所以延长AG交EB于点I,连接BG,由题意可证明∠HGD=∠HDG=45°,∠BGF=90°,所以∠GBF=∠ADF,利用设AH=x后,用锐角三角形函数可表示出GF、DF的长度,利用△AEF的面积可求出△AHD 的面积,进而列出方程即可求出AH的长度.【解答】解:延长AG交EB于点I,连接BG,∵tan∠EDA==,AD=AB,∴,∴,∴,∴S△EBF=3,∴S△AEB=S△AEF+S△EBF=12,∵AB=AE,AG平分∠EAB,∴S△AIB=S△AEB=6,∵DH⊥GH,AI⊥EB∴∠IAB=∠HDA,在△AIB与△DHA中,,∴△AIB≌△HDA(AAS),∴AH=IB,∵AB=AD=AE,∴∠AED=∠EDA,∵∠EAI=∠BAI=∠HDA,∴∠AGD=∠EAI+∠AED=∠HDA+∠ADE,即∠AGD=∠HDG=45°,∴∠EGI=∠GEI=45°,∴EI=IG∴GD=HD,设AH=x,∴IB=EI=IG=x,BG=x∵∠BGF=90°,∴∠GBF=∠EDA,∴tan∠GBF=,∴=,∴GF=x,由勾股定理可得:BF=x,∴AB=4BF=5x,∴AD=AB=5x,∴cos∠EDA==,∴DF=AD=x,∴DG=DF+GF=x,∵sin∠HGF==,∴HD=7x,S△AIB=S△ADH=6,∴AH•HD=6,∴×7x2=6,∴x=,即AH=故答案为三、解答题:(本大题共2个小题,每小题7分,共14分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上19.计算:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2的值是多少即可.【解答】解:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2=3﹣1×1﹣3+4=3﹣1﹣3+4=320.2016年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】根据B类的人数和所占的百分比求出总人数,再根据A类的人数求出A类所占的百分比,再用1减去A、B、D所占的百分比,求出C类所占的百分比,从而得出C、D类的男生人数,即可补全统计图,再用该校的总人数乘以非常喜欢所占的百分比,求出非常喜欢”马拉松的人数.【解答】解:根据题意得:=40(人),A类型所占的百分比是:×100%=45%,C类型所占的百分比是:1﹣10%﹣15%﹣45%=30%,C类型的男生人数是:40×30%﹣8=4(人),D类型的男生人数是:40×10%﹣3=1(人),补图如下:600×45%=270(人),答:该校600名学生中“非常喜欢”马拉松的人数为270.四、解答题:(本大题共4个小题,每小题10分,共40分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上21.化简:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2(2)(﹣)÷.【考点】分式的混合运算;完全平方公式;平方差公式.【分析】(1)根据平方差公式和完全平方公式可以解答本题;(2)先化简括号内的式子,然后根据分式的除法可以解答本题.【解答】解:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2=a2﹣4b2﹣4a2+4ab﹣b2=﹣3a2﹣5b2+4ab;(2)(﹣)÷====.22.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B 两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<423.富士康科技机关作为全球最大电子产品制造商,在“机器换人”的建设方面取得巨大进展,今年一月份它在大陆某“工业40”厂区的生产线上有A、B两种机器去组装小米5手机外壳(以下简称“外壳)”.每小时一台A种机器人比一台B种机器人多组装50个外壳,每小时10台A种机器人和5台B种机器人共组装3500个外壳.(1)求今年一月份每小时一台A种机器人,一台B种机器人分别能组装多少个外壳;(2)因市场销售火爆,二月份小米手机厂商决定在该厂区追加订单,该厂区随机对A、B 两种机器人进行技术升级,二月底升级工作全面完成,升级后A种机器人每小时组装的外壳数量增加12%,B种机器人每小时组装的外壳数量增加15%,已知三月份投入生产的A种机器人的台数比B重机器人台数的2倍还多18台,且A、B两种机器人每小时组装的外壳数量之和不低于27160个,那么三月份该厂区最少应安排多少台B种机器人投入生产.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的一元一次不等式,从而可以解答本题.【解答】解:(1)设今年一月份每小时一台A种机器人能组装x个外壳,一台B种机器人能组装y个外壳,,解得,,即今年一月份每小时一台A种机器人能组装250个外壳,一台B种机器人能组装200个外壳;(2)设三月份该厂区最少应安排x台B种机器人投入生产,250(1+12%)(2x+18)+200(1+15%)x≥27160,解得,x≥26.2,即三月份该厂区最少应安排27台B种机器人投入生产.24.如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.【考点】平方差公式.【分析】(1)根据相邻两个奇数的立方差,可得答案;(2)根据相邻两个奇数的立方差,麻辣数的定义,可得答案.【解答】解:设k为整数,则2k+1、2k﹣1为两个连续奇数,设M为“麻辣数”,则M=(2k+1)3﹣(2k﹣1)3=24k2+2;(1)98=53﹣33,故98是麻辣数;M=24k2+2是偶数,故169不是麻辣数;(2)令M≤2016,则24k2+2≤2016,解得k2≤<84,故k2=0,1,4,9,16,25,36,49,64,81,故M的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.五、解答题:(本题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或推理步骤)25.如图,四边形ABCD为矩形,连接AC,AD=2CD,点E在AD边上.(1)如图1,若∠ECD=30°,CE=4,求△AEC的面积;(2)如图2,延长BA至点F使得AF=2CD,连接FE并延长交CD于点G,过点D作DH ⊥EG于点H,连接AH,求证:FH=AH+DH;(3)如图3,将线段AE绕点A旋转一定的角度α(0°<α<360°)得到线段AE′,连接CE′,点N始终为CE′的中点,连接DN,已知CD=AE=4,直接写出DN的取值范围.【考点】四边形综合题.【分析】(1)根据30°的直角三角形求CD和ED,再利用面积公式求△AEC的面积;(2)作辅助线,构建全等三角形,证明△AFM≌△ADH,得AM=AH,FM=DH,则△MAH 是等腰直角三角形,有MH=AH,根据线段的和代入得结论;(3)根据将线段AE绕点A旋转一定的角度α(0°<α<30°)得到线段AE′,先计算当AE旋转时DN的最小值和最大值,当α=0°时,DN最小;当α=180°时,DN最大,分别计算,写出结论.【解答】解:(1)在Rt△EDC中,∵∠EDC=30°,∴ED=EC=×4=2,cos30°=,∴DC=EC•cos30°=4×=2,∴AE=2DC﹣ED=4﹣2,∴S△AEC=×AE×DC=(4﹣2)×2=12﹣2;(2)过A作AM⊥AH,交FG于M,∴∠MAH=∠MAD+∠DAH=90°,又∵∠FAD=∠MAD+∠FAM=90°,∴∠FAM=∠DAH,∵AF∥CD,∴∠F=∠FGD∵DH⊥EG,∴∠DHE=∠HDG+∠FGD=90°,。

重庆市2020版中考数学一模试卷(I)卷

重庆市2020版中考数学一模试卷(I)卷

重庆市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018七上·北京月考) 下列各式中结果为负数的是()A . ﹣(﹣3)B . |﹣3|C . (﹣3)2D . ﹣322. (2分)下列运算正确的是()A . 3x2+2x3=5x5B . 2x2+3x2=5x2C . 2x2+3x2=5x4D . 2x2+3x3=6x53. (2分) (2018九下·夏津模拟) 铁路部门消息:2017年端午节小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为()A .B .C .D .4. (2分)(2019·广西模拟) 函数y= 中,自变量x的取值范围是()A . x>0B . x≥0C . x<0D . x≤05. (2分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k6. (2分)(2016·无锡) 已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A . 24cm2B . 48cm2C . 24πcm2D . 12πcm27. (2分)如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A . 3米B . 4米C . 5米D . 6米8. (2分)如果反比例函数y=的图像经过点(-3,-4),那么函数的图像应在()A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限9. (2分) (2018九上·翁牛特旗期末) 在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是()A .B .C .D .10. (2分)(2019·泰山模拟) 已知关于x的一元二次方程x2-2kx+6=0有两个相等的实数根,则k的值为()A . ±2 /6B . ±C . 2或3D . 或11. (2分)(2013·百色) 一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A . 6cm2B . 4πcm2C . 6πcm2D . 9πcm212. (2分)(2019·井研模拟) 如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y= (k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A .B .C . 3D . 5二、填空题 (共5题;共5分)13. (1分)如果锐角α满足2cosα=,那么α=________°.14. (1分)(2018·南京模拟) 分解因式3a2-6a+3的结果是________.15. (1分) (2020八上·肇州期末) 从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为________.16. (1分) (2017九上·满洲里期末) 如图,一男生推铅球,铅球行进高度(米)与水平距离(米)之间的关系是,则铅球推出距离________米.17. (1分) (2019八下·闵行期末) 如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为________元.三、解答题 (共8题;共95分)18. (5分) (2017八上·宁都期末) 解分式方程:﹣ =1.19. (15分) (2015八下·六合期中) 计算下列各题(1)(2)(3 ﹣2 + )÷2(3)先化简,再求值:其中a= +1.20. (5分) (2019八上·大连期末) 列方程解应用题甲、乙两名学生练习打字,甲打个字所用时间于乙打个字所用时间相同,已知甲平均每分钟比乙少打个字,求甲平均每分钟打字的个数.21. (15分)(2019·郊区模拟) 某商店销售A型和B型两种电器,若销售A型电器20台,B型电器10台可获利13000元,若销售A型电器25台,B型电器5台可获利12500元.(1)求销售A型和B型两种电器各获利多少元?(2)该商店计划一次性购进两种型号的电器共100台,其中B型电器的进货量不超过A型电器的2倍,该商店购进A型、B型电器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电器出厂价下调a(0<a<200)元,且限定商店最多购进A型电器60台,若商店保持同种电器的售价不变,请你根据以上信息,设计出使这100台电器销售总利润最大的进货方案.22. (15分) (2020八下·泰兴期中) 如图,已知线段AB,A(2,1),B(4,3),现将线段AB沿y轴方向向下平移得到线段MN,直线y=mx+b过M、N两点,且M、N两点恰好也落在双曲线y= 的一条分支上,(1)求反比例函数和一次函数的解析式.(2)直接写出不等式mx+b-≥0的解集(3)若点C(x1 , a),D(x2 , a-1)在双曲线y= 上,试比较x1和x2的大小.23. (20分) (2016九上·相城期末) 为推进阳光体育活动的开展,某学校决定开设以下体育课外活动项目:A 排球;B 乒乓球;C 篮球;D 羽毛球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)求喜欢排球人数所占扇形圆心角的大小;(4)若甲、乙、丙、丁四位同学都喜欢乒乓球运动,现从这四名同学中任选两名进行对抗练习,求恰好选中乙、丙两位同学的概率(用树状图或列表法解答).24. (10分)(2012·本溪) 某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?25. (10分)(2017·石景山模拟) 如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共95分)18-1、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、。

2020年重庆外国语学校中考数学一诊试卷 (含答案解析)

2020年重庆外国语学校中考数学一诊试卷 (含答案解析)

2020年重庆外国语学校中考数学一诊试卷一、选择题(本大题共12小题,共48.0分)1.下列四个数:−3,−√3,−π,−1,其中最小的数是()A. −πB. −3C. −1D. −√32.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形D. 平行四边形3.在平面直角坐标系中,已知点E(−4,2),F(−2,−2),以原点O为位似中心,相似比为1,把△EFO2缩小,则点E的对应点E′的坐标是()A. (−2,1)B. (−8,4)C. (−8,4)或(8,−4)D. (−2,1)或(2,−1)4.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③有一条对角线平分一个内角的平行四边形为菱形.其中不正确的有()A. 3个B. 2个C. 1个D. 0个5.估计√3−2的值应该在()A. −1−0之间B. 0−1之间C. 1−2之间D. 2−3之间6.如图,已知BC是⊙O的直径,AB是⊙O的弦,切线AD交BC的延长线于D,若∠D=40 ∘,则∠B的度数是()A. 40 ∘B. 50 ∘C. 25 ∘D. 115 ∘7.如图所示是一个运算程序,若输入的值为−2,则输出的结果为()A. 3B. 5C. 7D. 98.甲、乙两人加工一批零件,甲完成240个与乙完成200个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. 240x+4=200xB. 240x=200x+4C. 240x−4=200xD. 240x=200x−49.如图,点A是反比例函数y=−6x(x<0)的图像上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 1210.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A. 23米B. 24米C. 24.5米D. 25米11.已知二次函数y=−x2+(a−2)x+3,当x>2时y随着x的增大而减小,且关于x的分式方程a−x x−3=1−23−x的解是自然数,则符合条件的整数a的和是()A. 3B. 8C. 15D. 1612.如图,∠ACB=90º,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A. 65B. 85C. 43D. √52二、填空题(本大题共6小题,共24.0分)13.计算:√8+(12)−1−|√2−2|−4cos45°=______14.2019年3月5日,李克强总理在政府工作报告中指出,去年农村贫困人口减少1386万,1386万用科学记数法表示为______.15.有五张正面分别写有数字−4,−3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n,则抽取的n既能使关于x的方程(n+3)x2+(n+1)x+12=0有实数根,又能使以x为自变量的反比例函数y=n2−16x的图象在每个象限内y随x的增大而增大的概率为______.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)17.小亮和小明在同一直线跑道AB上跑步.小亮从AB之间的C地出发,到达终点B地停止运动,小明从起点A地与小亮同时出发,到达B地休息20秒后立即以原速度的1.5倍返回C地并停止运动,在返途经过某地时小明的体力下降,并将速度降至3米/秒跑回终点C地,结果两人同时到达各自的终点.在跑步过程中,小亮和小明均保持匀速,两人距C地的路程和记为y(米),小亮跑步的时间记为x(秒),y与x的函数关系如图所示,则小明在返途中体力下降并将速度降至3米/秒时,他距C地还有______米.18.小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,用了28元.则每支中性笔的价格为元,每盒笔芯的价格为元.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(a+b)2−b(2a+b)(2)(2−2xx+1+x−1)÷x2−xx+1.20.把下面的证明过程补充完整.已知:如图,AD是△ABC的角平分线,点E在BC上,点G在CA延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE//AD.证明:在△AFG中,∠BAC=∠G+_____(__________________)又∵∠AFG=∠G(已知),∴_____=2∠G.∵AD是△ABC的角平分线,∴∠BAC=2∠DAC(___________).∴______=2∠DAC(__________).∴∠G=∠DAC.∴__________().21.炎热的夏天来临之际.为了调查我校学生消防安全知识水平,学校组织了一次全校的消防安全知识培训,培训完后进行测试,在全校2400名学生中,分别抽取了男生,女生各15份成绩,整理分析过程如下,请补充完整.【收集数据】男生15名学生测试成绩统计如下:68,72,89,85,82,85,74,92,80,85,76,85,69,78,80女生15名学生测试成绩统计如下:(满分100分)82,88,83,76,73,78,67,81,82,80,80,86,82,80,82按如下分数段整理、描述这两组样本数据:【分析数据】(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=______.y=______;(2)若规定得分在80分以上(不含80分)为合格,请估计全校学生中消防安全知识合格的学生有______人;(3)通过数据分析得到的结论是女生掌握消防安全相关知识的整体水平比男生好,请从两个方面说明理由.22.已知反比例函数y1=k的图象与一次函数y2=ax+b的图象交于点A(3,8)和点B(m,−4).x(1)求这两个函数的表达式;(2)求△ABO的面积;(3)观察图象,直接写出y1>y2时自变量x的取值范围.23.根据下列语句,分别设出适当的未知数,列出二元一次方程。

2020届初三中考数学一诊联考试卷含参考答案 (重庆)

2020届初三中考数学一诊联考试卷含参考答案 (重庆)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.2018的倒数是()A.2018 B.12018 C.12018-D.﹣20182.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.3.如图,点A,B在双曲线y=4x(x>0)上,点C C在双曲线1(0)y xx=>上,若AC y ‖轴,//BC x 轴,且AC BC ,则AB 等于( )A B .C .D .44.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .5.有一首《对子歌》中写到“天对地,雨对风,大陆对长空”,现有四张书签,除正面写上“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是( )A .12B .13C .14D .166.某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:则4月份这100户节电量的平均数、中位数、众数分别是( )A .35、35、30B .25、30、20C .36、35、30D .36、30、307.分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为( ) A .0和3 B .1 C .1和2- D .38.关于x 的一元二次方程210x mx --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定9.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P→D→Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .10.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A. B.C.D.二、填空题(共4题,每题4分,共16分)11.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D,折1AD=__.痕为EF,若∠BAE=55°,则∠D1的12.如图,在正方形ABCD中,画一个最大的正六边形EFGHIJ,则BGF度数是________.13.某学习小组设计了一个摸球试验,在袋中装有黑、白两种除颜色外完全相同的小球,在看不到球的前提下,随机从袋中摸出一个球,记下颜色,再把它放回去,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率为_____.(结果精确到0.1)14.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.三、解答题(共6题,总分54分)15.如图,正比例函数y1=kx与反比例函数myx=(x>0)交于点A(2,3),AB⊥x轴于点B,平移直线y1=kx使其经过点B,得到直线y2,y2与y轴交于点C,与6yx=交于点D.(1)求正比例函数y1=kx及反比例函数myx=的解析式;(2)求点D的坐标;(3)求△ACD的面积.16.经纬文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本的数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店A种笔记本每本售价24元,B种笔记本每本售价35元,准备购进A、B两种笔记本共100本,且这两种笔记本全部售出后总获利高于468元,则最多购进A种笔记本多少本?17.定义:一组邻边相等且对角互补的四边形叫做“邻等对补四边形”如图1,四边形ABCD中,AB=BC,∠B+∠D=180°(或∠A+∠C=180°),则四边形ABCD叫做“邻等对补四边形”.概念理解(1)在以下四种图形中:①平行四边形,②菱形,③矩形,④正方形;一定是“邻等对补四边形”的是;(填写序号)(2)如图2,点A、B、C是网格中格点,请找出两个格点P1,P2,连接P1A、P1C,P2A、P2C画出四边形P1ABC,P2ABC,使四边形P1ABC,P2ABC均为“邻等对补四边形”.性质证明(3)如图1,四边形ABCD中,AB=BC,∠A+∠C=180°,连接BD,求证:BD平分∠ADC.知识运用(4)如图3,在“邻等对补四边形”ABCD中,满足AB=AD,AB+BC=6,∠ADC=60°时,若2≤BC<3,求四边形ABCD的面积的最大值.。

重庆外国语学校2020届九年级下学期第一次诊断考试数学试题

重庆外国语学校2020届九年级下学期第一次诊断考试数学试题

重庆外国语学校2019—2020学年度下期第一次诊断考试初三数学试题(满分150分,120分钟完成)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列各数中,最小的是()A.πB.3-C.12D.2.中华文化博大精深,其中汉字的书写更是极具美感.下列汉字可近似看成既是轴对称图形又是中心对称图形的是()A.天B.佑C.中D.华3.如图,在平面直角坐标系中,已知点A(2-,6-),B(4-,2-),以原点O为位似中心,把OAB△缩小为原来的12,则点A在第一象限的对应点A'的坐标是()A.(1,3)B.(2,1)C.(12,32)D.(1-,3-4.下列命题是真命题的是()A.对角线互相垂直的四边形是菱形B.平行四边形的对角线互相平分C.三角形的外角等于它其中两个内角的和D.过直线外一点有无数条直线与这条直线平行5的值更接近于()A.7 B.3 C.2 D.16.如图,AB是O的直径.点P、Q在O上,过点P的切线与AB的延长线交于点C,连接AQ、PQ,若=36C∠︒,则Q∠的度数为()A.66°B.65°C.64°D.63°第3题图7.按如图所示的运算程序,能使输出的b 的值为1-的是( )A .1,2x y ==B .2,0x y ==C .2,1x y ==D .1,1x y =-= 8.随着2020年重庆中招体育考试日益临近,初三同学坚持每天锻炼的热情也愈发高涨.某班甲、乙两名同学相约利用课余时间进行跳绳锻炼.在一次锻炼中,甲同学完成跳绳180个,乙同学完成跳绳200个,但乙同学所用时间比甲同学少10秒,两人计算后得知:甲同学每秒比乙同学少跳绳1个,则本次锻炼中甲同学每秒跳绳多少个?设甲同学每秒跳绳x 个,则由题意可列方程为( ) A .180200101x x -=- B .200180101x x -=+ C .180200101x x -=+ D .200180101x x-=+ 9.如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在y 轴上,点(4,4)D ,3cos 5BCD ∠=,若反比例函数ky x=(0k ≠)的图象经过平行四边形对角线的交点E ,则k 的值为( ) A .14 B .7 C .8 D .7210.家住重庆两相邻小区的小明和小华在一次数学课后,进行了一次数学实践活动.如图,在同一水平面从左往右依次是小明家所在的居民楼、小华家所在的小洋房、背靠小华家的一座小山,实践内容为测量小山的高度,家住顶楼的小明在窗户A 处测得小山山顶的一棵大树顶端E 的俯角为10°,小华在自家楼下C 处测得小明家窗户A 处的仰角为37°,且测得坡面CD 的坡度1:2i =,已知两家水平距离120BC =米,大树高度3DE =米,则小山山顶D 到水平面BF 的垂直高度约为( )(精确到0.1米,参考数据33179sin37,tan37,sin10,tan105410050︒≈︒≈︒≈︒≈) A .55.0米 B .50.3米 C . 48.1米 D .57.3米输入,x yx y≥y x b=-+y x b =-输出b 值是否第7题图第6题图11.从352,0,1,,,322-这六个数中,随机抽取一个数记为a ,则使关于x 的二次函数2(3)1y x a x =+--在1x <-的范围内y 随x 的增大而减小,且使关于x 的分式方程233x a ax x--=--的解为正数的a 共有( )A .2个B .3个C .4个D .1个12.如图,在ABC △中,=4AC BC =,90C ∠=︒,D 是BC 边上一点,且3CD BD =,连接AD ,把ACD △沿AD 翻折,得到ADC '△,DC '与AB 交于点E ,连接BC ',则BDC '△的面积为( ) A .7225 B .3625 C .5425 D .2725二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡对应的横线上.13.计算:212cos3027___________2-⎛⎫︒--= ⎪⎝⎭.14.2019年是新中国成立70周年,是决胜全面建成小康社会第一个百年奋斗目标的关键之年,脱贫攻坚成效明显.按照现行农村贫困标准计算,2019年末农村贫困人口比上年末减少1109万人.将1109万人用科学记数法表示为 人.15.在一个口袋中装有4个完全相同的小球,它们的标号分别为3-,1-,2,4.现从中随机摸出两个小球,将上面的标号分别记为a 、b ,则使得反比例函数xba y +=经过一、三象限的概率为 .16.如图,正方形ABCD 的边长为4,连接AC ,先以A 为圆心,AB 的长为半径作弧BD ,再以A 为圆心,AC 的长为半径作弧CE ,且A 、D 、E 三点共线,则图中两个阴影部分的面积之和是 .第9题图 第10题图 第12题图17.小明和小亮分别从同一直线跑道A 、B 两端同时相向匀速出发,第一次相遇后小明觉得自己速度太慢便立即提速至原速的1.5倍,然后匀速运动到B 端,且小明到达B 端后立即以提速后的速度调头返回.小亮匀速跑步到A 端后,立即按原速返回(忽略小明、小亮调头时间),当小明、小亮再次相遇时二人停止运动.已知两人相距的距离y (米)与小亮出发时间x (秒)之间的关系如图所示,则第二次相遇时小明与B 端的距离为米.18.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,点D 是△ABC 内一个动点,且满足DAB DBC ∠=∠,当线段CD 取最小值时,记BCD α∠=,线段AB 上一动点E 绕着点D 顺时针旋转得到点F ,且满足EDF α∠=,则AF 的最小值为 .第16题图 第17题图18题图三、解答题:(本大题共8个小题,19题8分,20—26每题10分,共78分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()y x x y x 232--- (2)⎪⎭⎫⎝⎛+--÷+-2522322m m m m m m20.如图,在△ABC 中,AB=AC ,D 为BC 中点,点E 是BA 延长线上一点,点F 是AC 上一点,连接EF 并延长交BC 于点G ,且AE=AF . (1)若50ABC ∠=,求AEF ∠的度数; (2)求证:EG AD //.第20题图21.2020年注定是不平凡的一年,新年伊始,一场突如其来的疫情席卷全国,全国人民万众一心,抗战疫情.为了早日取得抗疫的胜利,各级政府、各大新闻媒体都加大了对防疫知识的宣传。

2020届初三中考数学一诊联考试卷含答案解析 (重庆)

2020届初三中考数学一诊联考试卷含答案解析 (重庆)

2020届**市初三中考一诊联考试卷数 学注意事项: 1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图,将△ABC 绕点C 顺时针旋转36°,点B 的对应点为点E ,点A 的对应点为点D ,此时点E 恰好落在边AC 上时,连接AD ,若AB =BC ,AC =2,则AB 的长度是( )A 51B .1C 51- D .322.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A.(2018+6723,0)B.(2019+6733,0)C.(40352+6723,32)D.(2020+6743,0)3.如图,在平面直角坐标系xOy中,直线y=3x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为()A.(﹣2,3B.(﹣4,3C.(﹣3,2)D.(﹣34)4.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.155.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A.众数是110B.方差是16C.平均数是109.5D.中位数是1096.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y=k x(k≠0)图象上的一点,过点P作P A⊥x轴于点A,点B为AO的中点若△P AB 的面积为3,则k的值为()A.6B.﹣6C.12D.﹣127.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为23,则a的值是()A.﹣2B.﹣2C.﹣23D.﹣22 8.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.19.按如图所示的运算程序,当输出的y值为0时,x的值是()A.1B.2C.1±D.2±10.下列的几何图形中,一定是轴对称图形的有()A.5个B.4个C.3个D.2个二、填空题(共4题,每题4分,共16分)1192x-x的取值范围是_____.12.已知(a2)21b+=0,则ba=_____.13.下列函数:①y=﹣2x;②y=﹣3x﹣1;③y=6x;④y=2x;⑤y=3x(x<0),在自变量的取值范围内,自变量越大,函数值越小的函数是_____(填序号).14.函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是_____.三、解答题(共6题,总分54分)15.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.16.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.17.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BC,若cos∠CAD=45,⊙O的半径为5,求CD、AE的值.18.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG ∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.19.体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.。

重庆市外国语学校2020届数学中考模拟试卷

重庆市外国语学校2020届数学中考模拟试卷

重庆市外国语学校2020届数学中考模拟试卷一、选择题1.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里,远地点高度为40万公里的预定轨道,将数据40万用科学记数法表示为( ) A.4×105 B.4×104 C.4×106 D.0.4×1052.如图,四边形ABCD是边长为4的正方形,点E为边BC上的点,以DE为边向外作矩形DEFG,使FG过点A,若DG=165,那么DE=( )A.5 B.C.325D.2853④)A.①②B.③④C.①③D.①④4.如图,四边形ABCD是平行四边形,点A、B、C的坐标分别为(2,0)、(0,1)、(1,2),则AB+BC的值为()A B.3 C.4 D.55.下列运算中,正确的是()A.(﹣12)﹣1=﹣2 B.a3•a6=a18C.6a6÷3a2=2a3D.(﹣2ab2)2=2a2b4 6.下列各式变形中,正确的是()A.2=x B.2(1)(1)1x x x---=-C.x xx y x y=--++D.22131=x+-24x x⎛⎫++ ⎪⎝⎭7.找出以如图形变化的规律,则第2019个图形中黑色正方形的数量是()A.2019 B.3027 C.3028 D.30298.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A .1(1)282x x -= B .1(1)282x x += C .(1)28x x -= D .(1)28x x +=9.已知一多边形的每一个内角都等于150°,则这个多边形是( ) A .十二边形B .十边形C .八边形D .六边形10.如图,是由几个大小相同的小立方体搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方体的个数,则这个几何体的主视图是( )A .B .C .D .11.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k 的值为( )A .6-B .5-C .4-D .3-12.如图,A 、B 两地之间有一池塘,要测量A 、B 两地之间的距离.选择一点O ,连接AO 并延长到点C ,使OC =12AO ,连接BO 并延长到点D ,使OD =12BO .测得C 、D 间距离为30米,则A 、B 两地之间的距离为( )A .30米B .45米C .60米D .90米二、填空题13.《孙子算经》是中国古代重要的数学著作,共三卷.卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:“鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94条脚.问笼中各有多少只鸡和多少只兔?”,设有鸡x 只,兔子y 只,可列方程组为_____________.14.在函数y =x 的取值范围是__________. 15.在平面直角坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2017个正方形的面积为_____.16.如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.17.一元二次方程23210x x -+=的根的判别式∆_______0.(填“>”,“=”或“<”) 18.已知圆锥的底面半径为3cm ,母线长为9cm ,PA 、PB 为圆锥的两条相对的母线,AB 为底面直径,C 为母线PB 的中点,在圆锥的侧面上,从A 到C 的最短距离是_____cm . 三、解答题19.有三面小旗,分别为红、黄、蓝三种颜色.(1)把三面小旗按不同顺序排列,共有多少种不同排法?用树状图表示,并把它们排列出来. (2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少?20.如图,在矩形ABCD 中,AB =4,AD =3,折叠纸片,使AD 边与对角线BD 重合,得折痕DG ,求DG 的长.21.某服饰公司为我学校七年级学生提供L 码、M 码、S 码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了 人;(2)购买L 码人数对应的圆心角的度数是 ;(3)估计该服饰公司要为我校七年级学生准备多少件M 码的校服?22.某校在苏州园林研学时,校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60.已知A 点的高度AB 为3米,台阶AC 的坡度为即:AB BC =),且,,B C E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).23.为拓宽学生视野,我市某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(2)设租用x辆乙种客车,租车总费用为w元,请写出w与x之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,租用乙种客车不少5辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.24.如图1,有一个“z”字图形,其中AB∥CD,AB:CD:BC=1:2:3.(1)如图2,若以BC为直径的⊙O恰好经过点D,连结AO.①求cosC.②当AB=2时,求AO的长.(2)如图3,当A,B,C,D四点恰好在同一个圆上时.求∠C的度数.25.如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG.【参考答案】***一、选择题13.35 2494 x yx y+=⎧⎨+=⎩14.13x≥-且2x≠15.5×(32)40321617.<18.三、解答题19.(1)共有6种不同排法:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红;(2)红色小旗排在最左端的概率是13.【解析】【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先由(1)中的树状图即可求得红色小旗排在最左端的情况,然后由概率公式求得答案.【详解】(1)画树状图得:则共有6种不同排法:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红;(2)∵由(1)中的树状图得:红色小旗排在最左端的有2种情况,∴红色小旗排在最左端的概率是:21 63 =.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20【解析】【分析】设AG=x,由勾股定理可求得BD的长,又由折叠的性质,可求得A′B的长,然后由勾股定理可得方程:x2+22=(4﹣x)2,解此方程即可求得AG的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∠DA′G=∠A=90°,∴∠BA′G=90°,BG=AB﹣AG=4﹣x,A′B=BD﹣A′D=5﹣3=2,∵在Rt△A′BG中,A′G2+A′B2=BG2,∴x2+22=(4﹣x)2,解得:x=32,∴AG=32,∴在Rt△ADG中,DG=【点睛】本题主要考查了矩形的性质、翻折变换的性质以及勾股定理;解答的关键是利用勾股定理得到x2+22=(4﹣x)2.21.(1)100;(2)108°;(3)480(件).【解析】【分析】(1)由S码衣服的人数及其所占百分比可得被调查的总人数;(2)用360°乘以L码衣服的人数所占比例即可得;(3)用总人数乘以样本中M码衣服的人数所占比例即可得.【详解】解:(1)本次调查的总人数为22÷22%=100人,故答案为:100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为:108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.树高为9米【解析】【分析】过点A作AF⊥DE于F,可得四边形ABEF为矩形,设DE=x,在Rt△DCE和Rt△ABC中分别表示出CE,BC 的长度,求出DF的长度,然后在Rt△ADF中表示出AF的长度,根据AF=BE,代入解方程求出x的值即可.【详解】如图,过点A作AF DE⊥于F,则四边形ABEF为矩形,3AF BE EF AB ∴===,米,设DE x =,在Rt CDE ∆中,60DE CE tan =,在Rt ABC ∆中,33ABAB BC BC ==∴=,在Rt AFD ∆中()333330x DF DE EF x AF x tan -=-=-∴==-,,)3AF BE BC CE x ==+-=,,解得9x =(米).答:树高为9米. 【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.23.(1)老师有16名,学生有284名;租用客车总数为8辆;(2)w =100x+2400;(3)共有3种租车方案:①租用甲种客车3辆,乙种客车5辆,租车费用为2900元;②租用甲种客车2辆,乙种客车6辆,租车费用为3000元;③租用甲种客车1辆,乙种客车7辆,租车费用为3100元;最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆. 【解析】 【分析】(1)设出老师有x 名,学生有y 名,得出二元一次方程组,解出即可;再由每辆客车上至少要有2名老师,且要保证300名师生有车坐,可得租用客车总数;(2)由租用x 辆乙种客车,得甲种客车数为:(8﹣x )辆,由题意得出w =400x+300(8﹣x )即可; (3)由题意得出400x+300(8﹣x )≤3100,且x≥5,得出x 取值范围,分析得出即可. 【详解】解:(1)设老师有x 名,学生有y 名. 依题意,列方程组1712184x y x y =-⎧⎨=+⎩,解得:16284x y =⎧⎨=⎩,∵每辆客车上至少要有2名老师, ∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于30050427=(取整为8)辆, 综合起来可知汽车总数为8辆;答:老师有16名,学生有284名;租用客车总数为8辆. (2)∵租用x 辆乙种客车, ∴甲种客车数为:(8﹣x )辆, ∴w =400x+300(8﹣x )=100x+2400.(3)∵租车总费用不超过3100元,租用乙种客车不少于5辆,∴400x+300(8﹣x )≤3100,x≥5 解得:5≤x≤7, 为使300名师生都有座, ∴42x+30(8﹣x )≥300, 解得:x≥5,∴5≤x≤7,(x 为整数), ∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元; 方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元; 方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元; 故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆. 【点睛】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x 辆甲种客车与租车费用的不等式关系是解决问题的关键. 24.(1)①cosC=23;②当AB =2时,2)∠C =60°. 【解析】 【分析】(1)①连接BD ,根据圆周角定理得到∠CDB =90°,根据余弦的定义计算;②作OE ⊥CD 于E ,证明△AOB ≌△EOC ,根据全等三角形的性质得到∠A =∠CEO =90°,根据勾股定理计算即可;(2)证明△AFB 为等边三角形,根据等边三角形的性质、圆周角定理计算. 【详解】解:(1)①如图2,连接BD , ∵BC 为⊙O 的直径, ∴∠CDB =90°, 在Rt △BCD 中,cosC =CD BC =23; ②如图2,作OE ⊥CD 于E , 则CE =DE ,∵AB =2,AB :CD :BC =1:2:3, ∴CD =4,BC =6, ∴AB =CE =2, ∵AB ∥CD , ∴∠C =∠ABO , 在△AOB 和△EOC 中, OB OC ABO C AB CE =⎧⎪=⎨⎪=⎩∠∠, ∴△AOB ≌△EOC (SAS ), ∴∠A =∠CEO =90°, ∴OA(2)如图3,连接AD 交BC 于F , ∵AB ∥CD ,∴△AFB∽△DFC,∴12 BF ABCF CD==,∴13 BFBC=,∵13 ABBC=,∴BF=AB,∴∠BFA=∠A,∵AB∥CD,∴∠B=∠C,由圆周角定理得,∠A=∠C,∴∠A=∠B=∠AFB,∴△AFB为等边三角形,∴∠C=∠B=60°.【点睛】本题考查的是圆周角定理、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.25.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用三角形内心性质得∠EBD=∠CBD.加上∠DBE=∠BAD,则∠CBD=∠BAD,根据圆周角定理得到∠BDA=90°.然后证明∠ABC=90°.于是根据切线的判定定理可判断BC是⊙O的切线;(2)连接ED,如图,则∠BED=∠CED,再证明∠EFD=∠EGD,从而可判断△DFE≌△DGE.于是得到DF =DG.【详解】(1)∵点D为△BCE的内心,∴BD平分∠EBC.∴∠EBD=∠CBD.又∵∠DBE=∠BAD,∴∠CBD=∠BAD.又∵AB是圆的直径,∴∠BDA=90°.在Rt△BAD中,∠BAD+∠ABD=90°,∴∠CBD+∠ABD=90°,即∠ABC=90°.∴BC⊥AB.又∵AB为直径,∴BC是圆的切线;(2)连接ED,如图,则ED平分∠BEC,∴∠BED=∠CED.∵∠EFD为△BFD的外角∴∠EFD=∠ADB+∠EBD=90°+∠EBD,又∵四边形ABDG为圆的内接四边形,∴∠EGD=180°﹣∠ABD=180°﹣(90°﹣∠CDB)=90°+∠CDB又∵∠EBD=∠CBD,∴∠EFD=∠EGD又∵ED=ED,∴△DFE≌△DGE(AAS ).∴DF=DG.【点睛】本题考查了三角形的内切圆和内心:三角形的内心与三角形顶点的连线平分这个内角.也考查了圆周角定理和切线的判定.。

2019-2020年重庆市初三中考数学第一次模拟试题【含答案】

2019-2020年重庆市初三中考数学第一次模拟试题【含答案】

2019-2020年重庆市初三中考数学第一次模拟试题【含答案】一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.【分析】先证明△ADF∽△CEF,可知=,然后根据相似三角形的性质可知=()2,再根据,从而可求出三角形ACD的面积.【解答】解:在▱ABCD中,AD∥CE,AD=BC∴△ADF∽△CEF,∴,∵CE=2EB,∴CE=BC=AD,∴=,∴=()2=,∴S△CEF=12,∵,∴S△CFD=18,∴S△ACD=S△AFD+S△CDF=27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a≤2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:===,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).故答案为:80;(2)被抽到的学生中,步行的人数为80×20%=16人,直方图:(3)被抽到的学生中,乘公交车的人数为80﹣(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为×2400=780人.(4)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为1,所以到第二个路口时第二次遇到红灯的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.【分析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,即可求菱形DGCE的面积.【解答】证明:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=4,DG∥EC在Rt△DGH中,∠DGB=60°∴DH=DG cos30°=2∴菱形DGCE的面积=GC×DH=8【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得,解可得x的值,进而可得答案;(2)根据题意,可得关系式y=15m+20(m﹣1),化简可得y=35m﹣20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工35﹣x;根据题意,易得,解得x=15,经检验,x=15是原方程的解,且符合题意.35﹣15=20,答:甲每天加工15个,乙每天加工20个;(2)y=15m+20(m﹣1),即y=35m﹣20,∵在y=35m﹣20中,y是m的一次函数,k=35>0,y随m的增大而增大,又由已知得:3≤m≤5,∴当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.【分析】(1)连接OE,证明∠GEO=90°,即GE⊥OE,于是EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,得到GE2=GC•GD,又GF=GE,所以GF2=GC •GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,,在Rt△HOC中,由勾股定理得,由△AHC∽△MEO,所以.【解答】解:(1)证明:如图,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,∴,∴GE2=GC•GD,又∵GF=GE,∴GF2=GC•GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,∵,∴,在Rt△HOC中,∵OC=r,,,∴,∴,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴.【点评】本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解题的关键.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)△ADC与△ABC关于AC所在的直线对称,则CD=BC=2,∠ACD=∠ACB =30°,过点D作DE⊥BC于点E,∠DCE=60°,则,即可求解;(2)求出A,D坐标,两个点在同一反比例函数上,则,即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答】解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF~△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH~△DPG,,,解得:k=0(舍),综上:存在.【点评】本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点,此类题目的关键是,通过设线段长度,确定图象上点的坐标,进而求解.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是①②④(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.【分析】(1)由“雅垂矩形”的两邻边比为1:4可以得出正比例函数的系数k的值,从而得出答案;(2)由题意知A(m,m2﹣2m),C(3m,9m2﹣6m).由0<m<0.5知CD=3m﹣m=2m,BC=m2﹣2m﹣(9m2﹣6m)=4m2﹣8m,从而得L=2(CD+BC)=﹣16m2﹣12m=﹣16(m﹣0.375)2+2.25,据此可得答案;。

2020年重庆实验外国语学校中考数学一模考试试卷 解析版

2020年重庆实验外国语学校中考数学一模考试试卷  解析版

2020年重庆实验外国语学校中考数学一模试卷一.选择题(共12小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.函数y=的自变量x的取值范围是()A.x>﹣3B.x≠﹣3C.x≥﹣3D.x>﹣3且x≠0 3.如图,数轴上的点可近似表示(4﹣)÷的值是()A.点A B.点B C.点C D.点D4.下列判断中正确的是()A.矩形的对角线互相垂直B.正八边形的每个内角都是145°C.三角形三边垂直平分线的交点到三角形三边的距离相等D.一组对边平行,一组对角相等的四边形是平行四边形5.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.﹣=45B.﹣=45C.﹣=45D.﹣=456.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB =4,CD=1,则EC的长为()A.B.C.D.47.按照如图的程序计算:如果输入y的值是正整数,输出结果是94,则满足条件的y值有()A.4B.3C.2D.18.如图,△ABC中,A,B两个顶点在x轴上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为()A.﹣1B.﹣C.﹣2D.﹣9.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km10.如图,小明站在某广场一看台C处,从眼睛D处测得广场中心F的俯角为21°,若CD=1.6米,BC=1.5米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10米,则看台底端A点距离广场中心F点的距离约为(参考数据:sin2l°≈0.36,cos2l°≈0.93,tan21°≈0.38)()A.8.8米B.9.5米C.10.5米D.12米11.已知关于x的分式方程+﹣1=0有整数解,且关于x的不等式组有且只有3个负整数解,则符合条件的所有整数a的个数为()A.1B.2C.3D.412.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:<m<11.A.①②③④B.①②④C.①③④D.②③④二.填空题(共6小题)13.计算:|2﹣|﹣2sin30°﹣(π﹣3)0=.14.分解因式:12m2﹣3=.15.如图,4×2的正方形网格中,在A、B、C、D四个点中任选三个点,能够组成等腰三角形的概率为.16.如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交AD,CD于G,F两点,则图中阴影部分的面积为.17.如图,菱形ABCD的顶点A在x轴正半轴上,边CD所在直线过点O,对角线BD∥x 轴交AC于点M,双曲线y=上过点B且与AC交于点N,如果AN=3CN,S△NBC=,那么k的值为.18.如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是.三.解答题(共2小题)19.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E 两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=xcm,DE=ycm(当x的值为0或3时,y的值为2),探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:x/cm00.400.55 1.00 1.80 2.29 2.613y/cm2 3.68 3.84 3.65 3.13 2.702(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为cm(结果保留一位小数).20.如图,在正方形ABCD中,AB=6,M是对角线BD上的一个动点(0<DM<BD),连接AM,过点M作MN⊥AM交BC于点N.(1)如图①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2时,求△HMN的面积.参考答案与试题解析一.选择题(共12小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、既是中心对称图形也是轴对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:B.2.函数y=的自变量x的取值范围是()A.x>﹣3B.x≠﹣3C.x≥﹣3D.x>﹣3且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意,得:x+3>0,解得:x>﹣3,故选:A.3.如图,数轴上的点可近似表示(4﹣)÷的值是()A.点A B.点B C.点C D.点D【分析】根据二次根式的性质以及不等式的性质即可求出答案.【解答】解:原式=4﹣,由于2<<3,∴1<4﹣<2,故选:A.4.下列判断中正确的是()A.矩形的对角线互相垂直B.正八边形的每个内角都是145°C.三角形三边垂直平分线的交点到三角形三边的距离相等D.一组对边平行,一组对角相等的四边形是平行四边形【分析】根据多边形外角和定理可计算出正八边形外角的度数,进而算出内角的度数;根据矩形的性质,三角形外心的性质,平行四边形的判定定理即可得到结论.【解答】解:A、矩形的对角线互相平分且相等;故错误;B、正八边形的每个外角是360°÷8=45°,内角180°﹣45°=135°,故错误;C、三角形三边垂直平分线的交点到三角形三个顶点的距离相等,故错误;D、一组对边平行,一组对角相等的四边形是平行四边形,故正确;故选:D.5.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.﹣=45B.﹣=45C.﹣=45D.﹣=45【分析】直接利用5G网络比4G网络快45秒得出等式进而得出答案.【解答】解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:﹣=45.故选:A.6.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB =4,CD=1,则EC的长为()A.B.C.D.4【分析】连接BE,根据圆周角定理据可以得出∠ABE=90°,在△ACO中由垂径定理及勾股定理就可以求出AO的值,进而求出BE的值,根据勾股定理就可以求出CE的值.【解答】解:连接BE,∵AE是直径,∴∠ABE=90°.∵半径OD⊥弦AB,∴∠ACO=90°,AC=AB.∵AB=4,∴AC=2.设AO=x,则CO=x﹣1,在Rt△ACO中,由勾股定理,得x2﹣(x﹣1)2=4,解得:x=2.5,∴AE=5.在Rt△ABE中,由勾股定理,得BE=3.在Rt△BCE中,由勾股定理,得CE=.故选:B.7.按照如图的程序计算:如果输入y的值是正整数,输出结果是94,则满足条件的y值有()A.4B.3C.2D.1【分析】当输出结果是94,代入3y+1,求得y,再把求得的这个y值作为输出结果代入3y+1,求得y,一直下去,即可得出正整数y的值的个数.【解答】解:当3y+1=94时,解得y=31,当3y+1=31时,解得y=10,当3y+1=10时,解得y=3,当3y+1=3时,解得y=,不是整数,舍去,故选:B.8.如图,△ABC中,A,B两个顶点在x轴上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为()A.﹣1B.﹣C.﹣2D.﹣【分析】过B和B′向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B′的横坐标即可求得点B的横坐标.【解答】解:过点B、B'分别作BD⊥x轴于D,B'E⊥x轴于E,∴∠BDC=∠B'EC=90°.∵△ABC的位似图形是△A'B'C,∴点B、C、B'在一条直线上,∴∠BCD=∠B'CE,∴△BCD∽△B'CE.∴=,又∵=,∴=,又∵点B'的横坐标是2,点C的坐标是(﹣1,0),∴CE=3,∴CD=.∴OD=,∴点B的横坐标为:﹣.故选:D.9.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A说法正确;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B说法正确;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C说法正确;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D 说法中不正确.故选:D.10.如图,小明站在某广场一看台C处,从眼睛D处测得广场中心F的俯角为21°,若CD=1.6米,BC=1.5米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10米,则看台底端A点距离广场中心F点的距离约为(参考数据:sin2l°≈0.36,cos2l°≈0.93,tan21°≈0.38)()A.8.8米B.9.5米C.10.5米D.12米【分析】如图,作BM⊥F A交F A的延长线于M,延长DC交F A的延长线于N,解直角三角形求出AM,BM,MN,FN即可解决问题.【解答】解:如图,作BM⊥F A交F A的延长线于M,延长DC交F A的延长线于N.∵BM:AM=3:4,AB=10米,∴BM=6(米),AM=8(米),在Rt△DNF中,tan21°=,∴=0.38,∴FN≈20(米),∴AF=FN﹣AM﹣MN=20﹣8﹣1.5≈10.5(米),故选:C.11.已知关于x的分式方程+﹣1=0有整数解,且关于x的不等式组有且只有3个负整数解,则符合条件的所有整数a的个数为()A.1B.2C.3D.4【分析】表示出不等式组的解集,由不等式组有且只有3个负整数解,确定出a的范围,分式方程去分母转化为整式方程,表示出x,由x为整数确定出a的值即可.【解答】解:分式方程去分母得:1﹣ax﹣3﹣2+x=0,即(1﹣a)x=4,由分式方程有整数解,得到1﹣a≠0,解得:x=,不等式组整理得:,即﹣3≤x<,由不等式组有且只有3个负整数解,得到﹣1<≤0,解得:﹣1<a≤,由x为整数,且≠2,得到1﹣a=±1,﹣2,±4,解得:a=0,则符合条件的所有整数a的个数为1,故选:A.12.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:<m<11.A.①②③④B.①②④C.①③④D.②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①y=(m﹣2)x2+2mx+m﹣3=m(x+1)2﹣2x2﹣3,当x=﹣1时,y=﹣5,故该函数图象一定过定点(﹣1,﹣5),符合题意;②若该函数图象开口向下,则m﹣2<0,且△>0,△=b2﹣4ac=20m﹣24>0,解得:m,且m<2,故m的取值范围为:<m<2,符合题意;③当m>2,函数的对称轴在y轴右侧,当1≤x≤2时,y的最大值在x=2处取得,故y的最大为:(m﹣2)×4+2m×4+m﹣3=9m﹣12,故原答案错误,不符合题意;④当m>2,x=﹣3时,y=9(m﹣2)﹣6m+m﹣3=4m﹣21,当x=﹣2时,y=m﹣11,当﹣3<x1<﹣2时,则(4m﹣21)(m﹣11)<0,解得:<m<11;同理﹣1<x2<0时,m>3,故m的取值范围为:<m<11正确,符合题意;故选:B.二.填空题(共6小题)13.计算:|2﹣|﹣2sin30°﹣(π﹣3)0=2﹣4.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣2﹣2×﹣1=2﹣2﹣1﹣1=2﹣4.故答案为:2﹣4.14.分解因式:12m2﹣3=3(2m+1)(2m﹣1).【分析】首先提取公因式3,进而利用平方差公式分解因式得出即可.【解答】解:12m2﹣3=3(4m2﹣1)=3(2m+1)(2m﹣1).故答案为:3(2m+1)(2m﹣1).15.如图,4×2的正方形网格中,在A、B、C、D四个点中任选三个点,能够组成等腰三角形的概率为.【分析】先列举所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:在A,B,C,D四个点中任选三个点,有四种情况:△ABC、△ABD、△ACD、△BCD,其中能够组成等腰三角形的有△ACD、△BCD两种情况,则能够组成等腰三角形的概率为=;故答案为:.16.如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交AD,CD于G,F两点,则图中阴影部分的面积为8﹣8﹣π.【分析】由四边形ABCD是正方形,且GF是⊙B的切线可证出△DGF是等腰直角三角形,再由正方形的边长,分别知道BE的长,再求出DE的长,进一步求出DG的长.再用正方形的面积﹣扇形的面积﹣三角形的面积即可求出阴影面积.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠GDE=∠FDE=45°,∵GF是⊙B的切线,∴BD⊥GF,∴∠DEG=∠DEF=90°,∴∠DGE=45°,∠DFE=45°,∴DG=DF,GF=2DE,∴DG=DF=DE,∵BD=AB=2,∴DE=BD﹣BE=2﹣2,∴DG=DF=(2﹣2)=4﹣2,S阴影=S正方形ABCD﹣S扇形BAC﹣S△DGF=2×2﹣﹣(4﹣2)2=8﹣8﹣π.故答案为:8﹣8﹣π.17.如图,菱形ABCD的顶点A在x轴正半轴上,边CD所在直线过点O,对角线BD∥x 轴交AC于点M,双曲线y=上过点B且与AC交于点N,如果AN=3CN,S△NBC=,那么k的值为9.【分析】设CN=a,BM=b,则AN=3a,表示N和B的坐标,根据B和N都在反比例函数的图象上,得3ax=2a(b+x),根据S△NBC=,列方程,综合计算可得ax=3,可得k的值.【解答】解:设CN=a,BM=b,则AN=3a,设N(x,3a),B(x+b,2a),则,解得:ax=3,∵N在双曲线y=上,∴k=3ax=3×3=9,故答案为9.18.如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是9+4.【分析】如图所示:过点D2作D2E⊥BC,垂足为E.设DC=x,则BD=2﹣x.然后根据四边形D1BCD2的面积等于梯形D1BED2的面积减去三角形CED2的面积列函数关系是求解即可.【解答】解:如图所示:过点D2作D2E⊥BC,垂足为E.设DC=x,则BD=2﹣x.由翻折的性质可知:∠D1BD=90°,∠ECD2=60°,D1B=BD=2﹣x,CD2=DC =x.∵在Rt△CED2中,∠ECD2=60°∴EC=,D2E=.∴=﹣=(D1B+D2E)•BE﹣=(2+2﹣x+)(2+2+)﹣=(x﹣2)2+9+4.∴当x=2时,四边形D1BCD2的面积有最大值,最大值为9+4.故答案为:9+4.三.解答题(共2小题)19.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E 两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=xcm,DE=ycm(当x的值为0或3时,y的值为2),探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:x/cm00.400.55 1.00 1.80 2.29 2.613 y/cm2 3.68 3.84 4.00 3.65 3.13 2.702(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为 3.5cm(结果保留一位小数).【分析】(1)先求出OF=1,利用勾股定理求出DF,进而求出∠ODF=30°,进而判断出DE过点O即可得出结论;(2)利用画函数图象的方法即可得出结论;(3)先作出图形,进而求出OD=2,进而利用锐角三角函数求出DM,即可得出DE=2即可得出结论.【解答】解:(1)如图1,(为了说明点C和点O重合,DE没画成过点O)连接OD,当x=1时,AF=1,∵OA=2,∴OF=OA﹣AF=1,∵DF⊥AB,∴∠DFO=90°,在Rt△OFD中,OD=2,OF=1,根据勾股定理得,DF==,∴tan∠ODF===,∴∠ODF=30°,在Rt△CFD中,∠ACD=60°,∴∠CDF=30°,∴∠CDF=∠ODF,∴DE过点O,∴DE是⊙O的直径,∴DE=2OD=4,∴y=4,故答案为4.00;(2)描点,连线,得出函数图形如右图所示,(3)如图2,∵点F和点O重合,∴OD=OA=2,过点O作OM⊥DE于M,∴DE=2DM,∵∠ACD=60°,∴∠ODE=90°﹣∠ACD=30°,在Rt△OMD中,cos∠ODE=,∴DM=OD•cos∠ODE=2×cos30°=,∴DE=2DM=2≈3.5,故答案为:3.5.20.如图,在正方形ABCD中,AB=6,M是对角线BD上的一个动点(0<DM<BD),连接AM,过点M作MN⊥AM交BC于点N.(1)如图①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2时,求△HMN的面积.【分析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45°,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90°,证出∠AMF=∠NMG,证明△AMF≌△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出=()2,求出AN=2,由勾股定理得出BN==4,由直角三角形的性质得出OM=OA=ON=AN=,OM⊥AN,证明△P AO∽△NAB,得出=,求出OP=,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN==,由三角形面积公式即可得出结果.【解答】(1)证明:过点M作MF⊥AB于F,作MG⊥BC于G,如图①所示:∴∠AFM=∠MFB=∠BGM=∠NGM=90°,∵四边形ABCD是正方形,∴∠ABC=∠DAB=90°,AD=AB,∠ABD=∠DBC=45°,∵MF⊥AB,MG⊥BC,∴MF=MG,∵∠ABC=90°,∴四边形FBGM是正方形,∴∠FMG=90°,∴∠FMN+∠NMG=90°,∵MN⊥AM,∴∠AMF+∠FMN=90°,∴∠AMF=∠NMG,在△AMF和△NMG中,,∴△AMF≌△NMG(ASA),∴MA=MN;(2)解:在Rt△AMN中,由(1)知:MA=MN,∴∠MAN=45°,∵∠DBC=45°,∴∠MAN=∠DBC,∴Rt△AMN∽Rt△BCD,∴=()2,在Rt△ABD中,AB=AD=6,∴BD=6,∴=,解得:AN=2,∴在Rt△ABN中,BN===4,∵在Rt△AMN中,MA=MN,O是AN的中点,∴OM=OA=ON=AN=,OM⊥AN,∴∠AOP=90°,∴∠AOP=∠ABN,∵∠P AO=∠NAB,∴△P AO∽△NAB,∴=,即:=,解得:OP=,∴PM=OM+OP=+=;(3)解:过点A作AF⊥BD于F,如图③所示:∴∠AFM=90°,∴∠F AM+∠AMF=90°,∵MN⊥AM,∴∠AMN=90°,∴∠AMF+∠HMN=90°,∴∠F AM=∠HMN,∵NH⊥BD,∴∠AFM=∠MHN=90°,在△AFM和△MHN中,,∴△AFM≌△MHN(AAS),∴AF=MH,在等腰直角△ABD中,∵AF⊥BD,∴AF=BD=×6=3,∴MH=3,∵AM=2,∴MN=2,∴HN===,∴S△HMN=MH•HN=×3×=3,∴△HMN的面积为3.。

2020年重庆市数学中考一模试卷及答案

2020年重庆市数学中考一模试卷及答案
∴C(2,2),把C坐标代入反比例解析式得:k=4,即 ,由函数图象得:当0<x<2时, ,选项②错误;
当x=3时, , ,即EF= = ,选项③正确;
当x>0时, 随x的增大而增大, 随x的增大而减小,选项④正确,故选C.
考点:反比例函数与一次函数的交点问题.
6.A
解析:A
【解析】
【分析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.
(1)等奖所占的百分比是________;三等奖的人数是________人;
(2)据统计,在获得一等奖的学生中,男生与女生的人数比为 ,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;
(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?
① ;
②当0<x<3时, ;
③如图,当x=3时,EF= ;
④当x>0时, 随x的增大而增大, 随x的增大而减小.
其中正确结论的个数是()
A.1B.2C.3D.4
6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()
A. B.
C. D.
7.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()
9.C
解析:C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;

【2020精品中考数学提分卷】重庆九年级一诊数学试卷+答案

【2020精品中考数学提分卷】重庆九年级一诊数学试卷+答案

2020年重庆中考数学一诊试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了四个答案,其中只有一个是正确的,请在答题卡上将正确答案对应的方框涂黑.1.2019的倒数是()A.2019 B.﹣2019 C.D.﹣2.下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第10个图形共有()个“o”A.28 B.30 C.31 D.344.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C.D.5.下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形6.估计﹣的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间7.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=18.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C 的度数是()A.25°B.27.5°C.30°D.35°9.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.5.6 B.6.9 C.11.4 D.13.910.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b=0;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论的个数是()A.1 B.2 C.3 D.411.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣212.若关于x的不等式组无解,且关于y的分式方程有非正整数解,则符合条件的所有整数k的值之和为()A.﹣7 B.﹣12 C.﹣20 D.﹣34二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡对应题号后面的横线上.13.计算:﹣12019+(π﹣3)0+(﹣)﹣2=.14.如图,在正方形ABCD中,边长AD=2,分别以顶点A、D为圆心,线段AD的长为半径画弧交于点E,则图中阴影部分的面积是.15.已知直线的解析式为y=ax+b,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a、b的值,则直线y=ax+b同时经过第一象限和第二象限的概率是.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.17.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离y(m)与小雪离开出发地的时间x(min)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为米.18.一驴友分三次从M地出发沿着不同线路(A线、B线、C线)去N地,在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种,他涉水行走4小时的路程与攀登6小时的路程相等;B线、C线路程相等,都比A线路程多32%;A线总时间等于C线总时间的一半;他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线;在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了20%、50%、50%.若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且x、y、z都为正整数,则=三、解答题:(本大题7个小题,每小题10分,共70分)解答时,每小题必须给出必要的验算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡对应的位置上19.(10分)化简下列各式:(1)(2a﹣1)2﹣4(a+1)(a﹣1)(2)20.(10分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC 于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,21.(10分)在6.26国际禁毒日到来之际,重庆市教委为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛,某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67 初二69 97 91 69 98 100 99 100 90 10099 89 97 100 99 94 79 99 98 79(1)根据上述数据,将下列表格补充完成.【整理、描述数据】:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数 2 12初二人数 2 2 1 15 【分析数据】:样本数据的平均数、中位数、满分率如表:年级平均数中位数满分数初一90.1 93初二92.8 20% 【得出结论】:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人.(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明从两个方面说明你的理由.22.(10分)春节期间,根据习俗每家每户都会在门口挂灯笼和对联,某商店看准了商机,购进了一批红灯笼和对联进行销售,已知每幅对联的进价比每个红灯笼的进价少10元,且用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍.(1)求每幅对联和每个红灯笼的进价分别是多少?(2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300幅对联和200个红灯笼,已知对联售价为6元一幅,红灯笼售价为24元一个,销售一段时间后,对联卖出了总数的,红灯笼售出了总数的,为了清仓,该店老板对剩下的对联和红灯笼以相同的折扣数进行打折销售,并很快全部售出,求商店最低打几折可以使得这批货的总利润率不低于90%?23.(10分)数学综合实践课上,老师提出问题:如图1,有一张长为4dm,宽为3dm的长方形纸板,在纸板四个角剪去四个相同的小正方形,然后把四边折起来(实线为剪裁线,虚线为折叠线),做成一个无盖的长方体盒子,问小正方形的边长为多少时,盒子的体积最大?为了解决这个问题,小明同学根据学习函数的经验,进行了如下的探究:(1)设小正方形的边长为xdm,长方体体积为ydm3,根据长方体的体积公式,可以得到y与x 的函数关系式是,其中自变量x的取值范围是.(2)列出y与x的几组对应值如下表:x/dm… 1 …y/dm3… 1.3 2.2 2.7 3.0 2.8 2.5 1.5 0.9 …(注:补全表格,保留1位小数点)(3)如图2,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;(4)结合函数图象回答:当小正方形的边长约为dm时,无盖长方体盒子的体积最大,最大值约为.24.(10分)如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE,点F是BE上一点,连接CF.(1)如图1,若∠ECD=30°,BC=BF=4,DC=2,求EF的长;(2)如图2,若BC=EC,过点E作EM⊥CF,交CF延长线于点M,延长ME、CD相交于点G,连接BG交CM于点N,若CM=MG,求证:EG=2MN.25.(10分)阅读下列材料计算:(1﹣﹣)×()﹣(1﹣)(),令=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t+t2=在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4(3)解方程:(x2+4x+1)(x2+4x+3)=3四、解答题:(本大题1个小题,共8分)解答时,每小题必须给出必要的验算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡对应的位置上.26.(8分)在平面直角坐标系中,抛物线y=+x﹣2交x轴于点A、B(点A在点B的左侧),交y轴于点C.(1)如图,点D是抛物线在第二象限内的一点,且满足|x D﹣x A|=,过点D作AC的平行线,分别与x轴、射线CB交于点F、E,点P为直线AC下方抛物线上的一动点,连接PD交线段AC 于点Q,当四边形PQEF的面积最大时,在y轴上找一点M,x轴上找一点N,使得PM+MN﹣NB 取得最小值,求这个最小值;(2)如图2,将△BOC沿着直线AC平移得到△B′O′C′,再将△B'O′C′沿B′C′翻折得到△B′O″C′,连接BC′、O″B,则△C′BO″能否构成等腰三角形?若能,请直接写出所有符合条件的点O″的坐标,若不能,请说明理由.2020年重庆中考数学一诊试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了四个答案,其中只有一个是正确的,请在答题卡上将正确答案对应的方框涂黑.1.【解答】解:2019的倒数是:.故选:C.2.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.3.【解答】解:设第n个图形共有a n个“o”(n为正整数),观察图形,可知:a1=4=1+3,a2=7=1+2×3,a3=10=1+3×3,a4=13=1+4×3,…,∴a n=3n+1(n为正整数),∴a10=31.故选:C.4.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴==,故选:C.5.【解答】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选:D.6.【解答】解:﹣=﹣2.因为9<11<16,所以3<<4.所以1<﹣2<2.所以估计﹣的值在1到2之间.故选:B.7.【解答】解:A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.8.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.9.【解答】解:如图,由斜坡轨道BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=xm,CE=2xm.在Rt△BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12)2,解得x=12,BE=12m,CE=24m,DE=DC+CE=8+24=32m,由tan36°≈0.73,得=0.73,解得AB=0.73×32=23.36m.由线段的和差,得AB=AE﹣BE=23.36﹣12=11.36≈11.4m,故选:C.10.【解答】解:①由抛物线的对称轴可知:﹣>0,∴ab<0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,故①正确;②∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确.③∵(0,c)关于直线x=1的对称点为(2,c),而x=0时,y=c>0,∴x=2时,y=c>0,∴y=4a+2b+c>0,故③正确;④由图象可知:△>0,∴b2﹣4ac>0,故②正确;故选:D.11.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.12.【解答】解:∵不等式组无解,∴10+2k>2+k,解得k>﹣8.解分式方程,两边同时乘(y+3),得ky﹣6=2(y+3)﹣4y,解得y=.因为分式方程有解,∴≠﹣3,即k+2≠﹣4,解得k≠﹣6.又∵分式方程的解是非正整数解,∴k+2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k=﹣3,﹣4,﹣5,﹣8,﹣14.又∵k>﹣8,∴k=﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡对应题号后面的横线上.13.【解答】解:原式=﹣1+1+9=9,故答案为:914.【解答】解:如右图所示,连接AE、DE,∵AE=DE=AD,∴△AED是等边三角形,∴∠ADE=60°,∴图中阴影部分的面积是:+(﹣×sin60°)=﹣,故答案为:﹣.15.【解答】解:画树状图为:共有12种等可能的结果数,其中直线y=ax+b同时经过第一象限和第二象限的结果数为3,所以直线y=ax+b同时经过第一象限和第二象限的概率==.故答案为.16.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF===.故答案为:.17.【解答】解:由图象可得:家和图书馆相距4500米,小雪的跑步速度为:(4500﹣3500)÷5=200(米/分钟),∴小雪步行的速度为:200×=100(米/分钟),设小雪在第a分钟时改为步行,列方程得:200a+100(35﹣a)=4500解得:a=10∴小松骑车速度为:(4500﹣200×10﹣1000)÷(10﹣5)=300(米/分钟)∴小松到家时的时间为第:4500÷300+5=20(分钟)此时小雪离图书馆还有15分钟路程,100×15=1500(米)故答案为:150018.【解答】解:∵他涉水行走4小时的路程与攀登6小时的路程相等,∴可以假设涉水行走的速度为3nkm/h与攀登的速度为2nkm/h,穿越丛林的速度为mkm/h.由题意:,可得m=5n,5x+3y+2z=33 ①∵x+y+z=14 ②,由①②消去z得到:3x+y=5,∵x,y是正整数,∴x=1,y=2,z=11,∴故答案为:6.三、解答题:(本大题7个小题,每小题10分,共70分)解答时,每小题必须给出必要的验算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡对应的位置上19.【解答】解:(1)原式=(4a2﹣4a+1)﹣4(a2﹣1)=4a2﹣4a+1﹣4a2+4=﹣4a+5;(2)原式=÷=•=x2﹣2x.20.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.21.【解答】解:(1)根据题意,得:初一人数:70≤x≤79的有2人,80≤x≤89的有4人,初一满分数:4÷20=20%,初二中位数:(97+98)÷2=97.5,故答案为:2,4,20%,97.5;(2)初一满分的人数约为:300×20%=60(人),初二满分的人数约为:300×20%=60(人),∴共有60+60=120(人),故答案为:120;(3)初二学生掌握禁毒知识的水平比较好.从平均分来看,初二的学生掌握禁毒知识的水平比较好;从中位数来看,初二的学生掌握禁毒知识的水平比较好.22.【解答】解:(1)设每幅对联的进价为x元,则每个红灯笼的进价为(x+10)元,依题意,得:=6×,解得:x=2,经检验,x=2是原分式方程的解,且符合题意,∴x+10=12.答:每幅对联的进价为2元,每个红灯笼的进价为12元.(2)设剩下的对联和红灯笼打y折销售,依题意,得:300××6+200××24+300×(1﹣)×6×+200×(1﹣)×24×﹣300×2﹣200×12≥(300×2+200×12)×90%,解得:y≥5.答:商店最低打5折可以使得这批货的总利润率不低于90%.23.【解答】解:(1)由已知,y=x(4﹣2x)(3﹣2x)=4x3﹣14x2+12x故答案为:y=4x3﹣14x2+12x由已知解得:0<x<;∴自变量x的取值范围是0<x<;故答案为:0<x<;(2)根据函数关系式,当x=时,y=3;x=1时,y=2;故答案为:3,2;(3)根据(1)画出函数图象如图;(4)根据图象,当x=0.55dm时,盒子的体积最大,最大值约为3.03dm3故答案为:0.55,3.03.24.【解答】(1)解:如图1中,∵四边形ABCD是平行四边形,∴AD∥BC,∵EC⊥BC,∴AD⊥EC,∴∠BCE=∠CED=90°,∵∠ECD=30°,CD=2,∴CE=CD•cos30°=,在Rt△BCE中,BE==,∵BC=CF=4,∴EF=BE﹣BF=﹣4.(2)证明:如图2中,延长GM到H,使得MH=MG,连接CH,BH.∵CM=MG=MH,CM⊥GH,∴∠HCG=90°,CH=CG,∴∠HCG=∠BCE,∴∠BCH=∠ECG,∵CB=CE,∴△BCH≌△ECG(SAS),∴BH=EG,∠CHB=∠CGE=45°,∵∠CHG=45°,∴∠BHG=90°,∴∠BHG=∠CMG=90°,∴MN∥BH,∵HM=HG,∴BN=NG,∴BH=2MN,∴EG=2MN.25.【解答】解:(1)令=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x1=0,x2=﹣4当x2+4x=﹣4时,x2+4x+4=0(x+2)2=0解得:x3=x4=﹣2四、解答题:(本大题1个小题,共8分)解答时,每小题必须给出必要的验算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡对应的位置上.26.【解答】解:(1)令+x﹣2=0,解得x1=,x2=﹣4,∴A(﹣4,0),B(,0),令x=0,y=﹣2,∴C(0,﹣2),∵|x D﹣x A|=,点D是抛物线在第二象限内的一点,∴D的横坐标为﹣6,∴D(﹣6,7),设直线BC的解析式为y=kx+b,则有解得∴直线BC的解析式为y=2x﹣2,设直线AC的解析式为y=k1x+b1,则有解得∴直线AC的解析式为y=﹣x﹣2,∵DE∥AC,∴设直线DE的解析式为y=﹣x+b2,代入点D(﹣6,7),解得b2=4,∴直线DE的解析式为y=﹣x+4,令y=0,此时x=8,∴F(8,0),令2x﹣2=﹣x+4,解得x=,∴E(,),∵S=S△PDF﹣S△PQE=S△PDF﹣S△DAE,四边形PQEF∵D、A、E是固定点,∴S△DAE是固定值,即要使四边形PQEF的面积最大,只需△PDF的面积最大,如图1所示,过点P作x轴的垂线交DF于点H,则S△PDF=PH•|x F﹣x D|=7PH,∴当PH最大时,S△PDF最大,设点P的坐标为(a,a2+a﹣2),则点H为(a,﹣a+4),∴PH=﹣a2﹣2a+6=﹣(a+2)2+8,∴当a=﹣2时,PH最大,此时P(﹣2,﹣3),作点P关于y轴的对称点P′(2,﹣3),过点B作直线l:y=x﹣,过点P′作直线l的垂线交l于点W,交y轴于点M,交x轴于点N,∴NB=NW,∴PM+MN﹣NB=PM+MN﹣NW=P′N﹣NW=P′W,∴P′W即为所求,过P′作y轴的平行线交l于点J,则J(2,),则JP′=,则P′W=JP′=3.(2)设△BOC在水平方向上移动了2t个单位,则在竖直方向上移动了t个单位,则C′(﹣2t,﹣2t+t),O′(﹣2t,t),如图2所示,过O″作y轴的平行线交O′B′的延长线于点M,O′O″=2××=,∴O″M=,O′M=,∴O″(﹣2t,﹣+t),∴C′B==,C′O″=2,O″B==①=2,无解.②=,解得t=1,∴O″(﹣,),③=2,解得t1=,t2=,∴O″(,)或(,).综上所述:点O″的坐标为(﹣,)或(,)或(,).。

重庆市2020年数学中考一模试卷(II)卷

重庆市2020年数学中考一模试卷(II)卷

重庆市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) |﹣2|的值等于()A . 2B . ﹣2C . ±2D .2. (2分)下列二次根式中可以和相加合并的是()A .B .C .D .3. (2分)(2017·南开模拟) 2016年上半年,天津市生产总值8500.91亿元,按可比价格计算,同步增长9.2%,将“8500.91”用科学记数法可表示为()A . 8.50091×103B . 8.50091×1011C . 8.50091×105D . 8.50091×10134. (2分)下列运算正确的是()A . a+a=2a2B . a2·a=2a2C . (-ab)2=2ab2D . (2a)2 ÷a=4a5. (2分) (2016八上·思茅期中) 等腰三角形的周长为16,其中一边长为6,则另两边长为()A . 6和4B . 5和5C . 6和66. (2分)五一期间(5月1日﹣7日),昌平区每天最高温度(单位:℃)情况如图所示,则表示最高温度的这组数据的中位数是()A . 24B . 25C . 26D . 277. (2分)(2017·丹阳模拟) 下列四个图形中是正方体的平面展开图的是()A .B .C .D .8. (2分)(2017·杭州模拟) 如图,l1∥l2∥l3 ,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知,则的值为()B .C .D .9. (2分)如图,是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2m,BP=1.8 m,PD=12 m,那么该古城墙的高度是:A . 6 mB . 8 mC . 18 mD . 24 m10. (2分)太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投射影长是10,则皮球的直径是()A . 5cmB . 15cmC . 10cmD . 8cm11. (2分)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为()B . 4-πC . πD . π-112. (2分)如图,抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,连结AC,现有一宽度为1,且长与y轴平行的矩形沿x轴方向平移,交直线AC于点D和E,△ODE周长的最小值为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2018·贵港) 若分式的值不存在,则x的值为________.14. (1分)(2019·凤翔模拟) 如图,若正五边形和正六边形有一边重合,则∠BAC=________.15. (1分)(2020·绵阳模拟) 为解决停车难得问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位()16. (1分)(2016·兴化模拟) 若某个圆锥的侧面积为8πcm2 ,其侧面展开图的圆心角为45°,则该圆锥的底面半径为________ cm.,P为直线l上一点,且,则点P到BC所在直线的距离是________.18. (1分) (2019九上·西城期中) 如图,直线和抛物线都经过点,不等式的解集________.三、解答题 (共8题;共96分)19. (5分)(2019·南昌模拟) 先化简,再求值:÷(1﹣),其中 x= +1.20. (10分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.21. (6分)(2018·射阳模拟) 周末期间.小明和小军到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同.(1)小明选择“4室”的概率为________.(2)用树状图或列表的方法求小明和小华选择取同一间放映室看电影的概率.22. (25分)(2017·德阳模拟) 学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率?23. (10分)(2020·北京) 如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD 于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sinC= ,BD=8,求EF的长.24. (10分) (2018九上·建平期末) 直线y=kx+b与反比例函数y= (x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.25. (15分)(2019·南关模拟) 在中,, .过点作射线,点 M,、N分别在边、上(点、不与所在线段端点重合),且,连结并延长交于点,连结并延长交的垂直平分线于点,连结 .(1)【猜想】如图①,当时,可证 .从而得出,进而得出的大小为多少度.(2)【探究】如图②,若 .Ⅱ. 的大小为多少度(用含的代数式表示)(3)【应用】如图③,当时,连结 .若,,则的面积为多少.26. (15分)(2013·南宁) 如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx 交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时 + 的值;②试说明无论k取何值, + 的值都等于同一个常数.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共96分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档