1.4.2有理数的除法(1)
1.4.2有理数的除法(1)

化简:
72 (1) ; 9
12 =(-12) ÷3 解: (1) 3
45 (2) 12
= -4
=(-45) ÷(-12)
=45÷12
15 = 4
三、计算:
4 3 1 (1) (- ) (- ) 2 3 4 2 1 4 (2) (-81) 2 ( ) (16 ) 4 9
4 3 5 解:原式 (-81) 9 ( 4 ) (16) 解:原式 (- ) (- ) 4 9 3 4 2
2、若x<0,则
x x
x x
1、掌握有理数的除法法则并会进行计算; 2、会利用除法法则化简分数.
4
有理数除法法则:
除以一个不等于0的数,等于乘这个的 数的倒数. 除数变为倒数作因数
1 a÷b=a· b
除号变乘号
(b≠0).
对比记忆
有理数的减法法则 有理数的除法法则
减去一个数,等于 加这个数的相反数.
减数变为相反数作加数
除以一个不等于0的数 等于乘这个数的倒数.
除数变为倒数作因数
a - b = a + (-b)
30 (2) 45
Hale Waihona Puke 0 (3) 75;
计算: (1)
(2) (3)
1 1 2 ( 1 ) 3 6 ( 56 ) ( 1.4) 2 ( 81) ( 36 ) ( 2 ) 3 1 3 2 ( ) 0 ( ) ( 1 ) 2 5 3
1.4.2 有理数的除法-七年级数学人教版(上)(解析版)

第一章有理数1.4.2有理数的除法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.–1÷12的运算结果是A.–12B.12C.–2 D.2【答案】C【解析】–1÷12=–1×2=–2.故选C.2.如果两个有理数的和除以它们的积,所得的商为零,那么这两个有理数A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零【答案】A3.下列运算结果不一定为负数的是A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积(没有因数为0)【答案】C【解析】A.异号两数相乘得负,故A不符合题意;B.异号两数相除得负,故B不符合题意;学科*网C.异号两数相加取绝对值较大的加数的符号,故不一定得负,符合题意;D.奇数个负因数的乘积(没有因数为0)得负,故D不符合题意.故选C.4.计算–4÷49×94⎛⎫-⎪⎝⎭的结果是A.4 B.–4 C.814D.–814【答案】C【解析】−4÷49×94⎛⎫-⎪⎝⎭=−4×94×(−94)=814;故选C.学科*网5.算式(–34)÷()=–2中的括号内应填A.–323B2.C.–383D8.【答案】D【解析】(–34)÷()=–2中的括号内应填(–34)÷(–2)=38,故选D.6.下列计算中,正确的是①(–800)÷(–20)=–(800÷20)=–40;②0÷(–2011)=0;③(+18)÷(–6)=+(18÷6)=3;④(–0.72)÷0.9=–(0.72÷0.9)=–0.8.A.①②③B.①③④C.①②④D.②④【答案】D二、填空题:请将答案填在题中横线上.7.化简:2018=________,6416-=________,2.70.9--=________,–183--=________.【答案】0,–4,3,–6【解析】因为0除以一个不为0的数商等于0,所以0 2018=,因为–64和16的公因数是16,所以644 16-=-,因为–2.7和–0.9的公因数是–0.9,所以2.73 0.9-=-,因为–18和–3的公因数是–3,所以–1863-=--,故答案为:0,–4,3,6-.8.在–1,2,–3,0,5这五个数中,任取两个数相除,其中商最小是________.【答案】–59.两个有理数,它们的商是–1,则这两个有理数的关系是________.【答案】互为相反数【解析】两个有理数,商是−1,则这个有理数的关系是互为相反数.故答案为:互为相反数.学科*网三、解答题:解答应写出文字说明、证明过程或演算步骤.10.计算:(1)0.9÷313;(2)(–34)÷5;(3)–18÷(–145);(4)–32324÷(–112).【答案】(1)27100;(2)–320;(3)10;(4)952.【解析】(1)0.9÷319310=×32710100=,(2)(–34)÷5=–34×15=–320,(3)–18÷(–145)=18×59=10,(4)–32324÷(–112)=9524×12=952.11.计算:(1)103+(310–815)÷(–720);(2)–1–(1–12)÷3×|3–9|;(3)125+(2.4×56–34×23)÷212;(4)(–3–112)÷[334÷(2–313)×115].【答案】(1)4;(2)–2;(3)2;(4)4 3 .【解析】(1)103+(310–815)÷(–720)=103+(–730)×(–207)=103+23=4.(2)–1–(1–12)÷3×|3–9|=–1–12×13×6=–1–1 =–2.(3)125+(2.4×56–34×23)÷212=125+125×56×25–34×23×25=125+45–15=2.(4)(–3–112)÷[334÷(2–313)×115]=–92÷34131435⎡⎤⎛⎫÷-⨯⎪⎢⎥⎝⎭⎣⎦=–92÷15311445⎡⎤⎛⎫⨯-⨯⎪⎢⎥⎝⎭⎣⎦=–98 227⎛⎫⨯-⎪⎝⎭=43.学科*网12.讲完“有理数的除法”后,老师在课堂上出了一道计算题:1513÷(–8).不一会儿,不少同学算出了答案,老师把班上同学的解题过程归类写到黑板上.方法一:原式=463×(–18)=–4624=–11112;方法二:原式=(15+13)×(–18)=15×(–18)+13×(–18)=–153124⨯+=–11112;方法三:原式=(16–23)÷(–8)=16÷(–8)–23÷(–8)=–2+112=–11112.对这三种方法,大家议论纷纷,你认为哪种方法最好?请说出理由,并说说本题对你有何启发.【答案】方法三最好,理由见解析.。
人教版七年级数学教案设计:1.4.2有理数的除法

1.4.2有理数的除法(1)教学目标:知识与技能:理解除法是乘法的逆运算,理解倒数概念,会求有理数的倒数,掌握除法法则,会进行有理数的除法运算;过程与方法:通过自主探索的方法观察、交流、归纳出有理数除法法则及倒数的方法。
情感态度价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神、转化思想.学习重难点:重点:有理数除法法则难点:(1)商的符号的确定;(2)0不能作除数的理解;教学方法:引导法,鼓励法,讲解法学习方法:做练习法,独立思考教学工具:彩色粉笔教学过程:复习引入1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有 1000 米,列出的算式为 50X20=1000 。
2)放学时,小红仍然以每分钟50米的速度回家,应该走 20 分钟。
列出的算式为 1000从上面这个例子你可以发现,有理数除法与乘法之间的关系是 。
自主学习自学教材中第 页的内容。
(要求理解倒数的概念,掌握倒数的求法)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数 ; 提问:37,52,321和5的倒数各是多少? 0有没有倒数?π有没有倒数?有则请求出来。
合作讨论比较大小: 1、 8÷(-4) 8×(41-); 2、(-15)÷3 (-15)×31; 3、(411-)÷(一2) (411-)×(21-); 与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
有理数的除法法则是: 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0.当堂检测1、计算(1) ; (2) 0÷(-1000);(3) ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷2332375 (4)÷课堂小结倒数的求法:乘积是1的两个数互为倒数。
有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
【重点推荐】新七年级数学上册-第1章1.4.2-有理数的除法-第1课时-有理数的除法法则备课素材练习

【重点推荐】新七年级数学上册-第1章1.4.2-有理数的除法-第1课时-有理数的除法法则备课素材练习试卷1.4 有理数的乘除法1.4.2 有理数的除法情景导入类比导入悬念激趣活动内容:(1)前面我们学习了“有理数的乘法”,那么自然会想到有理数有除法吗?如何进行有理数的除法运算呢?开门见山,直接引出本节知识的核心.(-12)÷(-3)=?(2)回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间有何关系?[说明与建议] 说明:利用乘法与除法互为逆运算的关系,将有理数的除法转化为有理数的乘法来解决,为下一环节的学习做好准备.建议:在学习过程中,引导学生发现只需找到-12=(-3)×?就能找到商是多少来猜想:(-12)÷(-3)=4.体现除法与乘法的互逆性.活动内容:(1)叙述有理数的乘法法则.4.a |a|(a≠0)的所有可能的值有(B ) A .1个 B .2个C .3个D .4个5.一只手表七天的走时误差是-35秒,平均每天的走时误差是__-5__秒. 6.规定一种新的运算:A★B=A×B-A÷B,如4★2=4×2-4÷2=6,则6★(-3)的值为__-16__.7.计算:(1)(-49)÷74×47÷(-16);(2)(-4)÷[(-45)÷(-12)]. 解:(1)(-49)÷74×47÷(-16)=(-49)×47×47×(-116)=49×47×47×116=1. (2)(-4)÷[(-45)÷(-12)]=(-4)÷[(-45)×(-2)]=(-4)÷85=(-4)×58=-52.[命题角度1] 有理数的除法运算有理数除法法则的选择和注意事项:1.选择原则:能整除时直接相除,不能整除时应用法则:除以一个不等于0的数,等于乘这个数的倒数.2.注意事项:(1)应用直接相除时,要先确定符号,再确定绝对值;(2)应用法则除以一个不等于0的数,等于乘这个数的倒数时,如果有小数或带分数,要化小数为分数,化带分数为假分数.例计算:(1)(-21)÷(-7);(2)(-36)÷2÷(-3);(3)(-114)÷123;(4)(-6)÷(-73)÷(-247).解:(1)(-21)÷(-7)=+(21÷7)=3.(2)(-36)÷2÷(-3)=-(36÷2)÷(-3)=(-18)÷(-3)=+(18÷3)=6.(3)(-114)÷123=(-54)×35=-34.(4)(-6)÷(-73)÷(-247)=(-6)×(-3 7)×(-718)=-(6×37×718)=-1.[命题角度2] 化简分数化简分数的方法:直接对分数的分子、分母的绝对值进行约分.如果分子(或分母)含有小数,那么可先根据分数的基本性质对分数变形,然后按照上面的步骤进行.例化简:-42-7.[答案:6][命题角度3] 有理数的乘除混合运算有理数的乘除混合运算,把除法转化为乘法后先确定符号,再确定积的绝对值,小数要化成分数,带分数要化为假分数.例-2.5÷58×⎝⎛⎭⎪⎫-14.[答案:1][命题角度4] 有理数的四则混合运算有理数的加减乘除四则混合运算应注意以下顺序:(1)先算乘除,再算加减;(2)同一级运算,从左到右依次进行;(3)如有括号,先算括号里的运算,按照小括号,中括号,大括号的顺序依次进行.例计算:(1)-1+5÷(-12)×(-2);(2)(1-16)×(-3)-(1+12+13)÷(-713)解:(1)-1+5÷(-12)×(-2)=-1+5×(-2)×(-2)=19.(2)(1-16)×(-3)-(1+12+13)÷(-713)=56×(-3)-116÷(-223)=-52-116×(-322)=-52+14=-94 .[命题角度5] 利用计算器进行有理数的加减乘除混合运算不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明,要合理准确使用计算器的功能键,使得运算顺序符合题目要求.例 用计算器计算:41.9×(-0.6)+23.5.[答案:-1.64]P35练习计算:(1)(-18)÷6; (2)(-63)÷(-7);(3)1÷(-9); (4)0÷(-8);(5)(-6.5)÷(0.13);(6)⎝ ⎛⎭⎪⎫-65÷⎝ ⎛⎭⎪⎫-25. [答案] (1)-3;(2)9;(3)-19;(4)0; (5)-50;(6)3.P36练习1.化简:(1)-729; (2)-30-45; (3)0-75.[答案] (1)-8;(2)23;(3)0.2.计算:(1)⎝⎛⎭⎪⎫-36911÷9;(2)(-12)÷(-4)÷⎝ ⎛⎭⎪⎫-115;(3)⎝ ⎛⎭⎪⎫-23×⎝ ⎛⎭⎪⎫-85÷(-0.25).[答案] (1)-4511;(2)-52;(3)-6415.P36练习 计算:(1)6-(-12)÷(-3); (2)3×(-4)+(-28)÷7; (3)(-48)÷8-(-25)×(-6);(4)42×⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-34÷(-0.25).[答案] (1)2;(2)-16;(3)-156;(4)-25.P37练习用计算器计算:(1)357+(-154)+26+(-212); (2)-5.13+4.62+(-8.47)-(-2.3); (3)26×(-41)+(-35)×(-17); (4)1.252÷(-44)-(-356)÷(-0.196). [答案] (1)17;(2)-6.68;(3)-471; (4)1816.35. P37习题1.4 复习巩固 1.计算:(1)(-8)×(-7); (2)12×(-5); (3)2.9×(-0.4); (4)-30.5×0.2; (5)100×(-0.001); (6)-4.8×(-1.25).[答案] (1)56;(2)-60;(3)-1.16; (4)-6.1;(5)-0.1;(6)6. 2.计算: (1)14×⎝ ⎛⎭⎪⎫-89;(2)⎝ ⎛⎭⎪⎫-56×⎝ ⎛⎭⎪⎫-310;(3)-3415×25; (4)(-0.3)×⎝ ⎛⎭⎪⎫-107.[答案] (1)-29;(2)14;(3)-1703;(4)37.3.写出下列各数的倒数:(1)-15; (2)-59; (3)-0.25;(4)0.17 (5)414; (6)-525.[答案] -115;(2)-95;(3)-4;(4)10017;(5)417;(6)-527.4.计算:(1)-91÷13; (2)-56÷(-14); (3)16÷(-3); (4)(-48)÷(-16); (5)45÷(-1); (6)-0.25÷38.[答案] (1)-7;(2)4;(3)-163;(4)3;(5)-45;(6)-23.5.填空:1×(-5)=______; 1÷(-5)=______; 1+(-5)=______; 1-(-5)=______; -1×(-5)=____; -1÷(-5)=____; -1+(-5)=____; -1-(-5)=____. [答案] -5;-15;-4;6;5;15;-6;4.6.化简下列分数:(1)-217; (2)3-36;(3)-54-8; (4)-6-0.3.[答案] (1)-3;(2)-112;(3)274;(4)20.7.计算:(1)-2×3×(-4); (2)-6×(-5)×(-7);(3)⎝ ⎛⎭⎪⎫-825×1.25×(-8);(4)0.1÷(-0.001)÷(-1);(5)⎝ ⎛⎭⎪⎫-34×⎝⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫-214;(6)-6×(-0.25)×1114;(7)(-7)×(-56)×0÷(-13); (8)-9×(-11)÷3÷(-3).[答案] (1)24;(2)-210;(3)165;(4)100;(5)-12;(6)3328;(7)0;(8)-11.综合运用 8.计算:(1)23×(-5)-(-3)÷3128;(2)-7×(-3)×(-0.5)+(-12)×(-2.6);(3)⎝ ⎛⎭⎪⎫134-78-712÷⎝ ⎛⎭⎪⎫-78+⎝ ⎛⎭⎪⎫-78÷⎝ ⎛⎭⎪⎫134-78-712; (4)-⎪⎪⎪⎪⎪⎪-23-⎪⎪⎪⎪⎪⎪-12×23-⎪⎪⎪⎪⎪⎪13-14-|-3|.[答案] (1)13;(2)20.7;(3)-103;(4)-4112.9.用计算器计算(结果保留两位小数):(1)(-36)×128÷(-74);(2)-6.23÷(-0.25)×940;(3)-4.325×(-0.012)-2.31÷(-5.315);(4)180.65-(-32)×47.8÷(-15.5).[答案] (1)62.27;(2)23424.80;(3)0.49;(4)81.97.10.用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是________元;(2)小商店每天亏损20元,一周的利润是________元;(3)小商店一周的利润是1400元,平均每天的利润是________元;(4)小商店一周共亏损840元,平均每天的利润是________元.[答案] (1)7500;(2)-140;(3)200;(4)-120.11.一架直升机从高度为450 m的位置开始,先以20 m/s 的速度上升60 s ,后以12 m/s 的速度下降120 s ,这时直升机所在高度是多少?[答案] 210米. 拓广探索12.用“>”“<”或“=”号填空:(1)如果a <0,b >0,那么a ·b ______0,ab______0;(2)如果a >0,b <0,那么a ·b ______0,ab______0;(3)如果a <0,b <0,那么a ·b ______0,ab______0;(4)如果a =0,b ≠0,那么a ·b ______0,那么ab______0.[答案] (1)<,<;(2)<,<;(3)>,>;(4)=,=.13.计算2×1,2×12,2×(-1);2×⎝ ⎛⎭⎪⎫-12.联系这类具体的数的乘法,你认为一个非0有理数一定小于它的2倍吗?为什么?[答案] 2,1,-2,-1.不一定,若是负数,则大于它的2倍.14.利用分配律可以得到-2×6+3×6=(-2+3)×6.如果用a 表示任意一个数,那么利用分配律可以得到-2a +3a 等于什么?[答案] a .15.计算(-4)÷2,4÷(-2),(-4)÷(-2).联系这类具体的数的除法,你认为下列式子是否成立(a ,b 是有理数,b ≠0)?从它们可以总结什么规律?(1)-a b =a-b =-a b ; (2)-a -b =a b.[答案] 略.[当堂检测]第1课时 有理数的除法法则 1.计算6÷(-3)的结果是( )A .21B .-3C .-2D .-182. 下列运算错误的是 ( )A. 31÷(-3)=3×(-3)B. -5÷(-21)=-5×(-2)C. 8÷(-2)= - 8×1/2D. 0÷3=0 3. 如果:a+b=0, 则下列说法: (1),a 、b 互为相反数, (2) |a| =|b|, (3).a 、b 在原点的两旁,(4)b a = - 1,其中正确的有( ) A .一个 B .二个 C .三个D .四个4. 化简下列各式:(1) 138--= _____ ; (2 -108-= ______ ; (3)3025-= _______ .)﹔(3)(43 )÷(-73)÷(-161)· 参考答案: 1. C 2. B 3. B4. (1)138 (2) 54 (3) - 65 5.(1) 3 (2) - 21 (3) -23第2课时 有理数的乘除混合运算1. 计算(-1)÷5×(-15)的结果是( ) A.-1 B.1 C.125 D.252. 计算(-7)×(-6)×0÷(-42)的结果是( )A.0B.1C.-1D.- 423. 计算12-7×(-32)+16÷(-4)之值为何( ) A .36 B .-164 C .-216 D .2324. -32324÷(-112)=______ ×___=(____+ ___)× ____ =___+___ = ___.5. 计算:(1)- 32× 54 ÷(-132); (2) 125 ÷(31- 65+ 41) (3) (- 252 ) ÷56×65+ ( - 1)÷ ( -54). 参考答案: 1. C 2. A 3. D4. 32324 12 3 2324 12 36 223 4721; 5.(1)258(2) - 35 (3)- 125。
1.4.2 第1课时 有理数的除法法则教案

第一章 有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.认识有理数的除法,经历除法的运算过程.2.理解除法法则,体验除法与乘法的转化关系.3.掌握有理数的除法及乘除混合运算.重点:有理数的除法法则及运算. 难点:准确、熟练地运用除法法则.一、知识链接 1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________. 3.进行有理数乘法运算的步骤: (1)确定_____________; (2)计算____________. 二、新知预习1.根据除法是乘法的逆运算填空: (+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________. (-2)×(-3)=+6(+6)÷(-2)=_________, 比 16()2+⨯-=__________. 2.对比观察上述式子,你有什么发现?【自主归纳】 有理数的除法法则:除以一个数(不等于0)等于乘这个数的____________. 3.根据有理数的乘法法则和除法法则,讨论:(1)同号两数相除,商的符号怎样确定,结果等于什么?(2(3)0除以任何一个不等于0【自主归纳】两数相除,同号得任何不等于0的数都得______.三、自学自测计算:(1) (-8)÷(-4);(3)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;四、我的疑惑一、要点探究探究点1问题1:(-4)×6×(-3/5)×-8÷8÷(-4)= 8-36÷ 6=-12/25 ÷ (-3/5)= (-12/25) -72 ÷9= -72问题2:问题3:(1)-54 ÷(-9);(2)-27 ÷ 3(3)0 ÷(-7); (4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 . 0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5).2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结 一、有理数除法法则: 1.a ÷b =a ×b1(b ≠0)。
1.4.2(1)有理数的除法学案

1.4.2 有理数的除法(1)编制: 校对:目标:理解倒数的意义,会求有理数的倒数。
了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.在熟练进行除法运算后,能够对式子进行化简。
重点:有理数的除法法则及其运用难点:(1)商的符号的确定。
(2)0不能作除数的理解。
一.知识要点1.除以一个不等于0的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二.经典例题和变式知识点1:有理数除法法则例1 计算下列各题(1)(25)(5)-÷-; (2)3(0.8)15-÷; (3)100(0.1)÷-;(4)0(2019)÷-; (5)35(3)()48-÷-; (6)11(0.125)12÷-变式1.下列各式计算正确的有( )①(24)(8)3-÷-=-;②(32)(8)4+÷-=-;③44()()155-÷-=;④3(3)(0.125)34-÷-=-A.1个B.2个C.3个D.4个知识点2:化简分数 例2.化简下列分数 (1)217-= ;(2)812=- ;(3)61-=- ;(4)60.3--=- ;知识点3:利用有理数的法则判断例3.若两个有理数的商是正数,和为负数,则这两个数( )A.一正一负B.都是正数C.都是负数D.不能确定变式3.若0x y x y+=,则下列结论成立的是( ) A.00x y ==或 B.,x y 同号 C.,x y 异号 D.,x y 为任意有理数三.分层达标阶梯训练:A 基础演练1.下列说法正确的是:( )A 、同号两数相除,取相同的符号B 、异号两数相除,取被除数的符号C 、两个数的商为0,则两数中至少有一个为0D 、两个数相除商为0,则只有被除数为03.若0,0<>b b ,那么ac ( ) A 、大于0 B 、小于0 C 、不一定 D 、大于或等于04.下列说法正确的是( )A 、0除以任何数都等于0B 、一个数与它的相反数的商等于-1B 、两个数的商为-1,则这两个数互为相反数 D 、两个数相除,商一定小于被除数5.两个不为0的有理数相除,如果交换它们的位置,商不变,那么( )A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数6.计算:(1)8-0.1253÷ (2)-0.91-0.013÷()()(3) 3-3-2.258÷()() (4)3-3-1.254÷()()B 能力提升7.已知0,21,4<==xy y x ,则y x 的值是 。
2019年秋人教版七年级上册数学课件:1.4.2

16
• 16.煤矿井下点A的海拔为-174.8米,已知从A到B的水平距离是120 米,每经过水平距离10米上升0.4米,已知点B在点A的上方.
• (1)求点B的海拔高度; • (2)若点C的海拔为-68.8米,且点C在点A的正上方,每垂直升高10米
用30秒,求从点A到点C所用的时间. • 解:(1)根据题意,得-174.8+120÷10×0.4=-174.8+4.8=-
第一章 有理数
1.4 有理数的乘除法
1.4.2 有理数的除法(第三课时)
2
名师点睛
知识点 1 有理数除法法则 (1)除以一个不等于 0 的数,等于乘这个数的倒数,即 a÷b=a·1b(b≠0). (2)两数相除,同号得正,异号得负,并把绝对值相除. (3)0 除以任何一个不等于 0 的数,都得 0.
-
0.34×27+57=-13-0.34=-13.34.
(2)12-13-16÷-610;
解:原式=12-13-16×(-60)=-12×60+13×60+16×60=-30+20+10=0.
15
(3)-23÷-13×23; 解:原式=23÷-29=-23×92=-3. (4)-72×16-12×134÷(-2). 解:原式=-72×-13×134×-12=-18.
A.-1
B.1
C.2125
D.-225
4.计算:-9÷32=__-__6___.
5.若 a≠b,且 a、b 互为相反数,则ab=__-__1___.
7
(C )
8
6.化简下列分数: (1)-216; 解:原式=-126=-8.
(3)--564; 解:原式=564=9.
(2)-1248; 解:原式=-1428=-14.
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1一. 教材分析《有理数的除法(1)》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律,培养学生解决实际问题的能力。
教材通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义,进而引导学生探究有理数除法的运算方法。
二. 学情分析学生在七年级上册已经学习了有理数的加法、减法、乘法,对有理数的基本运算有了初步了解。
但学生在解决实际问题时,往往不能灵活运用有理数运算规律。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将实际问题转化为有理数除法运算问题,并通过实例让学生感受有理数除法的运算规律。
三. 教学目标1.知识与技能:使学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律。
2.过程与方法:培养学生解决实际问题的能力,提高学生运用有理数除法解决生活中的问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的精神。
四. 教学重难点1.教学重点:有理数除法的基本运算方法。
2.教学难点:理解有理数除法的运算规律,解决实际问题。
五. 教学方法1.情境教学法:通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义。
2.引导发现法:教师引导学生观察、分析实例,发现有理数除法的运算规律。
3.合作学习法:学生分组讨论,共同解决问题,提高学生合作能力。
六. 教学准备1.教学课件:制作课件,展示实例和教学内容。
2.教学素材:准备一些实际问题,用于引导学生解决。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示日常生活中的一些实例,如购物时找零、制作食品时配料等,引导学生感受有理数除法的实际意义。
2.呈现(10分钟)教师通过讲解,向学生介绍有理数除法的基本运算方法,如“同号两数相除,异号两数相除”等。
同时,引导学生观察实例,发现有理数除法的运算规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.2有理数的除法(1)
【学习目标】:
1、理解除法是乘法的逆运算;
2、理解倒数概念,会求有理数的倒数;
3、掌握除法法则,会进行有理数的除法运算;
【重点难点】:有理数的除法法则
【教学过程】
一、知识链接w-w-w.x-k-b-1.c.-o-m
1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有米,列出的算式为。
2)放学时,小红仍然以每分钟50米的速度回家,应该走分钟。
列出的算式为
从上面这个例子你可以发现,有理数除法与乘法之间的关系是
3)写出下列各数的倒数
-4 的倒数 ,3的倒数 ,-2的倒数;
二、合作交流、探究新知
1、小组合作完成
比较大小:8÷(-4) 8×(一1
4);
(-15)÷3 (-15)×1
3
;
(一11
4
)÷(一2)(-1
1
4
)×(一
1
2
);
再相互交流、并与小学里学习的乘除方法进行类比与对比,
归纳有理数的除法法则:
1)、除以一个不等于0的数,等于;
2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;
1.自学P34例5、P35例6
2.师生共同完成例7
【课堂练习】
1、练习:P35
2、练习:P36第1、2题
【要点归纳】:
有理数的除法法则:
【拓展训练】
1、计算
(1)
21
35
32
⎛⎫⎛⎫
-÷
⎪ ⎪
⎝⎭⎝⎭
;
(2) 0÷(-1000);
(3) 375÷
23
32
⎛⎫⎛⎫-÷-
⎪ ⎪⎝⎭⎝⎭
;
【课后作业】P38第4,6题【板书设计】
【总结反思】:。