极限的运算法则

合集下载

极限的运算法则

极限的运算法则

常数因子可以提到极限记号外面.
推论2
如果 lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
二、求极限方法举例
例1

lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3 x 5) lim x 2 lim 3 x lim 5
5 1
2 lim
x
7
3
x 4
x
5 x3 1 x3
2. 7
(无穷小因子分出法)
小结: 当a0 0, b0 0, m和n为非负整数时有
lim
x
a0 x m b0 x n
a1 x m 1 b1 x n1
am bn
0ab,00当,当n n
m m,
,
,当n m,
无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出 无穷小,然后再求极限.
lim
x x0
f
( x)
a
0
(
lim
x x0
x)n
a1
(
lim
x x0
x)n1
an
a0 x0 n a1 x0 n1 an f ( x0 ).
2. 设
f
(
x)
P( x) Q( x)
,
且Q( x0
)
0,
则有
lim P( x)
lim f ( x) x x0
x x0
lim Q( x)
x x0
一、极限运算法则
定理 设 lim f ( x) A, lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g( x) B

极限的运算法则及计算方法

极限的运算法则及计算方法

极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。

在许多情况下,计算极限可以通过应用一些运算法则来简化。

本文将介绍极限的运算法则以及一些常用的计算方法。

一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。

2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。

3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。

4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。

二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。

2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。

三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。

极限的运算法则解读

极限的运算法则解读

x0
x0
1.
2
注 只要极限运算与四则运算交换顺序后的
算式有意义(包括出现),就可交换顺序。
注 不能直接用四则运算法则时,可考虑将函数 适当变形,再考虑能否用该法则。
常用的变形方法有:通分,约去非零因子, 用非零因子同乘或同除分子分母,分子或分母有 理化,等等。
例3
lim
x1
x
2
x2 1 2x
3
( 0 ) (消零因子法) 0
(先约去x 1后再求极限)
( x 1)( x 1) lim
x1 ( x 3)( x 1)
x1 lim
x1 x 3
1. 2
3n2 n 1
例4
lim
n
2n2
4n
1
( )(无穷小因子分出法)
3 1/ n 1/ n2 lim
3.
n 2 4 / n 1/ n2 2
1) n
1. 2
例9 当a0 0, b0 0, m、n N 时,
lim
x
a0 xm b0 x n
a1 b1
x m1 x n1
am bn
xm a a x1 a xm
lim(
x x
n
0
b
1
m
b x1 b xn
)
0
1
n
a0 b0
lim
x
m
n
x
a0 / b0 , 0,
,
n m; n m;
e x x e x
7、
4x4 lim
2x2
x
__________.
x0 3x 2 2x
8、
(2x 3)20 (3x

极限的运算

极限的运算

极限的运算一 极限的四则运算法则定理:若()A x f =lim ,()B x g =lim ,则有 (1)()()[]()()x g x f B A x g x f lim lim lim ±=±=± (2)()()[]()()x g x f AB x g x f lim lim lim ⋅==⋅ (3)()()()()x g x f B A x g x f lim lim lim==,(0≠B ) 注意:法则(1)和法则(2)可以推广到有限个函数的情况。

另外,法则(2)还有三个推论。

推论:(1)()()x f k x kf lim lim =, (k 为常数)(2)()[]()[]n x f nx f lim lim =,(n 为正整数) (3)()[]()[]nnx f x f 11lim lim =,(n 为正整数)例1()235lim 22+-→x x x -=→225lim x x +→x x 3lim 22lim 2→x=-→22lim 5x x +→x x 2lim 32=-→22)lim (5x x +⨯232=26252+-⨯=16观察这个例子可以发现函数2352+-x x 在2→x 时的极限正好等于它在2=x 这一点的函数值,因此,我们可以得到这样一条规律:若()x f 是多项式,则()()00lim x f x f x x =→。

例23512222lim +--+→x x x x x =()()35122222lim lim +--+→→x x x x x x =3252122222+⨯--+⨯=39-=3- 例3222123lim x x x x -+-→=()()2222123lim lim x x xx x -+-→→=0从以上三个例子可以看出极限四则运算法则的运用是比较简单的,但是如果我们拿到的极限不满足极限四则运算法则的条件,就不能用极限的四则运算法则来求极限了。

极限运算法则

极限运算法则

= 2 2 − 3 ⋅ 2 + 5 = 3 ≠ 0,
lim x − lim 1 x −1 23 − 1 7 x→2 x→2 = ∴ lim 2 = . = 2 x→2 x − 3 x + 5 3 lim( x − 3 x + 5) 3 x→2
3
3
4x − 1 . 例2 求 lim 2 x →1 x + 2 x − 3
lim [ f ( x ) ⋅ g ( x )] = lim f ( x ) ⋅ lim g ( x )
x → x0 x → x0
x → x0
lim kf ( x ) = k lim f ( x )
x → x0
(k为常 数)
3) 当 lim g ( x ) ≠ 0 时,
x → x0
f ( x) lim = lim f ( x ) / lim g ( x ). x → x0 g ( x ) x → x0 x → x0
( x 2 + 2 x − 3) = 0, x − 1) = 3 ≠ 0,
x →1
x2 + 2x − 3 0 ∴ lim = = 0. x →1 4x − 1 3
∴ lim 4x − 1 x + 2x − 3
2 x →1
= ∞.
小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 +
=
u→ B ln A
lim e u = e B ln A = A B .
极限存在准则、两个重要极限
极限存在准则 两个重要极限
1、极限存在准则
数列极限的夹挤准则
准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:

极限的 运算法则

极限的 运算法则
x2 2lim
x
1
3
2 2
1
1 3

x1
x1
x1
结论 一般地,当有理分式函数中分母的极限不为零时,有理分式在 x0 处的极 限也等于其在 x0 处的函数值.
1.1 极限的四则运算法则
例3

lim
x1
4x 3 x2 3x
2

解 因为分母的极限 lim(x2 3x 2) 12 31 2 0 ,故不能直接用商的极限 x1
lim
xx0
(a0
xn
a1xn1
an1x an ) a0 x0n a1x0n1
an1x0 an .
1.1 极限的四则运算法则
例2

lim
x1
3x2
2x 2x
1

解 这里分母的极限不为零,故
lim
x1
3x2
2x 2x
1
lim 2x
x1
lim(3x2 2x
1)
3lim
2lim x x1
a1 x n 1 b1 x m 1
0, n m ,
an bm
a0 b0

n m ,(其中 a0 0 ,b0 0
, n m ,
1.1 极限的四则运算法则
例9

lim
n
2n 2n1
5n 5n1

解 当 n 时,分子、分母都是无穷大,故不能直接用商的极限法则,但可 以将分子、分母同除以 5n ,再利用极限四则运算法则计算.
高等数学
极限的运算法则
本节讨论极限的求法,主要是建立极限的四则运算法则和复合函数 的极限运算法则,利用这些法则,可以求某些函数的极限.以后我们 还将介绍求极限的其他方法.

极限四则运算法则

极限四则运算法则
CREATE TOGETHER
DOCS SMART CREATE
极限四则运算法则
DOCS
01
极限四则运算的基本概念
极限的定义与性质
极限的定义
• 数列极限:当自变量趋向某一值时,数列的项趋向另一值
• 函数极限:当自变量趋向某一值时,函数的值趋向另一值
极限的性质
• 极限存在唯一性:如果一个函数在某个点存在极限,那么这个极限是唯一的
DOCS
间接法求解极限的步骤
• 通过已知条件和极限的性质,间接求出极限的值
• 分析已知条件,找出与极限相关的表达式
• 根据极限的性质,将表达式变形
• 求出极限的值
无穷小量与无穷大量在极限运算中的应用


无穷小量的概念
• 当自变量趋向某一值时,函数值趋向于0,但永远无法等于0
无穷大量的概念
• 当自变量趋向某一值时,函数值趋向于无穷大,但永远无法等于无穷
• 将复杂的极限问题转化为导数问题
过求导数的方法求解极限
• 通过洛必达法则求解极限,简化运算过程
对数函数与指数函数在极限运算中的技巧
对数函数与指数函数在极限运算中的性质
• 对数函数的极限:当自变量趋向于无穷大时,对数函数的极限等于无穷小量
• 指数函数的极限:当自变量趋向于无穷大时,指数函数的极限等于无穷大量
对数函数与指数函数在极限运算中的应用
• 利用对数函数和指数函数的性质,简化极限运算
• 通过变换函数形式,将复杂的极限问题转化为简单的极限问题
04
极限四则运算的案例分析
连续函数与间断函数的极限分析
连续函数的极限分析
断续函数的极限分析
• 连续函数在一点的极限等于函数在该点的值

极限运算法则

极限运算法则
x 1
x 1 u2 1 u 1 ∴ 原式 lim(u 1) 2 u 1 x 1 u 1
方法 2
( x 1)( x 1) lim( x 1) lim x 1 x 1 x 1
2
小结
1.无穷小运算法则;极限的四则运算法则;复合函数的极 限运算法则. 2.极限求法; a.多项式与分式函数代入法求极限;
n 1
a n f ( x0 ).
P( x) 2. 设 f ( x ) , 且Q( x0 ) 0, 则有 Q( x )
P ( x0 ) lim f ( x ) f ( x0 ). x x0 lim Q( x ) Q( x 0 )
x x0 x x0
lim P ( x )
3 (1);
5
备用题 设 求 解: 是多项式 , 且 利用前一极限式可令
f ( x) 2 x 3 2 x 2 a x b
再利用后一极限式 , 得
f ( x) b 3 lim lim (a ) x 0 x x 0 x
可见 故
思考及练习 1. 问
是否存在 ? 为什么 ?
答: 不存在 . 否则由
利用极限四则运算法则可知
矛盾. 2.
存在 , 与已知条件
n (n 1) 1 1 1 解: 原式 lim lim (1 ) 2 n 2n n 2 n 2
3. 求 解法 1 原式 = lim
x x2 1 x
x
lim
x
若Q( x0 ) 0, 则商的法则不能应用 .
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,

极限运算法则

极限运算法则






定理2 有界函数与无穷小的乘积是无穷小. 证明
设函数u在U 0 ( x 0 , 1 )内有界,
则M 0, 1 0, 使得当0 x x 0 1时 恒有 u M .
又设是当x x0时的无穷小 , 0, 2 0, 使得当0 x x 0 2时
小结: 1. 设 f ( x ) a0 x n a1 x n 1 a n , 则有
x x0
lim f ( x ) a0 ( lim x ) n a1 ( lim x ) n 1 a n
x x0
n
x x0
a0 x0 a1 x0
n 1
a n f ( x0 ).
u u0
且存在 0 0,当x U 0 ( x0 , 0 )时, 有g( x) u0 , 则
x x0
lim f [ g( x )] lim f ( u) A
u u0
证明 按 函 数 极 限 的 定 义 , 要 证: 0, 0, 使 得
当0 x x0 时, 恒 有 f [ g( x )] A lim f ( u) A, 0, 0, 使 得 uu



2
因 为 是 当x x0时 的 无 穷 小 , 对 于 0, 2 0, 2 当0 x x0 2时, 恒 有

2 取 m in{ 1 , 2 }, 则 当0 x x0 时, 恒 有 及
2 2 2 2 即证明了 也 是x x0的 无 穷 小 从 而
4x 1 lim 2 . x 1 x 2 x 3

高等数学 极限运算法则

高等数学 极限运算法则

x)
Pn ( x0 ) Pm ( x0 )
f ( x0 ).
16
极限运算法则
例 求 lim x2 2x 3 ( 0 型 )
x3 x 3
0
解 方法:消去零因子
x2 2x 3 lim
lim ( x 3)( x 1)
x3 x 3
x3 ( x 3)
lim( x 1) 4 x3
预习:
1.无穷小
无穷小的定义和性质 等价无穷小替换的使用规则
2. 无穷大
无穷大的定义和性质 无穷大和无穷小的关系
1
第三节 极限运算法则
极限四则运算法则 极限的复合运算则 两个极限存在准则
第一章 函数与极限
2
极限运算法则
一、极限四则运算法则
lim f ( x)泛指任一种极限
定理1(四则运算) 设 lim f ( x) A, lim g( x) B,则
limqn 0(| q | 1)
n
解 方 法 先作恒等变形, 变成基础极限。
2n 3n lim n 2n 3n
2 n 1 lim 2 n lim1
lim 3
n 3
n
n 2 n 1 lim 2 n lim1
3
n 3 n
1


1
lim(
n
n
2
2 n2
n n2
).
1 lim 0 n n
x21,源自x 0,求 lim f ( x). x 0 x0
解 x 0 是函数的分段点,
10
lim f ( x) A
x x0
左极限f ( x0 0)和右极限f ( x0 0)均存在
f ( x0 0) f ( x0 0) A

极限运算法则总结

极限运算法则总结

极限运算法则总结
1. 极限的唯一性:如果一个数列存在极限,则极限唯一。

2. 有界性原理:如果一个数列有极限,则它是有界数列。

3. 递推数列的极限性质:如果一个数列存在极限,那么这个数列的递推数列也存在极限,且极限相等。

4. 夹逼准则:如果一个数列在两个极限之间夹逼,那么这个数列也存在极限,且极限等于夹逼的两个极限。

5. 极限与函数连续性的关系:如果一个函数在某点处连续,那么在这个点处的极限就等于函数值。

6. 极限与函数单调性的关系:如果一个函数单调递增且有上界(或单调递减且有下界),那么这个函数存在极限,且极限等于上(或下)界。

7. 极限的四则运算法则:对于两个数列,若它们存在极限,则它们的和、差、积、商(分母不为0)也存在极限,且按照运算法则计算。

8. 乘积的极限性质:如果一个数列存在极限,那么它与另一个数列的乘积也存在极限,且极限等于原数列和另一个数列的极限的乘积。

9. 商的极限性质:如果两个数列都存在极限且分母数列的极限不为0,那么它们的商也存在极限,且极限等于分子和分母各自的极限的商。

10. 多项式函数与指数函数的极限:在正无穷大和负无穷大两个方向上,多项式函数的极限为正无穷或负无穷,而指数函数的极限为0(负指数)或正无穷(正指数)。

极限的运算法则

极限的运算法则

不能直接使用极
1 “, 0 ”“ ”“0 ”“” 限的四则运算法
0
则来计算的极限
目录
*求未定式极限方法举例、练习 1. 0 型有理式 0
约零因子法(因 式分解)
方法:分子分母分解因式,消去使他们趋于
零的公因子
x2 16 lim x4 x 4
(0型 ) 0
解 lim x 2 1 6 lim (x 4 )(x 4 ) lim (x 4 ) 8 x 4x 4 x 4 x 4 x 4
x 1

lim
x1
x2

1
0 0
x1 lim
x1 (x1)(x1)
1 lim
x1 x 1

1 2
目录
练习
求lxi m 1(13x3
1 ). 1x
3 lxi m 1(1x3
11 x x3x2). lxi m 13(11xx3x2)
2xx2
2.利用无穷小与无穷大的关系求 A 型极限;
0
0
3.消去零因子法求 0极限;
4.分子分母同除以x的最高次方法求 (x 型) 极限; 5.通分法求 极限;
6.利用左右极限求分段函数极限.
7.复合函数的极限. 8.无穷小与有界变量的积是无穷小.
目录
例:lim (x23x5) . x2
代入法
解: lim (x23x5)lim x2li3 m xli5 m
x2
x 2
x 2
x 2
223253
课本例题:lim(x2 2x) x2
例:
x2 1
lim
.
x3 x 4
解:lim(x4) limxlim434 10

极限运算法则

极限运算法则
极限运算法则 定理1 设 lim f (x) = A, lim g(x) = B, 则
(1) lim[ f ( x ) g( x )] lim f ( x) lim g( x) A B;
例: lim( x 2 ln x ) lim x 2 lim ln x 4 ln 2
h( x )
A
f ( x)
g( x )
O
x
夹逼准则 sin x 例:试用夹逼准则证明 lim 0 x x 1 sin x 1 1 sin x 1 x x x 1 1 sin x lim lim 0 lim 0 x x x x x x
5x 4x 1 例求: lim x 2 x 10 5 x 2
10 2
mn mn mn
5x 4x 2 例求: lim x x 1
3 2
极限运算法则
2x 3x 1 例求: lim x (2 x 1)2
3
3 x4 3 例求: lim x (2 x 2)4 (2 x 1)30 (3 x 2) 20 思考: lim x (2 x 1)50
lim g( x ) u0 , lim f ( u) A,
u u0
且在 x0 的某去心邻域内有 g(x) ≠ u0 , 则
x x0
lim f [ g( x )] lim f ( u) A.
u u0
复合函数求极限法则
例: lim e
x
1 x
求 解 顺 序
eu 1 u x
例: lim(2 x ln x 1) lim 2 x lim ln x 1 3
2 2 x 1 x 1 x 1

极限的四则运算法则

极限的四则运算法则

f (x) g(x),商的极限,等于它们极限的商。
定理14 如果 f (x) g(x) ,且Limf (x) A Limg(x) B
则 AB
2x 3


Lim x1 x2 5x 4
解 当 x 1 时,分母的极限为零,分子的极
限为-1,不能应用商的极限定理,但因其倒数
的极限 Lim x2 5x 4 0 0 根据无穷小的倒

原式= Lim x
n4 n 0 0 1 1 1
n


(2x 3)20 (3x 2)30
Lim
x
(5x 1)50

(2x 3)20 (3x 2)30
原式= Lim x
x 20
x 30
(5x 1)50
(2 3)20 (3 2)30
Lim x
x
x
(5 1 )50
220 330 550
推论3 若 Limf (x) 存在,而c为常数,则 Lim[c f (x)] c Limf (x) 说明,求极限时,常 数因子可以提到极限符号外面。 推论4 若 Limf (x) 存在,而n为正整数, 则
Lim[ f (x)]n [Limf (x)]n 。
定理13 如果分母的极限不为零,则两个函数
x 2x 3 1
2x 3
数是无穷大的定理,得
Lim
x1 x 2 5x 4


x2 2 Lim x 2x3 x2 1
解 分子分母同除最高次项 x3,再求极限,

Lim
x
x2 2 2x3 x2 1
Lim
x
2
1 x
1
2
x3 1
0 0 2

极限的运算法则

极限的运算法则

( lim x )2 3 lim x lim 5
x2 x2 x2
2 2 3 2 5 3 0,
3
商的极限等 于极限的商
3 2 x 1 1 7 x2 . lim 2 2 3 3 x2 x 3 x 5 lim ( x 3 x 5)
lim [ f ( x ) g( x )] A B
lim f ( x ) lim g ( x )
x x0 x x0
以上运算法则对有限个函数成立. 于是有
x x0
lim [ f ( x )]n [ lim f ( x )]n
x x0
—— 幂的极限等于极限的幂
lim f ( x ) g ( x ) 是否一定不存在?
一定不存在.(可用反证法证明) 答:
n 1 2 3 2. lim 2 2 2 2 ? n n n n n
n ( n 1) 1 1 1 解 原式 lim lim ( 1 ) . 2 n 2n n 2 n 2
例5 分析 解
12 1 求 lim 3 . x 2 x 2 x 8
( 型 )
型,先通分,再用极限法则.
22 x (x 22 xx 8 4 ) 12 0 ( ) 原式 lim lim 3 0 2 2 x3 x x x8 8
2 x3 3 x2 5 例4 求 lim . 3 2 x 7 x 4 x 1
分析
( 型)
x 时,分子,分母都 趋于 无穷.
可以先用 x3 同时去除分子和分母, 然后再取极限. 3 5 2 3 3 2 2x 3x 5 x x “ 抓大头” 解 lim lim 4 1 x x 7 x 3 4 x 2 1 7 3 x x 3 5 lim ( 2 3 ) 2 x x x . 4 1 lim (7 3 ) 7 x x x

极限运算法则

极限运算法则

参与四则运算的各项的极限都存在!
定理 5. 若lim f (x) A,lim g(x) B,且 f (x) g(x), 则 A B.
7
例1求
lim
x2
x2
x3 1 3x
5
.解:原式 Fra biblioteklim(x3 1)
x2
7
lim(x2 3x 5) 3
x2
结论 2:设有理分式函数 R(x) P(x) ,其中P(x),Q(x) Q(x)
x x 2 1 x
x
1
1 x2
1
2
解法 2: 令 t 1 ,则 x 时,t 0 x
原式= lim 1
t t 0
1 t2
1
1 t
lim t0
1 t2 1 t2
lim 1 1 t0 1 t 2 1 2
倒代换
16
练习
1 x 1 x lim x0 3 1 x 3 1 x
2
1
2
lim
结论 1:设 n次多项式 Pn (x) a0 a1x an xn,
则 lim x x0
Pn
(x)
Pn
(
x0
).
6
定理 4.

lim
n
xn
A,lim n
yn
B ,则
(1)
lim(
n
xn
yn )
A
B;
(2)
lim
n
xn
yn
AB;
(3)
当 yn
0且 B
0时, lim n
xn yn
A. B
注:极限的四则运算法则成立的条件为:
x0
(1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lim(
n
1 n2
2 n2
n n2
)
lim
n
1
2
n2
n
1 n(n 1)
lim 2 n
n2
1 2
lim(1
n
n1 )
1. 2
目录
小结
------极限求法;
1.多项式与分母不为零的分式函数代入法求极限;
2.利用无穷小与无穷大的关系求 A型极限;
0
0
3.消去零因子法求 0极限;
4.分子分母同除以x的最高次方法求 (x 型) 极限; 5.通分法求 极限;
0
则来计算的极限
目录
*求未定式极限方法举例、练习 1. 0 型有理式 0
约零因子法(因 式分解)
方法:分子分母分解因式,消去使他们趋于
零的公因子
( 0型) 0

目录
x2 9 lim x3 x 3
解 分析:因为 lim(x2 9) 0,lim(x 3) 0.
x3
x3
lim x2 9 lim ( x 3)( x 3) lim( x 3) 6
lim[c f (x)] c lim f (x) (c为常数)
特例2:推广到有限个函数的积
3、除法法则: 商的极限等于极限的商
lim
f (x) g( x)
lim f (x)
lim g(x)
A B
(B 0)
小 结: 函数的和、差、积、商的极限等于函数极限
的和、差、积、商
目录
(1)和函数的极限等于极限的和. (2)积函数的极限等于极限的乘积. (3)商函数的极限等于极限的商(分母不为零).
lim
x
2 3
x2 1
x2
lim(2
x
3 x2
)
1
lim(3
x
x2 )
20 2 30 3
目录
lim x 1 . ( 型 ) x x2 x 1
lim
1 x
1 x2
x 1
1 x
1 x2
lim( 1 x x
1 x2
)
0
lim(1
x
1 x
1 x2
)
lim
x
3x2 x 2 4x3 2x 3 .(
差一点 ! 结论成立的条件.
目录
例:lim(x2 3x 5). x2
代入法
解: lim( x2 3x 5) lim x 2 lim 3x lim 5
x2
x2
x2
x2
22 3 2 5 3
课本例题:lim(x2 2x) x2
例:
x2 1
lim
.
x3 x 4
解: lim( x 4) lim x lim 4 3 4 1 0
1、加法法则:代数和的极限等于极限的代数和
lim[ f ( x) g( x)] lim f ( x) lim g( x)
推论1:推广到有限个函数的代数和 2、乘法法则:乘积的极限等于极限的乘积
lim[ f ( x) g( x)] lim f ( x) lim g( x)
目录
特例1:常数因子可提到极限记号外面
6.利用左右极限求分段函数极限.
7.复合函数的极限. 8.无穷小与有界变量的积是无穷小.
目录
目录
目录
数理与信息技术系
***
目录
一、函数极限的性质
定理(唯一性):若函数f(x)有极限,则极限值 是唯一的.
定理(迫敛定理):如果在x=x0附近(点x0可以除 外)
(1) g(x) f (x) h(x)
(2)
那么
目录
二、极限的四则运算法则
设在某极限过程中, 函数 f (x)、g(x) 的极限 lim f (x)、lim g(x) 存在, 则
x x3
x2)
lim
x1
2
1
x
x x3
2
x2 x 2
lim x1
x3 1
lim
x1
(
( x 1)( x 1)( x2
x 2) x
1)
0 0
lim
x1
x2 x2 x
1
1
目录

1
lim(
n
n
2
2 n2
n n2 ).
解 n 时,是无穷小之和.
先变形再求极限.
说明:无穷多个 无穷小量之 和不一定是 无穷小
x3 x 3 x3 ( x 3)
x3
目录
2. 型有理式及无理式
方法:分子分母同时除以x的最高次方幂
约最高次幂法
目录
lim
x
2x2 3x2
3. 1
(

)
[分析]当x 时, 分子,分母都趋于无穷大 ,
先用x2去除分子分母 , 转化为无穷小, 再求极限.
3

lim
x
2x2 3 3x2 1Fra bibliotek型)
lim
x
3 x
1
x2 2
2
x3 3
4 x2 x3
0 0 4
目录
小 结: 当a0 0, b0 0, m和n为非负整数时有
lim
x
a0 xm b0 x n
a1 x m1 b1 x n1
am bn
a0 ,当n m(分子最高次幂 分母最高次幂) b0
0, 当m (n 分子最高次幂 分母最高次幂)
2 x2 1

1
2
lim(
x1
x
1
x2
) 1
lim(
x1
x1 x2 1
2
x
2
) 1
x1
lim
x1
x2
1
0 0
x1 lim
x1 ( x 1)( x 1)
lim
x1
1 x1
1 2
目录
练习

lim(
x1
1
3 x
3
1 1
). x
3
lim( x1 1
x3
1 x 1
x2 x3
).
lim
x1
3
(1 1
要记住哦 !
目录
练习
1.求
lim
x
5x2 7x2
3x 6x
4 1
5 7
2.求
lim
x
5x2 7x3
3x 6x
4 1
=0
目录
3. 型有理式
方法:先通分化为分式,再求极限
先化简再用 约最高次幂法
目录
1 lim( x1 x 1
2
x
2
). 1
( )
分析:lim x1
1 x
1
, lim x1
x3
x3
x3
lim
x3
x2 1 lim(x2 1)
x4
x3
lim(x
4)
91 34
10.
x3
目录
未定式极限
定义: 无穷小之比或无穷大之比的极限等,这类极限 可能存在,也可能不存在,极限存在也会有各种不同的结果。 ——这种类型的极限称为未定式极限。
主要的未定式的极限有:
不能直接使用极
1“, 0”“”“0 ”“ ” 限的四则运算法
相关文档
最新文档