两个物体组成的系统机械能守恒的求解方法

合集下载

机械能守恒定律知识点总结

机械能守恒定律知识点总结

机械能守恒定律知识点总结机械能守恒定律是高中物理中一个非常重要的定律,它描述了在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

下面我们来详细总结一下机械能守恒定律的相关知识点。

一、机械能的概念机械能包括动能、重力势能和弹性势能。

动能:物体由于运动而具有的能量,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。

重力势能:物体由于被举高而具有的能量,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对于参考平面的高度。

弹性势能:物体由于发生弹性形变而具有的能量,与弹簧的劲度系数和形变程度有关。

二、机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

三、机械能守恒定律的表达式1、初状态的机械能等于末状态的机械能,即$E_{k1} + E_{p1} =E_{k2} + E_{p2}$。

2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\Delta E_{p}$。

四、机械能守恒定律的条件1、只有重力或弹力做功。

2、受其他力,但其他力不做功或做功的代数和为零。

需要注意的是,“只有重力或弹力做功”不能简单地理解为“只受重力或弹力”。

例如,物体在光滑水平面上做匀速圆周运动,虽然受到绳子的拉力,但拉力始终与速度方向垂直,不做功,所以物体的机械能守恒。

五、机械能守恒定律的应用1、单个物体的机械能守恒分析物体的受力情况,判断机械能是否守恒。

确定初末状态,选择合适的表达式列方程求解。

例如,一个物体从高处自由下落,我们可以根据机械能守恒定律$mgh_1 =\frac{1}{2}mv^2 + mgh_2$来求解物体下落某一高度时的速度。

2、多个物体组成的系统的机械能守恒分析系统内各个物体的受力情况,判断机械能是否守恒。

确定系统的初末状态,注意研究对象的选择和能量的转化关系。

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。

这个规律叫做机械能守恒定律。

机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。

如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。

外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。

这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。

这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。

这只能在一些特殊的惯性参考系如地球参考系中才成立。

如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。

机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。

【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。

一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。

从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。

当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。

当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。

机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。

2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统。

机械能守恒定律的判定方法和解题思路

机械能守恒定律的判定方法和解题思路

机械能守恒定律的判断方法和解题思路机械能守恒定律是高中物理中一个重要规律,也是历年高考的要点和热门。

应用时,要点是守恒的判断和解题的思路,本文对这两个问题赐予分析。

一、机械能守恒的判断方法(1)用做功来判断:分析物系统统的受力状况(包括内力和外力),明确各力做功状况,若对物系统统只有重力做功或弹力做功,没有其余力做功或其余力做功的代数和为零,则机械能守恒;(2)用能量转变来判断:若物系统统中只有动能和势能之间的互相转变,而无机械能与其余形式能的转变,则机械能守恒;(3)关于绳索忽然绷紧,除非题目特别说明,机械能必然不守恒。

二、机械能守恒的解题思路应用机械能守恒解题时,互相作用的物体间的力能够是变力,也能够是恒力,只需切合守恒定律,机械能就守恒,并且机械能守恒定律,只波及物系统初、末状态的物理量,而不需分析中间过程的复杂变化,使物理问题获得简化。

应用的基本思路以下: 1. 选用研究对象 �� 物系统或物体; 2. 依据研究对象所经历的物理过程,进行受力、做功分析,判断机械能能否守恒; 3. 恰当的选用参照面,确立研究对象在过程的初、末态时的机械能;4.用机械能守恒定律成立方程,求解并考证结果。

三、典例分析1.单个物体的守恒问题例 1 如图 1 所示,某人以 3m/s 的速度斜向上抛出一个小球,小球落地时速度为 7m/s,不计空气阻力,求小球抛出时离地面的高度h。

( g=10m/s2)分析选小球为研究对象,以抛出时和落地时为初、末状态,速度大小分别为和,在小球运动过程中,只有重力做功,故小球的机械能守恒。

我们用机械能守恒定律的两种表达式来求解:解法 1 用求解。

取地面为零势能参照面,则有:,由机械能守恒定律可得:,代入数据解得: h=2m。

解法 2 应用。

不用再选零势能参照面。

小球减少的重力势能,小球增添的动能为,由可得:,代入数据可得:h=2m。

评论同学们可比较两种解法,谁优谁劣?2.物系统的守恒问题例 2 如图 2 所示,物块M和 m用一不行伸长的轻绳经过定滑轮连结, m放在倾角为的固定的圆滑斜面上,而穿过竖直杆PQ的物块M可沿杆无摩擦地下滑,M=3m,开始将M抬高到A 点,使细绳水平,此时 OA段的绳长为 L=,现让 M由静止开始下滑,求 M 下滑到 B 点时的速度?( g=10m/s2)?分析 M 下滑过程中, M、 m构成的系统只有重力做功,并且无摩擦力和介质阻力做功,所以M、m构成的系统机械能守恒,设M由 A 至 B 着落了 h,M落至 B 点时, M、m的速度分别为、,此过程中 m在斜面上挪动的距离为 s:依据机械能守恒,系统重力势能的减少等于动能的增添,可列方程由几何关系可得,由 M、m运动的关系及速度分解可得,代入数据可解得:,。

(完整版)机械能守恒定律练习题及其答案

(完整版)机械能守恒定律练习题及其答案

机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。

例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。

2020--2022年三年全国高考物理真题汇编:机械能守恒定律

2020--2022年三年全国高考物理真题汇编:机械能守恒定律

2020--2022年三年全国高考物理真题汇编:机械能守恒定律一、单选题1.(2分)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。

P的下表面光滑,Q与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。

用水平拉力将Q向右缓慢拉开一段距离,撤去拉力后,Q恰好能保持静止。

弹簧形变始终在弹性限度内,弹簧的劲度系数为k,重力加速度大小为g。

若剪断轻绳,Р在随后的运动过程中相对于其初始位置的最大位移大小为()A.μmgk B.2μmgk C.4μmgk D.6μmgk2.(2分)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。

如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。

从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量3.(2分)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。

运动员从a处由静止自由滑下,到b处起跳,c点为a、b之间的最低点,a、c两处的高度差为h。

要求运动员经过一点时对滑雪板的压力不大于自身所受重力的k倍,运动过程中将运动员视为质点并忽略所有阻力,则c点处这一段圆弧雪道的半径不应小于()A.ℎk+1B.ℎk C.2ℎk D.2ℎk−14.(2分)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。

用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。

在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒5.(2分)水上乐园有一末段水平的滑梯,人从滑梯顶端由静止开始滑下后落入水中。

机械能守恒定律在轻绳连接体中的应用

机械能守恒定律在轻绳连接体中的应用

机械能守恒定律在轻绳连接体中的应用一、连接体物体系统的机械能守恒两个或两个以上的物体通过细绳或轻杆或弹簧联系在一起,系统仅在重力作用下运动,对系统中某一个物体来说机械能不守恒,但整个系统与外界无能量交换,机械能仅在系统内物体间转移或转化,所以系统机械能守恒。

二、系统机械能守恒的常用表达式三、绳连接的物体系统机械能守恒如图所示的两物体组成的系统,释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,A、B的速率也相等。

但有些问题中两物体的速率并不相等,这时就需要先进行运动的合成与分解找出两物体运动速度之间的关系。

【题型1】如图所示,质量分别为3kg和5kg的物体A、B,用足够长的轻绳连接跨在一个光滑轻质定滑轮两侧,轻绳正好拉直,且A物体底面与地接触,B物体距地面0.8m,不计空气阻力,求:(1)放开B物体,当B物体着地时A物体的速度大小;(2)B物体着地后(不反弹)A物体还能上升多高.(g取10m/s2)【题型2】一半径为R的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A、B两球悬挂在圆柱面边缘两侧,A球质量为B球质量的2倍,现将A球从圆柱边缘处由静止释放,如图所示.已知A球始终不离开圆柱内表面,且细绳足够长,若不计一切摩擦,求:A球沿圆柱内表面滑至最低点时速度的大小.【题型3】如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,开始时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会碰到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2)针对训练1.有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止。

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。

2023届高考物理一轮复习--简明精要的考点归纳与方法指导--专题六 功能关系(八大考点)

2023届高考物理一轮复习--简明精要的考点归纳与方法指导--专题六 功能关系(八大考点)

2023年高考物理一轮复习--简明精要的考点归纳与方法指导专题六功能关系(八大考点)考点一功的正负判断和大小计算1.功的正负判断方法(1)恒力功的判断:依据力与位移方向的夹角来判断。

(2)曲线运动中功的判断:(3)依据能量变化来判断:功是能量转化的量度,若有能量转化,则必有力对物体做功。

此法常用于两个相联系的物体之间的相互作用力做功的判断。

2.恒力功的计算方法3.总功的计算方法方法一:先求合力F合,再用W总=F合l cos α求功,此法要求F合为恒力。

方法二:先求各个力做的功W 1、W 2、W 3、…,再应用W 总=W 1+W 2+W 3+…求总功,注意代入“+”“-”再求和。

4.变力做功的计算方法方法常见情境方法概述微元法将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移方向上的恒力所做功的代数和。

此法在中学阶段,常应用于求解大小不变、方向改变的变力做功问题 平均 力法在求解变力做功时,若物体受到的力方向不变,而大小随位移呈线性变化,即力均匀变化,则可以认为物体受到一大小为F =F 1+F 22的恒力作用,F 1、F 2分别为物体初、末态所受到的力,然后用公式W=F l cos α求此力所做的功图像法在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只便于求图线所围图形规则的情况(如三角形、矩形、圆等规则的几何图形)化变力 为恒力在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只便于求图线所围图形规则的情况(如三角形、矩形、圆等规则的几何图形)用W= Pt计算这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是不变的这一条件考点二功率的分析与计算1.平均功率的计算方法(1)利用P=Wt。

新高考物理专题-机械能守恒的连接体模型

新高考物理专题-机械能守恒的连接体模型

机械能守恒的连接体模型江苏省姜堰中学 唐玉兵【要点分析】模型一、速率相等的连接体模型如图所示,是A 、B 两物体组成的系统,当释放B而使A 、B 运动的过程中,A 、B 的速度均沿绳子方向,在相等时间内A 、B 运动的路程相等,则A 、B的速率相等。

【典型例题】例1、如图所示,B 物体的质量是A 物体质量的12,在不计摩擦阻力的情况下,A 物体自H 高处由静止开始下落。

以地面为参考平面,当物体A 的动能与其势能相等时,物体A 距地面的高度是( )A.15HB.25HC.45HD.13H 【参考答案】B【解析】 设当物体A 距离地面h 时,其动能与势能相等,对A 、B 组成的系统由机械能守恒定律得:又根据题意可知, 解得: 故选项B 正确。

【要点分析】模型二、角速度相等的连接体模型如图所示,是A 、B 两物体组成的系统,当释放A 、B 后,绕垂直纸面的固定轴O 转动(图中未画出),在相同时间内,A 、B 转过的角度相等,则A 、B 转过的角速度相等。

【典型例题】211()()22A A A m g H h m m v -=+例2、如图,质量分别为m和2m的两个小球A和B,中间用长为2L的轻杆相连,在杆的中点O处有一固定水平转动轴,把杆置于水平位置后由静止释放,在B球顺时针转动到最低位置的过程中( )A.A、B两球的角速度大小始终相等B.重力对B球做功的瞬时功率一直增大C.B球转动到最低位置时的速度大小为23 gLD.杆对B球做正功,B球机械能不守恒【参考答案】A C【解析】A、B两球用轻杆相连,角速度大小始终相等,选项A正确;杆在说位置时,重力对B球做功的瞬时功率为零,杆在竖直位置时,B球的重力和速度方向垂直,重力对B球做功的瞬时功率也为零,但在其他位置重力对B球做功的瞬时功率不为零,因此,重力对B球做功的瞬时功率先增大后减小,选项B错误;设B 球转动到最低位置时的速度为v,两球角速度大小相等,转动半径相等,所以两球的线速度大小也相等,对A、B两球和杆组成的系统,由机械能守恒定律得:解得:选项C正确;B球的重力势能减少了2mgL,动能增加了2mgL/3,机械能减少了,所以杆对B球做负功,选项D错误。

机械能守恒(解析版)

机械能守恒(解析版)

第八章 机械能守恒定律第四节 机械能守恒定律[核心素养·明目标]核心素养学习目标物理观念围绕功能关系的基本线索,建立“通过做功的多少,定量的研究能量及其相互转化”的观念,进而理解机械能守恒定律。

科学思维 初步学会从能量守恒的角度来解释物理现象,分析物理问题。

科学探究 体会自然界中“守恒”思想和利用“守恒”思想解决问题的方法。

科学态度与责任通过机械能守恒的学习,使学生树立科学观点,理解和利用自然规律,解决实际问题。

1.机械能(1)定义:物体的动能与重力势能(弹性势能)之和称为机械能。

(2)表达式:E =E p +E k ,其中E 表示机械能。

2.机械能守恒定律(1)内容:在只有重力或弹力这类力做功的情况下,物体系统的动能与势能相互转化,但机械能的总量保持不变。

(2)表达式:12mv 22+mgh 2=12mv 21+mgh 1或E k2+E p2=E k1+E p1。

3.机械能的理解(1)机械能⎩⎪⎨⎪⎧动能:E k=12mv 2势能⎩⎪⎨⎪⎧重力势能:E p=mgh 弹性势能(2)机械能的性质①状态量:做机械运动的物体在某一位置时,具有确定的机械能。

②相对性:其大小与参考系、零势能面的选取有关。

③系统性:是物体、地球和弹性系统所共有的。

(3)动能和势能可以相互转化。

4.守恒条件的理解只有重力或弹力做功的物体系统,可从三个方面理解: (1)受力:物体系统只受重力或弹力作用。

(2)做功:物体系统存在其他力作用,但其他力不做功,只有重力或弹力做功。

(3)转化:相互作用的物体组成的系统只有动能和势能的相互转化,无其他形式能量的转化。

注意:“只有重力或弹力做功”并非“只受重力或弹力作用”,也不是合力的功等于零,更不是某个物体所受的合力等于零。

知识点二 机械能守恒定律的应用 1.公式的证明如图,质量为m 的小球从光滑曲面上滑下。

当它到达高度为h 1的位置A 时,速度的大小为v 1,滑到高度为h 2的位置B 时,速度的大小为v 2。

机械能守恒2多物体机械能守恒问题

机械能守恒2多物体机械能守恒问题

机械能守恒应用2 多物体机械能守恒问题一、轻杆连接系统机械能守恒 1、模型构建轻杆两端各固定一个物体,整个系统一起沿斜面运动或绕某点转动或关联运动,该系统即为机械能守恒中的轻杆模型. 2、模型条件(1).忽略空气阻力和各种摩擦.(2).平动时两物体线速度相等,转动时两物体角速度相等,关联运动时沿杆方向速度相等。

3、模型特点(1).杆对物体的作用力并不总是指向杆的方向,杆能对物体做功,单个物体机械能不守恒. (2).对于杆和球组成的系统,没有外力对系统做功,因此系统的总机械能守恒.例1.[转动]质量分别为m 和2m 的两个小球P 和Q ,中间用轻质杆固定连接,杆长为L ,在离P 球L3处有一个光滑固定轴O ,如图8所示.现在把杆置于水平位置后自由释放,在Q 球顺时针摆动到最低位置时,求:图8(1)小球P 的速度大小;(2)在此过程中小球P 机械能的变化量. 答案 (1)2gL 3 (2)增加49mgL 解析 (1)两球和杆组成的系统机械能守恒,设小球Q 摆到最低位置时P 球的速度为v ,由于P 、Q 两球的角速度相等,Q 球运动半径是P 球运动半径的两倍,故Q 球的速度为2v .由机械能守恒定律得 2mg ·23L -mg ·13L =12mv 2+12·2m ·(2v )2,解得v =2gL3. (2)小球P 机械能增加量ΔE =mg ·13L +12mv 2=49mgL[跟踪训练].如图5-3-7所示,在长为L 的轻杆中点A 和端点B 各固定一质量为m 的球,杆可绕无摩擦的轴O 转动,使杆从水平位置无初速度释放。

求当杆转到竖直位置时,轻杆对A 、B 两球分别做了多少功?图5-3-7解析:设当杆转到竖直位置时,A 球和B 球的速度分别为v A 和v B 。

如果把轻杆、两球组成的系统作为研究对象,那么由于杆和球的相互作用力做功总和等于零,故系统机械能守恒。

系统的机械能守恒问题

系统的机械能守恒问题

Ep1 ?
?( ? 22
)? 4
8
OB段的势能为
mg L mgL
Ep2 ?
?? 24
8
初状态链条的总势能为
mgL(3 ? sinq)
EP ? Ep1 ? EP 2 ?
8
链条的机械能守恒问题
因为在高中阶段不研究任意形状物体的 重心问 题,所以在 计算链条及相似物体的重力势能时,采 取的方法如下:
①整体法:把 规则形状的链条当作一个整体 来研究,重心在其几何中心上。
M、m的重力做功不会改变系统的机械能,支持力N垂直于M的运 动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对 系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互 作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的 转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
(1)A球转到最低点时的线速度是多少?
(2)在转动过程中半径 OA
向左偏离竖直方向的最大角 度是多少?
A B
解:(1)该系统在自由转动过程中,只有重力 做功,机械能守恒.设A球转到最低点时的线 速度为VA,B球的速度为VB,则据
机械能守恒定律可得:
A
mgr ?
mgr 2
?
1 2
mvA2
?
1 2
mvB2
4.5 系统的机械能守恒问题
提出问题 守恒条件是什么?
问题1、在拉力 F的 作用下使质量为 m 的物体匀速上升机 械能是否守恒?为 什么?
问题2、小球机械能守恒吗?
F
m
知识回顾:
机械能守恒条件之(3): 有系统内的内力做功,但是做功代数和为零,
系统机械能守恒
F1

机械能守恒问题的解题技巧

机械能守恒问题的解题技巧

机械能守恒问题的解题技巧机械能守恒是物理学中的一个重要原理,用于解决与能量转化和守恒相关的问题。

本文将介绍机械能守恒问题的解题技巧,帮助读者更好地掌握它。

一、了解机械能守恒原理机械能守恒原理指出,在无外力做功的封闭系统中,刚体所具有的动能和势能之和保持不变。

这意味着系统内能量的转化只会导致动能和势能的相互转换,而总能量是守恒的。

二、确定系统边界在解决机械能守恒问题之前,我们首先要明确定义我们所关注的系统。

该系统可能是一个简单的物体,也可能是多个物体的集合。

确切地界定系统边界是解题的基础。

三、计算初始机械能与最终机械能在问题给出的初始条件下,计算系统的初始机械能。

机械能由动能和势能两部分组成,动能可通过物体的质量和速度来计算,势能可通过物体的高度和重力加速度来计算。

同样地,根据问题给出的最终条件,计算系统的最终机械能。

通过比较初始和最终机械能的差异,我们可以得出能量转化的结论。

四、考虑能量转化方式在机械能守恒问题中,能量可以通过多种方式进行转化,例如势能转化为动能,动能转化为势能,或者机械能转化为其他形式的能量损失。

根据问题的描述和给定条件,确定能量的转化方式,并正确计算每种转化的量。

这样一来,我们就能更好地理解能量在系统内的转换过程。

五、利用机械能守恒方程求解问题在确定了系统的边界、计算了初始和最终机械能,并考虑了能量转化方式之后,我们可以利用机械能守恒的方程来解决问题。

根据机械能守恒原理,系统的初始机械能等于最终机械能,即初始机械能 = 最终机械能通过代入相应的数值和符号,我们可以求解出未知量,解决问题。

六、注意能量损失在实际情况下,机械能守恒往往不完全成立。

系统可能会存在能量损失,例如由于摩擦力的作用导致能量转化为热能。

在解题过程中,我们应该注意这些能量损失,并根据问题描述进行相应的修正。

这样可以使解题结果更为准确和合理。

七、多练习,熟能生巧机械能守恒问题涉及到多个概念和计算步骤,因此多做练习是掌握解题技巧的重要方法。

动量守恒动能守恒联立方程组求解

动量守恒动能守恒联立方程组求解

动量守恒动能守恒联立方程组求解动量守恒和动能守恒是物理学中两个非常重要的定律。

动量守恒是指在一个封闭系统中,各个物体之间的总动量在相互作用过程中保持不变;而动能守恒是指在一个封闭系统中,各个物体之间的总机械能在相互作用过程中保持不变。

在物理学中,我们经常遇到需要同时使用这两个定律的情况,这时我们可以联立动量守恒和动能守恒的方程组来求解问题。

首先,我们来看一下动量守恒和动能守恒的基本原理。

动量守恒原理可以用以下方程表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2分别是它们的初速度,v1'和v2'分别是它们的末速度。

这个方程表示了在相互作用过程中,两个物体的质心速度的总量保持不变。

动能守恒原理可以用以下方程表示:1/2m1v1^2 + 1/2m2v2^2 = 1/2m1v1'^2 + 1/2m2v2'^2其中,m1和m2分别是两个物体的质量,v1和v2分别是它们的初速度,v1'和v2'分别是它们的末速度。

这个方程表示了在相互作用过程中,两个物体的总机械能保持不变。

当我们遇到需要联立动量守恒和动能守恒方程组进行求解的情况时,一般的步骤是先写出动量守恒方程,再写出动能守恒方程,最后联立求解。

为了更好地理解这个过程,我们来看一个例子。

假设有两个质量分别为m1和m2的物体,它们的初速度分别为v1和v2,相互作用后的末速度分别为v1'和v2'。

我们要求解这个问题,即找到v1'和v2'的值。

首先,我们可以根据动量守恒原理写出动量守恒方程:m1v1 + m2v2 = m1v1' + m2v2'接下来,我们可以根据动能守恒原理写出动能守恒方程:1/2m1v1^2 + 1/2m2v2^2 = 1/2m1v1'^2 + 1/2m2v2'^2现在我们有了一个由动量守恒和动能守恒联立构成的方程组,我们可以通过解这个方程组来求解问题。

机械能守恒题型

机械能守恒题型

机械能守恒题型由两个或两个以上的物体所构成的系统,其机械能是否守恒,就看除了重力、弹力之外,系统内的各个物体所受到的各个力做功之和是否为零,为零,则系统的机械能守恒;做正功,系统的机械能就增加,做做多少正功,系统的机械能就增加多少;做负功,系统的机械能就减少,做多少负功,系统的机械能就减少多少。

系统间的相互作用力分为三类:1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。

虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。

但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。

(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,倾角为 的光滑斜面上有一质量为M的物体,通过一根跨过定滑轮的细绳与质量为m的物体相连,开始时两物体均处于静止状态,且m离地面的高度为h,求它们开始运动后m着地时的速度?分析:对M、m和细绳所构成的系统,受到外界四个力的作用。

它们分别是:M所受的重力Mg,m所受的重力mg,斜面对M的支持力N,滑轮对细绳的作用力F。

M、m的重力做功不会改变系统的机械能,支持力N垂直于M的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

机械能守恒定律

机械能守恒定律

机械能守恒定律机械能守恒定律力学中的重要定律。

物质系统内只有保守内力作功,非保守内力(如摩擦力)和一切外力所作的总功为零时,系统内各物体的动能和势能可以互相转换,但它们的总量保持不变。

说明:(1)根据质点系的动能定理,我们有W外+W内保+W内非=Ek2-Ek1,由于保守内力所作的功可以表示为势能增量的负值,即W内保=-(Ep2-Ep1),这样就可得W外+W内非=(Ek2+Ep2)-(Ek1+Ep1),W外+W内非=E2-E1。

此式表示,质点系在运动过程中,它所受外力的功与系统内非保守力的功之总和,等于它的机械能的增量。

当W外=0、W内非=0时,就有系统机械能保持不变的守恒定律E2=E1=常量。

(2)机械能守恒定律是牛顿运动定律的一个推论,因此只有在惯性系中成立。

当W外=0,W内非=0以及Fi外=0的条件下,系统的机械能守恒在所有惯性系中绝对成立。

而当Fi外≠0,但W外=0,W内非=0时,系统的机械能守恒只对某个特定的惯性系成立。

(3)在中学物理中,保守力遇到最多的是重力和弹力。

因此,如果物体系各物体只有重力和弹力对它们做功,而无其他力做功时,系统机械能守恒。

这一守恒是运动变化中的守恒,是转化中的守恒,总量的守恒,但就系统内各物体而言,其动能和势能各自并不是不变的,而是互相转化的。

机械能守恒定律是对一个过程而言的,在只涉及重力及弹力作功的过程中,机械能守恒定律应用时,只考虑初始状态和终了状态的动能和势能,而不考虑运动的各个过程的详细情况。

因此,如果不要求了解过程的具体情况,用机械能守恒定律来分析某些力学过程,比用其他方法简便得多。

(4)一个不受外界作用的系统叫做封闭系统或孤立系统。

对于封闭系统,外力的功当然为零。

如果系统状态发生变化时,有非保守内力做功,它的机械能就不守恒。

但在这种情况下,对更广泛的物理现象,包括电磁、热、化学以及原子内部的变化等研究表明,如果扩大能量的范围,引入更多的能量概念,如电磁能、内能、化学能或原子核能,即能证明:一个封闭系统经历任何变化时,该系统的所有能量的总和是不改变的,它只是从一种形式的能量转化为另一种形式的能量,或从系统的此一物体传递给彼一物体。

机械能系统守恒

机械能系统守恒

机械能系统守恒一、机械能守恒定律的内容1. 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

- 表达式:E_{k1}+E_{p1}=E_{k2}+E_{p2}(其中E_{k1}、E_{p1}分别是初状态的动能和势能,E_{k2}、E_{p2}分别是末状态的动能和势能)- 对于重力势能,E_{p}=mgh(m是物体质量,g是重力加速度,h是物体相对参考平面的高度);对于动能,E_{k}=(1)/(2)mv^2(v是物体的速度)。

2. 条件:- 从做功角度看,系统内只有重力或弹力做功。

这里的弹力一般指弹簧的弹力。

- 从能量转化角度看,系统内没有其他形式能量(如热能、电能等)与机械能之间的转化。

二、机械能守恒定律的应用步骤(以人教版教材思路为例)1. 确定研究对象和研究过程- 明确所研究的物体系统,例如一个物体与地球组成的系统(考虑重力势能时),或者一个物体与弹簧组成的系统(考虑弹性势能时)。

- 确定从哪个初始状态到哪个末状态的过程进行研究。

2. 分析系统内的力做功情况- 确定系统内是否只有重力或弹力做功。

如果存在摩擦力等其他力做功,机械能不守恒,就不能直接使用机械能守恒定律。

- 例如,一个物体沿光滑斜面下滑,系统(物体和地球)内只有重力做功,机械能守恒;但如果斜面粗糙,摩擦力做功,机械能就不守恒。

3. 确定初末状态的机械能- 根据动能和势能的表达式,分别计算初状态的机械能E_{1}=E_{k1}+E_{p1}和末状态的机械能E_{2}=E_{k2}+E_{p2}。

- 一个质量为m的小球从高度为h的地方静止释放,初状态动能E_{k1} = 0,重力势能E_{p1}=mgh;落到地面时,末状态重力势能E_{p2}=0,设末速度为v,则动能E_{k2}=(1)/(2)mv^2。

4. 列方程求解- 根据机械能守恒定律E_{1}=E_{2}列方程求解未知量。

如上述小球下落的例子,mgh=(1)/(2)mv^2,可以求出末速度v = √(2gh)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个物体组成的系统机械能守恒的求解方法作者:雷显宁李选涛
来源:《读写算·基础教育研究》2016年第10期
高考对机械能守恒定律的应用多数情况下考查的是两个物体组成的系统,这两个物体一般由细绳或轻杆连接在一起。

解决这类问题的关键从以下两个方面着手:
1、判断机械能是否守恒
(1)用做功来判断:分析物体或系统受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹簧弹力做功,没有其它力做功或其他力做功的代数和为零则机械能守恒。

(2)用能量转化来判定:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒。

(3)对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒。

【关键点拨】系统所受的合外力为零时,系统机械能不一定守恒。

如当物体在做竖直向上、向下等各方向匀速直线运动时,所受的合外力为零,但机械能不守恒。

2、求解方法
求解这类问题的方法首先是找到两物体的速度关系从而确定系统动能的变化,其次找到两物体上升或下降的高度关系从而确定系统重力势能的变化,然后按照系统动能的变化等于重力势能的变化列方程求解,其中寻找两物体的速度关系是求解问题的关键,按两物体连接方式和速度关系一般可以分为以下三种:
(1)速率相等的连接体:如图甲所示,A、B在运动过程中速度大小相等,根据系统减少的重力势能等于系统增加的动能列方程求解。

(2)角速度相等的连接体:如图乙所示,一轻质细杆的两端分别固定着A、B两小球,O 点是一垂直纸面的光滑水平轴,A、B在运动过程中角速度相等,其线速度的大小与半径成正比,根据系统减少的重力势能等于系统增加的动能列方程求解。

(3)某一方向分速度相等的连接体:如图丙所示,A放在光滑斜面上,B穿过竖直光滑杆PQ下滑,将B的速度v沿绳子和垂直绳子方向分解,如图丁所示,其中绳子的分速度vx 与A的速度大小相等,根据系统减少的重力势能等于系统增加的动能列方程求解。

相关文档
最新文档