数值分析计算实习题

合集下载

数值分析计算实习题二

数值分析计算实习题二

《数值分析》计算实习题二算法设计方案1.主要计算步骤:计算函数f(x,y)在拟合所需的节点处的函数值。

将各拟合节点(x i,y j)分别带入非线性方程组0.5 cos t + u + v + w – x = 2.67t + 0.5 sin u + v + w – y = 1.070.5t + u + cos v + w – x =3.74t + 0.5u + v + sin w – y =0.79解非线性方程组得解向量(t ij,u ij,v ij,w ij)。

对数表z(t,u)进行分片二次代数插值,求得对应(t ij,u ij)处的值,即为f(x i,y j) 的值。

对上述拟合节点分别进行x,y最高次数为k(k=0,1,2,3…)次的多项式拟合。

每次拟合后验证误差大小,直到满足要求。

2.求解非线性方程组选择Newton迭代法,迭代过程中需要求解线性方程组,选择选主元的Doolittle分解法。

3.对z(t,u)进行插值选择分片二次插值。

4.拟合基函数φr(x)ψs(y)选择为φr(x)=x r,ψs(y)=y s。

拟合系数矩阵c通过连续两次解线性方程组求得。

一.源程序#include "stdio.h"#include "stdlib.h"#include "math.h"void Doolittle(double *A,int n,int *M)//功能说明:对n阶矩阵A进行选主元的Doolittle分解//参数说明:A:欲进行分解的方阵,同时也是返回参数,分解后的结果// 存储于A中// n:方阵A的维数// M;(返回参数)n维向量,记录选主元过程中行交换的次序{int i,j,k,t;double *s;double Maxs,temp;s=(double*) calloc(n,sizeof(double));for(k=0;k<n;k++){for(i=k;i<n;i++){s[i]=A[i*n+k];for(t=0;t<k;t++) s[i]-= A[i*n+t] * A[t*n+k];}Maxs=abs(s[k]); M[k]=k;for(i=k+1;i<n;i++){if(Maxs<abs(s[i])){Maxs=abs(s[i]);M[k]=i;}}if(M[k]!=k){for(t=0;t<n;t++){temp=A[k*n+t];A[k*n+t]=A[M[k]*n+t];A[M[k]*n+t]=temp;}temp=s[k];s[k]=s[M[k]];s[M[k]]=temp;}if(Maxs<(1e-14)){s[k]=1e-14;printf("%.16e方阵奇异\n",Maxs);}A[k*n+k]=s[k];for(j=k+1;(j<n)&&(k<n-1);j++){for(t=0;t<k;t++) A[k*n+j]-=A[k*n+t]*A[t*n+j];A[j*n+k]=s[j]/A[k*n+k];}}}void Solve_LUEquation(double* A,int n,double* b,double* x) //功能说明:解方程LUx=b,其中L、U共同存储在A中//参数说明:A:经Doolittle分解后的方阵// n:方阵A的维数// b:方程组的右端向量// x:(返回参数)方程组的解向量{int i,t;for(i=0;i<n;i++){x[i]=b[i];for(t=0;t<i;t++) x[i]-=A[i*n+t]*x[t];}for(i=n-1;i>-1;i--){for(t=i+1;t<n;t++) x[i]-=A[i*n+t]*x[t];x[i]/=A[i*n+i];}}void Transpose(double *A,int m,int n,double* AT)//功能说明:求m×n阶矩阵A的转置AT//参数说明:A:已知m×n阶矩阵// m:A的行数// n:A的列数// AT:(返回参数)A的转置矩阵(n×m){int i,j;for(i=0;i<m;i++)for(j=0;j<n;j++) AT[j*m+i]=A[i*n+j];}void Solve_LEquation(double* A,int n,double* B,double* x,int m) //功能说明:解线性方程组Ax=B,该函数可对系数矩阵相同// 而右端向量不同的多个方程组同时求解。

北航数值分析计算实习1

北航数值分析计算实习1

《数值分析》计算实习题目110091013 劳云杰一、算法设计方案根据提示的算法,首先使用幂法求出按模最大的特征值λt1,再根据已求出的λt1用带原点平移的幂法求出另一个特征值λt2,比较两个λ的大小,根据已知条件,可以得出λ1和λ501.至于λs,由于是按模最小的特征值,使用反幂法求之,由于反幂法需要解线性方程组,故对矩阵进行Doolittle分解。

再通过带原点平移的反幂法求跟矩阵的与数最接近的特征值。

对非奇异的矩阵A,根据条件数定义,取λt1/λs的绝对值,两个特征值在之前步骤中均以求得。

由于对矩阵进行了Doolittle分解,所以矩阵的行列式det A可由分解得出的上三角阵U 的对角线上元素相乘求得。

为了使A的所有零元素都不存储,使用书本25页的压缩存储法对A进行存储,在计算时通过函数在数组C中检索A中元素即可。

由于A是501*501矩阵,C应取为5*501矩阵。

由于数据不大,为了方便起见,在程序中取502*502矩阵或者502向量,C也取为6*502矩阵。

程序编写参考《数值分析》颜庆津著和[C数值算法].(美国)W ILLIAM.H.P RESS.扫描版。

二、全部源程序#include <stdio.h>#include <math.h>#define XS 1.0e-12//精度水平void fz_a();//对矩阵A赋值double js(int,int);//在压缩矩阵中检索A的元素double mf(double);//幂法double fmf(double);//反幂法int lu(double);//Doolittle分解int jfc(double[],double[]);//解方程int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角阵double (*l)[502]=new double[502][502];//单位下三角阵double a[6][502];//压缩存储矩阵int max(int x,int y)//比大小函数×2{ return (x>y?x:y);}int min(int x,int y)//精度关系,比较下标用{ return (x<y?x:y);}int main(){printf("请耐心等待,先看看中间过程吧~\n");int i,k;double ldt1,ldt2,ld1,ld501,lds,mu[40],det;double ld[40];fz_a();//对A赋值ldt1=mf(0);//幂法求模最大的特征值ldt2=mf(ldt1);//以第一次求得的特征值进行平移ld1=ldt1<ldt2?ldt1:ldt2;//大的就是λ501ld501=ldt1<ldt2?ldt2:ldt1;lu(0);lds=fmf(0);//反幂法求λsdet=1;//初始化行列式for(i=1;i<=501;i++)det=det*u[i][i];//用U的对角元素求行列式for(k=1;k<=39;k++){mu[k]=ld1+k*(ld501-ld1)/40;//与数lu(mu[k]);ld[k]=fmf(mu[k]);}printf("\n 列出结果\n");printf("λ1=%1.12e λ501=%1.12e\n",ld1,ld501);printf("λs=%1.12e \n",lds);printf("cond(A)=%1.12e \n",fabs(ldt1/lds));printf("detA=%1.12e \n",det);for(k=1;k<=39;k++)//列出跟与数最接近特征值{printf("λi%d=%1.12e\t",k,ld[k]);if(k%2==0)printf("\n");}//界面友好性delete []u;delete []l;getchar();return 0;}void fz_a()//对A赋值{int i;for(i=3;i<=501;i++)a[1][i]=a[5][502-i]=-0.064;//原A矩阵的cfor(i=2;i<=501;i++)a[2][i]=a[4][502-i]=0.16;//原A矩阵的bfor(i=1;i<=501;i++)a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);//原对角线元素}double js(int i,int j)//对压缩矩阵检索A的元素{if(abs(i-j)<=2)return a[i-j+3][j];else return 0;}double mf(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;//用幂法的第一种迭代方法for(i=1;i<=501;i++) //用到了2-范数u[i]=1,y[i]=0;for(int k=1;k<=10000;k++)//对迭代次数进行限制{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;for(x1=1;x1<=501;x1++){u[x1]=0;for(int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(js(x1,x2)-offset):js(x1,x2))*y[x2];}prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);//加上平移量,方便比较}double fmf(double offset)//反幂法{ int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for(i=1;i<=501;i++)u[i]=1,y[i]=0; //相关量初始化for(int k=1;k<=10000;k++)//限制迭代次数{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;jfc(u,y);prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];beta=1/beta;if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%ek=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);}int lu(double offset)//Doolittle分解{int i,j,k,t;double sum;//中间量for(k=1;k<=501;k++)for(j=1;j<=501;j++){u[k][j]=l[k][j]=0;if(k==j)l[k][j]=1;}//对LU矩阵初始化for(k=1;k<=501;k++)//对式(2.12)的程序实现{for(j=k;j<=min(k+2,501);j++){sum=0;for(t=max(1,max(k-2,j-2));t<=(k-1);t++)sum=sum+l[k][t]*u[t][j];//j=k,k+1,……,nu[k][j]=((k==j)?(js(k,j)-offset):js(k,j))-sum;}if(k==501)continue;for(i=k+1;i<=min(k+2,501);i++)//i=k+1,……,n{sum=0;for(t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(js(i,k)-offset):js(i,k))-sum)/u[k][k];}}return 0;}int jfc(double x[],double b[])//解方程{int i,t;double y[502];double sum;y[1]=b[1];for(i=2;i<=501;i++){sum=0;for(t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for(i=500;i>=1;i--){sum=0;for(t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}三、结果λ1=-1.070011361502e+001λ501=9.724634098777e+000λs=-5.557910794230e-003cond(A)=1.925204273902e+003detA=2.772786141752e+118λi1=-1.018293403315e+001 λi2=-9.585707425068e+000 λi3=-9.172672423928e+000λi4=-8.652284007898e+000 λi5=-8.0934********e+000 λi6=-7.659405407692e+000λi7=-7.119684648691e+000 λi8=-6.611764339397e+000 λi9=-6.0661********e+000λi10=-5.585101052628e+000 λi11=-5.114083529812e+000 λi12=-4.578872176865e+000λi13=-4.096470926260e+000 λi14=-3.554211215751e+000 λi15=-3.0410********e+000 λi16=-2.533970311130e+000 λi17=-2.003230769563e+000 λi18=-1.503557611227e+000 λi19=-9.935586060075e -001 λi20=-4.870426738850e -001 λi21=2.231736249575e -002 λi22=5.324174742069e -001 λi23=1.052898962693e+000 λi24=1.589445881881e+000 λi25=2.060330460274e+000 λi26=2.558075597073e+000 λi27=3.080240509307e+000 λi28=3.613620867692e+000 λi29=4.0913********e+000 λi30=4.603035378279e+000 λi31=5.132924283898e+000 λi32=5.594906348083e+000 λi33=6.080933857027e+000 λi34=6.680354092112e+000 λi35=7.293877448127e+000 λi36=7.717111714236e+000 λi37=8.225220014050e+000 λi38=8.648666065193e+000 λi39=9.254200344575e+000四、讨论迭代初始向量的选取对计算结果的影响1.在反幂法中取迭代向量u[1]=1,u[i]=0,i=2,……,501,最后得出的结果中λs=2.668886923785e -002,cond(A)也随之改变成4.009204556274e+0022.在幂法中取迭代向量u[1]=1,u[i]=2,i=2,……,501,最后得出的结果不变。

数值分析计算实习题

数值分析计算实习题

数值分析计算实习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数值分析》计算实习题姓名:学号:班级:第二章1、程序代码Clear;clc;x1=[ ];y1=[ ];n=length(y1);c=y1(:);for j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i-1)*df(i);endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数pp=csape(x1,y1, 'variational');%调用三次样条函数q=;q1=q(1,:)*[^3;^2;;1];q1=vpa(collect(q1),5)q2=q(1,:)*[^3;^2;;1];q2=vpa(collect(q2),5)q3=q(1,:)*[^3;^2;;1];q3=vpa(collect(q3),5)q4=q(1,:)*[^3;^2;;1];q4=vpa(collect(q4),5)%求解并化简多项式2、运行结果P4 =*x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - + q1 =- *x^3 + *x^2 - *x +q2 =- *x^3 + *x^2 - *x + q3 =- *x^3 + *x^2 - *x + q4 =- *x^3 + *x^2 - *x +3、问题结果4次牛顿差值多项式4()P x = *x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - +三次样条差值多项式()Q x0.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩第三章1、程序代码Clear;clc; x=[0 1]; y=[1 ];p1=polyfit(x,y,3)%三次多项式拟合 p2=polyfit(x,y,4)%四次多项式拟合 y1=polyval(p1,x);y2=polyval(p2,x);%多项式求值plot(x,y,'c--',x,y1,'r:',x,y2,'y-.')p3=polyfit(x,y,2)%观察图像,类似抛物线,故用二次多项式拟合。

数值分析课程实验设计——数值积分实习题

数值分析课程实验设计——数值积分实习题

数值分析——数值积分实习题管理科学与工程学院 学号:1120140500 姓名:彭洋洋 一、计算实习题1.用不同数值方法计算积分:049xdx =-⎰.(1)取不同的步长h ,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善? (2)用龙贝格求积计算完成问题(1) (3)用自适应辛普森积分,使其精度达到10-4解答:(1)取不同的步长,采用不同的公式,比较精度过程如下: 1.1 复合梯形公式及复合辛普森公式求解复合梯形公式:11*[()2()()]2n n k k hT f a f x f b -==++∑误差关于h 的函数:2(2)()**()12n a b R f h f ξ-=复合辛普森公式:111/201*[()4()2()()]6n n n k k k k hS f a f x f x f b --+===+++∑∑误差关于h 的函数:4(4)()*(/2)*()180n a bR f h f η-=1.2 复合梯形公式及复合辛普森公式Matlab 程序(2)用龙贝格求积计算完成问题(1) 2.1 龙贝格求积算法龙贝格求积公式也称为逐次分半加速法。

它是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种加速计算积分的方法。

作为一种外推算法,它在不增加计算量的前提下提高了误差的精度。

24133n n n S T T =- 21611515n n n C S S =- 26416363n n n R C C =-1221/201()22n n n k k h T T f x -+==+∑ ()(1)()11(4*)/(41)k m k k mm m m T T T +--=-- 1,2,...k = 2.2 龙贝格求积Matlab 程序画图程序设计①得到关于n各种公式求积的图表如下:对于梯形公式、辛普森公式n代表份数,龙贝格公式n表示从1开始的序列号②关于步长h 的各种公式求积的图表如下其中龙贝格序列步长()/2k h b a =-:观察两幅图表h 越小,精度越高。

数值分析(第五版)计算实习题第五章作业教学资料

数值分析(第五版)计算实习题第五章作业教学资料
(1)输入:
>> format compact
>> A=[3.01 6.03 1.99;1.27 4.16 -1.23;0.987 -4.81 9.34];
>> b=[1;1;1];
>> [RA,RB,n,X]=liezhu(A,b),h=det(A),C=cond(A)
输出:
请注意:因为RA=RB,所以方程组有唯一解
ans =
-9.5863 18.3741 -3.2258 3.5240
xX =
10.4661
jxX =
0.9842
Xgxx =
22.7396
xAb =
0.0076
xAbj =
0.0076
Acp =
2.9841e+03
第四题:
(1)输入:
建立m文件:
forn=2:6
a=hilb(n);
pnH(n-1)=cond(a,inf);
RA =
3
RB =
3
n =
3
X =
1.0e+03 *
1.5926
-0.6319
-0.4936
h =
-0.0305
C =
3.0697e+04
(2)输入:
>> A=[3.00 6.03 1.99;1.27 4.16 -1.23;0.990 -4.81 9.34];
>> b=[1;1;1];
>> [RA,RB,n,X]=liezhu(A,b),h=det(A)
>> r=b-H*X,deltax=X-x
输出:
X =

数值分析计算实习作业一

数值分析计算实习作业一

数值分析计算实习题一学号::院系:2015年11月5日一、分析1.1算法分析题目要求求出:1)特征值从小到大排列的最小特征值1λ和最大特征值501λ。

2)特征值中模最小的特征值s λ。

3)靠近一组数k μ的一组特征值k i λ。

4)矩阵A 的条件数cond(A)2。

5)行列式detA 。

解决方法:1)若将所有行列式按模的大小排列则模最大的特征值一定是1λ和501λ中的一个,因此利用幂法求出模最大的特征值1m λ。

然后利用带原点平移的幂法,将系数矩阵变为1m A I λ-即将所有特征值都减去1m λ,则特征值按大小顺序排列的次序不变,模最大的特征值依然在整个排列的两端,再用一次幂法得到模最大的特征值21=m m λλλ-,其中λ为带原点平移的幂法求出的特征值,最后两个特征值1m λ、2m λ比较大小,大的为501λ,小的为1λ。

2)因为s λ为按模最小的特征值,因此用反幂法可求的其特征值。

3)因为k i λ靠近数k μ,因此k i k λμ-一定是所有的k λμ-中模最小的,因此可利用带原点平移的反幂法求出特征值k i λ,此时的系数矩阵变为k A I μ-。

4)条件数cond(A)2为模最小的特征值与模最大的特征值的比的绝对值,因此利用1和2中求出的1m λ和s λ可解出条件数。

5)可对矩阵A 进行LU 分解,即A LU =则det()det()det()A L U =⨯,又因为矩阵L 对角线元素为1,则det()L =1,所以det()det()A U =,U 为上三角阵,行列式为对角线元素的乘积,因此可得A 的行列式。

1.2程序分析1.2.1 因为A 为拟三角阵,储存时零元素不储存,因此将矩阵A 压缩为5*501的矩阵CA 的带元素ij a =C 中的元素1,i j s j c -++ 程序中A[5][501]即为压缩后的矩阵。

1.1.2 程序中的B[5][501]为过渡矩阵,在幂法迭代、反幂法迭代以及LU 分解中均用矩阵B 来计算,计算之间对B 进行适当的赋值。

数值分析计算实习题

数值分析计算实习题

插值法1.下列数据点的插值x 0 1 4 9 16 25 36 49 64y 0 1 2 3 4 5 6 7 8可以得到平方根函数的近似,在区间[0,64]上作图.(1)用这9个点作8次多项式插值Ls(x).(2)用三次样条(第一边界条件)程序求S(x).从得到结果看在[0,64]上,哪个插值更精确;在区间[0,1]上,两种插值哪个更精确?解:(1)拉格朗日插值多项式,求解程序如下syms x l;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];n=length(x1);Ls=sym(0);for i=1:nl=sym(y1(i));for k=1:i-1l=l*(x-x1(k))/(x1(i)-x1(k));endfor k=i+1:nl=l*(x-x1(k))/(x1(i)-x1(k));endLs=Ls+l;endLs=simplify(Ls) %为所求插值多项式Ls(x).输出结果为Ls =-24221063/63504000*x^2+95549/72072*x-1/3048192000*x^8-2168879/43545600 0*x^4+19/283046400*x^7+657859/10886400*x^3+33983/152409600*x^5-13003/2395 008000*x^6(2)三次样条插值,程序如下x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8]; x2=[0:1:64];y3=spline(x1,y1,x2);p=polyfit(x2,y3,3); %得到三次样条拟合函数 S=p(1)+p(2)*x+p(3)*x^2+p(4)*x^3 %得到S(x) 输出结果为:S =23491/304472833/8*x+76713/*x^2+6867/42624*x^3(3)在区间[0,64]上,分别对这两种插值和标准函数作图,plot(x2,sqrt(x2),'b',x2,y2,'r',x2,y3,'y')蓝色曲线为y=函数曲线,红色曲线为拉格朗日插值函数曲线,黄色曲线为三次样条插值曲线010203040506070-2020406080100可以看到蓝色曲线与黄色曲线几乎重合,因此在区间[0,64]上三次样条插值更精确。

数值分析第五版计算实习题

数值分析第五版计算实习题

弟二草插值法3.卜列数据点的插值可以得到平方根函数的近似,在区间064]上作图。

(1〉用这9个点做8次多项式插值Q x)。

(2)用三次样条(第一边界条件)程岸求S(X)。

从得到结果石在[0.64] 1:・哪个插值更粘确:在区间[0,1] I:•两种插值哪个更精确?(1) 8次多项式插值:(1)8次多项式插值:首先建立新的M-file:输入如卜代码(此为拉格朗口插值的功能函数)并保存function f=Language(x,y,x0)%求Li知数据点的拉格朗Fl插值多项式%己知数据点的x坐标向量:x%已知数据点的y坐标向量:y%插值的x坐标:x0%求得的拉格朗H插值多项式或在X0处的插值:fsyms t;ifi(lcngth(x)=length(y))n=length(x);elsedisp(*x和y的维数不相等!);return;end %检错tbr(i=l:n)i=y(i);fbr(j=1:i-l)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i-M:n)end;for(j=i+l:n) l=l*(t-x(j))/(x(i)-x(j)); end;simplify(f);if(i==n) if|nargin=3)f=subs(C't\xO);else f=collcct(f);f=vpa(f,6);endendend再建立新的M-file:输入:clear;x=[0 1 49 16 25 36 49 64];y=[0:l:8];%计算拉格朗口基丞数%计算拉格朗ri插值函数%化简%计算插值点的曲数值%将插值多项式展开%将插值多项式的系数化成6位精度的小数f=Uinguage(x,y) 运行得到f=1.32574*1-381410*t A2+.604294e-1 *t A3+.222972e-3 *t A5-.542921 e-5*t A6+.671268e・7T7・.328063e・9T8・.498071 e-2*t A4 这就是8次多项式插值L s(x)= 1.32574怜.381410*t A2+.604294e-1 *t A3+.222972e-3 *t A5-.542921 e-5*t A6+.671268e-7*t A7-.328063e-9*t A8-.498071 e-2*t A4. (2)三次样条插值:建立新的M-filc:输入:clear;x=[0 I 49 1625 36 4964];尸[0:8];t=[0:0.1:64];Y=t.A(0.5);O=Language(x,y)f= 1,32574*t-.381410*t.A2+.604294e-1 *t.A3+.222972e-3*t.A5-.542921 e・5*(. W+.671268e-7*t.A7-.328063e-9*t.A8-.498071 e-2 *t.A4;S=interp l(x,y,t.'spline,);plol(x,y,o;(・YY.lf.'b'」S'g:');grid;运行程序得到如下图:从结果屮很明显可以看出在[0.64].上.三次样条插值更精确,儿乎与原函数帀合。

数值分析计算实习二

数值分析计算实习二
int sgn(double x);//0为1的符号函数
void atra(double a[N][N], int n);//矩阵转置
void aadd(double a[N], double b[N], double c[N], int n, int co);//向量加法
void aaadd(double a[N][N], double b[N][N], double c[N][N], int n, int co);//矩阵加法
结果:
1、 拟上三角矩阵 如下。
2、迭代最终矩阵如下,迭代次数为14次。
3、矩阵所有特征值如下。
从上至下10个特征值,其中左列为实部,右列为虚部,可知有两对复特征值。
4、对应于实特征值的特征向量如下
问题发现与讨论
1、双步位移QR迭代过程中迭代矩阵 始终为拟上三角矩阵。
2、双步位移QR方法与基本QR方法比较
amul(wr, ur, D, m+1);
aaadd(A, D, A, m+1, -1);
amul(ur, pr, D, m+1);
aaadd(A, D, A, m+ห้องสมุดไป่ตู้, -1);
}
}
}
k++;
if (k > 10000)//算法失败判定
{
printf("算法失败\n");
break;
}
}
for (int i = 0; i < N; i++)
doubleaneiji(double a[N], double b[N], int n);//向量内积
void aamul(double a[N], double b[N][N], double c[N], int n);//矩阵向量乘法

数值分析计算实习第一题

数值分析计算实习第一题

直接用定义: ������������(������������)2 = ‖������������‖2‖������������−1‖2
求 A 的条件数很繁琐,需要先进行化简:
首先:
由于 A 是对称矩阵,
‖������������‖2 = �������������max(������������������������������������)
说明 :
1. 在所用的算法中,凡是要给出精度水平的ε,都取 ������������=10−12。
2. 选择算法的时候应使矩阵 A 的所有零元素都不存储。
3. 打印以下内容:
(1)算法设计方案和思路。
(2)全部源程序。
(3)特征值������������1,������������501,������������������������,������������������������������������(������������=1,2,⋯,39)以及������������������������������������������������(������������)2, det������������的值(采用 e 型输出实型数,并 至少显示 12 位有效数字)。
λi[16] -2.533970311130E+00 λi[38] 8.648666065193E+00
λi[17] -2.003230769563E+00 λi[39] 9.254200344575E+00
λi[18] -1.503557611227E+00 cond(A)2 1.925204273903E+03
λi[19] -9.935586060080E-01 det(A) 2.772786141752E+118

数值分析计算实习作业二

数值分析计算实习作业二

数值分析计算实习题二学号:姓名:院系:2015年11月28日一、算法采用拟上三角化的双步位移的QR分解法计算特征值,并利用列主元素Guass消去法求实数特征值对应的特征向量,定义全局变量n=10。

1 主程序在定义一维和二维数组时将数组的大小定为n+1(大小为11),这样在使用单个元素时的角标可以与矩阵或向量元素的角标相对应。

先输入矩阵A的各个元素;保留数组A,定义数组B的元素与A相同,即B=A,后面的矩阵变换用数组B来进行;对B进行拟上三角化;输出拟上三角化后的矩阵B;对拟上三角化后的B进行QR分解,输出矩阵Q、R、RQ;对拟上三角化的数组矩阵B进行QR分解;输出A的全部特征值;判断所有特征值,如果特征值为实数(即储存特征值虚部的数组中元素为0),利用列主元素高斯消去法求其特征向量;输出实特征值对应的特征向量。

2 拟上三角化程序对于r=1,2,……,n-2循环执行(1)求第r列的第r+2个元素到第n个元素的平方和,如果和为0,则跳出该次循环直接进行下一次r的循环。

如果和不为0,则继续执行。

(2)计算第r列从第r+1到第n个元素的平方和的平方根dr=当B[r+1][r]小于等于0时,取cr=dr,否则取cr=-drhr=cr*cr-cr*B[r+1][r](3)令(0,...,0,[1][],[2][],...,[][])Tur B r r cr B r r B n r=+-+(4)计算()/()()/()()()/()()()()()()()T T Tpr B ur hr qr B ur hr tr pr ur hr wr qr tr ur B B wr ur ur pr ====-=--(5)执行下一次循环。

3 拟上三角化后的矩阵的QR 分解初始令Q=I 。

对于r=1,2,……,n-1循环执行(1)求第r 列的第r+1个元素到第n 个元素的平方和,如果和为0,则跳出该次循环直接进行下一次r 的循环。

数值分析(第五版)计算实习题第四章作业

数值分析(第五版)计算实习题第四章作业

第四章:1、(1):复合梯形建立m文件:function t=natrapz(fname,a,b,n)h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f));输入:>> syms x>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10)输出:ans =-0.417062831779470输入:>> syms x>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100)输出:ans =-0.443117908008157输入:>> syms x>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000)输出:ans =-0.444387538997162复合辛普森建立m文件:function t=comsimpson(fname,a,b,n)h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0.001*h);f2=feval(fname,a+h/2:h:b-h+0.001*h);t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));输入:>> syms x>> f=inline('sqrt(x).*log(x);');>> format long;>>comsimpson(f,eps,1,10)输出:ans =-0.435297890074689输入:>>syms x>>f=inline('sqrt(x).*log(x);');>>comsimpson(f,eps,1,100)输出:ans =-0.444161178415673输入:>>syms x>>f=inline('sqrt(x).*log(x);');>>comsimpson(f,eps,1,1000)输出:ans =-0.444434117614180(2)龙贝格建立m文件:function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表%R是数值积分值%wugu是误差估计%h是最小步长%fun是被积函数%a b是积分下、上限%m是龙贝格积分表中行最大数目%wucha是两次相邻迭代值的绝对误差限n=1;h=b-a;wugu=1;x=a;k=0;RT=zeros(4,4);RT(1,1)=h*(feval(fun,a)+feval(fun,b))/2;while((wugu>wucha)&(k<m)|(k<4))k=k+1;h=h/2;s=0;for j=1:nx=a+h*(2*j-1);s=s+feval(fun,x);endRT(k+1,1)=RT(k,1)/2+h*s;n=2*n;for i=1:kRT(k+1,i+1)=((4^i)*RT(k+1,i)-RT(k,i))/(4^i-1);endwugu=abs(RT(k+1,k)-RT(k+1,k+1));endR=RT(k+1,k+1);输入:>>fun=inline('sqrt(x).*log(x)');>> [RT,R,wugu,h]=Romberg(fun,eps,1,1e-5,13)输出:RT =1 至5 列-0.000000268546145 0 0 0-0.245064670140209 -0.326752804004897 0 0-0.358104125949240 -0.395783944552250 -0.400386020588741 0 0-0.408090073087781 -0.424752055467295 -0.426683262861631 -0.427100679405645 0-0.429474601629505 -0.436602777810080 -0.437392825966266 -0.437562819031419 -0.437603847029951-0.438389494461832 -0.441361125405941 -0.441678348578999 -0.441746372747455 -0.4417627788404596 列-0.441766844267449R =-0.441766844267449wugu =4.065426989774412e-06h =0.031250000000000(3)自适应辛普森输入:>> f=inline('sqrt(x).*log(x)');>> q=quad(f,0,1,1e-4)输出:q =-0.4439755729517282.(1)复合辛普森建立m文件function q=combinesimpson2(F,x0,a,b,n)%复合Simpson多元求积公式%F—被积函数%x0—被积函数自变量%[a,b]积分区间%n—区间份数x=linspace(a,b,n+1);q=0;for k=1:nq=q+subs(F,x0,x(k))+4*subs(F,x0,(x(k)+x(k+1))/2)+subs(F,x0,x(k+1)); endq=q*(b-a)/n/6;输入:>> clear>> syms x y;>> F=exp(-x.*y);>> s=combinesimpson2(combinesimpson2(F,'x',0,1,4),'y',0,1,4)输出:s =exp(-1)/576 + exp(-1/2)/144 + exp(-1/4)/72 + exp(-3/4)/144 + exp(-1/8)/36 +exp(-3/8)/36 + exp(-5/8)/72 + exp(-7/8)/72 + (5*exp(-1/16))/144 + exp(-3/16)/24 + exp(-5/16)/36 + exp(-7/16)/36 + exp(-9/16)/144 + exp(-1/32)/36 + exp(-3/32)/18 + exp(-5/32)/36 + exp(-7/32)/36 + exp(-9/32)/36 + exp(-15/32)/36 + exp(-21/32)/36 + exp(-1/64)/36 + exp(-3/64)/18 + exp(-5/64)/18 + exp(-7/64)/18 + exp(-9/64)/36 + exp(-15/64)/18 + exp(-21/64)/18 + exp(-25/64)/36 + exp(-35/64)/18 + exp(-49/64)/36 + 47/576>> double(s)ans =0.796599967946203高斯求积公式function q=gaussquad(F,x0,a,b,n)%Gauss求积公式%F—被积函数%x0—被积函数自变量%[a,b]积分区间%n—节点个数syms t;F=subs(F,x0,(b-a)/2*t+(a+b)/2);[x,A]=gausspoints(n);q=(b-a)/2*sum(A.*subs(F,t,x));输入:>> clear>> syms x y;F=exp(-x.*y);>> s=gaussquad(gaussquad(F,x,0,1,4),y,0,1,4)输出:s =0.7966(2)复合辛普森输入:>> syms x y;>> f=exp(-x.*y);>> s=combinesimpson2(combinesimpson2(f,y,0,sqrt(1-x^2),4),x,0,1,4)输出:s =(3^(1/2)*(exp(-3^(1/2)/4) + 2*exp(-3^(1/2)/8) + 2*exp(-3^(1/2)/16) + 2*exp(-(3*3^(1/2))/16) + 4*exp(-3^(1/2)/32) + 4*exp(-(3*3^(1/2))/32) + 4*exp(-(5*3^(1/2))/32) + 4*exp(-(7*3^(1/2))/32) + 1))/576 + (7^(1/2)*(exp(-(3*7^(1/2))/16) + 2*exp(-(3*7^(1/2))/32) + 2*exp(-(3*7^(1/2))/64) + 2*exp(-(9*7^(1/2))/64) + 4*exp(-(3*7^(1/2))/128) + 4*exp(-(9*7^(1/2))/128) + 4*exp(-(15*7^(1/2))/128) + 4*exp(-(21*7^(1/2))/128) + 1))/1152 + (15^(1/2)*(exp(-15^(1/2)/16) + 2*exp(-15^(1/2)/32) + 2*exp(-15^(1/2)/64) + 2*exp(-(3*15^(1/2))/64) + 4*exp(-15^(1/2)/128) + 4*exp(-(3*15^(1/2))/128) + 4*exp(-(5*15^(1/2))/128) + 4*exp(-(7*15^(1/2))/128) + 1))/1152 + (15^(1/2)*(exp(-(7*15^(1/2))/64) + 2*exp(-(7*15^(1/2))/128) + 2*exp(-(7*15^(1/2))/256) + 2*exp(-(21*15^(1/2))/256) + 4*exp(-(7*15^(1/2))/512) + 4*exp(-(21*15^(1/2))/512) + 4*exp(-(35*15^(1/2))/512) + 4*exp(-(49*15^(1/2))/512) + 1))/1152 + (39^(1/2)*(exp(-(5*39^(1/2))/64) + 2*exp(-(5*39^(1/2))/128) + 2*exp(-(5*39^(1/2))/256) + 2*exp(-(15*39^(1/2))/256) + 4*exp(-(5*39^(1/2))/512) + 4*exp(-(15*39^(1/2))/512) + 4*exp(-(25*39^(1/2))/512) + 4*exp(-(35*39^(1/2))/512) + 1))/1152 + (55^(1/2)*(exp(-(3*55^(1/2))/64) + 2*exp(-(3*55^(1/2))/128) + 2*exp(-(3*55^(1/2))/256) + 2*exp(-(9*55^(1/2))/256) + 4*exp(-(3*55^(1/2))/512) + 4*exp(-(9*55^(1/2))/512) + 4*exp(-(15*55^(1/2))/512) + 4*exp(-(21*55^(1/2))/512) + 1))/1152 + (63^(1/2)*(exp(-63^(1/2)/64) + 2*exp(-63^(1/2)/128) + 2*exp(-63^(1/2)/256) + 2*exp(-(3*63^(1/2))/256) + 4*exp(-63^(1/2)/512) + 4*exp(-(3*63^(1/2))/512) + 4*exp(-(5*63^(1/2))/512) + 4*exp(-(7*63^(1/2))/512) + 1))/1152 + 1/24>> double(s)ans =0.670113633359095。

数值分析报告(第五版)计算实习的题目第三章

数值分析报告(第五版)计算实习的题目第三章

数值分析计算实习题第三章第二次作业:题一:x=-1:0.2:1;y=1./(1+25.*x.^2);f1=polyfit(x,y,3)f=poly2sym(f1)y1=polyval(f1,x)x2=linspace(-1,1,10)y2=interp1(x,y,x2)plot(x,y,'r*-',x,y1,'b-')hold onplot(x2,y2,'k')legend('数据点','3次拟合曲线','3次多项式插值')xlabel('X'),ylabel('Y')输出:f1 =0.0000 -0.5752 0.0000 0.4841f =(4591875547102675*x^3)/81129638414606681695789005144064 - (3305*x^2)/5746 + (1469057404776431*x)/20282409603651670423947251286016 + 4360609662300613/9007199254740992y1 =-0.0911 0.1160 0.2771 0.3921 0.4611 0.4841 0.4611 0.3921 0.2771 0.1160 -0.0911x2 =-1.0000 -0.7778 -0.5556 -0.3333 -0.1111 0.1111 0.3333 0.5556 0.7778 1.0000y2 =0.0385 0.0634 0.1222 0.3000 0.7222 0.7222 0.3000 0.1222 0.0634 0.0385题二:X=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];Y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46];p1=polyfit(X,Y,3)p2=polyfit(X,Y,4)Y1=polyval(p1,X)Y2=polyval(p2,X)plot(X,Y,'r*',X,Y1,'b-.',X,Y2,'g--')p3=polyfit(X,Y,2)Y3=polyval(p3,X)f1=poly2sym(p1)f2=poly2sym(p2)f3=poly2sym(p3)plot(X,Y,'r*',X,Y1,'b-.',X,Y2,'g--',X,Y3,'m--')legend('数据点','3次多项式拟合','4次多项式拟合','2次多项式拟合') xlabel('X轴'),ylabel('Y轴')输出:p1 =-6.6221 12.8147 -4.6591 0.9266p2 =2.8853 -12.3348 16.2747 -5.2987 0.9427Y1 =0.9266 0.5822 0.4544 0.5034 0.9730 2.0103 2.4602Y2 =0.9427 0.5635 0.4399 0.5082 1.0005 1.9860 2.4692p3 =3.1316 -1.2400 0.7356Y3 =0.7356 0.6429 0.6128 0.6454 0.8984 1.7477 2.6271f1 =- (7455778416425075*x^3)/1125899906842624 + (1803512222945435*x^2)/140737488355328 - (40981580032809*x)/8796093022208 + 8345953784399011/9007199254740992f2 =(1624271450198125*x^4)/562949953421312 - (3471944732519173*x^3)/281474976710656 + (4580931990070659*x^2)/281474976710656 - (1491459232922115*x)/281474976710656 + 1061409433081293/1125899906842624f3 =(18733*x^2)/5982 - (74179*x)/59820 + 73337/99700题三:建立三角插值函数的m文件function [A,B,Y1,Rm]=sanjiaobijin(X,Y,X1,m)%A B分别是m阶三角多项式Tm (x)的系数aj,bj(j=1,2,...,m)的系数矩阵,Y1是Tm(x)在X1处的值,X Y 数据点 ,Rm为均方误差n=length(X)-1;max1=fix((n-1)/2);if m>max1m=max1;endA=zeros(1,m+1);B=zeros(1,m+1);Ym=(Y(1)+Y(n+1))/2;Y(1)=Ym;Y(n+1)=Ym;A(1)=2*sum(Y)/n;for i=1:mB(i+1)=sin(i*X)*Y';A(i+1)=cos(i*X)*Y';endA=2*A/n;B=2*B/n;A(1)=A(1)/2;Y1=A(1);for k=1:mY1=Y1+A(k+1)*cos(k*X1)+B(k+1)*sin(k*X1);Tm=A(1)+A(k+1).*cos(k*X)+B(k+1).*sin(k*X);k=k+1;endY,Tm,Rm=(sum(Y-Tm).^2)/n输出:>> X=-pi:2*pi/33:pi;>> Y=X.^2.*cos(X);[A,B,Y1,Rm]=sanjiaobijin(X,Y,X1,16)输出:A =1 至 12 列-0.1397 4.4002 -2.8326 1.2355 -0.9128 0.7914 -0.7319 0.6982 -0.6773 0.6635 -0.6541 0.647413 至 17 列-0.6426 0.6393 -0.6370 0.6355 -0.6348B =1.0e-15 *1 至 12 列0 -0.0194 -0.0150 -0.0044 -0.0300 0.0105 0.0627 -0.0821 -0.0599 -0.0133 -0.0211 0.029713 至 17 列0.0178 0.0962 -0.1049 0.0328 -0.0122即可得16插值多项式的值X1=-pi:0.001:pi;[A,B,Y1,Rm]=sanjiaobijin(X,Y,X1,16)plot(X,Y,'r*',X1,Y1,'b-.')legend('数据点','16次三角插值多项式')xlabel('X轴'),ylabel('Y轴')。

数值分析计算实习题

数值分析计算实习题

1.下列数据点的插值x 0 1 4 9 16 25 36 49 64y 0 1 2 3 4 5 6 7 8可以得到平方根函数的近似,在区间[0,64]上作图.(1)用这9个点作8次多项式插值Ls(x).(2)用三次样条(第一边界条件)程序求S(x).从得到结果看在[0,64]上,哪个插值更精确;在区间[0,1]上,两种插值哪个更精确?解:(1)拉格朗日插值多项式,求解程序如下syms x l;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];n=length(x1);Ls=sym(0);for i=1:nl=sym(y1(i));for k=1:i-1l=l*(x-x1(k))/(x1(i)-x1(k));endfor k=i+1:nl=l*(x-x1(k))/(x1(i)-x1(k));endLs=Ls+l;endLs=simplify(Ls) %为所求插值多项式Ls(x).输出结果为Ls =-/*x^2+95549/72072*x-1/00*x^8-2168879/0*x^4+19/0*x^7+657859/*x^3+33983/ 0*x^5-13003/00*x^6(2)三次样条插值,程序如下x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];x2=[0:1:64];y3=spline(x1,y1,x2);p=polyfit(x2,y3,3); %得到三次样条拟合函数S=p(1)+p(2)*x+p(3)*x^2+p(4)*x^3 %得到S(x)输出结果为:S =/6464-2399/88*x+/1984*x^2+2656867/624*x^3(3)在区间[0,64]上,分别对这两种插值和标准函数作图,plot(x2,sqrt(x2),'b',x2,y2,'r',x2,y3,'y')蓝色曲线为y=函数曲线,红色曲线为拉格朗日插值函数曲线,黄色曲线为三次样条插值曲线可以看到蓝色曲线与黄色曲线几乎重合,因此在区间[0,64]上三次样条插值更精确。

数值分析计算实习题(二)

数值分析计算实习题(二)

数值分析计算实习题(二)数值分析计算实习题(二)SY1004114 全昌彪一:算法设计方案概述:本题采用fortran90语言编写程序,依据题目要求,采用带双步位移QR分解法求出所给矩阵的所有特征值,并求出相应于其实特征值的特征向量,以及相关需要给出的中间结果。

1、矩阵的A的初始化(赋值):利用子函数initial(a,n)来实现,返回n×n 维二维数组a。

2、A矩阵的拟上三角化:利用子函数hessenberg(a,n),在对矩阵进行QR分解前进行拟上三角化,这样可以提高计算效率,减少计算量,返回A矩阵的相似矩阵Hessenberg阵A(n-1)。

3、对A(n-1)进行带双步位移QR分解得出Cm及A矩阵的所有特征值,这一步利用了两个子函数eigenvalue(a,n,lamda,lamdai)和qrresolve(b,c,m)带双步位移QR分解可以加速收敛。

每次QR分解前先进行判断,若可以直接得到矩阵的特征值,则对矩阵直接降阶处理;若不可以,则进行QR分解,这样就进一步减少了计算量,提高了计算效率。

考虑到矩阵A可能有复特征值,采用两个一维数组lamda(n)及lamdai(n)分别存储其实部和虚部。

在双步位移处理及降阶过程中,被分解的矩阵Ak(m ×m)及中间矩阵M k(m×m)的维数随m不断减少而降阶,于是引入了动态矩阵C(m×m)和B(m×m)分别存储,在使用前,先声明分配内存,使用结束后立即释放内存。

返回A(n-1)经双步位移QR分解后的矩阵及A矩阵的所有特征值。

4、特征向量的求解:采用子函数eigenvector(a,lamda)实现求解A矩阵的属于实特征值的特征向量。

核心算法为高斯列主元消去法,(A-λI)x=b,b=0,回代过程令x(10)=1,即可求出对应于每一实特征值的特征向量的各个元素。

5、相关输出结果:所有数据均采用e型输出,数据保留到小数点后12位。

数值分析实习第二题

数值分析实习第二题
{
for(j = 0; j < Max_N; j++)
{
cache[i] += Matrix[j][i]*Vect[j];
}
}
for(i = 0; i < Max_N; i++)
{
Vect_Ret[i] = cache[i];
}
}
void VECT_EVA(char Max_N, double Vect_new[], double Vect_bef[])
{
u[k] = 0;
}
}
VECT_MULTI(N, u, w, 1/h);
MAT_T_VEC(N, A, w, p);
MAT_VEC(N, A, w, q);
VECT_MULTI(N, u, w, -VECT_T_VEC(N, p, w));
VECT_PLUS(N, q, w, w);
for(k = 0 ;k < N; k++)
//向量转置乘向量
{
char n;
double power_norm;
for(n = 0, power_norm = 0; n < Max_N; n++)
{
power_norm += Vector_T[n]*Vector[n];
}
return(power_norm);
}
void VECT_PLUS(char Max_N, double Vector_1[], double Vector_2[], double Vector_Ret[])
MAT_VEC(Max_N, A, w, q);
VECT_MULTI(Max_N, u, w, -VECT_T_VEC(Max_N, p, w));

数值分析实习第一题

数值分析实习第一题
if(M(i, j) == 0)
{
break;
}
}
}
}
void VECT_EVA(double Vect_new[], double Vect_bef[])//向量赋值
{
int i;
for(i = 0; i < N; i++)
{
Vect_new[i] = Vect_bef[i];
}
}
double RANK_MAX(double M_Array[], unsigned char n)//找最大值
{
if(i >= N)
{
break;
}
Sum_Ele[0] = 0;
Sum_Ele[1] = i - R;
Sum_Ele[2] = k - S;
for(t = RANK_MAX(Sum_Ele,3); t <= k - 1; t++)
{
LU_Mat[M(i,k)][k] -= LU_Mat[M(i,t)][t]*LU_Mat[M(t,k)][k];
}
LU_Mat[M(i,k)][k] = LU_Mat[M(i,k)][k]/LU_Mat[S][k];
}
}
}
}
void SOLVE_EQU(double Matrix_A[][N], double Targ_b[], double Ret_Un[])//解方程
{
int i, j, t;
double Sol_Ele[2];
//In_Beta = VECT_T_VEC(In_Vect_y, In_Vect_u);
In_Beta = 1.0/VECT_T_VEC(In_Vect_y, In_Vect_u);

数值分析计算实习题列主元高斯消去法解线性方程组

数值分析计算实习题列主元高斯消去法解线性方程组

数值分析计算实习题第5章解线性方程组的直接方法【选题列主元高斯消去法解线性方程组。

书上的计算实习题1、2、3都要求用列主元高斯消去法解线性方程组,所以考虑写一个普适的程序来实现。

对于线性方程组Ax二b,程序允许用户从文件读入矩阵数据或直接在屏幕输入数据。

文件输入格式要求:(1)第一行为一个整数n (2<=n<=100),表示矩阵阶数。

(2)第2~n+l行为矩阵A各行列的值。

(3)第n+2~n+n+2行为矩阵b各行的值。

屏幕输入:按提示输入各个数据。

输出:A. b、det(A).列主元高斯消去计算过程、解向量X。

【算法说明】设有线性方程组Ax=b,其中设A为非奇异矩阵。

方程组的增广矩阵为«12«21[Nb] =第1步(k=l ):首先在A的第一列中选取绝对值最大的元素®I,作为第一步的主元素:«|| H0然后交换(A, b)的第1行与第I行元素,再进行消元计算。

设列主元素消去法已经完成第1步到第k・l步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 A(k)x=b(k)4? …4;)…唸)•忒••輕■[A.b]T[A ⑹,b")] = ••■咲■■■■■* *■〃伏)・• - %■第k步计算如下: 对于 k=l, 2, •…,0-1(1)按列选主元:即确定t使(2)如果tHk,则交换[A, b]第t行与第k行元素。

(3)消元计算54* J 叫=一鱼(=^ + 1,…,H)% 吗 <-«y + 〃如伽 (fJ = R + l,…/)b- <-勺+加汝仇, (i = /c + l,…,《)消元乘数mik 满足:n (%-D 内)X1 < ------ -- ---- 9(j = « 一 1,«一2■…J)tk M 1,(,=斤 +1, •••,«)fet e(4)回代求解【程序】/*【普适列主元消去法解线性方程组】对于线性方程组:Ax=b 输入:[选择屏幕直接输入]1.A的行阶数n(l <= 11<= 100)2.A的值3.b的值[选择读取文件1文件名(和主程序同级文件夹下)输出:I.A2・b3・ det(A)4解向疑X */#inciude <stdio.h>#include <stdlibJi>#include <niath.h> double A[1051(J05LA_B[I05][105Lb[105].x[105];double det A:int n.mark = 1;〃读入数据void input(){int ij:char ch[20],name[ 100];HLE *f;printf("\iv-An是否从文件读取数据(Y/N):”); scanf(”%st&ch);if(ch[0] = Y II ch[0] = y)( prinif(“请输入文件名(包括扩展需):"); scanf("%s".name):f = fop cn(namc「T');fscanfCf/'%d'\&n);ford = 0:i < n;i 卄) for(j = 0;j < nJ ++) fscanf(f,'*%ir\&A[i]|j)):for(i = 0:i < n;i卄)fscanf(「%F・&b[i]);else{prin氓”请输入A的阶数:”);scanf( '%d %d\&n): prinifC请输入A的值:”);for(i = 0:i V n:i ++)for(j = 0;j < n:j ++) scanf("%lf\&A[i]U]);phnifC请输入b的值:”);for(i = 0:i < n;i 卄)scanf(''%lf\&b[i]):〃讣算行列式的值double det{double s[105](105] jni m){int z.jkdouble b[105][105Klotal = 0.r; /*b[Nl[N]用于存放,在矩阵s[Nl[N冲元素s[0]的余子式灯if(m>2){for(z = 0:z V m:z++){for(j = 0;j V m ・ 1 j ++)for(k = 0:k vn卜l;k ++)if(k >= z)bUKk] = sU+l](k+l];elsebLi][k] = s[j+l][k];if(z % 2==0)r=s[0)⑵ * dcKb.m - 1):/*递归调用制elser= (-1) * s[0](z] * det(b.m -1);total = total + r;else if(m == 2)total = s[0][0] *s(l][l]-s[0](l] *s[l][01:else if(m == 1)total =s[0][0];return total;// 输出A^llb和dcl(A)void ouipui_l(){ int i j;primlTAW);for(i = 0;i < n:i ++){ for(j = 0:j < n:j ++)p rintf('-%15.4f\A[i]lj]);prinif(W);prinlf(5b = \rf);for{i = 0;i < n:i ++)prinif("%15.4l\iV\b[i]):printf("\ndet(A) = %・4f\n”・dclA);//主il•算函数void couni_x(){int ij,k:int max; double tmpjnik;〃构造增广矩阵for{i = 0;i<n:i++){for。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析》计算实习题姓名:学号:班级:第二章1、程序代码Clear;clc;x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38];n=length(y1);c=y1(:);for j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i-1)*df(i);endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数pp=csape(x1,y1, 'variational');%调用三次样条函数q=pp.coefs;q1=q(1,:)*[(x-.2)^3;(x-.2)^2;(x-.2);1];q1=vpa(collect(q1),5)q2=q(1,:)*[(x-.4)^3;(x-.4)^2;(x-.4);1];q2=vpa(collect(q2),5)q3=q(1,:)*[(x-.6)^3;(x-.6)^2;(x-.6);1];q3=vpa(collect(q3),5)q4=q(1,:)*[(x-.8)^3;(x-.8)^2;(x-.8);1];q4=vpa(collect(q4),5)%求解并化简多项式2、运行结果P4 =0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x - 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784q1 =- 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04q2 =- 1.3393*x^3 + 1.6071*x^2 - 0.88929*x + 1.1643 q3 =- 1.3393*x^3 + 2.4107*x^2 - 1.6929*x + 1.4171 q4 =- 1.3393*x^3 + 3.2143*x^2 - 2.8179*x + 1.86293、问题结果4次牛顿差值多项式4()P x = 0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x- 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784三次样条差值多项式()Q x0.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩第三章1、程序代码Clear;clc;x=[0 0.1 0.2 0.3 0.5 0.8 1];y=[1 0.41 0.5 0.61 0.91 2.02 2.46]; p1=polyfit(x,y,3)%三次多项式拟合 p2=polyfit(x,y,4)%四次多项式拟合 y1=polyval(p1,x);y2=polyval(p2,x);%多项式求值plot(x,y,'c--',x,y1,'r:',x,y2,'y-.')p3=polyfit(x,y,2)%观察图像,类似抛物线,故用二次多项式拟合。

y3=polyval(p3,x);plot(x,y,'c--',x,y1,'r:',x,y2,'y-.',x,y3,'k--')%画出四种拟合曲线2、运行结果p1 =-6.6221 12.8147 -4.6591 0.9266 p2 =2.8853 -12.3348 16.2747 -5.2987 0.9427 p3 =3.1316 -1.2400 0.73563、问题结果三次多项式拟合P1=32-6.622112.8147 4.65910.9266x x x +-+四次多项式拟合P2=4322.885312.334816.2747 5.29870.9427x x x x -+-+ 二次多项式拟合P3=23.1316 1.24000.7356x x -+第四章1、程序代码1)建立函数文件f.m: function y=fun(x); y=sqrt(x)*log(x); 2)编写程序:a. 利用复化梯形公式及复化辛普森公式求解:Clear;clc;h=0.001;%h 为步长,可分别令h=1,0.1,0.01,0.001 n=1/h;t=0;s1=0;s2=0; for i=1:n-1 t=t+f(i*h); endT=h/2*(0+2*t+f(1));T=vpa(T,7) %梯形公式0.10.20.30.40.50.60.70.80.9100.511.522.53for i=0:n-1s1=s1+f(h/2+i*h);endfor i=1:n-1s2=s2+f(i*h);endS=h/6*(0+4*s1+2*s2+f(1));S=vpa(S,7) %辛普森公式a’复化梯形公式和复化辛普生公式程序代码也可以是:Clear;clc;x=0:0.001:1; %h为步长,可分别令h=1,0.1,0.01,0.001y=sqrt(x).*log(x+eps);T=trapz(x,y);T=vpa(T,7)(只是h=1的运行结果不一样,T=1.110223*10^(-16),而其余情况结果都相同)Clear;clc;f=inline('sqrt(x).*log(x)',x);S=quadl(f,0,1);S=vpa(S,7)b.利用龙贝格公式求解:Clear;clc;m=14;%m+1即为二分次数h=2;for i=1:mh=h/2;n=1/h;t=0;for j=1:n-1t=t+f(j*h);endT(i)=h/2*(0+2*t+f(1));%梯形公式endfor i=1:m-1for j=m:i+1T(j)=4^i/(4^i-1)*T(j)-1/(4^i-1)*T(j-1);%通过不断的迭代求得T(j),即T表的对角线上的元素。

endendvpa(T(m),7)2、运行结果T =-0.4443875S =-0.4444345ans =-0.44444143、问题结果b. 利用龙贝格公式求解:通过15次二分,得到结果:-0.4444414第五章1、程序代码(1)LU分解解线性方程组:Clear;clc;A=[10 -7 0 1-3 2.099999 6 25 -1 5 -12 1 0 2];b=[8;5.900001;5;1];[m,n]=size(A);L=eye(n);U=zeros(n);flag='ok';for i=1:nU(1,i)=A(1,i);endfor r=2:nL(r,1)=A(r,1)/U(1,1);endfor i=2:nfor j=i:nz=0;for r=1:i-1z=z+L(i,r)*U(r,j);endU(i,j)=A(i,j)-z;endif abs(U(i,i))<epsflag='failure'return;endfor k=i+1:nm=0;for q=1:i-1m=m+L(k,q)*U(q,i);endL(k,i)=(A(k,i)-m)/U(i,i);endendLUy=L\b;x=U\ydetA=det(L*U)(2)列主元消去法:function x = gauss(A,b);A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2];b=[8;5.900001;5;1];[n,n] = size(A);x = zeros(n,1);Aug = [A,b]; %增广矩阵for k = 1:n-1[piv,r] = max(abs(Aug(k:n,k))); %找列主元所在子矩阵的行r r = r + k - 1; % 列主元所在大矩阵的行if r>ktemp=Aug(k,:);Aug(k,:)=Aug(r,:);Aug(r,:)=temp;endif Aug(k,k)==0, error(‘对角元出现0’), end% 把增广矩阵消元成为上三角for p = k+1:nAug(p,:)=Aug(p,:)-Aug(k,:)*Aug(p,k)/Aug(k,k); endend% 解上三角方程组A = Aug(:,1:n); b = Aug(:,n+1);x(n) = b(n)/A(n,n);for k = n-1:-1:1x(k)=b(k);for p=n:-1:k+1x(k) = x(k)-A(k,p)*x(p);endx(k)=x(k)/A(k,k);enddetA=det(A)2、运行结果1)LU分解解线性方程组L =1.0e+006 *0.0000 0 0 0-0.0000 0.0000 0 00.0000 -2.5000 0.0000 00.0000 -2.4000 0.0000 0.0000U =1.0e+007 *0.0000 -0.0000 0 0.00000 -0.0000 0.0000 0.00000 0 1.5000 0.57500 0 0 0.0000x =-0.0000-1.00001.00001.0000detA =-762.00012)列主元消去法detA =762.0001ans =0.0000-1.00001.00001.00003、问题结果1)LU分解解线性方程组L=10003100 0.5250000010 0.224000000.961⎛⎫ ⎪-⎪ ⎪-⎪-⎝⎭U=10701006 2.3 00150000055749998.499 000 5.079998908 -⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭x=(0.0000,−1.0000,1.0000,1.0000)T detA=-762.0012)列主元消去法x=(0.0000,−1.0000,1.0000,1.0000)T detA=762.001第六章1、程序代码(1)Jacobi迭代Clear;clc;n = 6; %也可取n=8,10H = hilb(n);b = H * ones(n, 1);e = 0.00001;for i = 1:nif H(i, i)==0 '对角元为零,不能求解'returnendendx = zeros(n, 1);k = 0;kend = 10000;r = 1;while k<=kend & r>ex0 = x;for i = 1:ns = 0;for j = 1:i - 1s = s + H(i, j) * x0(j);endfor j = i + 1:ns = s + H(i, j) * x0(j);endx(i) = b(i) / H(i, i) - s / H(i, i);endr = norm(x - x0, inf);k = k + 1;endif k>kend '迭代不收敛,失败'else'求解成功'xkend(2)SOR迭代1)程序代码function s = SOR(n, w);H = hilb(n);b = H*ones(n, 1);e = 0.00001;for i = 1:nif H(i,i)==0 ‘对角线为零,不能求解’returnendendx = zeros(n, 1);k = 0;kend = 10000;r = 1;while k<=kend & r>ex0 = x;for i = 1:ns = 0;for j = 1:i - 1s = s + H(i, j) * x(j);endfor j = i + 1:ns = s + H(i, j) * x0(j);endx(i) = (1 - w) * x0(i) + w / H(i, i) * (b(i) - s);endr = norm(x - x0, inf);k = k + 1;endif k>kend '迭代不收敛,失败'else'求解成功'xend2)从命令窗口中分别输入:SOR(6,1)SOR(8,1)SOR(10,1)SOR(6,1.5)SOR(8,1.5)SOR(10,1.5)2、运行结果Jacobi迭代:ans =迭代不收敛,失败SOR迭代:第七章1、程序代码(1)不动点迭代法1)建立函数文件:g.mfunction f=g(x)f(1)=20/(x^2+2*x+10);2)建立函数文件:bdd.mfunction [y, n] = bdd(x, eps)if nargin==1eps=1.0e-8;elseif nargin<1errorreturnendx1 = g(x);n = 1;while (norm(x1-x)>=eps)&&(n<=10000) x = x1;x1 = g(x);n = n + 1;endy = x;n3)从命令窗口输入:bdd(0)(2)牛顿迭代clear;clc;format long;m=8; %m为迭代次数,可分别令m=2,4,6,8,10x=sym('x');f=sym('x^3+2*x^2+10*x-20');df=diff(f,x);FX=x-f/df; %牛顿迭代公式Fx=inline(FX);disp('x=');x1=0.5;disp(x1);Eps=1E-8;k=0;while 1x0=x1;k=k+1;x1=feval(Fx,x1); %将x1代入牛顿迭代公式替代x1 disp(x1); %在屏幕上显示x1if k==mbreak;endendk,x12、运行结果(1)不动点迭代法>> bdd(0)n =25ans =1.3688(2)牛顿迭代x=21.4666666666666671.37211.3688102226338951.36881.36881.36881.3688k =8x1 =1.36883、问题结果(1)不动点迭代法x=1.3688 n=25 收敛太慢(2)牛顿迭代初值取0迭代次数k=8时,。

相关文档
最新文档