数值分析计算方法第七章优秀课件
西安科技大学研究生数值分析课件7章矩阵特征值与特征向量计算
7 矩阵特征值与特征向量地计算设A 为n 阶方阵,所谓A 地特征值问题是求数λ和非零向量x ,使x Ax λ=成立.数λ称作A 地一个特征值,非零向量x 称作与特征值λ对应地特征向量.求给定方阵地特征值与特征向量是先求解特征方程()||0E A ϕλλ=-=然后对应于每一个特征值i λ,再求解退化地齐次线性方程组()0i E A x λ-=从而得到A 地特征值i λ及对应地特征向量x .但是这种方法计算机很大,计算过程复杂,因此有必要研究相对简单地数值解法.本章主要介绍三类计算特征值地方法:计算大型(稀疏)矩阵主特征地幂法与反幂法,计算中小型(实对称)矩阵全部特征值地Jacobi 法,计算中小型矩阵全部特征值地QR 法.7.1 特征值估计在矩阵特征值计算中,有时需要对特征值所在范围给出一个估计.这里介绍一种从矩阵地元素出发,运用较简便地运算估计特征值地方法.定义7-1 设()n m ij A a C ⨯=∈,称由不等式||ii i z a R -≤在复平面上确定地区域为矩阵A 地第i 个盖尔圆(Gerschgorin 圆),并用i G 表示.其中1||ni ij j j i R a =≠=∑称为盖尔圆i G 地半径(1,2,,)i n =.定理7-1 矩阵()n m ij A a C ⨯=∈地一切特征值均落在它地n 个盖尔圆地并集中,即1(1,2,,)ni jj G i n λ=∈=.证明 设λ是A 地任一特征值,12(,,,)T n x x x x =是λ对应地特征向量.令01||max ||i i i nx x ≤≤=,则00i x ≠.由Ax x λ=,可得001()ni j j i j a x x λ==∑.即∑≠==-ni j j j j i i i i x a x a 000001)(λ于是有 000000011i i jni j j ji ni j j i jji i i R x x ax x aa ≤≤=-∑∑≠=≠=λ这表明任一特征值0i G λ∈,从而也在A 地第n 个盖尔圆地并集中.例7-1 估计矩阵10.10.20.30.530.10.210.310.50.20.30.14A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥---⎣⎦地特征值范围. 解 A 地4个盖尔圆为:1:|1|0.6G z -≤ 2:|3|0.8G z -≤ 3:|1| 1.8G z +≤ 4:|4|0.6G z +≤画在复平面上其区域如图7-1所示.图7-1 例7-1盖尔圆分布图于是A 地全部特征值就在这4个盖尔圆地并集中.为了更确切地知道某个特征值落在哪个或哪几个盖尔圆地并集中,给出如下第二盖尔圆盘定理.定理7-2 若A 地n 个盖尔圆中,有m 个盖尔圆构成地一个连通域(所谓连通域,是指其中地任意两点都可以用位于该区域内地一条折线连接起来),且该连通域与其余n m -个盖尔圆严格分离,则在该连通域中恰好有A 地m 个特征值(重特征值按重数重复计算).特别地,每个孤立地盖尔圆恰有A 地一个特征值(证明从略).由定理2可知,在例1中2G 与4G 中各有A 地一个特征值,而1G 与3G 构成地连通部分中有两个特征值,但不能确定这两个特征值具体落在哪个盖尔圆中.例7-2 估计矩阵10.80.50A -⎡⎤=⎢⎥⎣⎦地特征值范围. 解 A 地两个盖尔圆为:1:|1|0.8G z -≤,2:|0|0.5G z -≤在复平面上地区域如图7-2所示.图7-2 例7-2盖尔圆分布图此时只能判断A 地两个特征值落在1G 与2G 地并集中,至于是每个盖尔圆中各有一个特征值还是两个特征值都落在其中一个盖尔圆上则无法确定.实际上,由于1,21(12λ=±,1,2||0.5λ=>,所以两个特征值都不会在盖尔圆2G 中,而是落在盖尔圆1G 中.对于某些矩阵,可利用相似变换矩阵具有相同特征值地性质得到更确切地特征值范围.设()ij n m A a ⨯=,取正数12,,,n d d d 构成对角阵12diag(,,,)n D d d d =,对A 作相似变换,令1()iij n n jd B DAD a d -⨯==,由于B 相似于A ,所以B 与A 地特征值完全相同,又由于B 与A 地主对角线元素对应相等,所以B 与A 地盖尔圆圆心相同.这表明,若适当选取正数12,,,n d d d ,可以改变盖尔圆地半径,从而有可能将相交地盖尔圆分离得到仅含一个特征值地孤立盖尔圆.选取12,,,n d d d 地一般方法是:欲使A 地第i 个盖尔圆i G 地半径大而其余盖尔圆变小,就取1i d >,其余1()j d j i =≠.例7-3 求矩阵2050.841011210A j ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地特征值范围. 解 A 地3个盖尔圆为:1:|20| 5.8G z -≤,2:|10|5G z -≤,3:|10|3G z j -≤其中1G 与2G 相交,而3G 孤立.记3G 中所含地一个特征值为3λ,如图7-3所示.为分离2G 与1G ,可以让A 地第3行元素绝对值变大,第3列元素绝对值变小.现取diag(1,1,2)D =,则12050.44100.52410B DAD j -⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦图7-3 例3盖尔圆分布图 图7-4 例7-3分离后盖尔圆分布图其3个盖尔圆分别是:1:|20| 5.4G z '-≤,2:|10| 4.5G z '-≤,3:|10|6G z j '-≤ 显然,B 地盖尔圆是3个孤立地盖尔圆,如图7-4,注意,此情况下,3G '地半径变大了.例7-4 设矩阵()ij n n A a ⨯=按行严格对角占优,则A 可逆.证明 由线性代数知,A 可逆地充分条件是||0A ≠,而1||nj j A λ==∏(其中j λ是A 地特征值),所以只要证明0j λ≠即可(1,2,,)j n =. 设λ是A 地任一特征值,则必存在某个盖尔圆i G 使∑≠=≤-ij ij i ii a R a λ.若0j λ=,则有∑≠≤ij ij ii a a ,而这与A 按行严格对角占优矛盾,故应有0λ≠,由λ地任意性,得||0A ≠.7.2 幂法与反幂法在线性代数中,设A 是n 阶方阵,若A 存在n 个线性无关地特征向量,则称这n 个特征向量构成A 地一个完全地特征向量组.例如,对矩阵320230005A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,110430102B -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦通过求解特征方程,不难求出A 地三个特征值为1231,5λλλ===,B地三个特征值为1232,1λλλ===.方阵A 可以找到三个线性无关地特征向量,而方阵B 找不到三个线性无关地特征向量.我们称方阵A 可对角化,而B 不可对角化. 7.2.1 幂法幂法地基本思想是构造一个向量序列使之逼近主特征值(矩阵地按模最大地特征值)对应地特征向量,然后求出主特征值.该方法简单易行,但收敛速度较慢.现设()ij n n A a ⨯=有一个完全地特征向量组12,,,n x x x ,其对应地特征值是12,,,n λλλ.已知A 地主特征值是单根1λ,即特征值满足条件12||||||n λλλ>≥≥任取一个非零初始向量0u ,由矩阵A 构造向量序列102210110k k k u Au u Au A u u Au A u++=⎧⎪==⎪⎪⎨⎪==⎪⎪⎩由于A 地完全特征向量组可以作为向量空间n R 地一组基,因此0u 可由12,,,n x x x 线性表示,即有01122n n u a x a x a x =+++ (设10a ≠)于是011122211111121()()k k k k k n n nn kk k i i i k i u A u a x a x a x a x a x a x λλλλλλελ===+++⎡⎤=+=+⎢⎥⎣⎦∑ 其中21()nk i k i i i a x λελ==∑.注意到),,2(11n i i=<λλ,故当k →∞时,0k ε→,因此有111k k u a x λ≈由于1x 是主特征值1λ对应地特征向量,其乘上常数因子11k a λ仍为1λ地特征向量,故当k 充分大时,迭代向量k u 是1λ地特征向量地近似向量.为了利用迭代向量求出主特征值1λ地近似值,设()k i u 表示k u 地第i 个分量,则1111111()()()[]()()()k i i k ik i i k iu a x u a x ελε+++=+ 于是 11()lim()k ik k iu u λ+→∞= 这表明两相邻迭代向量对应分量地比值收敛于主特征值,亦即当k 充分大时,可用两相邻迭代向量地分量比作为主特征值地近似值,即11()()k ik iu u λ+≈若主特征值是A 地r 重实特征值,即12(1)r r n λλλ===≤≤,对应地r 个线性无关特征向量为12,,,n x x x .则有01111()r nkk k i k i i i i i i r u A u a x a x λλλ==+⎡⎤==+⎢⎥⎣⎦∑∑当k 充分大时,11rkk i i i u a x λ=≈∑即k u 仍为主特征值对应地特征向量地近似向量,相邻两迭代向量地分量比仍为主特征值地近似值.综上所述,有定理7-3 设A 是n 阶实矩阵,具有完全地特征向量组,主特征值是r 重根,即112||||||||(1)r r n r n λλλλ++>≥≥≥≤≤则对任意非零初始向量0u ,迭代向量0k k u A u = 满足 111lim(0)rki ikk i u a x a λ→∞==≠∑ ,11()lim ()k ik k iu u λ+→∞= 或 11rk k i i i u a x λ=≈∑,11()()k ik iu u λ+≈ 这样用非零初始向量0u 及矩阵A 构造向量序列{}k u 以计算A 地主特征值1λ及相应地特征向量地方法称为幂法.不过从上面地讨论中可以看到,如果1||1λ>或11<λ,迭代向量k u 当k →∞时,其不为零地分量就会趋于无穷大或趋于零.为克服这个缺点,可以在每步迭代中加上对向量规范化地步骤,使迭代向量地数量级保持在一个稳定地量级上,归纳起来,幂法地计算步骤为:步骤 1 给定非零初始向量0u ,精度12,εε,令00v u =;令(0)10max()v λ=,1=k ;步骤 2 迭代1-=k k Av u ,()1max()k k u λ=,其中)max(k u 表示k u 绝对值最大地分量;步骤3 规范化max()kk k u v u =; 步骤 4 若11k k v v ε--<且()(1)112||k k λλε--<,则k v 即为1λ地近似特征向量,()1k λ即为1λ地近似值;否则,1+=k k ,转步骤2继续迭代.例7-5 用幂法计算1.0 1.00.51.0 1.00.250.50.252.0A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地主特征值和相应地特征向量,结果见表7-1.表7-1而此题地准确值为1 2.5365258λ= 1(0.748221,0.649661,1.000000)T x =7.2.2 幂法地加速幂法地收敛速度由比值21r λλ=来确定,r 越小收敛越快,而当1r ≈时收敛可能很慢.为了克服这一缺点,常采用原点平移法对幂法进行加速.设B A pE =-,其中p 是待定参数.显然,若A 地特征值为12,,,n λλλ,则B 地相应特征值(1,2,,)i k i n =为12,,,n p p p λλλ---,且A .B 地特征向量相同.这是因为对A 有特征方程||0i A E λ-=,而对B 有特征方程|||()|0i i B k E A p k E -=-+=,所以,i i i i p k k p λλ=+=-另一方面,若i x 是A 地对应i λ地特征向量,即i i i Ax x λ=则 ()()i i i i i i Bx A pE x Ax px p x λ=-=-=-原点平移法地思想是引入矩阵B ,恰当地选择参数p ,使11k p λ=-是B 地主特征值,且其速比2211maxB A p r r p λλλλ-=<=-,这样用幂法求B 地主特征值1k 地收敛速度就快于用幂法求A 地主特征值1λ,而一旦1k 求出,由11k p λ+=可得A 地主特征值,达到了加速地目地.但是为了选取恰当地选择参数p ,需要对A 地特征值地分布地大致了解. 例7-6 设4阶方阵A 有特征值15(1,2,3,4)j jj λ=-=其速比210.9A r λλ=≈.作变换 (12)B A pEp =-=则B 地特征值为12k =,21k =,30k =,41k =-,其速比2112B A k r r k ==<. 设A 地实特征值满足121n n λλλλ->≥≥>若2,n λλ地值可大致估计出,若要求1λ,考察待定参数p 地选取. 在原点平移法通过变换pE A B -=后,不论p 如何选取,矩阵地B 主特征值也只能是在n p λ-或 1p λ-.若希望求1λ,就应选择p ,使1p λ-称为B 地主特征值,即1||||n p p λλ->-这时B 地收敛速比B r 是比值21||/||p p λλ--和1||/||n p p λλ--中地较大者,即211||||max ,||||n B p p r p p λλλλ⎧⎫--=⎨⎬--⎩⎭显然B r 依赖于p 地选取,记做()B r p .为了使应用幂法求B 地主特征值地收敛速度尽可能快,我们希望选择最佳参数*p ,使*()min ()B B r p r p =由B r 地表示式(求二者之间地较大值)和)(*p r B 对)(p r B 地最小化要求,只有当2||||n p p λλ-=-时,()B r p 达到最小.由于2n p p λλ-=-会有得到矛盾地结果(2n λλ=),所以只能是2()n p p λλ-=--即 *22np λλ+=类似地,若用反幂法求最小特征值n λ,若1n λ-,1λ可大致估计,取最佳平移参数*112n p λλ-+=例7-7 取0.75p =,用原点平移法,计算例7-7中矩阵A 地主特征值.解 作变换B A pE =-,则0.2510.510.250.250.50.25 1.25B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对B 应用幂法,计算结果见表7-2.即1 1.7865914k ≈,则A 地主特征值1λ为110.75 2.5365914k λ=+=与例7-5比较,上述结果比例7-5迭代15次还好.表7-27.2.3 反幂法设方阵A 按模最小地特征值是n λ,且0n λ≠,则A 可逆.于是,由n n n Ax x λ=,可得11n n nA x x λ-=,这表明1nλ是1A -地主特征值.反幂法就是将幂法应用于1A -,通过求出1A -地主特征值得到A 地按模最小地特征值及其对应地特征向量.定理7-4 设A 是n 阶实矩阵,具有完全地特征向量组,其特征值满足12||||||0n λλλ≥≥≥>则对任意非零初始向量00u v =,按下述方式构造地迭代向量11k k u A v --= ,max()kk k u v u =满足lim max()n k k n x v x →∞=, 1lim max()k k nu λ→∞= /max()k n n v x x ≈,1max()k nu λ≈在实际计算中,可先对A 进行LU 分解,通过求解1k k Ly v -= ,k k Uu y =来求解方程组1k k Au v -=.反幂法地计算步骤为:步骤1 预先取定非零向量00u v =;给定精度12,εε;取(0)0m a x ()nu μ=; 步骤2 对矩阵A 作LU 分解,A LU =;令1=k ;步骤3 求解方程组1k k Ly v -= ,k k Uu y = 得到迭代向量k u ; 步骤4 规范化max()kk k u v u =步骤5 若11k k v v ε--<且()(1)2||k k n n μμε--<,则k v 即为A 地对应于n λ地近似特征向量,()1k nμ即为n λ地近似值;否则,令1+=k k ,转步骤3继续迭代.7.3 矩阵地两种正交变换本节先介绍镜面(初等)反射变换和平面旋转变换,它们是QR 算法和Jacobi 算法地基础.7.3.1 豪斯荷尔德(House holder )变换定义7-2 设有方阵B ,若当1i j >+时(,1,2,,)i j n =,0ij b =,则称B 是上Hessenberg 矩阵,即1112121222,1n n n n nn b b b b b b B b b -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦定义7-3 设向量ω满足21ω=,矩阵2T H E ωω=- (ω是列向量)称为初等反射矩阵,又称House holder 矩阵,记为()H ω,即211212212221212222122()2212n n n n n H ωωωωωωωωωωωωωωωω⎡⎤---⎢⎥---⎢⎥=⎢⎥⎢⎥---⎢⎥⎣⎦其中(1,2,,)i i n ω=是ω地分量.可以证明初等反射阵是对称阵()T H H =.正交阵()T H H E =. 例7-8 设向量0α≠,试证矩阵222TH E ααα=- 是一个初等反射阵. 证明 令2αωα=,则 222221||||||||1αωααα=== 由定义7-3,2222TTH E E ααωωα=-=-是初等反射阵.定理7-5 设,x y 是两个不相等地n 维列向量,且22||||||||x y =,则存在一个初等反射阵H,使得Hx y =证明 令2||||x yx y ω-=-,由例7-8可知22()()22||||T T Tx y x y H E E x y ωω--=-=-- 是一个初等反射阵.由于22||||()()T T T T Tx y x y x y x x y x x y y y -=--=--+ 注意到22||||||||x y =,即T T x x y y =,又()T T T T x y x y y x == ,故22||||2()T Tx y x x y x -=-从而22()()2||||T T x y x x y x Hx x x y --=--y y x x =--=)(. 例7-9 设1(1,2,2),(1,0,0)T T x e ==,用Householder 变换将x 化为与1e 同方向地向量.解 因为2||||3x =,可设13y e =,则22||||||||x y = 取21,1,1)||||T x y w x y -==--,构造Householder 矩阵[]11122212111,1,12123311221T H E ww -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则13Hx e =推论 设向量12(,,,)0T n x x x x =≠,12()||||r sign x x =,且1x r ε≠-,则存在初等反射阵1222||||T T uu H E E uu u ρ-=-=- 使1Hx r ε=- .其中,1(1,0,,0)T ε=,1u x r ε=+,22||||/2u ρ=.设12(,,,)T n u u u u =,则12(,,,)T n u x r x x =+22222122222112111||||[()]221(2)2()n n u x r x x r rx x x x r r x ρ==++++=+++++=+引入初等反射阵地目地,是设法用一系列初等反射阵将原始矩阵约化成上Hessenberg 阵.由于约化过程是逐列进行地,我们先给出计算Hx 地算法步骤,该算法算出H 及r ,使Hx r ε=-,u 地分量冲掉x 地分量.(1)1max ||i i nx η≤≤=;(2)(1,2,,)ii i x x u i n η←==,此步规范化是为避免计算r 时产生溢出;(3) 12211()()nii r sign x x ==∑;(4)11u u r ←+;(5) 1ru ρ=; (6) r r η←;于是初等反射阵1T H E uu ρ-=-,1Hx r ε=-.如果要将H 作用于矩阵A ,设i a 是A 地第i 列向量,则12(,,,)n A a a a =,12(,,,)n HA Ha Ha Ha = 其中,11()()(1,2,,)T T i i i i Ha E uu a a u a ui n ρρ--=-=-=.下面讨论用初等反射阵约化原始矩阵A 称为上Hessenberg 阵地步骤.11121(1)(1)2122211121(1)(1)212212n n n n nn a a a a a a a A A A a a a a a ⎡⎤⎢⎥⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦步骤1 不妨设(1)210a ≠(否则这一步不需约化),选择初等反射阵1R ,使(1)12111R a r ε=-,其中: 1(1)(1)2212112(1)1211112111121211111()(())(1)1()2ni i T r sign a a u a r n u r r a R E u u εερρ=-⎧=⎪⎪⎪=+-⎨⎪==+⎪⎪=-⎩∑是维单位坐标列向量 令11100U R ⎡⎤=⎢⎥⎣⎦则(2)(2)(2)(1)111213111212111(2)(2)(1)(1)222312112210A a A a A R A U AU a A R a R A R ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦其中,(2)11A 是21⨯阵,(2)22a 是2n -维列向量,(2)23A 是2n -阶方阵.步骤k 设对A 已进行了1k -步约化,即111(2)()()()()11121,111,11(2)()()()1222,12,2()()()1,1,()()()1,1,11,()()(),1(2,3,,1)k k k k k k k k k k k n k k k k kn k k k k kk k k k n k k k k k k k k nk k k nkn k nnA U A U k n a a a a a a r a a a a r a a a a a a a a a ----+--++++++==-⎡⎢-⎢=-⎣()()()111213()()22230k k k k k A a A a A ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦⎡⎤=⎢⎥⎣⎦其中,()11k A 是(1)k k ⨯-阵,()22k a 是n k -维列向量,()23k A 是n k -阶方阵.设()220k a ≠,选初等反射阵()k R n k -阶,使()221k k k R a r ε=-,其中1ε是n k -维单位坐标向量,可得1()()221,1()221()1,1()(())()nk k k k k ik i k k kk k k k kk nT k k k k r sign a a u a r r r a R E u u ερρ+=++-⎧=⎪⎪⎪=+⎨⎪=+⎪⎪=-⎩∑ 令 00k k E U R ⎡⎤=⎢⎥⎣⎦则 ()()()1112131()()2223()()()111213()12300k k k k k k k k k k k k k k k k k k k k k A a A R A U A U R a R A R A a A R r R A R ε+⎡⎤==⎢⎥⎣⎦⎡⎤=⎢⎥-⎣⎦ 可见1k A +地左上角1k +阶子阵为上Hessenberg 阵,从而约化又进了一步.重复此过程,直到122112211(2)122(3)233(1)1n n n n n nn A U U U AU U U a r a r a r a -----=⨯⨯⨯⎡⎤⎢⎥-⨯⨯⎢⎥⎢⎥=-⨯⎢⎥⎢⎥⎢⎥-⎣⎦使原始矩阵A 在一系列初等反射阵地作用下,约化为上Hessenberg 阵.综上所述,有定理7-6.定理7-6 如果A 是n 阶实矩阵,则存在初等反射阵122,,,n U U U -,使221122n n U U U AU U U C --=(上Hessenberg 阵)例7-10 试证矩阵A 与其约化成为地上Hessenberg 阵C 有相同地特征值.证明 记221n P U U U -=,由于初等反射阵是正交对称阵,故122T n P U U U -=,且P 是正交阵,故T PAP C =.于是||||||||||||T T C E PAP E P A E P A E λλλλ-=-=-=-其中T PP E =,||||1T P P =.这表明A 与C 具有相同地特征多项式,即两者有相同地特征值.进一步,设y 是C 地对应于特征值λ地特征向量,即Cy y λ=,则有T PAP y y λ= ()()T T A P y P y λ=这表明T P y 为A 地对应于λ地特征向量,于是求原始矩阵A 地特征值与特征向量可转化为求上Hessenberg 阵C 地特征值和特征向量.定理7-7 若A 是实对称矩阵,则存在初等反射阵122,,,n U U U -使2211221112211()n n n n n U U U AU U U c b b c b C b b c ----⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦对称三对角阵 证明 由定理7-6,存在初等反射阵可使A 约化为上Hessenberg 阵C ,当A 是对称矩阵时,C 亦为对称阵,即T C C =,且T C 亦为上Hessenberg 阵,故C 是对称三对角阵.例7-11 用豪斯荷尔德方法将下述矩阵化为上Hessenberg 阵.1437232427A A ---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦解 (1)对1k =,确定变换阵111000U R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)2124a ⎡⎤=⎢⎥⎣⎦ 其中1R 为初等反射阵,使(1)121110R a r ⎡⎤=-⎢⎥⎣⎦(1)12124.472136r a ==≈(1)12111 6.472136244u a r ε⎡⎡⎤+=+=≈⎢⎢⎥⎣⎦⎣⎦11121()2)28.94427r r a ρ=+≈[]1111110 6.4721361 6.472136401428.944270.4472070.8944230.8944230.447216TR E u u ρ-=-⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤=⎢⎥-⎣⎦(2)计算(1)122R A .记(1)221232(,)27A a a ⎡⎤==⎢⎥⎣⎦,于是 (1)1221112 3.1304967.155419(,) 1.788855 1.341640R A R a R a --⎡⎤==⎢⎥-⎣⎦其中,111111111()()(1,2)T T i i i i R a E u u a a u a u i ρρ--=-=-=(3)计算(1)121A R 及(1)1221()R A R ,即求 1(1)121211(1)1223373.1304967.1554191.788855 1.341640T T T b A R b R R R A b ⎡⎤--⎡⎤⎡⎤⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦7.6026340.4472127.800030.3999990.399999 2.200000-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦其中,11111()(1,2,3)T T T Ti i i b R b b u u i ρ-=-=(4)计算2111A U AU =.(1)12121(1)1221447.6026340.4472124.4721367.8000030.39999900.399999 2.2000000A R A r R A R ⎡⎤--⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥-⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦为上Hessenberg 阵.7.3.2 平面旋转变换 定义7-4 称矩阵111(,)111i j csi P i j scj ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第列第列第行第行 为平面旋转矩阵,又称Givens 矩阵,其中cos c θ=,sin s θ=.平面旋转阵(,)P i j 是一个正交阵,与单位阵只有在(,),(,),(,i i i j j j j i四个位置上地元素不一样,用其左乘矩阵A 只改变A 地第i 行和第j 行元素.设12(,,,)T n x x x x =则平面旋转变换Px y =地结果为⎪⎩⎪⎨⎧≠=+-=+=ji k x y cx sx y sx cx y k kj i j j i i ,若令/i c x =,j s x =, 则平面旋转变换向量y 地第i个分两为22j i x x +,第j 个分量为0,其余分量即为x 对应地分量.和初等反射变换一样,用平面旋转变换也可以将一个方阵化为上Hessenberg 矩阵,也可以将将一个方阵化为上三角矩阵.7.4 QR 算法7.4.1 矩阵地QR 分解定理7-8 设A 是可逆矩阵,则存在正交矩阵121,,,n P P P -使121()n P P P A R -=上三角矩阵且R 地主对角元素0(1,2,,1)ii r i n >=-.证明 若10(2,3,,)j a j n ==,则A 地第一列不需约化.若有某个 10(2)j a j n ≠≤≤,则可选择1(1,)j P j P =使A 地第一列中第j 个元素变为零.一般地,可设平面旋转矩阵12131,,,n P P P ,使(2)(2)11121(2)(2)222113122(2)(2)200nn nn nn r a a a a P P P A A a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦记111312nP P P P =,则12P A A =.同理,若(2)20(3,4,,)j a j n ≠=,可选取23242,,,n P P P 使(2)(2)(2)1112131(3)(3)22232(3)(3)2212323333(3)(3)3nn n n n n nn r a a a r a a P P P A A a a a a -⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦记2223nP P P =,则213P P A A =.重复上述过程,可得一系列正交阵121,,,n P P P -使11121222121n n n nn r r r r r P P P A R r -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ 定理7-9 (矩阵地QR 分解)如果n 阶实矩阵A 可逆,则A 可分解为一正交阵Q 和上三角阵R 地乘积,即A QR =,且当R 地对角元素都为正数时分解唯一.证明 由定理8知存在正交阵11,,n P P -使121n P P P A R -=为上三角阵,记121T n Q P P P -=,于是T Q A R =由于(1,2,,1)i P i n =-是正交阵,则T Q 亦为正交阵,故A QR =. 若A 有两种QR 分解,记为1122A Q R Q R ==其中12,R R 为上三角阵且主对角元素都为正数,12,Q Q 为正交阵,于是12121T Q Q R R -=注意121R R -是上三角阵地乘积,结果仍为上三角阵,而12,TQ Q 是正交阵,所以121R R -也应是正交阵.若记121D R R -=,由其上三角性T D 应是下三角阵,1D -应是上三角阵;由其正交性由1T D D -=,故D 只能是对角阵,且有2T D D D E ==.又因12,R R 地主对角元素都为正数,即有222212diag[,,,]diag[1,1,,1]n D d d d E ===故1(1,2,,)i d i n ==,则D E =,于是12R R =,12Q Q =.例7-12 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=212240130A 地QR 分解. 解 方法1:利用初等反射阵进行QR 分解令(0)1(0,0,2)T a =,取(0)112||||2d a ==,则)2,0,2(81211)0(111)0(11-=--=e d ae d a u1110012010100TH E u u ⎡⎤⎢⎥=-=⎢⎥⎢⎥⎣⎦,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1302402121A H 再令(0)2(4,3)T a =,取(0)222||||5d a ==,则(1)2212(2)22121,3)||||T a d e u a d e -==--2224312345TH E u u ⎡⎤=-=⎢⎥-⎣⎦令2210014305534055H H ⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦于是21212051002H H A R ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦故123405521243005155002100T TA H H R ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦方法2:利用平面旋转阵进行QR 分解. 取1202,0100221221=+==+=s c ,则130********T ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,132********T A ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦再取53)3(43,54)3(44222222-=-+-==-+=s c ,则231004305534055T ⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,2313212051002T T A R ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦ 故13233405521243005155002100T T A T T R ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦例7-13 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110133044A 地QR 分解,使得R 地对角线元素为正数.解 A A =1地第一列T x ]0,3,4[1=,521=x .用1x 构造镜面反射阵1H ,使得T y x H ]0,0,5[111==,令T y x u ]0,3,1[111-=-=,有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=10005453053542221111u u u E H T ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==11054005355112A H A 2A 地第2列对角线以下为T x ]1,0[2=,122=x .用2x 构造镜面反射阵2~H ,使得T y x H ]0,1[~222==,令T y x u ]1,1[222-=-=,易得 ⎥⎦⎤⎢⎣⎡=-=01102~222222u u u E H T,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=010100001~122H H 于是有R A H A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==54001105355333,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==010540535305421H H Q容易验证,QR A =.请读者用平面旋转变换对本例地矩阵A 进行QR 分解.7.5.3 QR 算法QR 算法就是利用QR 分解构造一个矩阵序列{}k A ,当k 充分大时,k A 是近似地上三角矩阵,而该上三角阵地对角元素便是原始矩阵A 地全部特征值.设1()n n ij n n A A a R ⨯⨯==∈,对A 做QR 分解,即A QR =其中R 为上三角阵,Q 为正交阵.利用这个分解可得新矩阵(对QR 交换乘积)2T A RQ Q AQ == 由于2A 是1A 经过正交相似变换得到地,因此2A 与1A 有相同地特征值.再对2A 做QR 分解,按上述方式又可得新矩阵3A ,且3A 与2A 也具有相同地特征值.具体地说,其步骤为:设1A A =,做QR 分解111A Q R =求矩阵211111T A R Q Q A Q ==求得k A 后对k A 作QR 分解k k k A Q R =求矩阵1Tk k k k k k A R Q Q A Q +==只要A 可逆,由定理9可知,按上述方法可唯一确定矩阵序列{}k A ,且序列中任意k A 与原始矩阵有相同特征值.因此只要恰当选择正交相似变换阵12,,,k Q Q Q ,使1111111T T TT TT T k k k k k k k k k k k k k k A Q A Q Q Q A Q Q Q Q Q A Q Q Q +----====当k →∞时,逼近一个上三角阵,便可求出A 地全部特征值(为所逼近上三角阵地主对角元素).可见,QR 算法地关键在于选择正交变换阵(1,2,)k Q k =.从定理7-8地证明看到,正交变换阵k Q 是一系列平面转换矩阵地乘积,这些平面旋转矩阵是用来将k A 地主对角线以下元素约化为零地.如果将QR 算法直接应用于原始矩阵,计算量很大,所以在实际计算中,总是先将原始矩阵用豪斯赫尔德方法约化为上Hessenberg 阵,而后再对上Hessenberg 阵应用QR 算法.可以证明,由上Hessenberg 阵用QR 算法生成地矩阵序列中地每个矩阵仍为上Hessenberg 阵.7.5 雅可比方法雅可比方法是用来计算实对称矩阵地全部特征值及特征向量地一种有效方法.它地基本思想是,通过一组正交相似变换对称矩阵A 化为对角矩阵,得其全部特征值.定理7-10 设A 为n 阶对称矩阵,T C PAP =,其中P 为正交矩阵,则22||||||||F F C A = 证明 一方面2222111||||()()nnnFiji i j i A a tr A A λ======∑∑∑另一方面2221||||()()()nTFi i C tr C C tr C C λ====∑由假设()()i i A C λλ=,故22||||||||F F C A =.设n n A R ⨯∈为对称矩阵,(,)P i j 为一平面旋转矩阵,则T C PAP =(其中()ij n n C c ⨯=)地元素计算公式为:(1)22cos sin 2sin cos ii ii jj ij c a a a θθθθ=++22sin cos 2sin cos jj ii jj ij c a a a θθθθ=+-(2)1()sin 2cos 22ij ji jj ii ij c c a a a θθ==-+ (3)第i 行元素和第j 列元素cos sin (,)ik ki ik jk c c a a k i j θθ==+≠ (4)第j 行元素和第i 列元素 cos sin (,)jk kj jk ik c c a a k i j θθ==+≠(5)(,,)lk lkc a l k i j =≠这说明,当A 经过一初等正交相似变换化为C 时,只需按上述公式计算C 地第i 列.第j 列元素,由对称性可得第i 行和第j 行元素,C 地其余元素与A 地对应元素相同.设A 地非对角元素0ij a ≠,我们可选择平面旋转阵(,)P i j ,使T C PAP =地非对角元素0ij ji c c ==.由定理11可选择(,)P i j ,使sin 2cos 202jj iiij ji ij a a c c a θθ-==+=即选择θ,使22(||)4ij ii jja tg a a πθθ=≤-其中定理7-11 设n n A R ⨯∈为对称阵,0ij a ≠为A 地一个非对角元素,则可选择一平面旋转阵(,)P i j ,使T C PAP =地非对角元素0ij ji c c ==且T C PAP =与A 地元素满足下述关系(1)2222(,)ik jk ik jkc c a a k i j +=+≠(2)222222ii jj ii jj ij c c a a a +=++ (3)22(,,)iklk c a l k i j =≠证明 由上面地计算ij c 公式直接计算可知(1)成立.由(1)及定理7-10可证(2).如果用()S A 表示A 地非对角线元素地平方和,()D A 表示A 地对角线元素平方和,则2()()2ijD C D A a =+ ,2()()2ij S C S A a =- 这说明C 地对角线元素平方和比A 地对角线元素平方和增加了22ij a ,C 地非对角线元素平方和比A 地非对角线元素平方和减少了22ij a .下面介绍雅可比方法.首先在A 地非对角元素中选择绝对值最大地元素(称为主元素),如11||max ||i j lk l ka a ≠=可设110i j a ≠,否则A 已经对角化了.由定理12,选择一平面旋转矩阵111(,)P i j ,使111TAP AP =地非对角元素11110i j j i c c ==. 再选(1)1()lkn n A a ⨯=地非对角元素中地主元素,如 22(1)(1)||max ||0i j lk l ka a ≠=≠由定理12,又可选择一平面旋转矩阵222(,)P i j ,使2212T A P A P =地非对角元素2222(2)(2)i j j i a a ==(注意上次消除了地主元素这次又可能变为不是零). 继续这个过程,连续对A 实行一系列平面旋转变换,消去非对角线绝对值最大地元素,直到将A 地非对角元素全化为充分小为止,从而求得A 地全部(近似)特征值.定理7-12 (雅可比方法地收敛性)设()ij n n A a ⨯=为实对称矩阵,对A 施行上述一系列平面旋转变换1(1,2,)Tm m m mA P A P m -==则 lim ()m m A D→∞=对角矩阵证明 记()()m m lk n n A a ⨯=,()2()m m lk l kS a ≠=∑由定理7-11地(2)可得()212()m m m ij S S a +=-其中 ()()||max ||m m ijlk l ka a ≠= 又由于()2()2()(1)()m m m lk ij l kS a n n a ≠=≤-∑即()2()(1)m m ij S a n n ≤- 由以上得12(1)(1)m m S S n n +≤-- 反复应用上式,即得1102(1)(2)(1)m m S S n n n ++≤->-故 lim 0m m S →∞= 可以证明()lim m ll m a →∞存在(1,2,,)l n =. 下面介绍特征向量地计算.由雅可比收敛定理知,当m 充分大时2112T TTmm P P P AP P P D ≈记12T T T T m m R P P P =,则T m R 地列向量就是A 地近似特征向量.计算Tm R 可采用累积地办法,用一数组R 保存Tm R ,开始时R E ←,以后对A 每进行一次平面旋转变换,就进行计算Tm R RP ←用初等正交阵T m P 右乘R 只需计算R 地两列元素,若记(,)m m P P i j =,则Tm RP 地计算公式为()()cos ()sin (1,,)()()sin ()cos li li lj li li lj l n θθθθ←+⎧⎪=⎨←+⎪⎩R R R R R R关于sin θ和cos θ地计算如下.由定理7-11知,当0ij a ≠时,可选θ满足2tg2ij ii jja a a θ=-方ii jj a a ≠时,由22tg 1tg21tg dθθθ=≡- 得到tg θ地二次方程2tg 2tg 10d θθ+-=解得tg θ=选取tg 0d d θ>=<由此得 |tg |1θ≤可由集合{},,ii jj ij a a a 来计算sin ,cos θθ,设0,||max ||ij ij lk l ka a a ≠≠=,则210tg ,()10cos sin cos ii jj ija a d a d t s d d c t ct sθθθθ-⎧=⎪⎪⎪≥⎧⎪=≡=⎨-<⎨⎩⎪⎪=≡⎪⎪=⋅=≡⎩如果jj ii ij a a a -<<,则12ij ii jja t d a a ≈=-,将c,s 代入定理7-9地(1)中可得ii ii ij jj jj ij ij ji c a ta c a ta c c ⎧=+⎪=-⎨⎪==⎩ 每迭代一次地主要工作是选m A 地非对角线元素中地主元素与计算T 111m m m +++=A P AP .首先计算sin ,cos ,θθ,只需计算1m +A 地第i 列,第j 列元素,再算对称元素,不用做3个矩阵地乘法.计算机计算时,需要两组工作单元,以便存储A (或m A )和R .可用()2()m m lk l ka ε≠=<∑S 控制迭代终止,其中ε是要求地精度.例7-14 用雅可比方法计算对称阵210121012⎡⎤-⎢⎥--⎢⎥⎢⎥-⎣⎦A = 地特征值.解 第1步0=A A ,选非对角线元素中地主元素121(1,2)a i j =-==0,1,1/0.7071068,1/0.7071068d t c s ======T 111100.7071068030.70710680.70710680.70710682⎡⎤-⎢⎥==-⎢⎥⎢⎥--⎣⎦A P AP第2步 在1A 中选非对角元素地主元素(1)130.7071068(1,3)a i j =-==0.7071068,0.5176381,0.8880738,0.4597008d t c s ====T 22120.63397460.325057600.325057630.627963000.62798302.366025-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦A P A P 第3步 在2A 中选非对角元素地主元素(2)230.627930(2,3)a i j =-==0.5047869,0.6153960,0.8516540,0.5241045d t c s =-=-==-T 33230.63397460.27683660.17036420.27683663.38644600.170364201.979579⎡⎤--⎢⎥=-⎢⎥⎢⎥-⎣⎦A P A P 第4步 在3A 中选非对角元素地主元素(3)120.2768366(1,2)a i j =-==4.971292,0.09958013,0.9950785,0.09909004d t c s ====T 44340.606407200.169525803.4140130.016881400.16952580.016881401.979579⎡⎤-⎢⎥=⎢⎥⎢⎥-⎣⎦A P A P 第5步 在4A 中选非对角元素地主元素(4)130.1695258(1,3)a i j =-==4.050038,0.1216293,0.9926842,0.1207395d t c s ==== 2T 255450.58578790.20382521000.203825210 3.4140130.0167579000.016757902.000198--⎡⎤⨯⎢⎥=⨯⎢⎥⎢⎥⎣⎦A P A P 于是A 地特征值为1233.414013, 2.000198,0.5857879λλλ===A 地精确特征值为12(1 3.414214λ=≈,22λ=,32(10.585786λ=-≈ 且可逐步求出412345T T T T T T R P P P P P =地列向量,即得A 地近似特征向量.雅可比方法是一个求对称矩阵A 地全部特征值及特征向量地迭代方法,精确度较高,但计算量较大,对稀松带状矩阵经过平面旋转变换后其稀松带状将被破坏,所以很少使用.习题71.设911203111(2102113810A j j B ⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦试估计它们地特征值所在地范围.2.编写幂法程序,并求矩阵732341213A -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦地主特征值及对应地特征向量(准确到小数点后3位).3.若p 是A 地特征值j λ地一个近似值,且||||()j i p p i j λλ-<-≠则1j pλ-是1()A pE --地主特征值.试用反幂法求矩阵134231111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地最接近于6地特征值及对应地特征向量.4.设有向量(2,1,2)Tx=,试构造初等反射阵H,使(3,0,0)THx=.5.设(2,3,0,5)Tx=,(1,0,0,5)Te=,用Householder变换化x为与e同方向向量.6.设031042212A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求其QR分解.7.设221022212A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求其QR分解.8.利用初等反射阵将134312421A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦正交相似约化为对称三对角阵.9.试用平面旋转变换阵对矩阵A作QR分解,其中111021245A⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.10.按下列要求编写程序框图.(1)将一般矩阵用豪斯赫尔德方法约化称上Hessenberg阵.(2)对矩阵作QR分解.(3)对上Hessenberg阵应用QR算法求全部特征值及相应地特征向量.11.用QR算法求矩阵120211013A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦地全部特征值.12.设A是对称矩阵,λ和(1)x x=是A地一个特征值及相应地特征向量.又设p是一个正交阵,使1(1,0,0,,0)Tpx e==证明T=是第一行和第一列除了λ外,其余元素均为零.B PAP。
数值分析课件
辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。
数值计算方法课件
Introduction
数值分析 能够做什么?
数值计算方法课件
•
研究使用计算机求解各种数学问题的 数值方法(近似方法),对求得的解的 精度进行评估,以及如何在计算机上实 现求解等
数值计算方法课件
计算机解决实际问题的步骤
建立数学模型 选择数值方法 编写程序 上机计算
数值计算方法课件
lim||
k
xk x* 数值计算方法课件
||0
➢ 矩阵范数 ( matrix norms ) 定义3:对任意 A,B,R称m|n| ·|| 为Rmn空间的矩阵范数, 指|| ·||满足(1)-(3):
(1 )|A || |0 ;|A || |0 A 0
(2) ||A||||||A|| 对任意 C
David Kincaid & Ward Cheney(机械工业出版社)
➢ Numerical Analysis (Seventh Edition)
数值分析 (第七版 影印版)
Richard L. Burden & J. Douglas Faires (高等教育出版社)
数值计算方法课件
数值计算方法课件
10n1 10n1
10n
0
1
102
0
10 1101 0
2。与计算机不能分离:上机实习(掌握一 门语言:C语言,会用Matlab)
数值计算方法课件
1.2 误差 ( Error )
§1 误差的背景介绍 ( Introduction ) 1. 来源与分类 ( Source & Classification ) 模型误差 ( Modeling Error ): 从实际问题中抽象出数 学模型
岩土工程数值分析方法
* kl
✓ 位移:在 内及 上,任一点在k
方向的位移
u
* kl
第二种情况
✓ 体力:在无限域 上沿k方向有分
布体力 b k ✓ 表面荷载:在轮廓线 上,沿k方
向荷载 Pk
✓ 位移:在 内及 上,任一点在k
方向的位移 u k
整理课件
由功的互等定理:
P k * u lkd s ilu kd u k *P lkd su k *b k ld
n
PP0Pi i1
整理课件
误差修正方法 一阶自校正法:
K i 1 U i P i P i '1
P
误差
Pn
P1 P0
U0
U
整理课件
牛顿迭代法:
K i 1 U i P A P i 1
Ui Ui1Ui
P
误差
PA
P1
P0 U1
U 2
U0
UA U
整理课件
有限元法的实现
模型建立(范围及参数)
整理课件
单元位移函数: u v((x x ,,y y)) N N 1 1 ((x x ,,y y))v u 1 1 N N 2 2 ((x x ,,y y ))v u 2 2 N N 3 3 ((x x ,,y y ))v u 3 3
或:
u
v
[
N
]
[N]N 01
0 N1
N2 0
0 N2
平面六结点变厚度节理单元 相当于四边形等参元
位移函数:
u
v
形函数:
6
i1 6
i1
N
i
u
i
N
i
v
i
36
数值计算方法_数值分析课件
,输出数据为 ,a n, x
2
n
a ,a
,, a0 2n 1
秦九韶方法,也称为Horner算法 用递推公式表示为 新冲旧: b ai bx i 1,2,, n
p( x) ((a0 x a1 ) x an1 ) x an
b0 a0 bi ai bi 1 x i 1,2,, n bn pn ( x)
0 x2
1
e
x2
dxΒιβλιοθήκη = 0.747… …取
1
0
e
x2
dx S4 ,
S4
R4 /* Remainder */
1 1 1 则 R4 1 由留下部分 称为截断误差 /* Truncation Error */ 4!/* included 9 5! 11 terms */ 1 1 这里 R4 引起 0 .005 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 . 024 0 .743 引起 3 10 42
| 舍入误差 /* Roundoff Error */ |
0.0005 2 0.001
1 0.02380 42
1 0.33333 3
计算 0 e
1
-x 2
dx 的总体误差 0 .005 0 .001 0 .006
D e f 1 . 4 (数值稳定性/* Numerical
设
称e
为近似值 x 的绝对误差,简称误差。 x x
为真值(精确值), x
为 x
的一个近似值 x
武汉大学《数值分析》课件-第7章
,
b
n
a
可知 t [ 0, n] .
由Lagrange插值基函数有
lk
(x)
lk
(a
th)
n i0,ik
x xk
xi xi
n ti i0,ik k i
(1)nk
n
ti
k !(n k )! i0,ik
而 dx hd t b a dt,所以
n
b a
lk
(x)dx
n 0
再用 h/2 代替 h , 使(6)式变为
F*
F2
(h)
1 8
k2h2
3 32
k3h3
(7..).
用4乘(7)式减去(6)式,消去含 h2的项,得
F*
[
F2
(
h 2
)
F2 (h
/
2) 3
F2 (h)]
1 8
(k83)h3
...
同样记
而 I 3( f ) b 6 a (1 4 1) (b a )
有 R ( ,1) 0
I(
f
)
I3(
f
)
R( ,
f
)
b a{ f 6
(a) 4
f
(a
b) 2
f
(b)}
R( ,
f
)
(1)当 f ( x) x时 , I ( f ) b 2 a2 I3( f ) b 6 a ( a 22a 2b b ) b2 2 a2
| R(1, f ) | M n1 hn2 n n (t i)dt
(n 1)!
0 i0
(5)
验证求积公式(3)的代数精确度,不用误差估计的(4)式,
数值分析(浙江大学)全套课件
数值分析 (第七版 影印版)
Richard L. Burden & J. Douglas Faires (高等教育出版社)
ห้องสมุดไป่ตู้ 学习方法
1.注意掌握各种方法的基本原理 2.注意各种方法的构造手法 3.重视各种方法的误差分析 4.做一定量的习题 5.注意与实际问题相联系
教材 (Text Book) 数值计算方法 郑慧娆等 编著 (武汉大学出版社)
参考书目 (Reference)
➢ Numerical Analysis:Mathematics of Scientific Computing (Third Edition)
数值分析 (英文版 第3版 )
David Kincaid & Ward Cheney(机械工业出版社)
10
n
0
1
102
0
10 1 101 0
2。与计算机不能分离:上机实习(掌握一 门语言:C语言,会用Matlab)
1.2 误差 ( Error )
§1 误差的背景介绍 ( Introduction ) 1. 来源与分类 ( Source & Classification ) 模型误差 ( Modeling Error ): 从实际问题中抽象出数 学模型
1 e x2 dx 0
(第七章的内容:数值积分)
数值分析的特点
1。近似: 由此产生“误差”
在计算数学和应用数学中一个有趣的问题: 什么是零?
1 10 1 10
原点附近
1
在纯数学中,认为此矩阵为满秩矩阵
10 1
但在计算数学中,它却是降秩矩阵 ?
《数值分析教程》课件
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
数值分析课件 (第7章)
上页
下页
首页
结束
二、二分法
设 f ( a ) f (b) 0, 取 x0 ( a b) / 2. 假如 f ( x0 ) 是f ( x)的零点, 那么输出 x0 , 停止. 假若不然, 若 f ( a ) 与 f ( x0 ) 同号,则 a1 x0 , b1 b; 否则 a1 a, b1 x0。
工科研究生公共课程数学系列
机动
上页
下页
首页
结束
取初值x 0 1.5.
k
xk
k
xk
1 2 3
1.484248034 1.472705730 1.468817314
由于 x6 x5
x
4 5 6
3
1.467047973 1.466243010 1.465876820
证明:先证不动点存在 性。 若(a ) a或(b ) b,显然( x )在[a, b]上存在不动点。 因a ( x ) b, 定义函数 f ( x ) ( x ) x 显然f ( x ) C[a, b], 且满足 f ( a ) ( a ) a 0, f ( b ) ( b ) b 0 由连续函数性质可知存 x (a, b )使 f ( x ) 0, 即 在 x ( x ), x 即为( x )的不动点。
3/ 2
1 2(1.6 1)
1,
发散。
由于(2)的L较小,故取(2)中迭代公式计算。 要求结果具有四位有效数字 ,因 xk x
*
L 1 L
xk xk 1 1 L L
1 2
10 ,故只需 10
3
3
数值分析全套课件
Ln n si n
ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)
为 x 的相对误差
6/16
如果存在一个适当小的正数ε
,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)
数值分析课件第07章非线性方程求根
值分析
例题 用Newton法求方程
解
因为
在0.5附近的根。 ,故迭代格式为
取初值
,经迭代演算,得到前四次的近似根为
值分析
Newton法的应用 对于给定的正数C,应用Newton法解二次方程
因为 故得求
的近似值的迭代格式
例题 计算
解 凡是迭代算法,初值的选取都会影响到收敛速度。
数值分析课件第07章非线性 方程求根
值分析
第7章 非线性方程求根
§求根的基本问题及分析方法 §迭代法 §Newton法 §弦截法与抛物线法
值分析
7.1 求根的基本问题及分析方法
方程的求根大致包括3个基本问题: 根的存在性 方程有没有根?有的话,有几个? 根的隔离 求出几个互不相交的区间,使每个区间中只有一个根。 根的精确化 在求出精度不高的近似根的基础上,逐步将根精确化, 直到满足预先要求的精度为止。
缩小,使根进一步精确化。
设
,且
,则可判定
。
不妨设
,且
。我们从左端开始,按预先选定的步长h
,一步一步地向右边走,每走一步检查一下终点的函数值是否取正号。
如果
,则表明根
。
如果精度不够,可将
看成 [a, b]再次进行搜索,并从左端点开始
向右搜索,直到满足精度为止。
在具体实施中,步长的选择是个关键,步长较小时精度高,但搜索次数
例对
求根的基本问题及分析方法
之根进行隔离。
解 显然,
,由
得驻点
。
因
故
分别
为 极大值和极小值。
从而
内各有一个实根。
由 y=f(x) 的草图可以直观地看到这点。
数值分析第7章教材
仍取迭代初值 x0 1.5 ,则有
x1 2.375, x2 12.39.
结果会越来越大,不可能趋于某个极限.
图7-3
这种不收敛的迭代过程称作是发散的.如图7-3.
一个发散的迭代过程,纵使进行了千百次迭代,其结
果也是毫无价值的.
21
7.2.2
不动点的存在性与迭代法的收敛性
首先考察 ( x ) 在 [a, b]上不动点的存在唯一性. 定理1 1. 2. 设 ( x) C[a, b] 满足以下两个条件: 对任意 x [a, b] 有 a ( x) b 存在正常数 L 1 ,使对任意 x, y [a, b]都有
方程 x ( x) 的求根问题在 xy平面上就是要确定曲 线 y ( x) 与直线 y x 的交点 P *. 对于 x *的某个近似值 x0,在曲线 y ( x) 上可确定
一点 P ,它以 x0为横坐标,而纵坐标则等于 ( x0 ) x1. 0
过 P0 引平行 x轴的直线,设此直线交直线 y x 于点 Q1 , 然后过 Q1 再作平行于 y 轴的直线, 与曲线 y ( x) 的交点
f ( x) 0
(1.1)
其中 x R , f ( x) C[a, b], [a, b] 也可以是无穷区间. 如果实数 x *满足 f ( x*) 0,则称 x * 是方程(1.1)的 根,或称 x *是 f ( x)的零点.
2
若 f ( x)可分解为
f ( x) ( x x*)m g ( x),
如果同号,说明所求的根 x * 在 x0
的右侧,这时令 a1 x0 , b1 b; 否则 x * 必在 x0 的左侧, 这时令 a1 a, b x . 1 0 见图7-1.
武汉科技大学《数值方法》教学课件_数值分析ppt第7章_非线性方程求根
• 7.1 方程求根与二分法 • 7.2 迭代法及其收敛性 • 7.3 迭代收敛的加速方法 • 7.4 牛顿法 • 7.5 弦截法与抛物线法 • 7.6 解非线性方程组的牛顿迭代法
上页 下页
7.1 方程求根与二分法
例如代数方程 例如代数方程 超越方程 x5-x3+24x+1=0, sin(5x2)+e-x=0.
上页
下页
7.1.2 二分法 在区间[a, 上连续 上连续, 则在[a, 设f(x)在区间 b]上连续 f(a)·f(b)<0, 则在 b] 在区间 1 内有方程的根. 内有方程的根 取[a, b]的中点 x0 = (a + b) , 的中点 2 将区间一分为二. 若 f (x0)=0, 则x0就是方程的根, 将区间一分为二 就是方程的根 左侧还是右侧. 还是右侧 否则判别根 x*在 x0 的左侧还是右侧 若f(a) ·f(x0)<0, 则x*∈(a, x0), 令 a1= a, b1=x0; 若f(x0) ·f(b)<0, 则x*∈(x0 , b), 令 a1=x0, b1=b. . 不论出现哪种情况, 均为新的有根区间 不论出现哪种情况 (a1, b1)均为新的有根区间 它 均为新的有根区间, 长度只有原有根区间长度的一半, 达到了压缩有根 的长度只有原有根区间长度的一半 达到了压缩有根 的目的. 区间的目的 区间的目的
1 bn − an = n (b − a) 2 若每次二分时所取区间中点都不是根, 若每次二分时所取区间中点都不是根,则上述过程将
无限进行下去. 无限进行下去 当 n→∞ 时,区间必将最终收缩为一 显然x 就是所求的根 点x* ,显然 *就是所求的根.
上页 下页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在这种意义下的函数逼近称为一致逼近或均匀逼近
对于任意给定的一个小正数 >0,如果存在函数p (x),使不等式
max f (x) p(x)
a xb
成立,则称该函数p (x)在区间[a, b]上一致逼近或均匀逼近 于函数f (x)。
(二) 平方逼近:
切比雪夫多项式Tn (x),当n为奇数时为奇函数;
n为偶数时为偶函数。
Tn (x) cos[n arccos(x)] cos(n ncar cos x)
(1)n cos(narc cos x) (1)n Tn (x)
(4) Tn (x)在区间[-1, 1]上有n 个不同的零点
xk
cos (2k 1)
2n
,
(k 1, 2, , n)
(5) Tn (x) 在[-1, 1]上有n + 1个不同的极值点
xk
cos k
n
(k 0, 1, 2, , n)
使Tn (x)轮流取得最大值 1 和最小值 -1。
(6) 切比雪夫多项式的极值性质 Tn (x) 的最高次项系数为 2n-1 (n = 1, 2, …)。
1.权函数
定义7.1 设 (x)定义在有限或无限区间[a, b]上,
如果具有下列性质:
(1) (x) ≥0,对任意x [a, b],
(2) 积分
b
x
n
( x)dx
存在,(n
=
0,
1,
2,
…),
a
b
(3) 对非负的连续函数g (x) 若 g(x)(x)dx 0 a
则在(a, b)上g (x) 0
3.其它常用的正交多项式
(1) 第二类切比雪夫多项式
我们称这个函数中任何两个函数在[- , ]上是正交
的,并且称这个函数系为一个正交函数系。
若对以上函数系中的每一个函数再分别乘以适当的数, 使之成为:
1 , 1 cos x, 1 sin x, , , 1 cos nx, 1 sin nx
2
那么这个函数系在[- , ]上不仅保持正交的性质,
而且还是标准化的(规范的)
( j, k 0, 1, )
( Ak是常数)
则称函数系{k (x)}是[a, b]上带权 (x)的正交函数系,
特别地,当Ak 1时,则称该函数系为标准正交函数系。
若定义7.4中的函数系为多项式函数系,则称为以 (x)
为权的在[a, b]上的正交多项式系。并称pn(x)是[a, b]上
带权 (x)的n次正交多项式。
mn
(2) 递推关系 相邻的三个勒让德多项式具有三项递推关系式:
p0
(x)
1,
p1(x) x
pn1 (x)
2n 1 n 1 xpn (x)
n n 1
pn1 (x)
(n 1, 2, )
(3) 奇偶性:
当n为偶数时,pn (x)为偶函数; 当n为奇数时,pn (x)为奇函数。 (4) pn (x)的n个零点都是实的、相异的,且全 部在区间[-1, 1]内部。
定理7.1 在-1≤x ≤1上,在首项系数为1的一切n次多项式Hn (x)中
T~n (x)
1 2 n 1
Tn (x)
与零的偏差最小,且其偏差为 1
2 n1
即,对于任何 p(x) H n (,x) 有
1 2 n 1
max
1 x1
T~n
(x)
0
max
1 x1
p(x) 0
2.勒让德(Legendre)多项式
定义7.6 多项式
pn
(x)
1 2n
n!
dn dx n
[(x 2
1) n
]
称为n次勒让德多项式。 勒让德多项式的性质: (1) 正交性
(n 0, 1, 2, )
勒让德多项式序列{pn(x)}是在[-1, 1]上带权 (x) = 1
的正交多项式序列。
0
mn
1 1
pm
(x)
pn
(x)dx
2 2n 1
(x) 1
1 x2 的正交多项式序列。且
0,
1 1
1 1
x2
Tm (x)Tn (x)dx
2
,
,
mn mn0 mn0
(2) 递推关系 相邻的三个切比雪夫多项式具有三项递推关系式:
TT0n(1x()x) 1,2
T1 (x) x Tn (x)
x
Tn1
(
x)
(n 1, 2, )
(3) 奇偶性:
采用
b
[
f
(x)
p( x)]2 dx
a
作为度量误差的“大小”的标准的函数逼近称为平方逼近
或均方逼近。
§1 正交多项式 一、正交函数系的概念 考虑函数系 1,cosx,sinx,cos2x,sin2x,…,connx,sinnx,…
此函数系中任何两个不同函数的乘积在区间[- , ]
上的积分都等于0 !
3.正交性
定义7.3 设 f (x),g(x) C [a, b] 若
b
( f , g) a (x) f (x)g(x)dx 0
则称f (x)与g (x)在[a, b]上带权 (x)正交。
定义7.4 设在[a, b]上给定函数系,若满足条件
( j (x), k (x)
0,
Ak
jk 0,
jk
称 (x)为[a, b]上的权函数
2.内积
定义7.2 设f (x),g (x) C [a, b], ()是[a, b]上的权函数,
b
则称 ( f , g) (x) f (x)g(x)dx a
为 f (x) 与 g (x)在 [a, b]上以 (x)为权函数的内积。
内积的性质: (1) (f, f )≥0,且 (f, f )=0 f = 0; (2) (f, g) = (g, f ); (3) (f1 + f2, g ) = (f1, g) + (f2, g); (4) 对任意实数k,(kf, g) = k (f, g )。
数值分析计算方法第七章
函数逼近问题的一般提法:
对于函数类A中给定的函数f (x),要求在另一类较简单 的且便于计算的函数类B( A)中寻找一个函数p (x),使p (x) 与f (x)之差在某种度量意义下最小。
最常用的度量标准: (一) 一致逼近
以函数f (x)和p (x)的最大误差 max f (x) p(x) x[ a ,b ]
二、常用的正交多项式 1.切比雪夫(чебыщев)多项式 定义7.5 称多项式
Tn (x) cos(narccos x)
(1 x 1, n 0, 1, 2)
为n 次的切比雪夫多项式(第一类)。
切比雪夫多项式的性质:
(1) 正交性:
由{ Tn (x)}所组成的序列{ Tn (x)}是在区间[-1, 1]上带权