全等三角形导学案HL
12.2 三角形全等的判定HL导学案
4.“HL”定理的应用:
四、问题解决:(10)
教学反思:
土城子中学____八_年级____数学__(学科)导学方案
课题
12.2三角形全等的判定HL
课型
问题解决课
总课时数
15
授课日期
9.16
第3周第5课时
主备教师
张晓梅
课前准备
导学单教材
学习目标
1知识与技能:会用“HL”定理证明两个三角形全等,能灵活运用全等三角形的证明方法解决线段或角相等的问题。2过程与方法:通过画,观察等过,探索,归纳证明直角三角形全等的条件,并在具体应用中感悟。3情感,态度价值观:通过实践比较,在探索中体验发现数学规律的乐趣。
重点
知道“HL”定理
学习方法
自主,合作
探究,展示
难点
用“HL”定理证明三角形全等.
关键
掌握方法
导学过程设计
一.问题回顾:(2分钟)
1.简写全等三角形的判定方法:
。
2、组内口述全等三角形的判定方法内容。
二、问题情景:(3分钟)
1、导入新课、呈现目标。
2.、预习交流。
三、问题探究:(20分钟)
(一)走进文本,阅读教材41页----------42页教材内容。
(二)问题探究
1、已知Rt△ABC,画Rt△AˊBˊCˊ,使BˊCˊ=BC,
AˊBˊ= AB,
方法步骤:(1)画∠M CˊN=90°
(2)在射线上取BˊCˊ=。
(3)以为圆心,为半径画弧,交射线
CˊN于点。
(4)连接。
2、由1可以得到判定两个三角形全等的方法是:
。
(可以简写为“”或“”)
三角形全等的判定导学案(HL) 人教版数学
三角形全等的判定导学案(HL)人教版数学
三角形全等的判定导学案(HL)人教版数学课题:《11.2三角形全等的判定》(HL)导学案
使用说明:学生利用自习先预习课本第13、14页10分钟,然后35分钟独立做完学案。
正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、理解直角三角形全等的判定方法HL,并能灵活选择方法判定三角形全等;
2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;
3. 极度热情、高度责任、自动自发、享受成功。
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
【学习过程】
一、自主学习
1、复习思考
(1)、判定两个三角形全等的方法:、、、
(2)、如图,Rt△ABC中,直角边是、,斜边是
(3)、如图,ABBE于B,DEBE于E,
①若D,AB=DE,。
直角三角形全等的判定(HL)(导学案)八年级数学上册系列(人教版)
12.2.4 直角三角形全等的判定(HL) 导学案一、学习目标:1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.重点:掌握判定两个直角三角形全等的特殊方法-HL.难点:熟练选择判定方法,判定两个直角三角形全等.二、学习过程:课前自测1.判定两个三角形全等方法____________________.2.如图,AB⊥BE于B,DE⊥BE于E.(1)若∠A=∠D,AB=DE. 则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(2)若∠A=∠D,BC=EF. 则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(3)若AB=DE,BC=EF. 则△ABC与△DEF_______(填“全等”或“不全等”)根据______(用简写法).思考:若AB=DE,AC=DF,此时△ABC与△DEF还会全等吗?_______________合作探究探究:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使得∠C′=90°,B′C′=BC,A′B′=A B. 把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?作图区:【归纳】直角三角形“HL”判定方法文字语言:____________ ____________ ____________ ____________ _________几何语言:典例解析例1.如图,AC ⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【针对练习】如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D、E两地. DA⊥AB,EB⊥A B. D,E与路段AB的距离相等吗?为什么?例2.如图,AC⊥AD,BC⊥BD,AC=BD,求证:AD=B C.【针对练习】已知:如图,AB BC⊥,AD DC⊥,AB AD=,求证:BC DC=.例3.如图,已知AD是△ABC的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足分别为E、F.求证BE=CF.【针对练习】已知:如图,点A、E、C同一条直线上,AB⊥BC,AD⊥DC,AB=A D.求证:BE=DE.例4.如图,在△AB C中,∠C =90°,AD是∠CAB的角平分线,DE⊥AB 于E,点F在边AC上,连接DF.(1)求证:AC =AE;(2)若DF=DB,试说明∠B与∠AFD的数量关系;(3)在(2)的条件下,若AB=m,AF=n,求BE的长(用含m,n 的代数式表示).达标检测1.判定两个直角三角形全等的方法有________________________________.2.如图,已知∠C=∠D=90°,要使△ABC≌△BAD还需增加一个什么条件?把增加的条件填在横线上,并在后面相应括号内填上判定它们全等的理由.(1)________________( )(2)________________( )(3)________________( )(4)________________( )3.如图,AB=AC,AD⊥BC,垂足为D,若BC=10cm,则BD=______cm.4.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E、F,CE=BF.求证AE=DF.5.如图,已知,AB⊥BD于B,ED⊥BD于D,AB=CD,AC=CE.求证:AC⊥CE.6.如图,在△ABC和△ADE中,B,E,C,F在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.己知:____________(填序号),求证:____________(填序号)。
直角三角形全等的判定方法HL学案
直角三角形全等的判定方法 HL 学案 一、复习准备 1、(1)、判定两个三角形全等的方法: ( 2) 、 如 图 , Rt △ ABC 中 , 直 角 边 是 、 ,斜边是 、 、 、(3)、如图,AB⊥BE 于 B,DE⊥BE 于 E, ①若∠A=∠D,AB=DE, 则△ABC 与△DEF 法) ②若∠A=∠D,BC=EF, 则△ABC 与△DEF 法) ③若 AB=DE,BC=EF, 则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (填“全等”或“不全等” )根据 (用简写 (填“全等”或“不全等” )根据 (用简写④若 AB=DE,BC=EF,AC=DF 则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗? 二、探究新知 1.自学课本 p13---14 页后回答下面问题。
已知一个直角三角形的斜边和直角边, 如何画出这个直角三角形?这样的两个直角三角形全 等吗? 2.(1)动手试一试。
已知:Rt△ABC ,∠C=90° 求作:Rt△ A ' B ' C ' , 使∠ C ' =90°, A ' B ' =AB, B ' C ' =BC 作法:1. 2. 3. 4. (2) 把△ A ' B ' C ' 剪下来放到△ABC上 ,观察△ A ' B ' C ' 与△ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法 斜边与一直角边对应相等的两个直角三角形 (4)用数学语言表述上面的判定方法 在 Rt△ABC 和 Rt△ A ' B ' C ' 中,' ' ì ï AB = A B ∵í ' ' ï î BC = B C(可以简写成 “A1” 或 “” )ACBC1B1∴Rt△ABC≌【当堂训练】 1.如图,C是路段AB的中点,两人从C同时出发,以相同的速度 分别沿着两条直线行走,并 同时到达 D,E两地。
直角三角形全等判定HL学案.doc
课题;直角三角形全等判定(HL)(导学案)教学内容:直角三角形全等的判定教学目标:1、在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题2、经历探索直角三角形全等判定的过程,掌握数学方法,3、培养几何推理意识,激发学生求知欲,感悟几何思维的内涵.提高合情推理的能力.教学重点:理解利用“斜边、直角边”来判定直角三角形全等的方法. 教学难点:培养有条理的思考能力,正确使用“综合法”表达例题讲解例 1. AC±BC, BD±AD, AC=BD,求证 BC=AD.【思路点拨】欲证BC= AD,首先应寻找和这两条线段有关的三角形,这里有AABD和△BAC, AADO和△BCO, 0为DB、AC的交点,经过条件的分析,△ ABD 和ABAC具备全等的条件.例2.下列说法正确的是()A、面积相等的两个直角三角形全等B、周长相等的两个直角三角形全等C、斜边相等的两个直角三角形全等D、有一个锐角和斜边上的高对应相等的两个直角三角形全等例3.有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方面的长度DF相等,两个滑梯的倾斜角匕ABC和ZDFE的大小有什么关系?A. SSSB. AASC. SASD. HL例 4.AE_LBC, DF±BC, E, F 是垂足,且 AE=DF, AB=DC,求证:ZABC=ZDCB.例 5. AB=CD, AE±BC, DF±BC,垂足分另【J 为 E, F, CE 二BF.求iiE : AB 〃CD.例 6.在AABC 中,ZB=ZC, D 是 BC 中点,DE_LAB, DF±AC, E, F 为垂足,求 证:AD 平分ZBAC.课外作业A.基础题自测1、 如图 1,点 C 在ZDAB 的内部,CD1AD 于 D, CB1AB 于 B, CD=CB 那么RtAADC^RtAABC 的理由是()A.SSS B. ASAC. SASD. HL2、 如图 2, CE±AB, DF±AB,垂足分别为 E 、F, AC 〃DB,JI AC=BD,那么 RtAAEC^RtABFC 的理由是().图1 图2 图3 B. 中档题演练1、0C 是ZBOA 的平分线,PE±OB, PDJLOA,若 PE二5cm,2. 判断题:%1 判断直角三角形全等的方法只有“HL” ()有两边及第三边上的高对应相等的两个锐角三角形全等()%1 有一条直角边及斜边上的高对应相等的两个直角三角形全等()全等三角形对应边上的高相等()(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,①这两个三角形全等;②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等,真命题的个数是()个0 B. 1 C. 2 D. 3在下列定理中假命题是()A. 一个等腰三角形必能分成两个全等的直角三角形一个直角三角形必能分成两个等腰三角形C. 两个全等的直角三角形必能拼成一个等腰三角形两个等腰三角形必能拼成一个直角三角形如图,在RtAABC 中,ZACB=90° , CD 、CE,分别是斜边AB 上的高与中线,CF 是ZACB 的平分线。
三角形全等的判定HL导学案
三角形全等的判定H L导学案The pony was revised in January 2021三角形全等的判定(4)导学案路阳九年制学校初二年级数学组编写人:程良富刘芳学生:审核人导学目标1、理解直角三角形全等的判定方法“HL”,并能灵活选择方法判定三角形全等;2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;导学重点:运用直角三角形全等的条件解决一些实际问题。
导学难点:熟练运用直角三角形全等的条件解决一些实际问题。
导学过程一、自主学习1、复习思考(1)、判定两个三角形全等的方法:、、、(2)、如图,Rt△ABC中,直角边是、,斜边是(3)、如图,AB⊥BE于B,DE⊥BE于E,①若∠A=∠D,AB=DE,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)②若∠A=∠D,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)③若AB=DE,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)④若AB=DE,BC=EF,AC=DF则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?(1)动手试一试。
已知:Rt△ABC求作:Rt△'''=90°,A B C,使'CB C=BC''A B=AB,''作法:(2)把△'''A B C与△ABC是否能够完全重合?A B C剪下来放到△ABC上,观察△'''(3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法斜边与一直角边对应相等的两个直角三角形(可以简写成“”或“”)D C B A (4)用数学语言表述上面的判定方法在Rt △ABC 和Rt '''A B C ∆中,∵''BC B C AB =⎧⎨=⎩∴Rt △ABC ≌Rt △ (5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法“”、 “”、“”、“”、还有直角三角形特殊的判定方法“”二、合作探究1、如图,AC=AD ,∠C ,∠D 是直角,将上述条件标注在图中,你能说明BC 与BD 相等吗?2、如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么关系?三、学以致用1、如图,△ABC 中,AB=AC ,AD 是高,则△ADB 与△ADC (填“全等”或“不全等”)根据(用简写法)2、判断两个直角三角形全等的方法不正确的有()A 、两条直角边对应相等B 、斜边和一锐角对应相等C 、斜边和一条直角边对应相等D 、两个锐角对应相等3、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由 答:AB 平行于CD理由:∵AF ⊥BC ,DE ⊥BC (已知)∴∠AFB=∠DEC=°(垂直的定义)∵BE=CF ,∴BF=CE在Rt △和Rt △中∵⎩⎨⎧==_______________________________∴≌() ∴=()∴(内错角相等,两直线平行)4.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC//DB ,且AC=DB ,则△ACE ≌△BDF ,根据(2)若AC//DB ,且AE=BF ,则△ACE ≌△BDF ,根据(3)若AE=BF ,且CE=DF ,则△ACE ≌△BDF ,根据(4)若AC=BD ,AE=BF ,CE=DF 。
直角三角形全等的判定导学案
2.7 直角三角形全等的判定1、全等三角形的对应边---------------------,对应角--------------------;2、判定三角形全等的方法有:------------------------------------------;3、“斜边、直角边”定理的内容是:-----------------------------------------------------------,作用是-----------------------;4、下列判断对吗?并说明理由:(1)、两个锐角对应相等的两个直角三角形全等; (2)、斜边及一个锐角对应相等的两个直角三角形全等; (3)、两直角边对应相等的两个直角三角形全等; (4)、一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.【反思小结】---------------------------------------------------------------------------------------------------------------------。
【类型之一】已知:如图,D是△A B C的B C边上的中点,D E⊥A C,D F⊥A B,垂足分别为E,F,且D E=D F.求证:△A B C是等腰三角形.【反思小结】DB AF E【类型之二】如图,已知∠ACB= ∠BDA=90,要使△ACB与△BAD全等,还需要什么条件?把它们分别写出来. 【类型之三】如图,已知P是∠AOB内部一点,PD⊥OA,PE⊥OB,D,E分别是垂足,且PD=PE,则点P在∠AOB的平分线上。
请说明理由。
【反思小结】你能够用几种方法说明两个直角三角形全等?【学习笔记】【当堂测评】1、用三角尺作角平分线A B PODE【能力提升】 【课堂小结】2、如图,在△A B C 中,A B =2A C ,A D 是∠B A C 的平分线,且A D =B D ,试说明C D ⊥A C的理由。
导学案 直角三角形全等的判定(HL)
B'C'AA'B'C'AA'1.2直角三角形全等的判定初二(______)班 学号__________ 姓名________________【学习目标】1、了解直角三角形全等的判定定理(HL ),完善三角形全等知识点。
2、能用HL 证明两个直角三角形全等,并解决实际问题。
【学习重点】理解HL 的数学原理【学习难点】能用HL 证明两个直角三角形全等,并解决实际问题。
【基础部分】一、复习回顾与课前自学:1、判断两个三角形全等的方法有:_______________________________________________2、判断下列命题的真假,若是真命题,请说明依据(1)两个锐角分别相等的两个直角三角形全等 ______(真/假),依据:____________ (2)斜边及一锐角分别相等的两个直角三角形全等 ______(真/假),依据:____________ (3)两条直角边分别相等的两个直角三角形全等 ______(真/假),依据:____________ (4)斜边及一直角边分别相等的两个直角三角形全等 ______(真/假),依据:____________ 3、在Rt △ABC 中,∠C=90°,AB=5cm ,BC=4cm ,则AC=_____cm4、已知:如图,在Rt ABC ∆和'''Rt A BC ∆中,'0C=C 90∠∠=°,''AB=A B 5=,''AC=A C 3=. 求证:'''Rt ABC Rt A BC ∆≅∆【要点部分】5、已知:如图,线段a ,c (a <c ),直角α求作:Rt ABC ∆,使C α∠=∠,BC a =,AB c =.与小组其他同学所作的三角形比较,观察思考,你们所作的三角形全等吗?6、已知:如图,在Rt ABC ∆和'''Rt A BC ∆中,'0C=C 90∠∠=°,''AB=A B ,''AC=A C . 求证:'''Rt ABC Rt A BC ∆≅∆(提示:用勾股定理求2BC 和2BC ,再用SSS 证明三角形全等)规范书写格式:在___________和___________中______________________⎧⎨⎩∴___________________(______)小结:斜边、直角边判定定理:_______________________________________的两个直角三角形全等这一定理可以简述为:_________________________ 或 ______________温馨提示:(笔记)__________________________________________________________________________【目标检测】7、已知:如图AB CD =,DE AC ⊥,BF AC ⊥,垂足分别为E 、F ,且DE BF =. 求证:(1)AE CF = (2)AB // CD第___组___层 评价等级______ca α8、如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面的两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。
全等三角形的判定(HL)导学案
11.2全等三角形的判定(HL)一、展示教学目标1.掌握全等三角形的判定方法——HL2.能用HL的判定方法判断两个三角形是否全等3.培养学生的知识迁移能力二、阅读教材P13---P14,并完成以下预习提纲1.“斜边直角边”的内容是______________________________________2.思考:直角三角形有哪些判定方法?_______________________________3.下列说法中:(1)有两角和一边对应相等的两个三角形全等;(2)有两边和一角对应相等的两个三角形全等;(3)判定两个三角形全等到,至少需要一对对应边相等(4)三个角对应相等的两个三角形全等;(4)三条边对应相等的两个三角形全等以上说法中,正确的个数是()A、1个B、2个C、3个D、4个4.已知△ABC中,AB=AC,AE=AF,A D⊥BC于D,且E、F在BC上,则图中共有()对全等三角形A、1B、2C、3D、45.已知C在BD上,AC⊥BD,且AB=DF,AC=DC,则BC和CF相等吗?若相等请说出根据。
三、小组讨论并展示预习提纲四、教师点拨释疑1.“HL”的判定方法:斜边和一条直角边对应相等的两个三角形全等2题图3题图4题图EB CD A12B D E C A A BC D A E F P C B 2.直角三角形的判定方法:SAS ASA AAS HL五、课堂测试1.下列条件能判断丙俱直角三角形全等的条件是( )A 、一个锐角对应相等B 、两个锐角对应相等C 、一条边对应相等D 、两条直角边对应相等2.已知AB=AD ,那么添加一个条件后,仍无法判定△AB C ≌△ADC 的是( )A 、CB=CDB 、∠BAC=∠DACC 、∠BCA=∠DCAD 、∠B =∠D=90°3.如图,AD=AE ,BE=CD ,∠1=∠2=110°,∠BAE=80°,则∠CAE=________4.已知:如图,在△ABC 中,CE 、BD 分别是AB 、AC 边上的高,且BD=CE ,则AB=________,∠ABC=________5.P 是∠BAC 内的一点,PE ⊥AB ,PF ⊥AC ,垂足分别是点E 、F ,AE=AF ,求证:PE=PF六:课堂小结请写出你本节课所学到的知识_____________________________________七、作业:课时作业本P10—P11八、反思:。
11.2.4三角形全等的判定四(HL)导学案2015
D CBA 201408013 11.2.4三角形全等的判定四(HL )导学案编写者:林茂 编写时间:2014年9月6日班级: 姓名: 组名: 【学习目标】1、理解直角三角形全等的判定方法“HL ”,并能灵活选择方法判定三角形全等;2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力; 3. 极度热情、高度责任、自动自发、享受成功。
学习重点:运用直角三角形全等的条件解决一些实际问题。
学习难点:熟练运用直角三角形全等的条件解决一些实际问题。
【学习过程】 一、自主学习 1、复习思考(1)、判定两个三角形全等的方法: 、 、 、 (2)、如图,Rt △ABC 中,直角边是 、 ,斜边是 (3)、如图,AB ⊥BE 于B ,DE ⊥BE 于E ,①若∠A=∠D ,AB=DE ,则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法)②若∠A=∠D ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法)③若AB=DE ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)④若AB=DE ,BC=EF ,AC=DF则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法) 2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗? (1)动手试一试。
已知:Rt △ABC求作:Rt △, 使=90°, =AB, =BC 作法:(2) 把△剪下来放到△ABC 上,观察△与△ABC 是否能够完全重合?(3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法斜边与一直角边对应相等的两个直角三角形 (可以简写成“ ”或“ ”)(4)用数学语言表述上面的判定方法 在Rt △ABC 和Rt 中,∵∴Rt △ABC ≌Rt △(5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、 “ ”、 “ ”、 “ ”、 还有直角三角形特殊的判定方法 “ ” 二、合作探究1、如图,AC=AD ,∠C ,∠D 是直角,将上述条件标注在图中,你能说明BC 与BD 相等吗?2、如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么关系?三、课堂小结这节课你有什么收获呢?与你的同伴进行交流 四、当堂检测:1、如图,△ABC 中,AB=AC ,AD 是高,则△ADB 与△ADC (填“全等”或“不全等” ) 根据 (用简写法)2、判断两个直角三角形全等的方法不正确的有( )A 、两条直角边对应相等B 、斜边和一锐角对应相等C 、斜边和一条直角边对应相等D 、两个锐角对应相等3、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E , AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由 答:AB 平行于CD理由:∵ AF ⊥BC ,DE ⊥BC (已知)∴ ∠AFB=∠DEC= °(垂直的定义) ∵BE=CF ,∴BF=CE在Rt △ 和Rt △ 中∵∴ ≌( )∴ = ( ) ∴ (内错角相等,两直线平行)'''A B C 'C ∠''A B ''B C '''A B C '''A B C '''A B C ∆''BC B C AB =⎧⎨=⎩⎩⎨⎧==_______________________________BA 1 1C1。
12.2.4三角形全等的判定-HL(教案)
本节课将围绕这些核心素养目标进行教学设计,旨在提高学生的综合素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
(1)掌握HL(斜边和直角边)判定法的条件:两个直角三角形,当斜边和直角边分别相等时,这两个三角形全等。
五、教学反思
在今天的教学中,我重点关注了三角形全等的判定-HL这一章节。通过引导学生们从日常生活出发,思考三角形全等的应用,我发现他们对这个概念产生了浓厚的兴趣。在讲授过程中,我尽量用简洁明了的语言解释HL判定法的原理,并结合具体案例进行分析,让学生能够更好地理解这一判定法的实际运用。
在实践活动中,学生们分组讨论并操作实验,我注意到他们在交流与合作中,对HL判定法的理解得到了加深。但同时,我也发现有些学生在运用HL判定法时仍然存在一些困难,比如容易混淆斜边和直角边的概念,或者在复杂图形中难以找到符合条件的关键信息。
2.提高学生的逻辑推理能力,让学生在运用HL判定法证明直角三角形全等的过程中,学会分析问题、解决问题,形成严谨的逻辑思维。
3.增强学生的数学建模能力,通过解决实际例子,培养学生将现实问题转化为数学模型的能力,并运用数学知识解决这些问题。
4.培养学生的数学运算能力,让学生在运用HL判定法解题时,熟练掌握相关运算,提高解题效率。
举例:在非直角三角形的情况下,学生可能会错误地尝试使用HL判定法。
(4)熟练运用HL判定法进行证明和计算。学生在证明过程中,可能会出现逻辑不严谨、步骤不完整等问题。
举例:在证明过程中,学生需要明确表述判定条件,并按照严谨的逻辑顺序进行证明。
为帮助学生突破难点,教师可以采取以下教学方法:
鲁教版(五四制)七年级数学下册第十章第一节全等三角形(HL)优秀教学案例
1.分组讨论:将学生分成小组,让他们在小组内讨论全等三角形的性质和判定方法,促进学生之间的交流与合作。
2.小组展示:各小组代表汇报本组的讨论成果,分享彼此的想法和心得,互相学习,共同进步。
(四)反思与评价
1.学生自我反思:让学生在课后对自己的学习过程进行反思,总结自己在学习全等三角形过程中的优点和不足,明确今后的学习目标。
鲁教版(五四制)七年级数学下册第十章第一节全等三角形(HL)优秀教学案例
一、案例背景
本节内容为鲁教版(五四制)七年级数学下册第十章第一节“全等三角形(HL)”。在此之前,学生已学习了三角形的性质、角的度量、线段的度量等知识。全等三角形是初中数学中的重要概念,是后续证明、计算的基础。
全等三角形的判定有多种方法,如SSS、SAS、ASA、AAS、HL等。本节课主要引导学生探究HL判定法,即一对直角三角形全等的条件是一对直角边相等且斜边相等。通过学习,学生能更好地理解全等三角形的概念,提高解决问题的能力。
4.多元化的评价方式:采用学生自我反思、同伴评价和教师评价等方式,全面关注学生的知识掌握程度、思维品质、合作能力等方面的发展,为学生提供指导和建议。
5.作业小结的落实:通过布置具有针对性的作业,让学生巩固所学知识,提高解题能力;同时,鼓励学生在课后对所学内容进行总结,加深对全等三角形知识的理解。
在实际教学中,我发现许多学生在学习全等三角形时,对概念理解不透彻,容易混淆判定方法。因此,在设计本节课的教学案例时,我力求突出重点,突破难点,注重学生能力的培养,让学生在实践中掌握知识,提高解题技巧。
二、教学目标
(一)知识与技能
1.让学生掌握全等三角形的概念,理解全等三角形的性质。
2.引导学生掌握HL判定法,并能运用HL判定法判断两个直角三角形是否全等。
用HL证明三角形全等
课题:《11.2三角形全等的判定》(HL)导学案 编审:主备 审核 数学组 学科 数学 年级 八年级 时间【学习目标】 姓名 :班级 ;第 组 1、理解直角三角形全等的判定方法“HL ”,并能灵活选择方法判定三角形全等;2.独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;【学习过程】一、学(一)、自主学习:1、复习思考(1)、判定两个三角形全等的方法: 、 、 、(2)、如图,Rt △ABC 中,直角边是 、 ,斜边是(3)、如图,AB ⊥BE 于B ,DE ⊥BE 于E ,①若∠A=∠D ,AB=DE ,则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)②若∠A=∠D ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)③若AB=DE ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)④若AB=DE ,BC=EF ,AC=DF则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?(1)自行预习:见书上13-14页探究8 ;动手画一画。
(2)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个特殊方法:斜边与一直角边对应相等的两个直角三角形 (可以简写成“ ”或“ ”)(3)用数学语言表述上面的判定方法在Rt △ABC 和Rt '''A B C ∆中,∵''BC B C AB =⎧⎨=⎩ ∴Rt △ABC ≌Rt △ ( ) (5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、 “ ”、 “ ”、 “ ”、 还有直角三角形特殊的判定方法 “ ”3、自行欣赏书上14页例题4(二)、合作学习: 1、书上14页练习1、2题、2、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?答: ,说说你的理由A B C A 1 B 1C 1理由:∵ AF ⊥BC ,DE ⊥BC (已知)∴ ∠AFB=∠DEC= °(垂直的定义)∵BE=CF ,∴BF=CE在Rt △ 和Rt △ 中∵⎩⎨⎧==_______________________________∴ ≌ ( )∴ = ( )∴ (内错角相等,两直线平行)、二、展 1、组内展示: 2、全班展示:三、点 1、学生点评: 2、教师点拨:四、练1、当堂训练:(1)、书上16页练习7、8题2、当堂检测:(1)、如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,若AC//DB ,且AC=DB ,则△ACE ≌△BDF ,根据若AC//DB ,且AE=BF ,则△ACE ≌△BDF ,根据若AE=BF ,且CE=DF ,则△ACE ≌△BDF ,根据若AC=BD ,AE=BF ,CE=DF 。
2.8直角三角形全等的判定(HL)学案
《2.8直角三角形全等的判定(HL)》学案姓名班级组别【学习目标】1、掌握HL:斜边和一条直角边对应相等的两个直角三角形全等2、探索并证明定理:角的内部到角两边距离相等的点在这个角的平分线上一、【基础部分】1、写出已学的全等三角形的判定方法:_________________________________________2、我们知道当有两条边和一个角对应相等的两个三角形(SSA)是不能判定全等的,如果这个角是直角呢?这两个三角形全等吗?(证明过程详见P80)由此,针对直角三角形,我们还有如下判定定理:______________________________________________(可以简写成“__________”或“____”)几何语言表述为(如图标出的已知条件):在Rt△ABC和_________中_____=__________=_____∴Rt△ABC≌_______(HL)3、针对练习:如图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点 F,且DE=DF.求证:AB=AC.二、【要点部分】回顾:角平分线的性质:______________________________________________请写出它的逆命题:__________________________________________________下面证明它是真命题,作为角平分线的又一个性质定理.(P81例题)图形:已知:求证:分析:要证明P在∠AOB的平分线上,可作射线OP,请完成这条辅助线我们只要证明OP是∠AOB的平分线即可,因此需要证明∠_____=∠_____.因此可先证△_______全等于△_______,而全等的依据是______.请写出完整的证明过程:三、【当堂检测】1、具有下列条件的Rt△ABC与Rt△A’B’C’(其中∠C=∠C’=Rt∠)是否全等?如果全等,写出依据.(1)AC=A’C’,∠A=∠A’(2)AC=A’C’,BC=B’C’(3)∠A=∠A’,∠B=∠B’(4)AB=A’B’,∠B=∠B’(5)AC=A’C’,AB=A’B’2、如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2. 求证∠3=∠4.3、已知:如图:AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,且AP=PC,AP⊥PC. 求证:△ABP≌△PDC.4、已知:如图,∠ABD=∠ACD=90°,∠1=∠2.求证AD平分∠BAC.5、已知:如图,在△ABC中,AD⊥BC于点D,E为AC上一点,且BF=AC,DF=DC.求证:BE⊥AC本节课你学会了什么。
人教版数学八年级上册12.2三角形全等的判定HL优秀教学案例
4.教师组织小组展示成果,培养学生的表达能力和评价能力。
(四)总结归纳
1.教师引导学生总结HL判定法的判定条件、判定过程和应用注意事项。
2.教师通过提问、追问等方式,帮助学生巩固对HL判定法的理解。
3.教师总结本节课的学习内容,强调HL判定法在三角形全等问题中的重要性。
5.作业小结注重反馈:教师对学生的作业情况进行评价,及时给予反馈,促进学生的进步。同时,教师提醒学生按时完成作业,关注作业质量,并鼓励学生自我检查、相互交流,提高了学生的解题能力。
本节课通过以上五个方面的亮点,展现了教学活动的生动性和有效性。教师以学生为中心,注重启发式教学,激发学生的学习兴趣和求知欲,培养学生的思维能力、实践能力和创新能力。同时,教师关注学生的情感态度和价值观的培养,引导学生树立正确的数学学习观念。总之,本节课案例亮点纷呈,为学生的全面发展奠定了良好基础。
3.小组合作促进交流:教师将学生分成若干小组,鼓励学生相互讨论、交流,培养了学生的团队合作精神。小组合作的方式有助于提高学生的实践能力、表达能力和评价能力。
4.总结归纳提升理解:教师引导学生总结HL判定法的判定条件、判定过程和应用注意事项,帮助学生巩固对HL判定法的理解。通过总结归纳的方式,提高了学生对学习内容的掌握程度。
4.教师利用课堂总结环节,对学生的学习情况进行总结,提高学生的情感态度和价值观。
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中实际的三角形图形,如自行车三角架、滑梯等,引导学生观察并思考:这些三角形之间有什么关系?
2.教师提出问题:“如何判断两个三角形是完全相同的呢?”引发学生对三角形全等问题的思考。
4.巩固学生已学的三角形基本性质、全等概念等基础知识,提高学生的综合运用能力。
直角三角形全等判定(HL)
新宾一中导学案课题:直角三角形全等判定(HL)主备:上课教师:上课时间:
画一个Rt△A′B′C′,使B′C
小组讨论,发表意见:“由三角形全等条件可知,对于两个直角三角形,满足一
边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.
通过今天的学习和对前面三角形全等条件的探求,可知判定直角三角形全等舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否
全等,但每个三角形都有一条直角边被花盆遮住无法测量.
如果他只带了一个卷尺,能完成这个任务吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法 斜边与一直角边对应相等的两个直角三角形 或“ ” )
A A1
(可以简写成“
”
(3)用数学语言表述上面的判定方法 在 Rt△ABC 和 Rt A ' B ' C ' 中,
C
B
C1
B1
BC B ' C ' AB ∵
鸡西市第十九中学初二数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课题 三角形全等的判定(HL) 课型 2013 年 月 日 人教版 理解直角三角形全等的判定方法“HL” 能灵活选择方法判定三角形全等; 运用直角三角形全等的条件解决一些实际问题。
学习内容
数学
新课
七年级上
【知识回顾】 (1)、判定两个三角形全等的方法: (2)、如图,Rt△ABC 中,直角边是 、 、 、 、 ,斜边是
1
鸡西市第十九中学初二数学组
已知线段 a ,c
(a<c) 和一个直角 , 利用尺规作一个 Rt△ABC,
使∠C=∠ ,AB=c ,CB= a . 按步骤作图: ① 作∠MCN=∠ =90°. ② 在射线 CM 上截取线段 CB=a . ③ 以 B 为圆心,c 为半径画弧,交射线 CN 于点 A . ④ 连结 AB. a c
(3)、如图,AB⊥BE 于 B,DE⊥BE 于 E, ①若∠A=∠D,AB=DE,则△ABC 与△DEF (填“全等”或“不全等” )根据 ②若∠A=∠D,BC=EF,则△ABC 与△DEF (填“全等”或“不全等” )根据 ③若 AB=DE,BC=EF,则△ABC 与△DEF (填“全等”或“不全等” )根据 ④若 AB=DE,BC=EF,AC=DF 则△ABC 与△DEF (填“全等”或“不全等” )根据 【自主探究】 如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全 等吗?
D A F E C
B
6.如图,在△ABC 中,∠ACB= 90 ,AC=BC,直线 MN 经过点 C,且 AD⊥MN 于 D, BE⊥MN 于 E,求证:DE=AD+BE.
B
A
D
C
E
E ┐
C
D
2. 已知 如图,AB⊥BD,CD⊥BD,AB=DC,求证:AD∥BC.
A D
B
C
3.公路上 A、B 两站(视为直线上的两点)相距 26km,C、D 为两村庄(视为两 个点) ,DA⊥AB 于点 A,CB⊥AB 于点 B,已知 DA=16km,BC=10km,现要在公路 AB 上建一个土特产收购站 E,使 CD 两村庄到 E 站的距离相等,那么 E 站应建 在距 A 站多远才合理?
∴Rt△ABC≌Rt△ (4)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ 法 “ ”“ 、 ” ” “ 、 ” “ 、 ” 还有直角三角形特殊的判定方 、
2
鸡西市第十九中学初二数学组
【当堂训练】 1. 如图,B、E、F、C 在同一直线上,AE⊥BC,DF⊥BC,AB=DC,BE=CF,试判 断 AB 与 CD 的位置关系.
D C
┐ A E
┎
B
3
鸡西市第十九中学初二数学组
4. 如图, 是△ABC 的高, 为 AC 上一点, 交 AD 于 F, AD E BE 具有 BF=AC, FD=CD, 试探究 BE 与 AC 的位置关系.
A
F B
E
D
C
5. 如图,A、E、F、B 四点共线,AC⊥CE、BD⊥DF、AE=BF、AC=BD,求证:△ ACF≌△BDE.