第五章 风力发电机组的液压系统和刹车

合集下载

风力发电机组液压系统相关知识讲解

风力发电机组液压系统相关知识讲解

• 2).用途
• ◆作卸荷阀用
• ◆作远程调压阀
• ◆作高低压多级控制阀
• ◆作顺序阀
• ◆用于产生背压(串在回油路上)。
35
36
• 3.减压阀:功用是降低系统中某一支路的压力。 • 减压阀是使出口压力低于进口压力的压力控制阀。
37
• 4.电液比例阀概述

比例电磁阀是作为功率控制元件,根据输入的电信号电压值的大小,
14
15
16
17
18
19
PART 04
液压系统的组成
20
液压系统的组成
动力部分;电动机、液压泵 工作介质;液压油
执行部分;液压缸 控制部分;控制阀等 辅助部分;油箱、油管、过滤器等
21
电动机
整个系统的动力源,为液压泵提供机械能。
液压泵
将电动机输入的机械能转换为压 力能输出,为执行元件提供压力 油。
Composition of hydraulic system
PART 05 刹车器
Brake
目录 / CONTENTS
PART 06 系统图纸
System drawings
PART 07 日常维护及定检
Routine maintenance and inspection
PART 08 故障处理
Fault handling
右两端分别输入相同压力和流量的油液,则活塞上产生的推力和往返
速度也相等。这种液压缸常用于往返速度相同且推力不大的场合。
27
• 如图所示为单活塞杆式液压缸结构图。缸体1和底盖焊接成一体。活塞2靠支撑环
4导向用Y型密封圈5密封,活塞2与活塞杆3用螺纹连接。活塞杆3靠导向套6、8

金风S48750风力发电机三种刹车方式及相应的液压系统动作过程

金风S48750风力发电机三种刹车方式及相应的液压系统动作过程

金风S48750风力发电机三种刹车方式及相应液压系统动作过程风力机组的刹车系统包括机械刹车(两副高速闸)和空气刹车(叶尖)。

风力机组停机有三种刹车方式:正常刹车、安全刹车和紧急刹车。

下面分别描述三种刹车方式的过程及每一个步骤对应的液压系统动作过程:1、正常刹车流程:叶尖甩开气动刹车—脱网后电机转速到500转一个高速闸抱死刹车—转速为零时另一个高速闸抱死刹车(下次正常刹车时两幅高速闸动作顺序交换,确保两幅刹车片均匀磨损)—刹车完成后收叶尖(1)切除叶尖电磁阀的供电电源;320、350电磁阀失电,叶尖回油,叶尖压力消失。

(2)如果发电机与电网连接,当发电机转速低于同步转速(500rpm)时发电机脱网;当叶轮转速在限定时间内降低到设定转速时,一副高速闸实施制动;当转速为500rpm时电磁阀190.1(或者190.2)失电,高速闸1回油刹车。

(3)如果在设定时间内叶轮转速降到零,第二副高速闸在设定时间后制动;当转速为0rpm时190.2(或者190.1)失电,高速闸2回油刹车。

(4)刹车完成后叶尖收回。

310、320、350得电,液压泵工作,叶尖建压收回。

下一次再执行正常刹车时两副高速闸的动作顺序相反,确保两闸刹车片均匀磨损。

2、安全刹车流程:叶尖甩开气动刹车,同时一个高速闸抱死刹车—转速为零时另一个高速闸抱死刹车(下次正常刹车时两幅高速闸动作顺序交换,确保两幅刹车片均匀磨损)—刹车完成后收叶尖(1)叶尖和一副高速闸同时制动,发电机脱网;320、350、190.1(或者190.2)同时失电,叶尖、高速闸1回油刹车。

(2)叶轮转速为零时,第2部闸抱死;190.2(或者190.1)失电,高速闸2回油刹车。

(3)刹车完成后叶尖收回。

310、320、350得电,液压泵工作,叶尖建压收回。

下一次再执行安全刹车时两副高速闸的动作顺序相反,确保两闸刹车片均匀磨损。

3、紧急刹车流程:叶尖甩开气动刹车,同时两个高速闸抱死刹车,电机同时脱网。

风电机组液压系统讲解

风电机组液压系统讲解

• 3)外界侵入的污染
• 油箱防尘性差,容易侵入灰尘、切屑和杂物;油箱没有设 置清理箱内污物的窗口,造成油箱内部难清理或无法清理 干净;切削液混进油箱,使油液严重乳化或掺进切屑;维 修过程中不注意清洁,将杂物带入油箱或管道内等。
• 4)管理不严
• 新液压油质量未检验;未清洗干净的桶用来装新油,使油 液变质;未建立液压油定期取样化验的制度;换新油时, 未清洗干净管路和油箱;管理不严,库存油液品种混乱; 将两种不能混合使用的油液混合使用。
• 节流阀18-1 用于抑制蓄能器预压力并在系统维修时,释 放来自蓄能器16-1的压力油。油箱上装有油位开关2,用 来监视油箱的油位,防止油箱内油溢出或泵在缺油情况下 运转。
• 油箱内的油温由装在油箱上部的热电阻(PT100)测得。 油温达到设定值时会报警。
• 1)液压系统在运转/暂停时的工作情况 • 电磁阀19-1 和19-2(紧急顺桨阀)通电后,使比例阀上的P
工作的灵敏性、稳定性、可靠性和寿命提出了愈 来愈高的要求,而油液的污染会影响系统的正常 工作和使用寿命,甚至引起设备事故。据统计, 由于油液污染引起的故障占总故障的75%以上, 固体颗粒是液压系统中最主要的污染物。可见要 保证液压系统工作灵敏、稳定、可靠,就必须控 制油液的污染。
• 液压油污染原因与危害 • 液压油污染原因 • 1)藏在液压元件和管道内的污染物 • 液压元件在装配前,零件未去毛刺和未经严格清洗,铸造
• 机械刹车机构
• 机械刹车机构由安装在低速轴或高速轴上 的刹车盘与布置在它四周的液压钳构成。 液压钳是固定的,刹车圆盘随轴一起转动。 由PLC控制刹车钳的打开和关闭。实现风力 发电组轴系的启、停。为了监视机械刹车 机构的内部状态,刹车钳内部装有指示刹 车片厚度的传感器。

第五章 风力发电机组的液压系统和刹车

第五章  风力发电机组的液压系统和刹车

第五章风力发电机组的液压系统和刹车风力发电机组的液压系统和刹车机构是一个整体。

在定桨距风力发电机组中,液压系统的主要任务是执行风力发电机组的气动刹车和机械刹车;在变桨距风力发电机组中,液压系统主要控制变距机构,实现风力发电机组的转速控制、功率控制,同时也控制机械刹车机构。

第一节定桨距风力发电机组的刹车机构一、气动刹车机构气动刹车机构是由安装在叶尖的扰流器通过不锈钢丝绳与叶片根部的液压油缸的活塞杆相联接构成的。

扰流器的结构(气动刹车结构)如图5-1 所示。

当风力发电机组正常运行时,在液压力的作用下,叶尖扰流器与叶片主体部分精密地合为一体,组成完整的叶片。

当风力发电机组需要脱网停机时,液压油缸失去压力,扰流器在离心力的作用下释放并旋转80°-9 0°形成阻尼板,由于叶尖部分处于距离轴最远点,整个叶片作为一个长的杠杆,使扰流器产生的气动阻力相当高,足以使风力发电机组在几乎没有任何磨损的情况下迅速减速,这一过程即为叶片空气动力刹车。

叶尖扰流器是风力发电机组的主要制动器,每次制动时都是它起主要作用。

在叶轮旋转时,作用在扰流器上的离心力和弹簧力会使叶尖扰流器力图脱离叶片主体转动到制动位置;而液压力的释放,不论是由于控制系统是正常指令,还是液压系统的故障引起,都将导致扰流器展开而使叶轮停止运行。

因此,空气动力刹车是一种失效保护装置,它使整个风力发电机组的制动系统具有很高的可靠性。

二、机构刹车机构图5-2为机构刹车机构由安装在低速轴或高速轴上的刹车圆盘与布置在四周的液压夹钳构成。

液压夹钳固定,刹车圆盘随轴一起转动。

刹车夹钳有一个预压的弹簧制动力,液压力通过油缸中的活塞将制动夹钳打开。

机械刹车的预压弹簧制动力,一般要求在额定负载下脱网时能够保证风力发电机组安全停机。

但在正常停机的情况下,液压力并不是完全释放,即在制动过程中只作用了一部分弹簧力。

为此,在液压系统中设置了一个特殊的减压阀和蓄能器,以保证在制动过程中不完全提供弹簧的制动力。

风力发电机组电液伺服液压系统简介

风力发电机组电液伺服液压系统简介

风力发电机组电液伺服系统简介一、概述:风力发电机组的液压伺服系统,主要用于变浆距风力发电机组的变浆控制装置、安全浆距控制装置、偏航驱动和制动装置、停机制动装置提供液压驱动力及控制,实现风力发电机组的转速控制、功率控制,同时也制控机械刹车机构。

根据自然风速、风向,液压伺服系统自动调节发电机组在稳定的电压和频率下运行发电,并对恶劣气候实施自动安全保护。

二、风力发电机组电液伺服液压系统特点:1、可实现大范围的无级调速(调速范围达2000:1),即能在很宽的范围内很容易地调节力与转矩;2、控制性能好,对力、速度、位置等指标能以很高的响应速度精确地进行控制。

很容易实现机器的自动化,不仅可实现更高程度的自动控制过程,而且可以实现遥控。

3、体积小、重量轻、运动惯性小、反应速度快,动作可靠,操作性能好。

4、可自动实现过载保护。

一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。

5、可以方便地根据需要使用液压标准元件、灵活地构成实现任意复杂功能的系统。

6、采用高性能比例伺服阀,提高抗污染能力。

三、电液伺服系统的基本组成1、动力元件动力元件的作用是将原动机的机械能转换成液体(主要是油)的压力能,是指液压系统中的油泵,向整个液压系统提供压力油。

液压泵的常见结构形式有齿轮泵、叶片泵和柱塞泵。

2、控制元件控制元件(即各种液压阀)其作用是在液压系统中控制和调节液体的压力、流量和方向,以满足执行元件对力、速度和运动方向的要求。

该电液伺服系统的主要元件为带位置反馈的高性能比例伺服阀。

3、执行元件执行元件是把系统的液体压力能转换为机械能的装置,驱动外负载做功。

旋转运动用液压马达,直线运动用液压缸,摆动用液压摆动马达。

油缸、马达有位置传感器与控制阀构成反馈控制。

4、辅助元件辅助元件是传递压力能和液体本身调整所必需的液压辅件,其作用是储油、保压、滤油、检测等,并把液压系统的各元件按要求连接起来,构成一个完整的液压系统。

辅助元件包括油箱、蓄能器、滤油器、传感器、油管及管接头、密封圈、压力表、油位计、油温计等。

毕业设计———风力发电机组液压系统的设计

毕业设计———风力发电机组液压系统的设计

毕业设计———风力发电机组液压系统的设计摘要:本文主要讨论了风力发电机组液压系统的设计。

首先介绍了风力发电机组的工作原理和液压系统的基本概念。

然后分析了风力发电机组液压系统的主要组成部分,包括液压泵、液压马达、液压阀等。

接着从设计参数的选取、液压系统的安装位置以及系统的控制等方面进行了详细讨论。

最后对设计方案进行了评估,并提出了进一步的改进意见。

关键词:风力发电机组;液压系统;设计;参数;控制1.引言风力发电机组是一种通过风的动力产生电能的装置。

其核心部件是风轮,通过风轮的转动驱动发电机发电。

液压系统是风力发电机组的重要组成部分之一,负责风轮的转动和传递过程中的能量转换和控制。

本文旨在对风力发电机组液压系统进行设计和优化,提高系统的性能和效率。

2.风力发电机组液压系统的基本概念2.1风力发电机组的工作原理风力发电机组的工作原理是通过风轮的转动驱动发电机发电。

风轮由多个叶片组成,当风流经过叶片时,叶片受到风力的作用而转动。

风轮的转动通过传动装置(通常是液压系统)传递给发电机,发电机产生电能。

2.2液压系统的基本概念液压系统是利用液体传动能量和控制运动的系统。

液压系统由液压泵、液压马达、液压阀等组成。

液压泵负责提供液体的流量和压力,液压马达负责转化液压能量为机械能量,液压阀负责控制液体的流量和压力。

3.风力发电机组液压系统的主要组成部分风力发电机组液压系统的主要组成部分包括液压泵、液压马达、液压阀等。

液压泵负责提供液体的流量和压力,液压马达负责转化液压能量为机械能量,液压阀负责控制液体的流量和压力。

4.风力发电机组液压系统的设计要点4.1设计参数的选取设计参数的选取是风力发电机组液压系统设计的基础。

设计参数包括流量、压力、转速等。

在选取设计参数时,需要考虑系统的功率需求、负载情况、泵和马达的性能等因素。

4.2液压系统的安装位置液压系统的安装位置需要根据实际情况来确定。

通常情况下,液压系统可以安装在风轮的底部或者侧面。

风电操作技术培训液压系统

风电操作技术培训液压系统

风电操作技术培训液压系统液压系统在风电操作技术中扮演着重要的角色。

本文将详细介绍液压系统在风电操作中的应用,同时探讨液压系统的工作原理和常见故障排除方法。

一、液压系统在风电操作中的应用在风电领域中,液压系统广泛应用于风力发电机组的控制系统和机械传动系统中。

在风力发电机组的控制系统中,液压系统主要用于风轮、偏航系统和调节系统的运动控制,确保风力发电机的安全高效运行。

在机械传动系统中,液压系统则用于叶轮变桨机构、变桨电机和变桨驱动器等关键部件的传动控制,确保风力发电机组的叶轮角度和转速控制。

二、液压系统的工作原理液压系统是基于流体力学原理的工作系统,其主要由液压泵、液压缸、阀门、油箱等组成。

液压泵将机械能转换为液压能,通过液压泵将液体推进到液压缸中,从而实现机械传动和运动控制。

液压系统的工作原理可以简单概括为以下几个步骤:1. 液压泵启动:当液压系统启动时,液压泵开始旋转,通过吸入液体并排出液体的方式,形成一个连续的液压能力。

2. 液压泵输出液压能:液压泵将输入的机械能转化为液压能,通过压力传递给液压缸。

3. 液压缸执行工作:液压缸接受到液压能后,通过活塞推动和传动机构,实现机械元件的运动控制。

4. 控制阀的作用:液压系统中的各种阀门,包括方向控制阀、流量控制阀和压力控制阀等,起到控制液压能流动方向、流量和压力的作用。

5. 液压能的回收:液压缸完成一定工作后,液压能需要回收,通常通过液压缸的负载返回和溢流阀控制。

三、常见故障排除方法液压系统在风电操作中常常面临各种故障,下面介绍几种常见故障的排除方法:1. 液压泵无压力输出:可能是液压泵内部损坏或阀门关闭不良,此时需要检查和更换液压泵或阀门。

2. 液压缸运动缓慢或停止:可能是液压泵输出液体流量不足或系统中存在漏油现象,此时需要检查和更换液压泵,同时修复漏油点。

3. 液压系统压力异常升高:可能是压力控制阀故障或其他阀门关闭不良,此时需要检查和更换压力控制阀或其他阀门。

风力发电机组刹车系统设计分析

风力发电机组刹车系统设计分析

风力发电机组刹车系统设计分析风力发电机组是一种利用风能转换为电能的设备,具有环保、可再生等特点。

在风力发电机组运行过程中,为了确保风机组的安全运行,必须设计合理的刹车系统。

本文将对风力发电机组刹车系统的设计进行分析。

一、刹车系统的作用风力发电机组刹车系统的主要作用是在需要停机时,能够迅速而可靠地停止发电机组的运转,保证风机组的安全性和可靠性。

刹车系统还可以在发电机组出现故障或其他突发情况时使用,避免可能造成的损失。

二、刹车系统的类型1. 机械刹车:机械刹车是通过摩擦力来实现刹车的目的,常见的机械刹车包括摩擦盘刹车、摩擦片刹车等,具有制动力强、刹车稳定等特点。

2. 液压刹车:液压刹车是通过液压传动来实现刹车的目的,具有制动力可调、刹车精准等特点。

3. 电磁刹车:电磁刹车是通过电磁力来实现刹车的目的,具有响应速度快、能耗低等特点。

三、刹车系统的设计要求1. 刹车系统应具有快速响应的能力,能够在发生紧急情况时迅速刹车,确保风机组安全停机。

2. 刹车系统应具有稳定可靠的性能,能够在各种环境条件下正常工作,保证风机组运行的可靠性。

3. 刹车系统应具有精确的控制能力,能够根据需要对刹车力进行调整,确保刹车效果满足要求。

四、刹车系统的设计优化1. 选择合适的刹车类型:根据风机组的具体要求和工作环境选择机械刹车、液压刹车或电磁刹车等刹车类型。

2. 设计合理的刹车控制系统:对刹车系统进行电气控制设计,确保刹车系统能够准确、灵活地响应控制信号。

3. 优化刹车制动力:通过优化刹车盘、刹车片等部件的设计,提高刹车制动力,确保刹车效果良好。

五、结论和展望风力发电机组刹车系统的设计对于风机组的安全运行具有重要意义。

通过合理选择刹车类型、设计优化刹车系统,可以提高风机组的安全性和可靠性,保障风力发电系统的正常运行。

未来,随着风力发电技术的不断发展,刹车系统的设计将更加精密化和智能化,为风力发电产业的发展提供更好的支持。

风力发电系统主轴刹车制动装置

风力发电系统主轴刹车制动装置

风力发电系统主轴刹车制动—全新的动力驱动概念电机丝杆油缸(SCD)液压驱动系统工作单元(简介)在风力发电机组主要传动设备中,除风叶,低速轴,齿轮箱,高速轴,发电机外,还有一个十分重要的安全装置--刹车用制动器。

其功能是为风力发电系统提供在常规和非正常状况下的刹车制动和紧急安全制动。

其工作动力来自于偏航系统和变浆系统的液压工作站,在大多数风力发电设备中,这3个装置共用一套液压动力系统。

如此的动力配置结构,且常态化常年运行工作,避免不了存在以下潜在的问题:1,三个各自独立的工作系统,共用一个动力工作站,兼顾各自的工作特点和要求,液压工作站的实际工作状况是超大动力和超高压工作运转,明显是个耗能工作模式。

2,众多的液压执行部件,油路及连接点,有任意一处泄漏或故障,都会波及其他部分,使之系统无法正常工作。

3,由于偏航和变浆系统是连续不间断工作方式。

液压工作站的故障发生,只是时间问题,假如出现了问题发生的时刻,刹车制动则制动难以实现。

直接涉及设备的安全生产运行,十分危险。

在风力发电机组的运转工作中,其工作的特点是运转工作时间较长,停车时间少而短,针对此特点,本文设计推荐一种结构组合式(SCD)动力驱动装置(见图示),给传动设备中的制动器提供刹车工作动力(20Mpa以上),如此会让普通器件经过有效的组合,使简单组合产生非常有价值的使用效果。

其特点有;组合结构简单,造价低廉、大量节省电能、环保、刹车平滑有效延长机械设备使用寿命,实际工作时间极短,设备完好度极高,免维护可无故障常年有效工作等。

其相关组成部分和工作原理如下;一、系统组成部分:电机丝杆油缸(SCD)系统的基本配置组成:控制箱、电动机、减速机、丝杆结构;油缸、活塞、储备油箱、泄压阀、压力继电器、前限位开关、后限位开关、外接电源、自备电源等。

二、系统工作原理:工作原理;当控制箱接受到刹车制动指令时,即刻接通电机电源,电机正向旋转工作,通过丝杆驱动油缸內的活塞前行,为刹车装置供油,建立工作压力。

风电液压系统原理简介

风电液压系统原理简介

05 辅助元件与系统设计
辅助元件类型及作用
过滤器
用于清除液压系统中的杂质和 污染物,保证油液的清洁度,
维护系统的正常运行。
油箱
储存液压系统所需的油液,具 有散热、沉淀杂质和分离水分 的作用。
热交换器
用于液压系统的加热和冷却,保 持系统油温在适宜范围内,提高 系统的工作效率和稳定性。
蓄能器
储存压力能,在需要时释放能 量,以补充系统泄漏或用作应
风电液压系统原理简介
contents
目录
• 风电液压系统概述 • 液压泵与马达 • 液压阀与控制系统 • 液压缸与执行机构 • 辅助元件与系统设计 • 风电液压系统维护与故障处理
01 风电液压系统概述
风电液压系统定义与作用
定义
风电液压系统是利用液体压力能 来传递动力和进行控制的一种系 统,是风力发电机组中的重要组 成部分。
按照设计图纸制造液压系统,进行现场安装 调试和试运行,确保系统正常运行。
06 风电液压系统维护与故障 处理
风电液压系统维护方法
定期检查
对液压系统的关键部件进行定期 检查,包括液压泵、液压马达、 液压缸、阀门等,确保其工作正
常。
清洁保养
保持液压系统的清洁,定期更换液 压油,清洗油箱和滤清器,防止杂 质和污染物进入系统。
急能源。
风电液压系统设计原则
安全性原则
确保系统在各种工况下的安全稳定运 行,防止因液压故障导致风机损坏或 人员伤亡。
可靠性原则
选用高品质的液压元件和先进的控制 技术,提高系统的可靠性和稳定性。
经济性原则
在满足系统性能要求的前提下,尽量 降低制造成本和运行费用。
可维护性原则
简化系统结构,方便日常维护和检修, 降低维修成本和时间。

风力发电机组液压系统

风力发电机组液压系统

被动刹车类型
弹簧力 液压力
主动刹车类型
液压力
液压力
机械刹车
油箱 压力油
风力发电机组液压系统主要故障类型
1、无法建压(建压超时) 2、能够建压,但保不住压力(打压频繁) 3、能够建压,瞬间掉压(系统压力低)
故障现象:液压泵持续打压75s达不到规定 压力值时,风机报打压超时故障。
风力发电机组液压系统
液压系统属于风力发 电机组的动力系统,主要 功能是为变桨控制装置、 偏航制动装置、机械制动 装置以及叶尖阻尼装置提 供液压驱动力。
液压系统构成
• 电机 • 液压泵 • 油缸 • 电磁阀 • 电气控制元件(压力传感器, 压力继电器、温
度传感器,液位开关) • 蓄能器 • 过滤器 • 连接管路
齿轮泵
手动泵
液压控制阀Biblioteka 溢流阀减压阀单向阀
节流阀
电磁换向阀
溢流阀
减压阀
功能:调节主轴刹车系统的压力,顺时针旋转调压螺杆压力上升,逆时针降低。
单向阀
功能:控制液压油的流向,防止油液回流, 同时起到保压功能。
节流阀
功能:调节液压油的流量。
电磁阀
蓄能器
功能: 1. 维持系统压力 2. 吸收瞬间高压 3. 提供应急压力

风力发电机液压系统

风力发电机液压系统

(2)过滤器 液压油中含有杂质是造成液压系统故障的 重要原因。因为杂质的存在会引起相对运动零件的急剧磨损、 划伤、破坏配合表面的精度。颗粒过大时甚至会使阀芯卡死, 节流阀节流口以及各阻尼小孔堵塞,造成元件动作失灵。影 响液压系统的工作性能,甚至使液压系统不能工作。因此, 保持液压油的清洁是液压系统能正常工作的必要条件。过滤 器可净化油液中的杂质,控制油液的污染。
四、液压系统的常见故障
1.出现异常震动和噪声
原因可能是:旋转轴连接不同心;液压泵超载或吸油受 阻;管路松动;液压阀出现自激震荡;液面低;油液粘度高; 过滤器堵塞;油液中混有空气等。
2.输出压力不足
原因可能是:液压泵失效;吸油口漏气;油路有较大的 泄露;液压阀调节不当;液压缸内泄等。
3.油温过高
原因可能是:系统内泄露过大;系统冷却能力不足;在 保压期间液压泵未卸荷;系统的油液不足;冷却水阀不起作 用;温控器设置过高;没有冷却水或制冷风扇失效;冷却水 温度过高;周围环境温度过高;系统散热条件不好。
4.液压泵的启停太频繁
原因可能是:系统内泄露过大;在蓄能系统中,蓄能器 和泵的参数不匹配;蓄能器充气压力过低;气囊(或薄膜) 失效;压力继电器设置错误等。
三、液压系统的维护
1.设备的检查
在启动前的项目检查有:油位是否正常,行程开关和限 位块是否紧固,手动和自动循环是否正常,电磁阀是否处在 原始状态等。
在设备中监视工况的项目有:系统压力是否稳定并在规 定范围中,设备有无异常震动和噪声,油温是否在允许的范 围内(一般为35-55ºC范围内,不得大于60ºC),有无漏油, 电压是否保持在额定值的+5%--15%的范围内等。
2.液压油
液压系统的介质是液压油,一般采用专门用于液压系统 的矿物油。液压系统的液压油应与生产企业制定的牌号相符

风力发电基础理论题库及答案

风力发电基础理论题库及答案

龙源内蒙古风力发电有限公司风力发电基础理论题库第一章风力发电的历史与发展填空题1、中国政府提出的风电规划目标是2010 年全国风电装机达到(500 万千瓦),到2020 年风电装机达到(3000 万千瓦)。

2020 年之后风电超过核电成为第三大主力发电电源,在2050 年前后(达到或超过 4 亿千瓦),超过水电,成为第二大主力发电电源。

简答题1、风力发电的意义?(1)提供国民经济发展所需的能源(2)减少温室气体排放(3)减少二氧化硫排放(4)提高能源利用效率,减轻社会负担(5)增加就业机会2、风力机归纳起来,可分为哪两大类?(1)水平轴风力机,风轮的旋转轴与风向平行,(2)垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,3、风电机组发展趋势?(1)从定桨距(失速型)向变桨距发展(2)从定转速向可变转速发展(3)单机容量大型化发展趋势第二章风资源与风电场设计填空题1、风能大小与(气流通过的面积)、(空气密度)和(气流速度的立方)成(正比)。

2、风速的测量一般采用(风杯式风速计)。

3、为了描述风的速度和方向的分布特点,我们可以利用观测到的风速和风向数据画出所谓的(风向玫瑰图)。

4、风电场的机型选择主要围绕风电机组运行的(安全性)和(经济性)两方面内容,综合考虑。

简答题1、简述风能是如何的形成的在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。

这种高纬度与低纬度之间的温度差异,形成了南北之间的气压梯度,使空气作水平运动。

地球在自转,使空气水平运动发生偏向的力,所以地球大气运动除受气压梯度力外,还要受地转偏向力的影响2、风能的基本特征?(1)风速(2)空气密度与叶轮扫风面积(3)风能密度(4)叶轮气流模型3、测风注意事项?最佳的风速测量方法是在具有风资源开发潜力的地区安装测风塔,测风高度与预装风电机组的轮毂高度尽量接近,并且测风设备安装在测风塔的顶端,这样,一方面可以减小利用风切变系数计算不同高度处的风速所带来的不确定性,另一方面也可以减小测风塔本身对测风设备造成的影响(塔影效益),如果测风设备安装在测风塔的中部,应尽量使侧风设备的支架方向与主风向保持垂直,并使侧风设备与测风塔保持足够的距离。

风力发电机机刹车系统原理

风力发电机机刹车系统原理

150kW风力发电机机刹车系统原理及维护方法新疆风能公司达坂城风电场现有并网风力机14台,其中13台装有液压刹车系统,通过一年来的运行,我们发现风力机60%的故障来自于液压系统,但在运行中只要认真抓好维护工作就可以做到防患于未然,同时有了较好的维护方法即便出了故障也能及时发现尽快地处理和排除,这样大大减少了风力机的停机时间,提高了风力机的运行效率。

下面将风力机液压刹车系统的结构原理及维护方法介绍如下:一、刹车机构的组成150kW风力机的刹车机构主要由液压系统、圆盘闸、时尖阻尼板三部分组成,其中名部分的主要元件及其作用如下统分为叶尖阻尼板和圆盘闸两部分。

现我们从起动和停机两个过程来看其工作原理。

(1)起动开机当控制系统发出起动命令(可以是自动和手动),一液压马达立即起动,压力由“P”口进入组合阀体。

组合阀体可由图上的中心线分成左右两个部分,其中左半部分为供叶尖压力部分;右半部分为圆盘闸提供压力。

在马达起动同时,阀体内电磁阀10、11均带电液压图中现在所表示的电磁阀门的状态均为不带电的状态,如果带电则与现在状态相反,例如电磁阀10和11不带电时均为通路状态,现在带电后即变为关闭状态。

这时由-p-口进入的液压油只能沿6.2单向阀进入右半部分,当压力值达到由压力开关7整定的10.3MPa(103b ar)时,阀门lO打开,压力开始进入叶尖部分,使叶片阻尼板收回,同时还将打开电磁阀12,关闭电磁阀13,使圆盘闸内的压力泄放,做好起动的准备。

当叶尖收起后,团盘闸也同时被松开,当压力开关15的压力达到7 MPa(70bar)时,液压马达停止转动。

在图中17、18两个元件均为贮压罐,利用被压缩的气体来贮藏压力油中的能量,以补充在运行过程中由手叶尖阻力板和圆盘闸的泄露,减少液压马达的频繁起动。

这就是起动的垒过程。

(2)刹车停机当风力机控制系统的停机命令发出后,电磁阀10、11立即带电,关闭10电磁阀,打开11电磁阀,然后使12、13电磁阀失电,即打开13,关闭12,结果在叶尖阻尼板被弹出之后,圆盘闸也动作刹车使风力机平稳地停机。

风力发电机组及应用:第五章液压系统

风力发电机组及应用:第五章液压系统

•溢流阀防止油压8-过4 高,设8-5定值145bar。
轮泵,为变
••系油统位维开修关2时用-26-2T,来PA可防调止5-2节油流 溢2-5阀出阀或用泵来在释无放油来情自况蓄下刹车能运钳 器转的。压力距动油回器。路回和路制所
•油箱内设比例有阀 P2-A3T10B 0温度检测与报8-8警。
共有。
8-7
测压❖回试力口比压例力阀管M“路油泵跨(油接活位开”关塞油时右位指,侧示器节面距积V角大39向于型8左风8º压侧方力系)向发统。调电节机,组液液压缸左侧压力油
油箱
变桨距风力发电机组液压系统
一、液压系统结构图 0°
90°
1-1 8-3 压力 传感器
2-1 8-2
8-1
8-4
6-2 A
2-2 T P 比例阀 2-3
通常液压系统由两个压力保持 回路组成,一路通过蓄能器供给叶 尖扰流器,另一路通过蓄能器供给 机械刹车机构。
定桨距风力机的液压与偏航系统
叶片
高速轴
偏航器
制动1
制动2
制动3
3-3
突开阀
3-4 4YA
3-5 9
5-2 4-2
6-2
2-2 1-3 3-2 1YA
7-1
7-2
2YA
3YA
8
1-2 6-1
5YA 2-1
1. 液压系 统在运转/ 暂停时的 工作情况
变桨距风力发电机组液压系统
一、液压系统结构图 0° 90°
先导 止回阀
螺杆活塞泵
叶片变 距系统
紧急 顺桨阀
A TP
比例阀
A
B
PT
蓄能器
PT
压力 传感器
可调 节流阀
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章风力发电机组的液压系统和刹车风力发电机组的液压系统和刹车机构是一个整体。

在定桨距风力发电机组中,液压系统的主要任务是执行风力发电机组的气动刹车和机械刹车;在变桨距风力发电机组中,液压系统主要控制变距机构,实现风力发电机组的转速控制、功率控制,同时也控制机械刹车机构。

第一节定桨距风力发电机组的刹车机构一、气动刹车机构气动刹车机构是由安装在叶尖的扰流器通过不锈钢丝绳与叶片根部的液压油缸的活塞杆相联接构成的。

扰流器的结构(气动刹车结构)如图5-1 所示。

当风力发电机组正常运行时,在液压力的作用下,叶尖扰流器与叶片主体部分精密地合为一体,组成完整的叶片。

当风力发电机组需要脱网停机时,液压油缸失去压力,扰流器在离心力的作用下释放并旋转80°-9 0°形成阻尼板,由于叶尖部分处于距离轴最远点,整个叶片作为一个长的杠杆,使扰流器产生的气动阻力相当高,足以使风力发电机组在几乎没有任何磨损的情况下迅速减速,这一过程即为叶片空气动力刹车。

叶尖扰流器是风力发电机组的主要制动器,每次制动时都是它起主要作用。

在叶轮旋转时,作用在扰流器上的离心力和弹簧力会使叶尖扰流器力图脱离叶片主体转动到制动位置;而液压力的释放,不论是由于控制系统是正常指令,还是液压系统的故障引起,都将导致扰流器展开而使叶轮停止运行。

因此,空气动力刹车是一种失效保护装置,它使整个风力发电机组的制动系统具有很高的可靠性。

二、机构刹车机构图5-2为机构刹车机构由安装在低速轴或高速轴上的刹车圆盘与布置在四周的液压夹钳构成。

液压夹钳固定,刹车圆盘随轴一起转动。

刹车夹钳有一个预压的弹簧制动力,液压力通过油缸中的活塞将制动夹钳打开。

机械刹车的预压弹簧制动力,一般要求在额定负载下脱网时能够保证风力发电机组安全停机。

但在正常停机的情况下,液压力并不是完全释放,即在制动过程中只作用了一部分弹簧力。

为此,在液压系统中设置了一个特殊的减压阀和蓄能器,以保证在制动过程中不完全提供弹簧的制动力。

为了监视机械刹车机构的内部状态,刹车夹钳内部装有温度传感器和指示刹车片厚度的传感器。

第二节定桨距风力发电机组的液压系统定桨距风力发电机组的液压系统实际上是制动系统的执行机构,主要用来执行风力发电机组的开关机指令。

通常它由两个压力保持回路组成,一路通过蓄能器供给叶尖扰流器,另一路通过蓄能器供给机械刹车机构。

这两个回路的工作任务是使机组运行时制动机构始终保持压力。

当需要停机时,两回路中的常开电磁阀先后失电,叶尖扰流器一路压力油被泄回油箱,叶尖动作;稍后,机械刹车一路压力油进入刹车油缸,驱动刹车夹钳,使叶轮停止转动。

在两个回路中各装有两个压力传感器,以指示系统压力,控制液压泵站补油和确定刹车机构的状态。

图5-3为FD43-600kW 风力发电机组的液压系统。

由于偏航机构也引入了液压回路,它由三个压力保持回路组成。

图左侧是气动刹车压力保持回路,压力油经油泵2、精滤油器4 进入系统。

溢流阀6用来限制系统最高压力。

开机时电磁阀12—1 接通,压力油经单向阀7—2 进入蓄能器8-2,并通过单向阀7-3和旋转接头进入气动刹车油缸。

压力开关+ " & 由蓄能器的压力控制,当蓄能器压力达到设定值时,开关动作,电磁阀12—1关闭。

运行时,回路压力主要由蓄能器保持,通过液压油缸上的钢索拉住叶尖扰流器,使之与叶片主体紧密结合。

电磁阀12-2为停机阀,用来释放气动刹车油缸的液压油,使叶尖扰流器在离心力作用下滑出;突开阀15,用于超速保护,当叶轮飞车时,离心力增大,通过活塞的作用,使回路内压力升高;当压力达到一定值时,突开阀开启,压力油泄回油箱。

突开阀不受控制系统的指令控制,是独立的安全保护装置。

图中间是两个独立的高速轴制动器回路,通过电磁阀13—1、13-2 分别控制制动器中压力油的进出,从而控制制动器动作。

工作压力由蓄能器8—1 保持。

压力开关9—1根据蓄能器的压力控制液压泵电动机的停! 起。

压力开关9-3、9-4用来指示制动器的工作状态。

右侧为偏航系统回路,偏航系统有两个工作压力,分别提供偏航时的阻尼和偏航结束时的制动力。

…工作压力仍由蓄能器8-1 保持。

由于机舱有很大的惯性,调向过程必须确保系统的稳定性,此时偏航制动器用作阻尼器。

工作时,4DT 得电,电磁阀16左侧接通,回路压力由溢流阀保持,以提供调向系统足够的阻尼;调向结束时,4DT失电,电磁阀右侧接通,制动压力由蓄能器直接提供。

由于系统的内泄漏、油温的变化、及电磁阀的动作,液压系统的工作压力实际上始终处于变化的状态之中。

其气动刹车与机械刹车回路的工作压力分别如图5-4a、b所示。

图中虚线之间为设定的工作范围。

当压力由于温升或压力开关失灵超出该范围一定值时,会导致突开阀误动作,因此必须对系统压力进行限制,系统最高压力由溢流阀调节。

而当压力同样由于压力开关失灵或液压泵站故障低于工作压力下限时,系统设置了低压警告线,以免在紧急状态下,机械刹车中的压力不足以制动风力发电机组。

第三节变桨距风力发电机组的液压系统变距系统中采用了比例控制技术。

为了便于理解,这里先对比例控制技术作一简要介绍。

一、比例控制技术比例控制技术是在开关控制技术和伺服控制技术间的过渡技术,它具有控制原理简单、控制精度高、抗污染能力强、价格适中,受到人们的普遍重视,使该技术得到飞速发展。

它是在普通液压阀基础上,用比例电磁铁取代阀的调节机构及普通电磁铁构成的。

采用比例放大器控制比例电磁铁就可实现对比例阀进行远距离连续控制,从而实现对液压系统压力、流量、方向的无级调节。

比例控制技术基本工作原理是根据输入电信号电压值的大小,通过电放大器,将该输入电压信号(一般在0-±9V之间)转换成相应的电流信号,如1mV=1mA(见图5-5)。

这个电流信号作为输入量被送入比例电磁铁,从而产生和输入信号成比例的输出量———力或位移。

该力或位移又作为输入量加给比例阀,后者产生一个与前者成比例的流量或压力。

通过这样的转换,一个输入电压信号的变化,不但能控制执行元件和机械设备上工作部件的运动方向,而且可对其作用力和运动速度进行无级调节。

此外,还能对相应的时间过程,例如,在一段时间内流量的变化,加速度的变化或减速度的变化等进行连续调节。

当需要更高的阀性能时,可在阀或电磁铁上接装一个位置传感器以提供一个与阀心位置成比例的电信号。

此位置信号向阀的控制器提供一个反馈,使阀心可以由一个闭环配置来定位。

如图5-5所示,一个输入信号经放大器放大后的输出信号再去驱动电磁铁。

电磁铁推动阀心,直到来自位置传感器的反馈信号与输入信号相等时为止。

因而此技术能使阀心在阀体中准确地定位,而由摩擦力、液动力或液压力所引起的任何干扰都被自动地纠正。

(一)位置传感器通常用于阀心位置反馈的传感器,如图5-6所示的非接触式LVDT(线性可变差动变压器)。

LVDT由绕在与电磁铁推杆相连的软铁铁心上的一个一次绕组和两个二次绕组组成。

一次绕组由一高频交流电源供电,它在铁心中产生变化磁场,该磁场通过变压器作用在两个二次绕组中感应出电压。

如果两个二次绕组对置连接,则当铁心居中时,每个绕组中产生的感应电压将抵消而产生的净输出为零。

随着铁心离开中心移动,一个二次绕组中的感应电压提高而另一个中降低。

于是产生一个净输出电压,其大小与运动量成比例而相位移指示运动方向。

该输出可供给一个相敏整流器(解调器),该整流器将产生一个与运动成比例且极性取决于运动方向的直流信号。

(二)控制放大器控制放大器的原理如图5-7所示。

输入信号可以是可变电流或电压。

根据输入信号的极性,阀心两端的电磁铁将有一个通电,使阀心向某一侧移动。

放大器为两个运动方向设置了单独的增益调整,可用于微调阀的特性或设定最大流量。

还设置了一个斜坡发生器,进行适当的接线可启动或禁止该发生器,并且设置了斜坡时间调整。

还针对每个输出级设置了死区补偿调整。

这使得可用电子方法消除阀心遮盖的影响。

使用位置传感器的比例阀意味着阀心是位置控制的,即阀心在阀体中的位置仅取决于输入信号而与流量、压力或摩擦力无关。

位置传感器提供一个LVDT反馈信号。

此反馈信号与输入信号相加所得到的误差信号驱动放大器的输出级。

在放大器面板上设有输入信号和LVDT反馈信号的监测点。

当比例控制系统设有反馈信号时,可实现控制精度较好的闭环控制,其系统框图如图5-8 所示。

二、液压系统图变桨距风力发电机组的液压系统与定桨距风力发电机组的液压系统很相似,也由两个压力保持回路组成。

一路由蓄能器通过电液比例阀供给叶片变距油缸,另一路由蓄能器供给高速轴上的机械刹车机构。

图5-9为VESTASV39 型风力发电机组液压系统。

三、液压泵站液压泵站的动力源是齿轮泵5,为变距回路和制动器回路所共有。

液压泵安装在油箱油面以下并通过联轴器6,由油箱上部的电动机驱动。

泵的流量变化根据负载而定。

液压泵由压力传感器12的信号控制。

当泵停止时,系统由蓄能器16保持压力。

系统的工作压力设定范围为130—145bar。

当压力降至130bar以下时,泵起动;在145bar时,泵停止。

在运行、暂停和停止状态,泵根据压力传感器的信号自动工作,在紧急停机状态,泵将被迅速断路而关闭。

压力油从泵通过高压滤油器10 和单向阀11—1传送到蓄能器16。

滤油器上装有旁通阀和污染指示器,它在旁通阀打开前起作用。

阀11—1在泵停止时阻止回流。

紧跟在滤油器外面,先后有二个压力表连接器(M1 和M2),它们用于测量泵的压力或滤油器两端的压力降。

测量时将各测量点的连接器通过软管与连接器M8 上的压力表14 接通。

溢流阀13—1是防止泵在系统压力超过145bar 时继续泵油进入系统的安全阀。

在蓄能器1 6 因外部加热情况下,溢流阀13—1 会限制气压及油压升高。

节流阀18—1用于抑制蓄能器预压力并在系统维修时,释放来自蓄能器16—1 的压力油。

油箱上装有油位开关2,以防油溢出或泵在无油情况下运转。

油箱内的油温由装在油池内的PT100传感器测得,出线盒装在油箱上部。

油温过高时会导致报警,以免在高温下泵的磨损,延长密封的使用寿命。

四、变距控制变距控制系统的节距控制是通过比例阀来实现的。

在图5-10 中,控制器根据功率或转速信号给出一个(-10-+10)V 的控制电压,通过比例阀控制器转换成一定范围的电流信号,控制比例阀输出流量的方向和大小。

点划线内是带控制放大器的比例阀,设有内部LVDT 反馈。

变距油缸按比例阀输出的方向和流量操纵叶片节距在-5°-88°之间运动。

为了提高整个变距系统的动态性能,在变距油缸上也设有LVDT位置传感器,如图5-10所示。

在比例阀至油箱的回路上装有1bar单向阀11-4。

该单向阀确保比例阀T-口上总是保持1b ar压力,避免比例阀阻尼室内的阻尼“消失”导到该阀不稳定而产生振动。

相关文档
最新文档