粘弹性理论初步

合集下载

《聚合物的粘弹》课件

《聚合物的粘弹》课件

06
动态力学分析可以提供聚合物粘 弹性的定量信息,对于理解聚合 物的力学性能和设计新材料具有 重要意义
蠕变实验:测量聚合物在恒定应力下的应变随时间的变化 回复实验:测量聚合物在恒定应变下的应力随时间的变化 实验设备:蠕变仪、应力控制仪、应变测量仪等 实验步骤:加载、保持、卸载、测量等 实验结果:蠕变曲线、应力-应变曲线等 实验应用:评估聚合物的粘弹性能、预测聚合物的长期性能等
增强复合材料的力学性能 提高复合材料的耐热性 改善复合材料的耐磨性 增强复合材料的抗冲击性
聚合物的粘弹性在 加工中的影响
聚合物的粘弹性在加工中的影响 流变行为的定义和分类 流变行为对加工过程的影响 流变行为在加工过程中的应用
温度升高,聚合物 粘弹性增强
温度降低,聚合物 粘弹性减弱
加工温度过高,可 能导致聚合物熔化 或分解
聚合物的粘弹
汇报人:
目录
添加目录标题
聚合物的粘弹现象
聚合物的粘弹性理 论
聚合物的粘弹性测 试方法
聚合物的粘弹性在 材料中的应用
聚合物的粘弹性在 加工中的影响
添加章节标题
聚合物的粘弹现象
粘弹性是指聚合物在受到外力作用下,表现出既具有粘性又具有弹性的特性。
粘性是指聚合物在外力作用下,能够产生形变,并且形变可以恢复。 弹性是指聚合物在外力作用下,能够产生形变,并且形变可以恢复。 粘弹性是聚合物特有的一种力学性质,它既具有粘性,又具有弹性。
加工温度过低,可 能导致聚合物结晶 或硬化
加工压力增大,聚合物的粘弹性增强 加工压力减小,聚合物的粘弹性减弱 加工压力对聚合物的粘弹性有显著影响 加工压力的变化会影响聚合物的加工性能和成品质量
剪切速率增加, 粘弹性增强
剪切速率降低, 粘弹性减弱

粘弹性体力学的实验研究与理论分析

粘弹性体力学的实验研究与理论分析

粘弹性体力学的实验研究与理论分析随着科学技术的不断进步,人类对于自然界的认知也得到了前所未有的提升。

其中,物理学的发展进程更是让我们对于物质的本质和运动规律有了更深入的了解。

在这个领域里,粘弹性体力学具有着极为重要的地位。

那么,本文将会针对这一领域的实验研究与理论分析进行探讨。

一、什么是粘弹性体力学?粘弹性体力学又称为粘弹性流变学,是介于传统的粘性流和弹性固体之间的一种物质状态。

简单来说,粘弹性物质既能够表现出液体的黏度(即粘性),又可以表现出固体的弹性(即弹性)。

近些年,随着高分子化学领域的发展,有很多高分子物质也被认为是粘弹性物质的一种。

这些物质在生活和生产中有着广泛的应用,如胶黏剂、油漆、食品、消化道黏膜等等。

二、为什么需要对粘弹性体力学进行研究?首先,粘弹性体力学具有广阔的应用前景。

如今,在消费品和医药领域,粘弹性物质的使用已经相当常见。

这也让科学家们对它的研究变得越来越重要。

其次,粘弹性特性在生命科学研究中有着广泛的应用。

现如今,生物学研究中需要探究细胞的形变和运动轨迹以及某些分子粘附在表面上的情况,这些都需要使用到粘弹性力学知识。

再者,一些工业领域中,利用粘弹性物质的特性可以达到很好的处理效果,提升生产和质量效益。

三、粘弹性实验的基础原理在对于粘弹性力学研究实验中,我们需要用到实验设备和基础原理。

常见的实验设备有:旋转流变仪、真空旋转流变仪、压力流变仪等等。

流变法是研究粘弹性物质力学特性的主要方法。

其基础原理是:将所需测量的样品在规定的应力下施以正弦变形,测定其剪切应力与变形量(或者剪切速率或时间)之间的关系,即流变曲线。

根据不同的物质,往往有着不同的流变曲线,通过对曲线进行分析我们可以了解其粘弹性特征。

四、粘弹性理论分析在粘弹性体力学中,其力学行为的分析与研究远比粘性流体理论要加复杂得多。

粘弹性体的弹性特性是由分子和分子之间的相互作用所引起的,因此任意一个粘弹性材料的粘弹性力学特性都受到其组成物质的影响。

聚合物的粘弹性

聚合物的粘弹性

t
0e
τ——松弛时间
应力松驰的原因:
当聚合物一开始被拉长时,其中分子处于不平衡的构象, 要逐渐过渡到平衡的构象,也就是链段要顺着外力的方向运 动,因而产生内部应力,与外力相抗衡。通过链段热运动调 整分子构象,使缠结点散开,分子链相互滑移,逐渐恢复蜷 曲的原状,内应力逐渐减少或消除。
聚合物的粘弹性说课

t2
t
1.3 弹性与粘性比较
弹性
粘性
能量储存 形变回复 虎克固体
E
E(,,T)
模量与时间无关
能量耗散
永久形变
牛顿流体
.
d
dt
E (,,T,t)
模量与时间有关
理想弹性体的应力取决于 ,理想粘性体的应力取决于 。
二. 粘弹性
聚合物
牛顿流体
非牛顿流体应变速率与 应力的关系
聚合物 虎克固体
t
与理想弹性体有区别
让学生 亲自经历运用科 学方法进行探索 。
让学生在实验过 程中自己摸索, 从而发现“新” 的问题或探索出 “新”的规律。
六、教学设计
提出问题 导入新课
提供条件 学生思考
引导分析 提出新疑
讨论问题 得出结论
布置作业 能力迁移
七、说课综述
在教学的过程中,我始终努力贯彻以教师为主导, 以学生为主体,以问题为基础,以能力、方法为主线, 有计划培养学生的思维能力、解决问题的能力。并且 从实际出发,充分利用各种教学手段来激发学生的学 习兴趣,体现了对学生创新意识的培养。
聚合物的粘弹性
一. 粘、弹基本概念 弹 – 由于物体的弹性作用使之射出去。
粘 – 象糨糊或胶水等所具有的、能使一个
物质附着在另一个物体上的性质。

粘弹性力学理论在复杂材料中的应用

粘弹性力学理论在复杂材料中的应用

粘弹性力学理论在复杂材料中的应用背景介绍:复杂材料是指由多种不同的物质组成的材料,如聚合物复合材料、软物质等。

这些材料具有复杂的结构和性质,因此需要运用粘弹性力学理论来描述其行为。

粘弹性力学理论是研究物质在应力作用下的变形和流动行为的一门学科,对于理解和预测复杂材料的性能至关重要。

一、粘弹性力学理论的基本原理粘弹性力学理论是基于固体力学和流变学的基础上发展起来的。

它考虑了物质的弹性和黏性特性,能够描述物质在短时间内的弹性变形和长时间内的黏性流动。

在复杂材料中,由于不同组分之间的相互作用,物质的变形行为往往同时具有弹性和黏性特征,因此粘弹性力学理论非常适用于复杂材料的研究。

二、粘弹性力学理论在聚合物复合材料中的应用聚合物复合材料是由聚合物基体和填充物组成的材料,具有轻质、高强度和良好的耐腐蚀性能。

然而,由于聚合物复合材料的结构复杂性,其力学行为往往难以用传统的弹性力学理论来描述。

粘弹性力学理论能够考虑聚合物基体的弹性行为以及填充物的黏性流动,从而更准确地预测材料的力学性能。

例如,在聚合物复合材料的设计中,可以利用粘弹性力学理论来优化填充物的含量和分布,从而提高材料的强度和韧性。

三、粘弹性力学理论在软物质中的应用软物质是一类具有高度可变形性和可调控性质的材料,如凝胶、液晶等。

这些材料的力学行为常常呈现出非线性和时间依赖性,传统的弹性力学理论无法很好地描述这些特性。

粘弹性力学理论可以考虑软物质的非线性和时间依赖性,通过引入粘弹性模型来描述材料的变形和流动行为。

例如,在凝胶材料的研究中,可以利用粘弹性力学理论来解释材料的弹性模量和黏性损失模量的变化规律,从而揭示凝胶的微观结构和宏观性能之间的关系。

四、粘弹性力学理论的发展趋势随着材料科学和工程的发展,复杂材料的研究变得越来越重要。

粘弹性力学理论作为一种能够描述复杂材料行为的理论模型,将在未来得到更广泛的应用。

未来的研究方向包括进一步完善粘弹性力学理论,提高模型的准确性和适用性;开发新的实验技术和数值模拟方法,以验证和应用粘弹性力学理论;探索粘弹性力学理论在生物医学领域的应用,如组织工程和药物释放等。

粘弹性

粘弹性

外力的方向运动以减小或者消除内部应力,如果T很高(>>Tg),链运动摩擦
阻力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段 运动能力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围
内应力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
21
第8章 聚合物的粘弹性
0
玻璃态 高弹态 粘流态 t
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
33
第8章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
27
第8章 聚合物的粘弹性
③滞后现象与哪些因素有关?
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温度很低, 也无滞后.在Tg附近的温度下,链段既可运动又不太容易,此 刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞 后现象很小. 外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象.
外力作用频率很高时,链段根本来不及运动,聚合物好像 一块刚性的材料,滞后很小
28
第8章 聚合物的粘弹性
2.内耗:
①内耗产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
如果形变的变化跟不上应力的变化,发生滞后现象,则每 一次循环变化就会有功的消耗(热能),称为力学损耗,也叫内 耗. 外力对体系所做的功:一方面用来改变链段的构象(产生 形变),另一方面提供链段运动时克服内摩擦阻力所需要的能量 .

第七章粘弹性

第七章粘弹性

粘弹区
lgωg
lgω
温度谱 动态力学图谱
频率谱
粘弹性的力学模型
1、Maxwell模型
线性高聚物的应力松弛
虎克弹簧
(t)
0
σ1=Eε 1
牛顿粘壶
2

d2
dt
σ
t
Maxwell模型的应力松弛曲线
如果以恒定的σ作用于模型,
弹簧与粘壶受力相同: σ= σ1= σ2 形变应为两者之和: ε =ε1 + ε2
不同材料在恒应力作用下形变与时间的关系
因此高分子的形变行为是与时间有关的粘性和弹性的组合
粘弹性——外力作用下,高聚物材料的形变性质兼具 固体弹性和液体粘性的特征,其现象表现为 力学性质随时间而变化的力学松弛现象。
所以高聚物常称为粘弹性材料,这是聚合物材料的 又一重要特征。
高聚物力学性质随时间而变化的现象称为 力学松弛或粘弹现象
IIR: 侧基-CH3,数目多,动态下内摩擦阻力 大, tgδ大
tgδ由小到大的顺序: BR< NR< SBR< NBR <IIR
温度的影响: (固定频率下)
T<Tg: Tg以下,形变主要 由键长、键角的变化引起, 形变速率快,几乎完全跟得上应力的变化,tgδ 小
T≈Tg: Tg附近时,链段开始运动,而体系粘度很大, 链段运动很难,内摩擦阻力大,形变显著落后 于应力的变化, tgδ 大(转变区)
(t) (1 t / ) t
e 1
2
3
E E 1
2
3
2、应力松弛
所谓应力松弛,就是在恒定温度和形变保持不变的情况下,高 聚物内部的应力随时间增加而逐渐衰减的现象。
一个问题的两个方面, 都反映高分子内部分子的三种运动情况 不平衡构象到平衡构象

7 粘弹性

7 粘弹性
图7

t
18
第7章 聚合物的黏弹性
2、应力松弛 Stress Relaxation
• 在恒定温度和形变下,维持此形变所需的应力随时间增加而逐渐衰减
0e

0
t
松弛时间 交联高分子 应力衰减至某一平衡值
Crosslinked polymer
Linear polymer
0
t
未交联高分子 应力最终衰减至零
4
第7章 聚合物的黏弹性
5. 力学松弛 聚合物的力学性质随时间变化的现象,叫力学松弛。 包括蠕变及其回复,应力松弛和动态力学实验等。 蠕变 静态的黏弹性 力学松弛 动态黏弹性 力学损耗(内耗)
5
应力松弛 滞后现象
第7章 聚合物的黏弹性
二、静态黏弹性 应力或应变恒定,不同时间时,聚合物材料所表现出来 的黏弹现象。
恒值 (t>t2)

t1
t2
t
3-----本体粘度
分子间滑移,不可恢复
11
图3 理想粘性流动蠕变
第7章 聚合物的黏弹性
当聚合物受力时,以上三种形变同时发生,聚合物的总形变 方程:
2+3 1
1 2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
32
tanδ由小到大的顺序:
第7章 聚合物的黏弹性
内耗受温度影响较大
Tg以下,高聚物受外力作用后形变很小, 仅键长、键角变化,速度快,几乎跟得上 应力变化,内耗小
Tg Tf
T Tan
温度升高,高分子向高弹态过渡。链段开始运动,而体系粘度还很大, 链段运动时受到摩擦阻力比较大,高弹形变显著落后于应力的变化,内 耗也大 温度进一步升高,链段运动比较自由,内耗变小 因此,在玻璃化转变区域出现内耗峰 温度继续升高,高分子向粘流态过渡。由于分之间互相滑移,内耗急剧 增加

粘弹性流体力学的理论与实验研究

粘弹性流体力学的理论与实验研究

粘弹性流体力学的理论与实验研究引言粘弹性流体力学是研究流体在同时具有粘性和弹性特性时的行为的学科。

这一领域的研究在多个领域具有重要的应用,包括材料科学、生物医学以及地球科学等领域。

本文将深入探讨粘弹性流体力学的理论基础,并介绍一些经典的实验研究。

理论基础粘弹性流体的概念粘弹性流体是指既具有粘性又具有弹性的液体或软固体。

粘性是指流体内部分子之间相互摩擦的现象,而弹性是指流体内部分子在外力作用下出现回弹的现象。

粘弹性流体的宏观性质在很大程度上取决于物质的微观结构与分子间力的相互作用。

粘弹性流体的模型粘弹性流体的模型通常基于两种基本模型:弹性体模型和粘性流体模型。

弹性体模型可以用弹簧和阻尼器串联的方式来描述,而粘性流体模型则可以用牛顿黏滞定律来表示。

实际的粘弹性流体通常需要综合考虑这两种模型。

粘弹性流体的本构方程粘弹性流体的本构方程用于描述物质的应力-应变关系。

最常用的本构方程是Maxwell模型和Kelvin模型。

Maxwell模型将弹性元素和粘性元素串联起来,可以较好地描述物质的粘弹性行为。

而Kelvin模型通过并联弹性元素和粘性元素来描述物质的行为。

粘弹性流体的流变特性粘弹性流体的流变特性包括黏度、屈服应力、流变曲线等。

黏度是指流体流动时所表现出的阻力大小,是刻画流体流动难易程度的物理量。

屈服应力是指流体在外力作用下开始产生可观测的流动行为所需要的最小应力。

流变曲线则是描述流体在剪切应力施加下产生的剪切应变与时间的关系。

实验研究粘弹性流体的流变性能测试粘弹性流体的流变性能可以通过实验测试来获得。

常见的实验方法有旋转粘度计法、振荡剪切法、迎风试验法等。

旋转粘度计法是通过测量粘弹性流体在旋转圆盘上产生的剪切应力与剪切速率的关系来确定其黏度。

振荡剪切法则是通过频率和振幅的变化来研究粘弹性流体的流变特性。

迎风试验法则是在流体流动中施加外界气流压力来研究粘弹性流体的变形和流动行为。

粘弹性流体的微观结构表征粘弹性流体的微观结构对其宏观行为具有重要影响。

《高分子物理》课件-第七章粘弹性

《高分子物理》课件-第七章粘弹性

第7 章聚合物的粘弹性形变对时间不存在依赖性εσE =虎克定律理想弹性体外力除去后完全不回复dt d εηγησ==.牛顿定律理想粘性体弹性与粘性弹性粘性储能性可逆性σ与ε的关系与t 关系瞬时性依时性储存耗散回复永久形变εσE =dt d εηγησ==.虎克固体牛顿流体粘弹性力学性质兼具有不可恢复的永久形变和可恢复的弹性形变小分子液体–粘性小分子固体–弹性在时间内,任何物体都是弹性体在时间内,任何物体都是粘性体在的时间范围内,任何物体都是粘弹体超短超长一定高分子材料具有显著的粘弹性粘弹性分类静态粘弹性动态粘弹性蠕变、应力松弛滞后、内耗7.1 粘弹性现象7.1.1 蠕变(creep)在一定的温度下,软质PVC丝钩一定的砝码,会慢慢伸长蠕变:指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象蠕变反映了材料的尺寸稳定性及长期负荷能力从分子运动和变化的角度分析线性PVC的形变—时间曲线,除去外力后,回缩曲线?11E σε=1ε1t 2t t键长和键角发生变化引起,形变量很小,瞬间响应σ:应力E 1:普弹形变模量1.普弹形变链段运动使分子链逐渐伸展发生构象变化引起τ:松弛时间,与链段运动的粘度η2和高弹模量E 2有关,τ=η2/ E 2)1(/22τσεt eE --=2ε1t t2t 2.高弹形变3ε2t 1t t外力作用造成分子间的相对滑移(线型高聚物)t33ησε=η3——本体粘度3.粘性流动t eE E t t 3/21321)1()(ησσσεεεετ+-+=++=-线型高聚物的蠕变曲线总应变交联聚合物的蠕变曲线1.由于分子链间化学键的键合,分子链不能相对滑移,在外力作用下不产生粘性流动,蠕变趋于一定值2. 无粘性流动部分,能完全回复T<T g 时,主要是(),T>T g 时,主要是()A ε1B ε2C ε3三种形变的相对比例依具体条件不同而不同下列情况那种形变所占比例大?A B聚合物蠕变的危害性蠕变降低了聚合物的尺寸稳定性抗蠕变性能低不能用作工程塑料如:PTFE不能直接用作有固定尺寸的材料硬PVC抗蚀性好,可作化工管道,但易蠕变影响蠕变的因素1.温度2.外力3.分子结构蠕变与T,外力的关系温度外力蠕变T过低外力过小T过高外力过大T g附近适当外力很小很慢,不明显很快,不明显明显(链段能够缓慢运动)23℃时几种高聚物蠕变性能10002000(%)小时2.01.51.00.512345t链的柔顺性主链含芳杂环的刚性高聚物,抗蠕变性能较好12345聚苯醚PCABS(耐热)POM尼龙如何防止蠕变?◆交联橡胶通过硫化来防止由蠕变产生不可逆的形变◆结晶微晶体可起到类似交联的作用◆提高分子间作用力7.1.2 应力松弛(stress relaxation)在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象应力松弛的本质加力链段运动使分子链间相对位置的变化分子重排,以分子运动来耗散能量,从而维持一定形变所需要的力逐渐减小交联聚合物和线形聚合物的应力松弛t交联线性高聚物的应力松弛曲线t不同温度下的应力松弛曲线应力松驰与温度的关系温度过高应力松驰很快温度过低内摩擦力很大,应力松驰极慢T g 附近应力松驰最为明显123应力松弛的应用对密封制件,应力松弛行为决定其使用寿命高分子制件加工中,应力松弛行为决定残余应力的大小不变的量变化的量蠕变应力松弛蠕变与应力松弛比较温度力形变根本原因高分子链的构象重排和分子链滑移应力温度形变动态粘弹性在交变应力或交变应变作用下材料的力学行为σωtπ2πεωtδεωtδ正交变化的应力:t sin )t (0ωσσ=无相位差,无能量损耗理想弹性体tsin )t (0ωεε=有相位差,功全部损耗成热理想粘性液体)2-t sin( )t (0πωεε=相位差δ,损耗部分能量)-t sin( )t (0δωεε=聚合物(粘弹性)高聚物在交变应力作用下的应变变化落后于应力变化的现象tt o ωσσsin )(=)sin()(δωεε-=t t o 0<δ<π/2滞后现象原因链段运动时受到内摩擦阻力, 外力变化时,链段运动跟不上外力的变化内摩擦阻力越大,δ 也就越大,滞后现象越严重外力对体系做的功每次形变所作的功= 恢复形变时所作的功无滞后时没有功的消耗每一次循环变化会有功的消耗,称为内耗有滞后时产生形变提供链段运动时克服内摩擦阻力所需要的能量滞后现象的危害σεσ0ε1拉伸硫化橡胶拉伸—回缩应力应变曲线拉伸曲线下面积为外力对橡胶所作的功回缩曲线下面积为橡胶对外力所作的功滞后环面积越大,损耗越大ε0回缩ε2面积之差损耗的功δεπσsin o o W =∆δ :力学损耗角,常用tanδ来表示内耗大小)]dt-t cos(t)[sin ()t (d )t (W Δ020200δωωεωσεσωπωπ⎰⎰==σεσ0回缩拉伸内耗角δεπσsin o o W =∆δ=0,△W=0,所有能量都以弹性能量的形式存储起来滞后的相角δ决定内耗δ=900,△W→max , 所有能量都耗散掉了滞后和内耗对材料使用的利弊?用作轮胎的橡胶制品要求内耗小(内耗大,回弹性差)隔音材料和吸音材料要求在音频范围内有较大的力学损耗防震材料要求在常温附近有较大的力学损耗温度内耗很高很低T g 附近1. 温度影响滞后和内耗的因素高小小小小大大2.外力变化的频率高聚物的内耗与频率的关系频率 内耗很高很低适中小小小小大大橡胶品种内耗顺丁丁苯丁腈3.内耗与分子结构的关系对于作轮胎的橡胶,则选用哪种?内耗大的橡胶,吸收冲击能量较大,回弹性较差较小较大较大7.1.3 粘弹性参数静态粘弹性蠕变应力松弛模量柔量应力,应变与时间的关系模量、柔量与时间的关系蠕变柔量)()(σεt t D =应力松弛模量)()(εσt t E =tsin (t)0ωεε=t cos sin t sin cos (t)00ωδσωδσσ+=)t sin( (t)0δωσσ+=δεσcos '00=E δεσsin "00=E E ′—储能模量,反映材料形变时的回弹能力(弹性)E ″—耗能模量,反映材料形变时内耗的程度(粘性)1.力学损耗角,tg δ动态粘弹性2.动态模量用复数模量的绝对值表示(绝对模量)2''2'*||E E E E +==通常E ″<<E ′,常直接用E ′作为材料的动态模量。

粘弹性介绍全解

粘弹性介绍全解

小结: 静态粘弹性现象:
蠕变:在一定的温度和恒定应力的作用下,观察 试样的应变随时间增加而增大的现象。
ε



t
静态粘弹性现象:
应力松弛:在一定的温度和恒定应变的作用下, 观察试样的应力随时间增加而衰减的现象。 0 交联聚合物 线形聚合物
t
线性粘弹性模型: Maxwell模型
由一个弹簧与一个粘壶串联组成
Maxwell 模型
一个弹簧与一个粘壶串联组成
E η F
t=0 t=∞
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
Maxwell 模型: 可模拟线形聚合物的应力松驰行为。
7.3.1
Maxwell 模型
理论分析:
E η
∵两元件串联 ∴σ = σE = σV ε = εE + εV
牛顿流体定律的比例常数为粘度η
y
d d x 1 dx ( ) dt dt y y dt
应变速率为速度梯度
x
∴粘度η等于单位速度梯度时的剪切应力,反映了分 子间由于相互作用而产生的流动阻力,即内摩擦力的 大小,单位为Pa·S
弹性
(1)储能:能量储为应变能 (2)可逆:记忆形状 (3)瞬时:不依赖时间 E=E(σ, ε, T) 虎克固体
)
Temperature dependence
分子运动的温度依赖性
Arrhenius Equation 阿累尼乌斯方程
0e
T
E / RT
E - 松弛所需的活化能 activation energy
T

7.2 Creeping and Relaxation 蠕变和应力松弛

聚合物的粘弹性

聚合物的粘弹性

第五章聚合物的粘弹性第一部分主要内容§5.1 粘弹性的三种表现ε.E(结构.T.t)弹性——材料恢复形变的能力,与时间无关。

粘性——阻碍材料产生形变的特性与时间相关。

粘弹性——材料既有弹性,又有粘性。

一、蠕变当T一定,σ一定,观察试样的形变随时间延长而增大的现象。

二、应力松弛T.ε不变,观察关系σ(t)-tσ关系e-τ松弛时间σ(t)= σ0τ/t例:27℃是拉伸某硫化天然胶,拉长一倍是,拉应力7.25ⅹ105N/m2 γ=0.5 k=1.38ⅹ10-23J/k Mn=106g/mol ρ=0.925g/cm3(1) 1 cm3中的网链数及Mc(2)初始杨氏模量及校正后的E(3)拉伸时1cm3中放热解:(1)σ=N1KT(λ-λ-2) → N=)1(2λλσ-KTMc=N N ρ=(2)E=εσ=σσ=Mc RT ρ(1-)2Mn Mc(λ-λ-2)(3) dU=-dW+dQdQ=TdsQ= T Δs=TNK(λ2+λ2-3)三、动态力学性质1. 滞后现象σ(t)= σ0e iwtε(t)= ε0e i(wt-δ)E *=σ(t)/ ε(t)=00εσe i δ=00εσ(cos δ+isin δ)E ’=0εσ cos δ 实部模量,储能(弹性)E ’’=0εσsin δ 虚部模量,损耗(粘性)E *= E ’+i E ’’2. 力学损耗曲线1:拉伸2:回缩3:平衡曲线拉伸时:外力做功 W 1=储能功W+损耗功ΔW 1回缩时: 储能功 W=对外做功W 2+损耗功ΔW 2ΔW=⎰εσd =dt dt d w ⎰/20πεσ=πσ0ε0sin δ=πE ’’ ε02极大储能功 W=21σ0ε0cos δ=21E’ ε02在拉伸压缩过程中最大储能损耗能量= W W ∆=202'2/1"εεπE E =σπE ”/E ’=2πtg δtg δ=E ”/E ’=π21W W∆3.E ’,E ”,tg δ的影响因素a . 与W 的关系W 很小,E’小,E”小,tg δ小W 中:E ’ 小,E ”大,tg δ大W 很大 E ’ 大,E ”小,tg δ趋近于0b . 与聚合物结构的关系如:柔顺性好,W 一定时, E ’ 小,E ” 小,tg δ小刚性大, W 一定时,E ’ 大,E ” 小,tg δ小§5.2 线性粘弹性理论基础线性粘弹性:粘性和弹性线性组合叫线性粘弹性理想弹性E=σ/ε纯粘性η=σ/γ=σ/(d ε/dt)一、Maxwell 模型σ1=E ε1σ2=η(d ε2/dt)σ1=σ2=σε=ε1+ε2d ε/dt= (d ε1/dt)+ (d ε2/dt)=ησσ+dt d E 1即 d ε/dt=ησσ+dt d E 1 M 运动方程d ε/dt=0则dt d E σ1=ησσ(t)=σ0e-t/ττ=η/E二、Kelvin 模型σ1=E ε1σ2=η(d ε2/dt)σ=σ1+σ2ε=ε1=ε 2σ=E 1ε+η(d ε/dt) Kelvin 模型运动方程d ε/dt+(E/η)ε-σ0/η=0ε(t)=)1('/0τσt e E -- τ’=η/E 推迟时间u(t)= '/1τt e -- 蠕变函数三、四元件模型ε(t)= ε1+ ε2 +ε3=1E σ+t t E ησσ+ψ∝)()(t ψ=1-e -t/τ四、广义模型 :松弛时间谱§6.3 粘弹性两个基本原理一、时—温等效原理log a τ=log(τ/τs )=-c 1(T-Ts)/[c 2+(T-Ts)] (T<Tg+100℃)当Ts=Tg c 1 =17.44 c 2 =51.6Ts=Tg+50℃ c 1 =51.6 c 2 =17.44a τ=τ/τs 移动因子(1)T —t 之间的转换(E η tg δ)log τ- log τs=-C1(T-Ts)/[C2+(T-Ts)]Ts=T-50℃Log a T = log τ1-log τ2若:T=150℃ 对应τ=1s求 Ts=100℃ 对应τs=?已知 T 1=-50℃ T 2=-25℃ T 3= 0℃ T 4= 25℃T 5= 50℃ T 6=75℃ T 7=100℃ T 8=125 ℃求T=25℃主曲线二、Boltzmann 叠加原理)()()(2211u t D u t D t -+-=σσεητ1'/1211)1(11)(u t e E E u t D u t -+-+=---ητ2'/2212)1(11)(u t e E E u t D u t -+-+=---⎰∞--=ii i u d u t D t )()()(σε附表:普弹性、理想高弹性和粘弹性的比较三种描述线性高聚物粘弹性方法的比较第二部分教学要求本章的内容包括:(1)粘弹性的概念、特征、现象(2)线性粘弹性模型(3)玻尔兹曼迭加原理、时-温等效原理及应用难点:(1)动态粘弹性的理解(2)时-温等效原理的理解(3)松弛谱的概念掌握内容:(1)蠕变、应力松弛及动态力学性质的特征、分子运动机理及影响因素;(2)线性粘弹性的Maxwell模型、Keliv模型、三元件模型及四元件模型。

粘弹性理论目录____简介__详

粘弹性理论目录____简介__详
பைடு நூலகம்
粘弹性理论 theory of viscoelasticity 固体力学的一个研究内容。它在考虑材料的弹性性质和粘性性质的基础上,研究材料内部应力和应变的分布规律以及它们和外力之间关系。材料的粘性性质主要表现为材料中的应力和应变率有关。
编辑本段详解
固体力学的一个研究内容。它在考虑材料的弹性性质和粘性性质的基础上,研究材料内部应力和应变的分布规律以及它们和外力之间关系。材料的粘性性质主要表现为材料中的应力和应变率有关。 有不少工程材料,如混凝土、高聚合材料、某些生物组织以及处于高速变形状态的金属材料,既具有弹性性质,又具有粘性性质,这种兼具弹性性质和粘性性质的材料称为粘弹性体。在外力作用下,粘弹性体产生弹性变形,而且变形还随时间而变化,因此用弹性力学方法来研究粘弹性体就不能反映实际情况。粘弹性理论与弹性力学的主要区别在于应力-应变关系不同。因此,粘弹性体的应力-应变关系就成为粘弹性理论的主要研究内容。 通常用服从胡克定律的弹性元件和服从牛顿粘性定律(即应力和应变率成正比)的粘性元件来表征粘弹性体的特性。用这两种元件的不同组合模型可以反映多种复杂粘弹性体的应力-应变关系。 两种最基本的粘弹性体模型是麦克斯韦模型和开尔文模型。前者为弹性元件和粘性元件串联 (图中的a),它的总应变是弹性应变和粘性应变之和,对应的本构方程为:式中夊为应变率,即应变ε对时间的导数;μ为粘性元件的粘性系数;E为弹性元件的弹性模量(见材料的力学性能;σ和懩分别为应力和应力率。后者为弹性元件和粘性元件并联(图中的b),其弹性伸长和粘性伸长相等,而总应力为弹性应力和粘性应力之和,对应的本构方程为: σ=Eε+μ夊。 上述两方程还可推广到复杂应力状态问题。在实际中,常需将多个弹性元件和粘性元件按各种不同形式串联或并联,以描述不同粘弹性体的特性。 粘弹性理论中的几何方程和运动方程与弹性力学完全相同。从理论上说,利用本构方程、运动方程、几何方程、边界条件以及初始条件,可找到粘弹性边值问题的解。在缓慢加载的前提下,如果粘弹性体所受的体积力、表面力和粘弹性体的位移边界条件都可以写成空间和时间的分离变量形式,且全部应力、应变以及它们对时间的各阶导数的初始值都为零,则可利用对时间的拉普拉斯变换,把一个线性粘弹性体的问题化为一个同样形状和大小的线性弹性体的问题。求出后者的解并利用拉普拉斯逆变换,就能得到原粘弹性体问题的解。 各种材料的粘弹性性能,可通过蠕变实验和振动实验加以确定。

粘弹性体的基本理论及应用

粘弹性体的基本理论及应用

粘弹性体的基本理论及应用粘弹性体是一种特殊的材料,具有比普通材料更强的黏附性和弹性,其独特的物理特性使其在工业和生活中有着广泛的应用。

本文将探讨粘弹性体的基本理论和应用。

一、什么是粘弹性体粘弹性体是一种具有粘性和弹性的聚合材料,其弹性随应力变化而产生略微颠簸的行为。

它是由高分子聚合物和半固态物料(如黏土)混合制成的。

这种材料在受力时会有一定程度的弹性,但又具有一定的黏性,可以粘附在其他材料上。

二、粘弹性体的基本理论1. 初始弹性模量初始弹性模量是指在弹性阶段粘弹性体的初始刚度。

粘弹性体在受力时,由于其黏性存在,不会立即表现出完全的弹性。

因此,初始弹性模量是弹性阶段中材料最小的刚度。

2. 最大弹性模量最大弹性模量是在粘弹性体的流变点前所达到的弹性模量的最大值。

当粘弹性体受力达到一定程度时,其开始表现出塑性变形。

此时,粘弹性体的弹性模量会变小,达到一个最小值,即最大弹性模量。

3. 流动点当粘弹性体受力超过最大弹性模量后,就会开始表现出流动性质,此时的受力称为流动点。

粘弹性体在流动点后不再具有弹性,不能恢复到初始状态。

4. 粘度粘度是指粘弹性体在流动时所需要的力量,它是材料流动一个单位长度所需要的应力大小。

粘度决定了粘弹性体的流动性质,不同粘度的粘弹性体具有不同的流动速度。

三、粘弹性体的应用1. 隔振垫粘弹性体可以用于隔振减震。

比如,在机器振动传递到地面时,会产生噪声和振动,影响到人们的生活和健康。

因此,可以使用粘弹性体作为隔振垫来减少这种影响。

粘弹性体的特性可以有效地吸收振动和减少噪声的传播。

2. 医疗材料粘弹性体还可以用于医疗材料。

比如,可以制作出粘弹性体的人工心脏瓣膜,或是用于人工肢体制作的弹性组件。

粘弹性体具有良好的弹性和黏附性能,可以替代传统材料,使植入物更加适合人体。

3. 汽车制造汽车行业中也有粘弹性体的应用,可以用于汽车减震器、座椅和车门等零部件的生产中。

特别是在汽车制造中,粘弹性体可以用于模具制造,以便更好地制造出更具密度的汽车部件。

聚合物的粘弹性

聚合物的粘弹性
20
第7章 聚合物的粘弹性
思考题:
1.交联聚合物的蠕变曲线?
1 t
图7
2.雨衣在墙上为什么越来越长?(增塑PVC) PVC的Tg=80℃,加入增塑剂后,玻璃化温度大大下降, 成为软PVC做雨衣,此时处于高弹态,很容易产生蠕变.
21
第7章 聚合物的粘弹性
(二)应力松弛Stress Relaxation
26
第7章 聚合物的粘弹性
0
2
图10
60Km/h ~300Hz t
t
27
第7章 聚合物的粘弹性
t 0sint t 0sint -
0 某处所受的最大应力 外力变化的角频率 在受到正弦力的作用时应变落后于应力的相位差
问题
对弹性材料:( t) 0 sin wt形变与时间t无关,与应力同相位
力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段运动能
力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围内应力松
弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
23
第7章 聚合物的粘弹性
0
玻璃态
高弹态 粘流态
t
图9 不同温度下的应力松弛曲线
高分子链的构象重排和分子链滑移是导致材料 蠕变和应力松弛的根本原因。
0 0
sin
36
第7章 聚合物的粘弹性
应力的表达式
实数模量是储能模量,虚
(t) 0E'sint 0E''cost 数模量为能量的损耗.
E
E'iE''
0 0
(cos
isin
)
E”
tan E"
E'

第七章 粘弹性-高分子物理

第七章 粘弹性-高分子物理
第7章 聚合物的粘弹性
The Viscoelasticity of Polymers
1
一、粘弹性的基本概念 1.理想弹性固体:受到外力作用形变很小,符合胡克定 律 =E1=D1,E1普弹模量, D1普弹柔量. 特点:受外力作用平衡瞬时达到,除去外力应变立即恢复. 2.理想的粘性液体:符合牛顿流体的流动定律的流体,=
t2 )
3-----本体粘度
12
当聚合物受力时,以上三种形变同时发生聚合物的
总形变方程:
2+3 1
1 2 3
(t) 1 2 3
(1
-t
e
)
t
E1 E2
3
t
图4 线形非晶态聚合物的蠕变及回复曲线
13
蠕变Creep
•加力瞬间,键长、键角立即产生形变,形变直线上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
2.频率很高,链段运动完全跟 不上外力的变化,内耗小,高聚 物呈刚性,玻璃态的力学性质.
3.链段运动跟上、但又不能完 全跟上外力的变化,分子运动 将外力做功部分转化为热能, 将在某一频率出现最大值, 表 现出粘弹性
40
内耗主要存在于交变场中的橡胶制品中,塑料处Tg、Tm以下,损耗小
41
力学松弛——总结 聚合物的力学性质随时间变化的现象,叫力学松弛。 力学性质受到,T, t,的影响, 在不同条件下,可以观察到不同类型的粘弹现象。
42
具体表现: 静态的粘弹性
蠕变:固定和T, 随t增加而逐渐 增大
应力松弛:固定和T, 随t增加而逐 渐衰减
力学松弛 动态粘弹性
滞后现象:在一定温度和和交变应 力下,应变滞后于应力变化.
力学损耗(内耗): 的变化落后于的 变化,发生滞后现象,则每一个循环都 要消耗功,称为.

粘弹性理论初步

粘弹性理论初步

理想弹簧CF一维微分型本构方程【讨论方程时引进的表示材料性能的蠕变函数和松弛函数,一般由准 静态条件下的蠕变和应力松弛实验确定。

这些实验所提供的是从数十秒到 10年左右时间的力学行为数据,而工程上许多材料与结构所受外载荷作用 的时间却很短,或受到随时间交替变化的外部作用。

必须研究材料的动态 力学性能(dynamic mechanical properties 。

】亦 + Pi* + pjb + PO 。

+ q°$ III q 芒 +记作送 P k dt k _送 q k k ,m^ n k=e dt kA dt或= Q 名nd kmd kP = E p )k k ,Q =瓦q kk 出 dt kkz9dt k此即为一般的一维粘弹性微分型本构方程。

Maxwell 、Kelvin 、三参量固体、Burgers 、广义 Maxwell 、Kelvin 链等 模型的本构方程均是上式的特殊化。

Maxwell: +»可=q 神(》= " / =")名(t + 蠕变) 卜(t 匸ESe 」/p1应力松弛])理想粘壶-dt dt dtd dr d 2_____ = ________ r dt dt dtdt描述应力松弛过程:当受到F作用,弹簧瞬时形变,而粘壶由于黏性作用来不及 形变,应力松弛的起始形变由理想弹簧提供, 并使两个元件产生起始应力为 0,随后粘 壶慢慢被拉开,弹簧回缩,形变减小,到总应力为0。

d ; 0 dt1 d 二-d- E 0dt,E dtCT1、Maxwell 模型a粘二匚弹当t =0时产二E;。

,将上式积分匚t二E;°e"形变固定时应力随时间的变化•二一ECJ CT—t/・二E。

/2、Kelvin 模型dt3、三参量固体模型E1E2 E2 1 二(E i E2X 厂蠕变柔量:表示单位应力作用下随时间变化的应变值,一般是随时间而单调增加的函数;2 Y tKo松弛模量:表示单位应变作用下的应力响应,是随时间增加而减小的函数。

基于粘弹性理论的土壤力学性质研究

基于粘弹性理论的土壤力学性质研究

基于粘弹性理论的土壤力学性质研究随着人类社会的发展,土地资源的开发利用越来越受到关注。

在土地资源的利用过程中,土壤力学性质的研究是至关重要的一项工作。

基于粘弹性理论的土壤力学性质研究是目前较为热门和前沿的研究方向之一。

本文从粘弹性理论的基础入手,探讨其在土壤力学性质研究中的运用。

一、粘弹性理论基础粘弹性理论是由法国科学家弗拉纳根(Francis Crick)、塞尔(F.K. Searle)和贝尔纳地(Bernard Bellin)等人提出的。

该理论是一种能够描述物质在应力下的变形行为的力学理论,可以推导出各种材料的应变-应力关系、静态和动态弹性模量等力学参数。

在粘弹性理论中,通过推导了弹性变形和黏性变形两个方案,把材料的应变行为分解为一个弹性分量和一个黏性分量两部分。

弹性分量是由物体在受压时发生的瞬时应变所产生的反作用力引起的,黏性分量则是由物料在长时间受力下逐渐变形而导致的。

二、土壤力学性质研究中的运用基于粘弹性理论的土壤力学性质研究在土木工程、农业、林业和地质勘探等领域中得到了广泛的应用。

在土木工程领域中,通过对不同类型土壤的力学性质研究,可以为建筑物、道路和桥梁的设计提供重要的参考依据。

在农业领域中,通过对土壤的物理和力学性质进行研究,可以为农作物的种植和土壤保育提供科学的依据。

在林业和地质勘探领域中,通过对土壤的物理和力学性质进行分析,可以更好地了解土壤层的构造和形成原因,并为林木生长研究和矿产资源勘探提供必要的资料。

三、影响土壤力学性质的因素土壤的力学性质是多种因素综合作用的结果。

其中影响土壤力学性质的因素主要包括土壤颗粒的组成结构、土壤的水分含量、温度、用于施工的载荷等。

在土壤颗粒的组成结构方面,种类、大小和形状等都会对土壤力学性质产生影响。

在土壤的水分含量方面,不同的含水率会对土壤的压缩、塑性和抗剪强度等性质产生重要的影响。

在土壤的温度方面,温度的变化会导致土壤的强度变化,特别在冰冻融化的过程中,土壤往往会出现迅速变化。

粘弹性介绍全解

粘弹性介绍全解

Maxwell 模型
一个弹簧与一个粘壶串联组成
E η F
t=0 t=∞
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
Maxwell 模型: 可模拟线形聚合物的应力松驰行为。
7.3.1
Maxwell 模型
理论分析:
E η
∵两元件串联 ∴σ = σE = σV ε = εE + εV
7.3 线性粘弹性模型
线性粘弹性:可由服从虎克定律的线性弹性行 为和服从牛顿定律的线性粘性行为的组合来描
述的粘弹性。
模型是唯象的处理
模型由代表理想弹性体的弹簧与代表理想粘性
体的粘壶以不同方式组合而成
E
σ=E·ε
粘壶
dε σ=η· dt
弹簧 理想弹性体
理想粘性体
7.3
线性粘弹性模型
7.3.1
在恒温下施加一定的恒定外力时,材料的 形变随时间而逐渐增大的力学现象。
例如:软质 PVC 丝钩一定的砝码,会 慢慢伸长;解下砝码,丝慢慢回缩。
高聚物蠕变性能反映了材料的尺寸稳定性。
For polymer deformation
高聚物受到外力作用时,以上三种变形是一起发 生材料的,总形变为:
e
1 1 t t / 0[ (1 e ) ] E1 E2
-蠕变回复过程的方程
t
1 注意:对弹性体 E D
(t ) 对粘弹体 E (t ) 0
(t ) D(t ) 0
1 E (t ) D(t )
The shortcoming of Kelvin element
(1) 无法描述聚合物的应力松弛。 Kelvin element 描述的是理想弹性体的应力松弛响应。 (2)不能反映线形聚合物的蠕变,因为线形聚 合物蠕变中有链的质心位移,形变不能完全回 复。

粘弹性的基本概念、分类和实用意义

粘弹性的基本概念、分类和实用意义
力学损耗(内耗)
5
本章的主要内容
内部尺度--弹性和粘性结合
粘 弹
外观表现--4个力学松弛现象

时温等效原理--实用意义, 主曲线,WLF方程
力学模型 描述
为了加深对聚合物粘弹性的理解和掌握
6
二、静态粘弹性 应力和应变恒定,不是时间的函数时,聚合物材料所表
现出来的粘弹现象。
(一)蠕变Creep 1、定义:
2
聚合物:力学行为强烈依赖于温度和外力作用时间 在外力作用下,高分子材料的性质就会介于弹性材料和粘性 材料之间,高分子材料产生形变时应力可同时依赖于应变和 应变速率。 3.粘弹性:聚合物材料组合了固体的弹性和液体的粘性两者的特 征,这种行为叫做粘弹性。粘弹性的表现: 力学松弛 4.线性粘弹性: 组合了服从虎克定律的理想弹性固体的弹性和 服从牛顿流动定律的理想液体的粘性两者的特征,就是线性粘 弹性。
力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围内应力松
弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
22
0
玻璃态
高弹态 粘流态
t
图9 不同温度下的应力松弛曲线
高分子链的构象重排和分子链滑移是导致材料 蠕变和应力松弛的根本原因。
23
三.动态粘弹性Dynamic viscoelasticity 在正弦或其它周期性变化的外力作用下,聚合物粘弹性的表现. 高聚物作为结构材料在实际应用时,往往受到交变力的作 用.如轮胎.
(1)温度:温度升高,蠕变速率增大,蠕变程度变大 因为外力作用下,温度高使分子运动速度加快,松弛加快
(2)外力作用大,蠕变大,蠕变速率高(同于温度的作用)
外温
力度
增升
大高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一维微分型本构方程
【讨论方程时引进的表示材料性能的蠕变函数和松弛函数,一般由准静态条件下的蠕变和应力松弛实验确定。

这些实验所提供的是从数十秒到10年左右时间的力学行为数据,而工程上许多材料与结构所受外载荷作用的时间却很短,或受到随时间交替变化的外部作用。

必须研究材料的动态力学性能(dynamic mechanical properties )。

】 01230123p p p p q q q q σσσσεεεε++++⋅⋅⋅=++++⋅⋅⋅
记作
00
,k k n
m
k
k k k k k d d p q m n dt dt σε
===≥∑∑ 或 P Q σε= 其中微分算子:00
,k k
n
m
k k k k k k d d P p Q q dt dt ====∑∑
此即为一般的一维粘弹性微分型本构方程。

Maxwell 、Kelvin 、三参量固体、Burgers 、广义Maxwell 、Kelvin 链等模型的本构方程均是上式的特殊化。

1111Maxwell: +(/,)p q p E q σσεηη=== ()0
()t t E
σσεη
=
+
蠕变 ()1
/0
=()t p t E e σε-应力松弛
理想弹簧
理想粘壶
ε
σ∙=E dt
d εη
σ=
E
1
ε2
εη
σ
σ
描述应力松弛过程:当受到F 作用,弹簧瞬时形变,而粘壶由于黏性作用来不及形变,应力松弛的起始形变由理想弹簧提供,并使两个元件产生起始应力为0,随后粘壶慢慢被拉开,弹簧回缩,形变减小,到总应力为0。


粘σσσ==dt
d dt d dt d 2
1εεε+=η
σσεεε+=+=dt d E dt d dt d dt d 12
1()E
e E t E t dt E
d dt d E dt
d t η
τεσεση
σ
σ
η
σ
σετ=
===-
==+=-的变化形变固定时应力随时间将上式积分时当/00,,0,
010()()ττεσεσ/0/0
00t t e
E e t t E --===
E
η
1
σ2
σσ
σ
3、三参量固体模型
2
ε1
ε1
E 1
η2
E σ
σ
蠕变柔量:表示单位应力作用下随时间变化的应变值,一般是随时间而单 调增加的函数; 0()()t Y t εσ=
松弛模量:表示单位应变作用下的应力响应,是随时间增加而减小的函数。

dt
d E ε
η
εσ+=σ
ησεηε 1211221)(++=+E E E E E 0
)()(εσt E t =
4、广义Maxwell
i
E i
ηn
E n
η
Boltzmann 叠加原理(线性粘弹性):
原理:聚合物力学松弛行为是其整个历史上诸松弛过程的线性加和的结果。

高聚物的蠕变是其整个负荷历史的函数,每个负荷对高聚物蠕变的贡献是独立的,因而各个负荷的总的效应等于各个负荷效应的加和,最终的形变是各负荷所贡献形变的简单的 利用这个原理,可以根据有限的实验数据来预测高聚物在很宽的负荷范围内的力学性质。

下图为非晶态高聚物(晶态聚合物???)典型的模量曲线和变形曲线,描述了定时条件下模量及变形度的温度相关性。

其中模量的测定方法为静态松弛试验,取松弛10s 后的模量值作为研究对象,即0E(t)/σε= (t=10s)。

①玻璃态
T温度以下曲线基本上是水平的,变形量小,而弹性模量较高,高聚物较刚硬,在
g
处于所谓玻璃态。

此时,物体受力的变形符合于虎克定律,应变与应力成直线比,并在瞬时达到平衡。

这是由于温度较低时,分子动能较小,整个分子链或链段不能发生运动,分子外于“冻结”状态,只有比链段更小的结构部分(链节、侧基、原子等)在其平衡位置附近作小范围的振动。

受外力作用时,链段进行瞬时的微量伸缩和微小的键角变化,外力一经去除,变形旋即消失。

②高弹态(橡胶态)
T温度之后曲线急剧变化,但很快即稳定而趋于水平。

在这个阶段,变形量很大,g
而弹性模量显著降低,外力去除后变形可以回复,弹性是可逆的。

高聚物表现为柔软而富弹性,具有橡胶的特性,处于所谓高弹态或橡胶态。

这是因为温度较高时,分子的动能增大,足以使大分子链段运动,但还不能使整个分子链运动,但分子链的柔性已大大增加,此时分子链呈卷曲状态,这就是高弹态,它是高聚物所独有的状态。

高弹态高聚物受力时,卷曲链沿外力方向逐渐舒展拉直,产生很大的的弹性变形,其宏观弹性变形量可达100%~1000%。

外力去除后分子链又逐渐地回缩到原来的卷曲状态,弹性变形逐渐消失。

由于大分子链的舒展和卷曲需要时间,所以这种高弹性变形的产生和回复不是瞬时完成的,而是随时间逐渐变化。

③粘流态
T后,变形迅速发展,弹性模量再次很快下降,高聚物开始产生粘性流温度高于
f
T后,分子的动能动,处于所谓粘流态,此时变形已变为不可逆。

这是由于温度超过
f
大大增加,不仅使链段运动,而且能使整个分子链运动,因此,受力时极易发生分子链间的相对滑动,产生很大的不可逆的流动变形,出现高聚物的粘性流动。

所以粘流态主要与大分子链的运动有关。

相关文档
最新文档