第一章第二章算法题(精品文档)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4、试编写算法,求一元多项式P n(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。注意:本题中的输入a i(i=0,1,…,n),x和n,输出为P n(x0)。通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递。
(2)通过全局变量隐式传递。
试讨论这两种方法的优缺点,并在本题算法中以你认为较好的一种方式实现输入和输出
【解答】
(1)通过参数表中的参数显式传递
优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。
缺点:形参须与实参对应,且返回值数量有限。
(2)通过全局变量隐式传递
优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗
缺点:函数通用性降低,移植性差
算法如下:通过全局变量隐式传递参数
PolyValue()
{ int i,n;
float x,a[],p;
printf(“\nn=”);
scanf(“%f”,&n);
printf(“\nx=”);
scanf(“%f”,&x);
for(i=0;i scanf(“%f ”,&a[i]); /*执行次数:n次*/ p=a[0]; for(i=1;i<=n;i++) { p=p+a[i]*x; /*执行次数:n次*/ x=x*x;} printf(“%f”,p); } 算法的时间复杂度:T(n)=O(n) 通过参数表中的参数显式传递 float PolyValue(float a[ ], float x, int n) { float p,s; int i; p=x; s=a[0]; for(i=1;i<=n;i++) {s=s+a[i]*p; /*执行次数:n次*/ p=p*x;} return(p); } 算法的时间复杂度:T(n)=O(n) [techer's] #include #define MAXSIZE 10 float pnx(float a[],float x,int n) { int j; float sum=0.0; for(j=n;j>0;j--) /*a[0]=a0,[a1]=a1,...*/ sum=(sum+a[j])*x; sum=sum+a[0]; return(sum); } void main() { int n,i; float a[MAXSIZE],x,result; printf("Input the value of x:\n"); scanf("%f",&x); printf("\n"); printf("Input The n:\n"); scanf("%d",&n); printf("\n"); printf("Input a0,a1,...an:"); for(i=0;i<=n;i++) scanf("%f",&a[i]); printf("\n"); result=pnx(a,x,n); printf("The result is:%f\n",result); } 2.4 已知线性表L递增有序。试写一算法,将X插入到L的适当位置上,以保持线性表L的有序性。Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中 { if(va.length+1>va.listsize) return ERROR; va.length++; for(i=va.length-1;va.elem[i]>x&&i>=0;i--) va.elem[i+1]=va.elem[i]; va.elem[i+1]=x; return OK; }//Insert_SqList [teacher's] int InsList_Sort(SeqList *L,elemtype e) { int i; if(L->last>=MAXSIZE-1) { printf("表已满无法插入!"); return(0); } i=L->last; while((i>=0)&&(e { L->elem[i+1]=L->elem[i]; i--; } L->elem[i+1]=e;/*即使L为空,处理也相同*/ L->last++; return (1); } 2.5 写一算法,从顺序表中删除自第i个元素开始的k个元素。 [提示]:注意检查i和k的合法性。 (集体搬迁,“新房”、“旧房”) < 方法1 > 以待移动元素下标m(“旧房号”)为中心, 计算应移入位置(“新房号”): for ( m= i-1+k; m<= L->last; m++) L->elem[ m-k ] = L->elem[ m ];