(word完整版)数列经典试题(含答案),推荐文档

合集下载

(完整word版)高一数学数列部分经典习题及答案

(完整word版)高一数学数列部分经典习题及答案

.数 列一.数列的概念:(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); (2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);二.等差数列的有关概念:1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。

设{}n a 是等差数列,求证:以b n =na a a n +++Λ21 *n N ∈为通项公式的数列{}nb 为等差数列。

2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。

(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) 3.等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。

(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 三.等差数列的性质:1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(完整版)数学经典例题集锦:数列(含答案)

(完整版)数学经典例题集锦:数列(含答案)

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=Q .(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ1213133312n n n a ---+=++++=L , 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++…12n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-L(4)(2)(28)n =-+-++-L 2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =.(1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n n b a =,求数列}{n b 的前n 项和n T . 解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112, 又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-Q .(2)132n n n n n b a -==⋅, 21123(1)3222n n n T -=++++L231111231(2322222n n n n n T --=+++++L ) ,得2111111(1)232222n n n nT -=++++-L , 111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k =+++L*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-L ,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+L当7n >时,12789n n S b b b b b b '=+++----L L 27121132()2144n S b b b n n =-+++=-+L∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++L 求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-Q 成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-, 11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++L11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312nn n n T +++<<-即当10n =时,5252(2)(3)312,;12312n n n n T +++==-即当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)=21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2nn S 212132122132⨯++⨯+⨯+=Λ,1432212132122121+⨯++⨯+⨯+=n n S Λ,两式相减得:n n n S 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈(1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==Λ21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a nΛ对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==- (2)由(1)得n n n b 212-=, nn n n n T 2122322523211321-+-++++=∴-Λ ① 1132212232252232121+--+-+-+++=n n n n n n n T Λ ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++=ΛΛ1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小 +∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对Λ恒成立记)11()11)(11(121)(21n a a a n n F ++++=Λ,则()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++ΛΛ)(),()1(,0)(n F n F n F n F 即>+∴>Θ是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈. ⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈L ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤Λ时21281029,2n na a a n n n +-=+++=⨯=-L6n ≥时,n n a a a a a a S ---+++=ΛΛ765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++Q , ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+L .2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+Q 的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *.(1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=L 求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。

(完整word版)数列章节课后习题及答案

(完整word版)数列章节课后习题及答案

数列习题及答案详解一、 选择题1.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ). A .30 B .31 C .32 D .33解析 a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31. 答案 B2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ). A .15 B .16 C .49 D .64 解析 由于S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=1适合上式. ∴a n =2n -1,∴a 8=2×8-1=15. 答案 A3.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ).A .31B .32C .33D .34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =32.答案 B4.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2 D.12解析 由题意知:q 3=a 5a 2=18,∴q =12.答案 D5.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ). A .4 B .8 C .16 D .32 解析 由等比数列的性质得:a 2a 6=a 24=16. 答案 C6.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ). A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4D .n 2+n 7.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( ).A .-11B .-8C .5D .11解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=)1(11)1(2151q a q q q a --⋅-- =1-q 51-q 2=-11. 答案 A8.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ).A .120B .70C .75D .100 解析 ∵)2(2)123(+=++=n n n n S n ,S nn =n +2.∴数列⎩⎨⎧⎭⎬⎫S n n 前10项的和为:(1+2+…+10)+20=75.答案 C9.设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( ).A.2]1)1[(--n nB. 2]1)1[(1+--n C. 2]1)1[(+-n D. 2]1)1[(--n解析 因为数列{(-1)n }是首项与公比均为-1的等比数列,所以S n =)1(1])1(1)[1(------n=2]1)1[(--n . 答案 D10.等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q=2.∴S 4=1-241-2=15.答案 C 11.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定解析 10476518218218121932222)(b b b a q a q q a q q a q a q a a a +====≥+=+=+12.已知等差数列{}n a 的前n 项和为)(*∈N n S n ,且7,373=-=S S ,那么数列{}n a 的公差=d ( ) A .1 B .2 C .3 D .4答案 A二、填空题13.若S n =1-2+3-4+…+(-1)n -1·n ,S 50=________. 解析 S 50=1-2+3-4+…+49-50 =(-1)×25=-25. 答案 -2514.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.解析 设{a n }的公差为d ,由S 9=S 4及a 1=1,得9×1+9×82d =4×1+4×32d ,所以d =-16.又a k +a 4=0,所以0)]61)(14(1[)]61)(1(1[=--++--+k ,即k =10.答案 1015.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解析 设竹子从上到下的容积依次为a 1,a 2,…,a 9,由题意可得a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,设等差数列{a n }的公差为d ,则有4a 1+6d =3①,3a 1+21d =4②,由①②可得d=766,a 1=1322,所以a 5=a 1+4d =1322+4×766=6766. 答案 676616. 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥217. 等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案 -2 2n -1-12三、解答题18. 知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列.(1)解 设S n =An 2+Bn +C (A ≠0),则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得:A =2,B =-4,C =0.∴S n =2n 2-4n .(2)证明 当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)] =4n -6.∴a n =4n -6(n ∈N *).当n =1时符合上式,故a n =4n -6, ∴a n +1-a n =4,∴数列{a n }成等差数列.19. 知数列{a n }的前n 项和S n =-n 2+24n (n ∈N *). (1)求{a n }的通项公式;(2)当n 为何值时,S n 达到最大?最大值是多少? 解 (1)n =1时,a 1=S 1=23.n ≥2时,a n =S n -S n -1=-n 2+24n +(n -1)2-24(n -1)=-2n +25.经验证,a 1=23符合a n =-2n +25,∴a n =-2n +25(n ∈N *).(2)法一 ∵S n =-n 2+24n ,∴n =12时,S n 最大且S n =144. 法二 ∵a n =-2n +25,∴a n =-2n +25>0,有n <252.∴a 12>0,a 13<0,故S 12最大,最大值为144.20. d 为非零实数,a n =1n[C 1n d +2C 2n d 2+…+(n -1)C n -1n d n -1+n C n n d n ](n ∈N *). (1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由; (2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n . 解 (1)由已知可得a 1=d ,a 2=d (1+d ),a 3=d (1+d )2.当n ≥2,k ≥1时,k nC k n =C k -1n -1,因此 a n =∑n k =1k n C k n d k =∑n k =1C k -1n -1d k =d ∑n -1k =0C k n -1d k =d (d +1)n -1. 由此可见,当d ≠-1时,{a n }是以d 为首项,d +1为公比的等比数列; 当d =-1时,a 1=-1,a n =0(n ≥2),此时{a n }不是等比数列.(2)由(1)可知,a n =d (d +1)n -1,从而b n =nd 2(d +1)n -1S n =d 2[1+2(d +1)+3(d +1)2+…+(n -1)(d +1)n -2+n (d +1)n -1].① 当d =-1时,S n =d 2=1.当d ≠-1时,①式两边同乘d +1得(d +1)S n =d 2[(d +1)+2(d +1)2+…+(n -1)(d +1)n -1+n (d +1)n ].② ①,②式相减可得-dS n =d 2[1+(d +1)+(d +1)2+…+(d +1)n -1-n (d +1)n ]=⎥⎦⎤⎢⎣⎡+--+n n d n d d d )1(1)1(2.化简即得S n =(d +1)n (nd -1)+1.综上,S n =(d +1)n (nd -1)+1.21. 知数列{a n }是首项为a 1=14,公比q =14的等比数列,设n n a b 41log 32=+ (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .[尝试解答] (1)由题意,知a n =⎝⎛⎭⎫14n(n ∈N *), 又2log 341-=n n a b ,故b n =3n -2(n ∈N *).(2)由(1),知a n =⎝⎛⎭⎫14n,b n =3n -2(n ∈N *),∴c n =(3n -2)×⎝⎛⎭⎫14n (n ∈N *). ∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -5)×⎝⎛⎭⎫14n -1+(3n -2)×⎝⎛⎭⎫14n , 于是14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, 两式相减,得 34S n =14+3⎣⎡⎦⎤⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -(3n -2)×⎝⎛⎭⎫14n +1=12-(3n +2)×⎝⎛⎭⎫14n +1, ∴S n =23-3n +23×⎝⎛⎭⎫14n(n ∈N *). 22. 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n}是首项为1,公比为3的等比数列,∴a n=3n-1.(2)设{b n}的公差为d,由T3=15,b1+b2+b3=15,可得b2=5,故可设b1=5-d,b3=5+d,又a1=1,a2=3,a3=9,由题意可得(5-d+1)(5+d+9)=(5+3)2,解得d1=2,d2=-10.∵等差数列{b n}的各项为正,∴d>0,∴d=2,b1=3,∴T n=3n+n n-12×2=n2+2n.。

(word完整版)历年数列高考题及答案

(word完整版)历年数列高考题及答案

1. (福建卷)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .642. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .233. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )1894. (全国卷II ) 如果数列{}n a是等差数列,则( )(A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( )(A)1845a a a a >(B) 1845a a a a <(C) 1845a a a a +>+ (D) 1845a a a a =6. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6707. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。

8. (湖北卷)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .9. (全国卷II ) 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______10. (上海)12、用n 个不同的实数n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。

(word版)高一数学数列部分经典习题及答案

(word版)高一数学数列部分经典习题及答案

..数列一.数列的概念:〔1〕a n n2n(n*),那么在数列{a n}的最大项为__〔答:1〕;156N25〔2〕数列{a n}的通项为a n an ,其中a,b均为正数,那么a n与a n1的大小关系为__〔答:an a n1〕;bn1〔3〕数列{a n}中,a n n2n,且{a n}是递增数列,求实数的取值范围〔答:3〕;二.等差数列的有关概念:1.等差数列的判断方法:定义法a n1a n d(d为常数〕或a n1a n a n a n1(n2)。

设{a n}是等差数列,求证:以b n=a1a2n a n nN*为通项公式的数列{b n}为等差数列。

2.等差数列的通项:a n a1(n1)d或a n a m(n m)d。

(1)等差数列{a n}中,a1030,a2050,那么通项a n〔答:2n10〕;〔2〕首项为-24的等差数列,从第10项起开始为正数,那么公差的取值范围是______〔答:8d3〕33.等差数列的前n和:S n n(a1a n),Sn na1n(n1)d。

22〔1〕数列{a n}中,a n a n11(n2,n N*),a n3,前n项和S n15,求a1,n〔答:a13,n10〕;222〔2〕数列{a n}的前n项和S n12n2{|a n|}的前n项和T n〔答:T n12n n2(n6,n N*)〕. n,求数列n212n72(n6,n N*)三.等差数列的性质:1.当公差d0时,等差数列的通项公式a n a1(n1)d dna1d是关于n的一次函数,且率为公差d;前n和S n na1n(n1)d d n2(a1d)n是关于n的二次函数且常数项为0 .2222.假设公差d0,那么为递增等差数列,假设公差d0,那么为递减等差数列,假设公差d0,那么为常数列。

3.当mn p q时,那么有a m a n a pa q,特别地,当m n2p时,那么有a m a n2a p.〔1〕等差数列{a n}中,S n18,a n a n1a n23,S31,那么n=____〔答:27〕〔2〕在等差数列a n中,a100,a110,且a11|a10|,Sn是其前n项和,那么..A、S1,S2L S10都小于0,S11,S12L都大于0B、S1,S2L S19都小于0,S20,S21L都大于0C、S1,S2L S5都小于0,S6,S7L都大于0D、S1,S2L S20都小于0,S21,S22L都大于0〔答:B〕4.假设{a n}、{b n}是等差数列,{ka n}、{ka n pb n}(k、p是非零常数)、{a pnq}(p,q N*)、S n,S2n S n,S3n S2n,⋯也成等差数列,而{a a n}成等比数列;假设{a n}是等比数列,且a n0,{lg a n}是等差数列.等差数列的前n和25,前2n和100,它的前3n和。

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。

因此,前项和为。

⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。

8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。

1) 求 $a_5$ 和 $a_{10}$。

2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。

考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。

答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。

解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。

2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。

根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。

数列综合练习题(含答案)精选全文

数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。

(6)数列 Word版含答案

(6)数列 Word版含答案

(6)数列1、数列{}n a 中,11a =,以后各项由公式2123...n a a a a n ⋅⋅⋅⋅=给出,则35a a +等于( ) A.259 B.2516 C.6116 D.31152、已知等差数列{}n a ,37810,8a a a +==,则公差d =( ) A .1B .12C .12D .1-3、把数列{21}n +依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数L 循环分为:()()()()()35,79,11,1315,17,19,2123,,,,,()()()()25,2729,31,3335,37,39,4143,,,,L则第104个括号内各数之和为( ) A .2036B .2048C .2060D .20724、在等差数列{}n a 中,810112a a =+,则数列{}n a 的前11项和11S = ( )A. 8B. 16C. 22D. 445、在等差数列{}n a 中,68112a a =+,则数列{}n a 的前7项的和7S =( )A.4B.7C.14D.28 6、已知等差数列{}n a 的前n 项和为n S ,若2614a a +=,则7S =( ) A .13 B .35 C .49D .637、设数列{}n a 是由正数组成的等比数列, n S 为其前n 项和,已知2431,7a a S ==,则5S = ( ) A.152B.314C.334D.1728、中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了( ) A.60里B.48里C.36里D.24里9、已知函数242()445-=-+x f x x x 31(21)2--+x ,则201812019=⎛⎫= ⎪⎝⎭∑k k f ( ) A.0 B.1009 C.2018 D.201910、等差数列{}n a 的首项为2,公差不等于0,且2317a a a =,则数列11{}n n a a +的前2019项和( ) A.10092020B.20194042 C.10094042D.2019202111、若等差数列{}n a 满足7897100,0,a a a a a ++>+<则当n =__________时, {}n a 的前n 项和最大.12、在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =__________. 13、若数列{}n a 的前n 项和为2133n n S a =+,则数列{}n a 的通项公式是n a =__________. 14、在平面直角坐标系xOy 中,已知点()*12,()2i i i i N i A i ⎛⎫+-⋅ ⎝∈⎪⎪⎭,记21221i iA i A A A -+△的面积为i S ,则1ni i S ==∑ 。

(word完整版)数列全部题型归纳(非常全面,经典),推荐文档

(word完整版)数列全部题型归纳(非常全面,经典),推荐文档

数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,211n n a a -=+(,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。

(完整版)数列例题(含答案)

(完整版)数列例题(含答案)

1.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①再由S4=4S2,得,即d=2a1②联立①、②得a1=1,d=2.所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)把a n=2n﹣1代入,得,则.所以b1=T1=λ﹣1,当n≥2时,=.所以,.R n=c1+c2+…+c n=③④③﹣④得:=所以;所以数列{c n}的前n项和.2.等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.3.已知数列{log2(a n﹣1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明++…+<1.【解答】(I)解:设等差数列{log2(a n﹣1)}的公差为d.由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.所以log2(a n﹣1)=1+(n﹣1)×1=n,即a n=2n+1.(II)证明:因为==,所以++…+=+++…+==1﹣<1,即得证.4.已知{a n}是正数组成的数列,a1=1,且点(,a n+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2an,求证:b n•b n+2<b n+12.【解答】解:解法一:(Ⅰ)由已知得a n+1=a n+1、即a n+1﹣a n=1,又a1=1,所以数列{a n}是以1为首项,公差为1的等差数列.故a n=1+(n﹣1)×1=n.(Ⅱ)由(Ⅰ)知:a n=n从而b n+1﹣b n=2n.b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=2n﹣1+2n﹣2+…+2+1=∵b n•b n+2﹣b n+12=(2n﹣1)(2n+2﹣1)﹣(2n+1﹣1)2=(22n+2﹣2n﹣2n+2+1)﹣(22n+2﹣2•2n+1+1)=﹣2n<0∴b n•b n+2<b n+12解法二:(Ⅰ)同解法一.(Ⅱ)∵b2=1b n•b n+2﹣b n+12=(b n+1﹣2n)(b n+1+2n+1)﹣b n+12=2n+1•bn+1﹣2n•bn+1﹣2n•2n+1=2n(b n+1﹣2n+1)=2n(b n+2n﹣2n+1)=2n(b n﹣2n)=…=2n(b1﹣2)=﹣2n<0∴b n•b n+2<b n+125.已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等6.设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解答】解:(1)设等差数列{a n}的公差为d.由已知得即解得.故a n=2n﹣1,S n=n2(2)由(1)知.要使b1,b2,b m成等差数列,必须2b2=b1+b m,即,(8分).移项得:=﹣=,整理得,因为m,t为正整数,所以t只能取2,3,5.当t=2时,m=7;当t=3时,m=5;当t=5时,m=4.故存在正整数t,使得b1,b2,b m成等差数列.7.设{a n}是等差数列,b n=()an.已知b1+b2+b3=,b1b2b3=.求等差数列的通项a n.【解答】解:设等差数列{a n}的公差为d,则a n=a1+(n﹣1)d.∴b1b3=•==b22.由b1b2b3=,得b23=,解得b2=.代入已知条件整理得解这个方程组得b1=2,b3=或b1=,b3=2∴a1=﹣1,d=2或a1=3,d=﹣2.所以,当a1=﹣1,d=2时a n=a1+(n﹣1)d=2n﹣3.当a1=3,d=﹣2时a n=a1+(n﹣1)d=5﹣2n.8.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且S n=1﹣(1)求数列{a n},{b n}的通项公式;(2)记c n=a n b n,求证c n+1≤c n.【解答】解:(1)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差∴a n=a5+(n﹣5)d=2n﹣1.又当n=1时,有b1=S1=1﹣当∴数列{b n}是等比数列,∴(2)由(Ⅰ)知,∴∴c n+1≤c n.9.已知等差数列{a n}的前n项和为S n,S5=35,a5和a7的等差中项为13.(Ⅰ)求a n及S n;(Ⅱ)令(n∈N﹡),求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,因为S5=5a3=35,a5+a7=26,所以,…(2分)解得a1=3,d=2,…(4分)所以a n=3+2(n﹣1)=2n+1;S n=3n+×2=n2+2n.…(6分)(Ⅱ)由(Ⅰ)知a n=2n+1,所以b n==…(8分)=,…(10分)所以T n=.…(12分)10.已知等差数列{a n}是递增数列,且满足a4•a7=15,a3+a8=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(n≥2),b1=,求数列{b n}的前n项和S n.【解答】解:(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2﹣8x+15=0的两根,且a4<a7解得a4=3,a7=5,设数列{a n}的公差为d由.故等差数列{a n}的通项公式为:(2)=又∴=11.设f(x)=x3,等差数列{a n}中a3=7,a1+a2+a3=12,记S n=,令b n=a n S n,数列的前n项和为T n.(Ⅰ)求{a n}的通项公式和S n;(Ⅱ)求证:;(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.【解答】解:(Ⅰ)设数列{a n}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.解得a1=1,d=3∴a n=3n﹣2∵f(x)=x3∴S n==a n+1=3n+1.(Ⅱ)b n=a n S n=(3n﹣2)(3n+1)∴∴(Ⅲ)由(2)知,∴,∵T1,T m,T n成等比数列.∴即当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意;当m=3时,=,n无正整数解;当m=4时,=,n无正整数解;当m=5时,=,n无正整数解;当m=6时,=,n无正整数解;当m≥7时,m2﹣6m﹣1=(m﹣3)2﹣10>0,则,而,所以,此时不存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列.综上,存在正整数m=2,n=16,且1<m<n,使得T1,T m,T n成等比数列.12.已知等差数列{a n}的前n项和为S n=pn2﹣2n+q(p,q∈R),n∈N+.(Ⅰ)求的q值;(Ⅱ)若a1与a5的等差中项为18,b n满足a n=2log2b n,求数列{b n}的前n和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=p﹣2+q当n≥2时,a n=S n﹣S n﹣1=pn2﹣2n+q﹣p(n﹣1)2+2(n﹣1)﹣q=2pn﹣p﹣2∵{a n}是等差数列,a1符合n≥2时,a n的形式,∴p﹣2+q=2p﹣p﹣2,∴q=0(Ⅱ)∵,由题意得a3=18又a3=6p﹣p﹣2,∴6p﹣p﹣2=18,解得p=4∴a n=8n﹣6由a n=2log2b n,得b n=24n﹣3.∴,即{b n}是首项为2,公比为16的等比数列∴数列{b n}的前n项和.13.已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.【解答】解:(I)设公差为d,则有…(2分)解得以a n=3n﹣2.…(4分)(II)…(6分)所以=﹣1…(10分)当且仅当,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.…(12分)14.己知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.【解答】解:(Ⅰ)∵a n+12﹣a n+1a n﹣2a n2=0,∴(a n+1+a n)(a n+1﹣2a n)=0,∵数列{a n}的各项均为正数,∴a n+1+a n>0,∴a n+1﹣2a n=0,即a n+1=2a n,所以数列{a n}是以2为公比的等比数列.∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,∴2a1+8a1=8a1+4,∴a1=2,∴数列{a n}的通项公式a n=2n.(Ⅱ)由(Ⅰ)及b n=得,b n=﹣n•2n,∵S n=b1+b2++b n,∴S n=﹣2﹣2•22﹣3•23﹣4•24﹣﹣n•2n①∴2S n=﹣22﹣2•23﹣3•24﹣4•25﹣﹣(n﹣1)•2n﹣n•2n+1②①﹣②得,S n=2+22+23+24+25++2n﹣n•2n+1=,要使S n+n•2n+1>50成立,只需2n+1﹣2>50成立,即2n+1>52,∴使S n+n•2n+1>50成立的正整数n的最小值为5.15.设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1,数列{b n}满足a1=b1,点P(b n,b n+1)在直线x﹣y+2=0上,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由a n+1=2S n+1可得a n=2S n﹣1+1(n≥2),两式相减得a n+1﹣a n=2a n,a n+1=3a n(n≥2).又a2=2S1+1=3,所以a2=3a1.故{a n}是首项为1,公比为3的等比数列.所以a n=3n﹣1.由点P(b n,b n+1)在直线x﹣y+2=0上,所以b n+1﹣b n=2.则数列{b n}是首项为1,公差为2的等差数列.则b n=1+(n﹣1)•2=2n﹣1(Ⅱ)因为,所以.则,两式相减得:.所以=.。

(完整版)数列测试题及标准答案

(完整版)数列测试题及标准答案

必修5《数列》单元测试卷一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2±4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为 ( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是A B .C . D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为A .6B .8C .10D .12 10、 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( )A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据 1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.参考答案12、3.2n-1 13、51014、n (n+1)+1-2n 15、4n+2 16、495117、d=32,n=5018、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5.19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答 设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n n n a a b c -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。

数列(Word有答案)

数列(Word有答案)

数列(一)选择题1、(2010山东理数)(二)填空题1.(2009山东卷文)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a . 【解析】:设等差数列}{n a 的公差为d ,则由已知得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.【命题立意】:本题考查等差数列的通项公式以及基本计算.(三)解答题1、(07山东理17)设数列{}n a 满足211233333n n na a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S . (I)2112333...3,3n n n a a a a -+++=221231133...3(2),3n n n a a a a n ---+++=≥1113(2).333n n n n a n --=-=≥1(2).3n n a n =≥验证1n =时也满足上式,*1().3n n a n N =∈ (II) 3nn b n =⋅,23132333...3n n S n =⋅+⋅+⋅+⋅231233333n n n S n +-=+++-⋅11332313n n n S n ++--=-⋅-, 111333244n n n n S ++=⋅-⋅+⋅ 2、(07山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=, 即22520q q -+=, 解得12122q q ==,. 由题意得12q q >∴=,.11a ∴=.23413132333...3n n S n +==⋅+⋅+⋅+⋅故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 3.(08山东卷19)。

(word完整版)高中数学数列测试题_附答案与解析

(word完整版)高中数学数列测试题_附答案与解析

强力推荐人教版数学高中必修 5习题第二章数列1.{a n }是首项a i = 1,公差为d = 3的等差数列,如果 a n = 2 005,则序号n 等于().A . 667B . 668C . 669D . 670 2. 在各项都为正数的等比数列{ a n }中,首项a i = 3,前三项和为21,则a 3 + a 4 + a 5=( ).A . 33B . 72C . 84D . 189 3.如果a 1, a 2,…,a 8为各项都大于零的等差数列,公差 d 丰0,则( ). A . a 1a 8 > a 4a 5 B . a 1a 8v a 4a 5 C . a 1 + a 8 v a 4 + a 5 a 1a 8= a 4a 5 4.已知方程 (x 2— 2x + m )( x 2 — 2x + n ) = 0的四个根组成一个首项为的等差数列,则 I m -n 丨等于( A . 1 B .— 45.等比数列{a n }中,a 2= 9, a 5 A . 81B . 1206.若数列{ a n }是等差数列,首项). 3 a 1 > 0, =243,则{a n }的前4项和为(C . 168a 2 003 + a 2 004 > 0, a 2 003 • ).192a 2 004 v 0,则使前n 项和S n >0成立的最大自然数nA . 4 005B . 4 006C . 4 007D .4 008 7.已知等差数列 {a n }的公差为2,若a 1, a 3, a 4成等比数列,则 a 2 =( ).A . — 4B . — 6C . — 8D .—10a 5 &设S n 是等差数列{a n }的前 n 项和,右一=5,则 S =().a 3 9 SA . 1B . — 1C . 2D .丄29.已知数列一1 , a 1, a 2,— 4成等差数列,一 1, b 1, b 2, b 3,- -4成等比数列,则■a ^』的值是(b 2A .-B . — 1C . — 1 或 1D .丄 2 2 2 24).210 .在等差数列{a n }中,a n M 0, a n -1 — a n + a n +1 = 0( n 》2),若 S 2n -1 = 38,贝V n =().C . 10二、填空题111.设f(x) = 一「,利用课本中推导等差数列前n 项和公式的方法,可求得f( — 5) + f( — 4) +…+ f(0) +…+ f(5)2x V2 + f( 6)的值为 _______________________ .12. 已知等比数列{a n }中, (1) 若 a 3 • a 4• a 5 = 8,贝V a 2 ___________________________ • a 3 • a 4 • a 5 • a 6 = .(2) 若 a 1 + a 2= 324, a 3 + a 4= 36,贝U a 5 + a 6= __________________ .(3) _____________________________________________________ 若 S 4= 2, S 8= 6,贝V a 17 + a 18 + aw + a 2o = .14. _________________________________________________________________________ 在等差数列{a n }中,3(a 3+a 5)+ 2(a 7+ a io + a i3)= 24,则此数列前 13项之和为 ____________________________________________ .15. 在等差数列{a n }中,a 5= 3, a 6= — 2,贝U a 4+ a 5+・・・+ _____ a io = .16.设平面内有n 条直线(n 》3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f(n)表示这n条直线交点的个数,则 f(4) = ___________;当n >4时,f(n) = __________ .三、解答题17. (1)已知数列{a n }的前n 项和S n = 3n 2—2n ,求证数列{a n }成等差数列.(2)已知1, 1 , 1成等差数列,求证 山 , 「, S 也成等差数列.a b c a b cB . 20个三SA S间之右一2和00 - 3在为积 乘 的 数个18. 设{a n}是公比为q的等比数列,且a i, a3, a2成等差数列.(1) 求q的值;(2) 设{ b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n》2时,比较S n与b n的大小,并说明理由.n 219. 数列{ a n}的前n项和记为S,已知a i= 1, a n+1= S n(n= 1, 2, 3…).n求证:数列{也}是等比数列.n20. 已知数列{ a n}是首项为a且公比不等于1的等比数列,S n为其前n项和,a1, 2a7, 3a4成等差数列,求证: S6, S12- S6成等比数列.12S3 ,第二章数列参考答案一、选择题1. C解析:由题设,代入通项公式a n= a i + (n—1)d,即2 005= 1 + 3(n —1),二n = 699.2. C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{ a n}的公比为q(q >0),由题意得a i+ a2+ a3 = 21,即a1( 1 + q + q2) = 21,又a1= 3,二1 + q+ q2= 7.解得q = 2或q = —3(不合题意,舍去),二a3 + a4 + a5= a1q2( 1 + q + q2) = 3 X 22x 7= 84.3. B.解析:由a1 + a8 = a4 + a5,「.排除C.又a1 • a8= a1( a1 + 7d) = a12+ 7a1d,a4 • a5= ( a1+ 3d)( a1 + 4d) = a12+ 7a1d + 12d2> a1 • a8.4. C解析:1 1 1 1解法1:设a1= , a2= + d, a3= + 2d, a4= + 3d,而方程x2—2x+ m= 0 中两根之和为2, x2—2x+ n = 0 中4 4 4 4两根之和也为2,.a1 + a2 + a3+ a4= 1 + 6d = 4,.d=丄,a1= 1, a4=-是一个方程的两个根,a1= 3, a3=-是另一个方程的两个根.2 4 4 4 4.—,15分别为m或n,16 16.•I m—n | = 1,故选C.2解法2:设方程的四个根为X1, X2, X3, X4,且X1 + x2= X3+ X4= 2, X1 •x2= m, X3 •X4= n.第4页共9页第7页共9页则X 2 — 7 ,于是可得等差43-35 1 — 3240 2—120.6. B 解析:解法 1:由 a 2 003 + a 2 004 > 0 , a 2 003 • a 2 004V 0,知 a 2 003 和 a 2 004 两项中有一正数一负数,又 则各项总为正数,故 a 2 003 > a 2 004 ,即 a 2 003> 0 , a 2 004V 0.a 1> 0,则公差为负数,否 • S 4 006—4004印+ % 006)24 00a a 2 003+ a 2 004)2S 4 007 -2(a 1 + a 4 007)—4 007 2• 2a 2 004 V 0 ,故4 006为S n >0的最大自然数.选B .解法 2 :由 a 1 > 0 , a 2 003 + a 2 004 > 0 , a 2 003 • a 2 004 V 0, 同 a 2 004 V 0 ,二S 003为S n 中的最大值.T S n 是关于n 的二次函数,如草图所示,•2 003到对称轴的距离比 2 004到对称轴的距离小,• 4-007在对称轴的右侧.2解法1的分析得a 2 003 > 0 ,根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n > 0的最大自然数是4 006 .7. B2第8页共9页由等差数列的性质:若 + s= p+ q,则a + a s= a p+ a q,若设x i为第一项,x2必为第四项, 数列为1 , 3, 5, 7,4 4 4 4._ 7 _ 15•• m —, n —,16 161•I m—n |— _ .25. B解析:T a2—9, a5—243 ,亜—q3—243—27 , a2 9•- q —3 , a1q—9 , a1 —3 ,解析:T {a n}是等差数列,••• a3= a i + 4, a4= a i+ 6,又由a i, a3, a4成等比数列,•(a i+ 4)2= a i( a i + 6),解得a i = —8,•a2= —8 + 2=—6.& A9(a i a g)解析:Sg= 2= 9-a5= 9• 5 = 1 ,•选 A .S5 5(a i a5) 5 a3 5 929. A解析:设d和q分别为公差和公比,则— 4 =— 1 + 3d且—4= ( —1)q4, • d=—1, q2= 2,.a2 a1 _ d _ 1b2 q 210. C解析:T { a n}为等差数列,• a;= a n-1 + a n+1,「. a;= 2a n又a n M0, • a n= 2, {a n}为常数数列,而a n= S2n 1,即2n— 1 = 38= 19,2n 1 2• n= 10.二、填空题11. 3、、2 .1解析:T f(x)=-------- 厂,• f( 1 —x)=2设S= f( —5) + f( —4) +…+ f(0) +…+ f(5) + f(6),则S= f(6) + f(5) +…+ f(0) +…+ f( —4) + f( —5),第9页共9页2第10页共9页••• 2S=[f(6) + f( —5)] + [f(5) + f( —4)] +…+ [f( —5) + f(6)] = 6 .. 2 ,••• S= f( —5) + f( —4) +•••+ f(0) +•••+ f(5) + f(6) = 3 .. 2 .12. (1) 32; (2) 4; (3) 32.解析:(1)由a3 • a5= a:,得a4 = 2,5…a2 • a3 • a4 • a5 • a6= a:= 32.a i a2 324 21(2)2 q2 -,(a a2)q 36 9二a5 + a6= ( a1+ a2)q4= 4.S4= a1+ a2+ a3+ a4=2 4(3)4 q =2,S8= a-i+ a2+ + a8= S4+ S4q•- a17+ a18 + a19 + a20 = S t q16= 32.13. 216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与-,同号,由等比中项的3 21中间数为8 27= 6, 插入的三个数之积为8X 27X 6 = 216.1l3 2 3 214. 26.解析:T a3+ a5= 2a4, a7+ a13= 2a10,--6( a4 + a1o) = 24, a4+ a10= 4,•13[ a1+ a13)= 13( a4+ a10)= 13 4 = 262 2 215. —49.解析:T d = a6 —a5=—5,•- a4 + a5+…+ a10=入a4+ a10)2=7(a5—d+ a5 + 5d)2=7( a5 + 2d)=-49.16. 5, -(n + 1)( n-2).2• f( k) = f(k 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,—1) + (k —1).由f(3) = 2,f(4) = f(3) + 3 = 2+ 3 = 5,f(5) = f( 4) + 4 = 2+ 3 + 4 = 9,f(n) = f(n—1) + (n —1),1相加得f(n) = 2+ 3 + 4+-+ (n—1) = (n+ 1)( n-2).2三、解答题17•分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1) n = 1 时,a1= S1= 3 —2= 1,当n>2 时,a n= S n—S n-1= 3n2—2n —[ 3( n—1) 2—2(n —1)] = 6n—5,n= 1 时,亦满足,二a n= 6n—5( n € N* ).首项a1= 1, a n—a n-1= 6n— 5 —[6(n—1) —5] = 6(常数)(n€ N* ),二数列2n}成等差数列且a1= 1,公差为6.(2)v 1 , 1, 1成等差数列,a b c/. — = 1+ 1化简得2ac= b( a+ c).b a cb +c . a + b bc+ c2+ a2+ ab b(a+ c) + a2+ c2(a+ c)2(a + c)2 a + c+ = = = = = 2 •a c ac ac ac da + c) b2...b+ c , c+a , a + b也成等差数列.a b c18.解:(1)由题设2a3= a1 + a2,即卩2a1q2= a1+ a1q,T a1M o,. 2q2—q —1 = 0,•••q= 1 或一1.2n( n —1) n + 3n(2)右q= 1,则S n= 2n + =2 2S n—b n= S n- 1= (n —1)( n + 2) > 0,故S n> b n.2则S n= 2n + n(n —1) ( —1) = —n + 9n 2 2 4(n —1)( 10—n)°n—b n= S n—1 =故对于n€ N+,当2< n W 9 时,S n>b n ;当n= 10 时,S n= b nn + 219.证明:T a n+ 1= S n+ 1 —S1 , a n +1 = Sn,n•••(n + 2)S n= n(S n +1 —S n),整理得nS n+1= 2(n+ 1) S ,所以色±1 =坐.n + 1 n故{ §!}是以2为公比的等比数列.n变形得(4q3+ 1)( q3—1) = 0, •••q3=—1或q3= 1(舍).412a1(1 q20 .证明:由a i, 2a7, 3a4成等差数列,得4a7= a i+ 3a4,即 4 a1q6= a1+ 3a1q3,S 2S6S sS—1= 一1 q6—1= 1 + q6— 1 =丄&(1 q ) 16 S6&(1 q )S,得旦12S3 S12 &S•12S3, S6, S12—S s成等比数列.;当n > 11 时,S n V b n.a1(1 q6)312a1(1 q )1 q3121 ;;16。

(word完整版)历年高考真题汇编数列,推荐文档

(word完整版)历年高考真题汇编数列,推荐文档
历年高考真题汇编数列(含)
、(年新课标卷文)
已知等比数列{an}
中,
a1
1 3
,公比
q
1 3

()
Sn
为{an}
的前项和,证明:
Sn
1 an 2
()设 bn log3 a1 log3 a2 log3 an ,求数列{bn}的通项公式.
解:(Ⅰ)因为 an
1 (1)n1 33
1 3n
.
Sn
1 (1 1 ) 3 3n
①②得
(1 22 ) Sn 2 23 25 22n1 n 22n1 。

Sn
1 [(3n 9
1)22n1
2]
、(年全国新课标卷文)
设等差数列an 满足 a3 5 , a10 9 。
(Ⅰ)求 an 的通项公式;
(Ⅱ)求an的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值。
解:()由 ()及,得
1 1
1 1 3n
2
,
3
所以 Sn
1 an 2
,
(Ⅱ) bn log 3 a1 log 3 a2 log 3 an
所以{bn }的通项公式为 bn
n(n 1) . 2
(1 2 ....... n)
n(n 1) 2
、(全国新课标卷理)
等比数列an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6. ()求数列 an 的通项公式.
1,
Sn a1 a2 an .
2 24
2n
所以,当 n 1时,
3 / 12
Sn 2
a1
a2
2
a1
an an1 an
2n1

(word完整版)高考文科数学数列经典大题训练(附答案)(2021年整理)

(word完整版)高考文科数学数列经典大题训练(附答案)(2021年整理)

(word完整版)高考文科数学数列经典大题训练(附答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高考文科数学数列经典大题训练(附答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高考文科数学数列经典大题训练(附答案)(word版可编辑修改)的全部内容。

1。

(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列;(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式.2.(本小题满分12分)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1。

求数列{}n a 的通项公式。

2。

设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和。

3.设数列{}n a 满足21112,32n n n a a a -+=-=(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S4。

已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.5.已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.1。

(word完整版)高中数学数列专题复习(综合训练篇含答案),推荐文档

(word完整版)高中数学数列专题复习(综合训练篇含答案),推荐文档

、选择题:75 1D真1c1,51.51A .B .C .-D或2222 25•设等比数列9的前n 项和为S n ,若S 63,则辿()S 3 S 678A. 2B.C.——D.33 36.已知等差数列9n 的前n 项的和为Sn ,且S 210 , S 5 55,则过点 P(n,9n )和 Q(n 2,9n 2)(n的直线的一个方向向量的坐标是()1A.(2,:)2B.( 2, 2)C .( 1 2’ 1)D.( 1, 1)7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且1、 1 —、 11成等差数列, 则-—的值为()9b c c 994943434A .B .— C . —D .— 15151515& 已知数列9n 的通项n 1 29nn 211 ,则下列表述正确的是( )3 310. 一系列椭圆都以一定直线 I 为准线,所有椭圆的中心都在定点M ,且点M 到I 的距离为2,若这一系列椭数列综合训练篇在等差数列9n 中,9i398915120 ,则 2999i0的值为() A . 18B .20C . 22D .24等差数列 9满足: 9i938,S 530,若等比数列b n 满足 b i9i ,b 3 94,则 b 5 为()A . 16B .32C . 64D .27等差数列 9n 中©949739, 9396 9927, 则数列9n 的前9项之和S 9等于( )A . 66B .144C . 99D .2971.2.3.4•各项都是正数的等比数列a n1的公比q 丰1,且a 2, — 93 ,2a i 成等差数列,则 埜旦为(94 95A .最大项为B .最大项为C .最大项不存在,最小项为 93D .最大项为 9i ,最小项为949•已知9n 为等差数列, 的n 是( )A . 219i + 93 + 95 =105, 9294B . 20C . 1996 =99.以 S n 表示 9n D . 18的前n 项和,贝y 使得S n 达到最大值3 1 圆的离心率组成以 -为首项,丄为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1 , 2,…,n ),设b n =243(2n+1 ) • 3n — 2• a n ,且 C n =1一 , T n =C 1+C 2+…+C n ,若对任意n € N*,总有T n > — 恒成立,则 m 的最b n b n 1 90大正整数为 A . 3C . 6二、填空题:11.已知等差数列a n前n 项和 S n = — n 2+2tn 12.数列a n 的通项公式是annn2^(n 为奇数),则数列的前2m (m 为正整数)项和是(n 为偶数)13. 已知数列{a n }满足:a 4n 3h a 4n 1, a2na n, n N,则 a2009;a 2014 =14.在数列a n 和b n 中,b n 是a n 与a n+1的等差中项,a 1 = 2且对任意n N 都有 3a n+1 — a n = 0,则数列{b n }的通项公式 ____15.设P 1, P 2,…P n …顺次为函数 y —(X16.已知{a n }是等比数列, S 是其前n 项a 1, a 7, a 4成等差数列,求证:2S 3, S 6, S 12— S 6,成等比数17.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有S np (a n 1), (p 为常数,且像上的点(如p 0, p 1),数列{b n}中有b n 2n q(q为常数)。

最新数列全部试题(含详细答案)(强烈推荐)

最新数列全部试题(含详细答案)(强烈推荐)

等差数列基础过关1.等差数列的定义:-=d(d为常数).2.等差数列的通项公式:⑴ a n=a1+×d⑵ a n=a m+×d3.等差数列的前n项和公式:S n==.4.等差中项:如果a、b、c成等差数列,则b叫做a与c的等差中项,即b=.5.数列{a n}是等差数列的两个充要条件是:⑴数列{a n}的通项公式可写成a n=pn+q(p, q∈R)⑵数列{a n}的前n项和公式可写成S n=an2+bn(a, b∈R)6.等差数列{a n}的两个重要性质:⑴ m, n, p, q∈N*,若m+n=p+q,则.⑵数列{a n}的前n项和为S n,S2n-S n,S3n-S2n成数列.典型例题例1.在等差数列{a n}中,(1)已知a15=10,a45=90,求a60;(2)已知S12=84,S20=460,求S28;(3)已知a 6=10,S 5=5,求a 8和S 8. 解:(1)方法一:⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧=+==+=38382904410141145115d a d a a d a a∴a 60=a 1+59d =130.方法二:3815451545=--=--=a a mn aa d mn,由a n =a m +(n -m)d ⇒a 60=a 45+(60-45)d =90+15×38=130. (2)不妨设S n =An 2+Bn , ∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A∴S n =2n 2-17n∴S 28=2×282-17×28=1092 (3)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a∴15=2)10(61+a 即a 1=-5而d =31616=--aa∴a 8=a 6+2 d =16S 8=442)(881=+a a 变式训练1.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 解:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10=49)2(72)(75104-=+=+d a aa例2. 已知数列{a n }满足a 1=2a ,a n =2a -12-n a a (n≥2).其中a 是不为0的常数,令b n =a a n-1.⑴ 求证:数列{b n }是等差数列. ⑵ 求数列{a n }的通项公式. 解:∵ ⑴ a n =2a -12-n a a (n≥2)∴ b n =)(111112a a a a a a a a a n n n n-=-=---- (n≥2)∴ b n -b n -1=aaaa a a a n n n 11)(111=------ (n≥2)∴ 数列{b n }是公差为a1的等差数列. ⑵ ∵ b 1=aa -11=a 1 故由⑴得:b n =a 1+(n -1)×a 1=a n 即:a a n-1=a n 得:a n =a(1+n1) 变式训练2.已知公比为3的等比数列{}n b 与数列{}n a 满足*,3N n b n a n ∈=,且11=a ,(1)判断{}n a 是何种数列,并给出证明; (2)若11+=n n na a C ,求数列{}n C 的前n 项和解:1)1111333,13n n n n a a a n n n a n b a a b ++-++===∴-=,即{}n a 为等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强力推荐人教版数学高中必修5习题第二章 数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43C .21D . 83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a 的值是( ). A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列.18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2+S n (n =1,2,3…). 求证:数列{nS n }是等比数列.20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.第二章 数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B(第6题)解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A 解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=x x 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21.(2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =n S n 2. 故{nS n }是以2为公比的等比数列. 20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0,∴q 3=-41或q 3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -. ∴12S 3,S 6,S 12-S 6成等比数列.。

相关文档
最新文档