深基坑监测方案(模板)

合集下载

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、工程概述本工程为_____项目,位于_____,占地面积约_____平方米,基坑开挖深度为_____米。

周边环境复杂,临近建筑物、道路及地下管线等。

二、监测目的1、及时掌握基坑在施工过程中的变形情况,确保施工安全。

2、为优化施工方案提供数据支持,保障工程质量。

3、预警可能出现的危险情况,以便采取相应的应急措施。

三、监测内容1、水平位移监测在基坑周边设置观测点,采用全站仪或经纬仪进行定期观测,测量水平位移量。

2、竖向位移监测使用水准仪对观测点进行高程测量,监测基坑的竖向位移情况。

3、深层水平位移监测通过埋设测斜管,利用测斜仪测量不同深度处的水平位移。

4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。

5、地下水位监测设置水位观测井,定期测量地下水位的变化。

6、周边建筑物及道路沉降监测在周边建筑物和道路上设置观测点,监测其沉降情况。

四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,重点部位适当加密。

2、深层水平位移监测点在基坑周边的关键位置埋设测斜管,每边不少于_____个。

3、支撑轴力监测点选择受力较大的支撑构件,每个构件布置_____个轴力计。

4、地下水位监测点在基坑周边均匀布置水位观测井,间距约为_____米。

5、周边建筑物及道路沉降监测点在建筑物角点和道路沿线每隔_____米设置一个观测点。

五、监测频率1、开挖期间每天监测_____次。

2、底板浇筑完成后每_____天监测一次。

3、主体结构施工期间每_____周监测一次。

4、遇到特殊情况(如暴雨、周边荷载突然增大等)加密监测频率。

六、监测方法及仪器1、水平位移监测采用全站仪或经纬仪进行测量,测量精度不低于_____毫米。

2、竖向位移监测使用高精度水准仪,测量精度不低于_____毫米。

3、深层水平位移监测使用测斜仪进行测量,分辨率不低于_____毫米/米。

4、支撑轴力监测采用轴力计进行监测,测量精度不低于_____kN。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

(完整版)深基坑监测方案

(完整版)深基坑监测方案

************工程基坑变形监测方案编制人:审批人:施工单位:**********************2014年10月17日目录1、工程概况 (1)2、监测目的及要求 (1)3、编制依据 (2)4、工程地质概要 (2)5、监测内容 (3)6、监测频率 (7)7、测量主要仪器设备 (9)8、监测工作管理保证监测质量的措施 (9)9、监测人员配备 (14)10、监测资料的提交 (14)基坑变形监测方案1、工程概况:1、工程名称:***************2、工程地点:***************。

3、建设单位:****************4、设计单位:****************5、勘察单位:****************6、监理单位:*****************7、施工单位:*****************8、结构形式:*****************深基坑支护采用如下方案:1.1 基坑支护方案本工程基坑东侧采用钢筋砼排桩支护,北侧采用锚杆加土钉墙支护(详见专项施工方案)。

2、监测目的及要求2.1.监测目的在深基坑开挖的施工过程中,基坑内外的土体由原来的静止土压力状态向主动力土压力状态转变,应力状态的改变引起的变形,即使采取支护措施,一定数量的变形总是难以避免的。

这些变形包括:深基坑坑内土体的隆起,基坑支护结构以及周围土体的沉降和侧向位移。

无论那种位移的量超出了某种容许的范围,都将对基坑支护结构造成危害。

因此,在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体进行综合、系统的监测,才能对工程情况有全面的了解。

确保工程顺利进行。

2.2.深基坑工程监测的要求在深基坑开挖与支护工程中,为满足支护结构及被护土体的稳定性,首先要防止破坏或极限状态发生。

破坏或极限状态主要表现为静力平行的丧失,或支护结构的构造产生破坏。

在破坏前,往往会在基坑侧向的不同部位上出现较多的变形或变形速率明显增大。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。

该方案包括监测目标、监测内容、监测方法和监测频率等方面。

通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。

1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。

具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。

1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。

1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。

1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。

2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。

具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。

2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。

2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。

2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。

3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。

具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。

3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

深基坑工程施工监测方案

深基坑工程施工监测方案

施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。

为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。

通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。

2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。

3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。

4、了解施工降水效果对周围地下水位的影响程度。

5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。

2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。

仪器在检验有效期内作业,并在作业期间进行检查校核。

2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。

仪器最小分辨率为0.01mm 。

仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。

沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。

3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。

2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。

3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中一项重要的地下工程施工活动。

由于基坑较深、土壤条件复杂,施工过程中可能会面临一系列的安全隐患。

为了及时发现和解决问题,确保施工的顺利进行,深基坑施工监测方案应运而生。

二、监测目标1. 地面沉降:监测地表沉降情况,及时评估并控制地面沉降的范围和速度。

2. 地下水位:监测基坑周边地下水位的变化,防止地下水涌入基坑,导致工程事故。

3. 地下管线:监测基坑周边地下管线的位移情况,避免工程施工对管线造成破坏。

4. 地面建筑物:监测基坑施工对周边建筑物的影响,保证周边建筑物的安全。

三、监测方法1. 地面沉降监测:a. 使用全站仪实时监测地面水平和垂直位移的变化。

b. 设置沉降点网格,在关键位置进行连续监测。

c. 编制沉降监测曲线,分析沉降速度和变化趋势。

2. 地下水位监测:a. 安装水位计监测基坑周边地下水位的变化。

b. 建立水位监测井,定期采集地下水位数据。

c. 分析地下水位变动趋势,及时采取排水措施。

3. 地下管线监测:a. 使用高精度测距仪监测地下管线的位移情况。

b. 定期巡检地下管线,发现问题及时修复或迁移。

4. 地面建筑物监测:a. 安装倾斜仪、位移传感器等监测周边建筑物的位移情况。

b. 实时监测建筑物的倾斜角度、位移量等数据。

c. 设立安全预警值,一旦超过预警值,及时采取措施保护建筑物。

四、监测报告1. 每周编制监测报告,详细记录各项监测数据和分析结果。

2. 报告中应包括监测数据的变化曲线图、分析结果及建议措施。

3. 监测报告应及时上报给相关负责人,并定期进行讨论和总结。

五、紧急情况处理1. 当监测数据超过安全范围或出现异常情况时,立即采取紧急措施。

2. 紧急措施包括但不限于停工、加固、排水等,以保证工程的安全进行。

六、总结深基坑施工监测方案是保证施工安全和质量的重要保障措施。

通过合理的监测方法和及时的监测报告,可以及早发现问题、预防事故的发生,保证工程的正常进行。

深基坑监测方案

深基坑监测方案

深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。

下面给出了一个深基坑监测方案的示例,以供参考。

一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。

2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。

3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。

二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。

2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。

3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。

4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。

5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。

三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。

2. 测斜监测:每周监测一次,记录并分析数据。

3. 沉降监测:每周监测一次,记录并分析数据。

4. 建筑物监测:每月监测一次,记录并分析数据。

5. 管线监测:每季度监测一次,记录并分析数据。

四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。

2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。

五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。

2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。

六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。

2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。

七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。

2. 监测费用应计入工程造价。

以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。

深基坑监测方案

深基坑监测方案

深基坑监测方案1. 引言深基坑是为了建造地下结构而挖掘的较大深度的土木工程构筑物。

由于其特殊的性质,必须采取一系列的监测措施来确保工程的安全性和稳定性。

本文档旨在提供一个深基坑监测方案,为工程监理和相关人员提供指导。

2. 监测目标深基坑监测的目标是评估施工过程中的地下水位变化、土体变形、周边地表沉降等影响因素,以及评估施工对周边建筑物和地下管线的影响。

监测数据将用于指导工程施工及紧急干预,并可以作为后续类似工程设计和施工的参考。

3. 监测方案3.1 地下水位监测地下水位监测是深基坑监测中至关重要的一项任务。

主要包括监测地下水位变化、地下水压力变化、渗流速度等参数。

常用的方法包括:•安装水位计和压力计进行实时监测;•对监测数据进行记录和分析,以识别地下水的变化趋势;•根据地下水位和压力变化对施工过程进行调整。

3.2 土体变形监测土体变形监测是深基坑监测的重要内容之一,旨在评估土体的变形程度和趋势。

常用的方法包括:•安装应变计、测斜仪等监测设备,监测土体的变形;•对监测数据进行记录和分析,以识别土体变形的趋势和影响;•根据土体变形情况调整施工方案。

3.3 周边建筑物和地下管线监测深基坑施工往往会对周边的建筑物和地下管线产生影响,因此,周边建筑物和地下管线的监测至关重要。

常用的方法包括:•安装挠度计、位移计等监测设备,监测周边建筑物和地下管线的变形情况;•对监测数据进行记录和分析,以识别建筑物和管线的变形趋势和受力状况;•根据监测结果采取相应措施,防止或减小建筑物和管线的损坏。

4. 监测频率和数据处理4.1 监测频率根据基坑的深度和施工过程的需要,确定监测频率。

一般来说,地下水位和土体变形监测应采用实时或近实时的监测方式,以及较密集的监测点位,以保证数据的准确性和及时性。

周边建筑物和地下管线的监测可以根据实际需要进行定期监测。

4.2 数据处理监测数据的处理分为实时处理和后期分析两个阶段。

实时处理主要用于监测数据的收集、传输和展示,以便及时判断基坑施工的安全性。

深基坑监测施工方案

深基坑监测施工方案

深基坑监测施工方案一、项目背景和目的深基坑施工是工程建设中常见的一项工作,其目的是为了解决工程中的土壤支护问题。

随着城市建设的不断发展,深基坑工程日益增多,为此,需要建立一套科学有效的监测施工方案,以确保施工过程的安全性和顺利性。

二、施工前的准备工作在深基坑监测施工方案中,施工前的准备工作至关重要。

首先,需要对基坑的边界和土质进行详细的调查和评估,以确定土层的强度和稳定性情况。

其次,需要制定具体的监测方案和安全措施,以确保施工过程中的监测工作能够有效进行。

三、设计监测方案1.监测点的确定:根据基坑的大小和形状,需要设计合理的监测点布置方案。

监测点应覆盖基坑的各个关键部位,如坑底、坑壁和坑口等。

同时,根据基坑所在地的土质特点,可以选择不同的监测方法,如测斜、测水位和测应力等。

2.监测仪器的选择和安装:根据监测点的位置和监测参数的要求,需要选择合适的监测仪器,并进行正确的安装和校准。

监测仪器的选择应该考虑到其测量范围、测量精度和使用方便程度等因素。

3.数据采集和处理:监测过程中得到的数据需要进行实时采集和处理。

可以通过传感器和数据采集系统实现数据的实时采集,并利用专业的监测软件对数据进行分析和处理。

同时,需要建立完善的数据备份和存档制度,以保证数据的完整性和可靠性。

四、施工中的监测措施1.现场巡检:深基坑施工过程中,需要安排专人进行现场巡检,以及时发现和处理施工过程中的问题。

巡检的内容包括坑底土层的沉降情况、坑壁的裂缝和滑动情况等。

2.监测数据的实时传输和分析:监测数据应该实时传输到监测中心,并由专业的工程师对数据进行分析和评估。

如果发现数据异常,需要及时采取相应的措施进行处理,以防止事故的发生。

3.应急预案的制定:在施工过程中,可能会遇到突发事件,如降雨、地震等。

为此,需要制定相应的应急预案,以便在紧急情况下能够及时采取措施进行处理,保障工程的安全。

五、监测报告的编制和总结深基坑监测施工结束后,需要编制监测报告,对监测数据进行总结和分析。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。

本文将介绍深基坑施工监测方案。

二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。

三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。

监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。

2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。

水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。

3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。

常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。

这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。

四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。

监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。

五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。

应急措施可能包括停工、加固支护结构、调整施工方案等。

六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。

通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。

在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。

以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。

通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。

深基坑监测专项施工方案

深基坑监测专项施工方案

一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。

基坑周边环境复杂,包括地下管线、周边建筑物等。

为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。

二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。

三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。

四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。

五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。

六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。

七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。

八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。

九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一项关键而复杂的工程活动,为了确保工程质量和安全,监测方案是必不可少的工具。

本方案旨在提供一套可行的深基坑施工监测方案,并详细介绍其实施步骤、监测指标和方法。

一、方案概述深基坑施工监测方案是为了对施工期间的变形和沉降等关键参数进行实时监测,以确保施工的稳定性和安全性。

本方案包括以下几个方面的内容:监测设备的选择与布置、监测指标的确定、监测数据的处理与分析以及预警机制的建立。

二、监测设备的选择与布置1. 监测设备的选择根据基坑的尺寸、地质情况和工程要求,选择适合的监测设备。

通常包括测斜仪、水位计、应变仪、位移传感器等。

这些设备应具备高精度、稳定性强和能够实现远程监测等特点。

2. 监测设备的布置根据基坑的具体情况,合理布置监测设备。

监测点的设置应兼顾效果和经济性,避免出现监测死角。

监测设备的安装应符合相关标准和规范,以确保监测数据的准确性。

三、监测指标的确定1. 变形监测指标根据基坑施工的特点,确定合适的变形监测指标。

通常包括边坡变形、地表沉降、地下水位等参数。

这些指标可以根据不同工程阶段的要求进行细分,以便更加准确地评估基坑的稳定性。

2. 安全监测指标在深基坑施工过程中,安全是至关重要的。

确定合适的安全监测指标,如地表位移、沉降速率、围护结构变形等。

这些指标的监测可以提前发现潜在的安全隐患,及时采取措施避免事故的发生。

四、监测数据的处理与分析1. 数据采集与传输监测设备应具备数据采集、传输和存储的功能。

监测数据应定期采集并传输到数据中心或监测人员处。

数据的传输方式可以采用有线或无线传输,以确保数据的及时性和准确性。

2. 数据处理与分析监测数据应经过专业的数据处理和分析。

数据处理包括数据质量的评估、异常值的排除和数据的校准等。

数据分析则主要通过对监测数据的时序分析、趋势分析和空间分布分析来评估基坑的稳定性。

五、预警机制的建立根据监测指标的设定范围和变化趋势,建立合理的预警机制。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是指在建筑工地中挖掘较深的坑道,以便进行地下工程的施工。

由于深基坑施工涉及到地质条件、土壤力学和安全等多个方面的问题,因此需要制定一套完善的施工监测方案来确保施工的安全和顺利进行。

一、施工前准备在进行深基坑施工前,应先进行详细的工程勘察和地质勘探,以了解地下情况、土层状况和地下水位等信息。

同时,还需要制定相应的施工方案,明确施工过程和所需的监测参数。

二、监测设备和方法1. 地下水位监测为了及时了解地下水位的变化情况,需要在基坑周边设置水位监测点,使用水位计等设备定期进行监测,并记录监测数据。

在施工过程中,需要根据监测结果采取相应的排水措施,以保证基坑内部的稳定。

2. 基坑变形监测为了监测深基坑周边土体的变形情况,可以采用测量仪器和遥感技术。

常用的监测方法包括全站仪测量、激光扫描仪和遥感监测等。

这些监测设备可以实时记录基坑周边土体的位移和形态变化,并生成监测报告。

根据监测结果,可以及时调整施工方案,以减少变形对深基坑安全的影响。

3. 基坑周边建筑物的监测在深基坑施工过程中,需要密切关注周边建筑物的安全情况。

可以采用测量仪器和振动监测系统来监测周边建筑物的振动情况。

通过实时监测周边建筑物的振动变化,可以及时采取相应的措施来防止建筑物的受损。

三、监测结果处理和应对措施1. 数据分析和报告监测期间所采集到的数据需要进行统计和分析,以得出相应的结论。

监测报告应当清晰明了地陈述监测数据、变化趋势及其对施工安全的影响,并提出相应的建议和措施。

2. 应对措施根据监测结果和报告的分析,需要及时采取相应的措施来应对可能出现的问题。

比如,在地下水位上升时,可以增加排水量来维持基坑的稳定;在土体变形较大时,可以增加加固措施或调整施工工艺。

四、监测方案的调整和完善在施工过程中,如果监测结果发现有异常情况或超出了设计预期的范围,应及时调整监测方案,并完善施工措施。

监测方案的调整需要经过工程负责人和专业技术人员的评估,并及时通知相关人员进行相应的操作。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中常见的一种特殊施工方式,涉及到土方开挖、支护、回填等工序。

由于基坑施工对周围环境和结构的安全性有重要影响,因此需要进行监测,及时掌握变形和位移情况,保障施工的安全性和顺利进行。

本方案旨在针对深基坑施工监测的要求和方法,提供合理可行的监测方案。

二、监测内容1. 土壤和地下水的监测:通过测量土壤中土压力、水压力以及地下水位,来了解土壤和地下水的变化情况,评估施工对周围土体和地下水的影响。

2. 支撑结构的监测:监测支撑结构的变形和应力,包括支撑桩、钢支撑和锚杆等,以确保其稳定性和安全性。

3. 建筑物和地下设施的监测:对附近建筑物和地下设施进行监测,避免施工对其产生不可逆影响。

三、监测方法1. 土壤和地下水监测方法:1.1 土压力监测:采用应变计或者测斜仪测量土体中的应变,将其转换为土压力,实时监测土壤的变化情况。

1.2 水压力监测:通过水压力计或者水位计等设备,测量地下水位的变化情况,进而了解地下水对施工的影响。

1.3 地下水位监测:利用水位计等设备,监测地下水位的高度,以评估地下水对基坑的影响。

2. 支撑结构监测方法:2.1 支撑桩监测:采用应变计、倾斜仪等设备监测支撑桩的变形和应力情况,实时掌握其稳定性。

2.2 钢支撑监测:利用应变计、位移传感器等设备,测量钢支撑的变形和应力,确保其安全可靠。

2.3 锚杆监测:通过测量锚杆的应变和位移,了解锚杆的受力状况,防止其因施工造成破坏。

3. 建筑物和地下设施监测方法:3.1 建筑物沉降监测:利用沉降仪或者GNSS测量仪等设备,监测附近建筑物的竖向沉降情况,及时采取措施避免超限。

3.2 地下管线和设施监测:通过地下雷达、红外线相机等设备,了解地下管线和设施的位置和变动情况,避免施工对其造成损害。

四、监测方案的实施和数据处理1. 实施方案:根据深基坑的具体情况,确定监测点的布设位置和数量,选择合适的监测设备和方法,并编制详细的监测计划和方案。

深基坑开挖监测方案

深基坑开挖监测方案

深基坑开挖监测方案深基坑的开挖是一个复杂而风险较高的施工过程,需要进行严格的监测,以确保开挖过程的安全和稳定。

下面是一个针对深基坑开挖的监测方案,旨在为开挖施工提供有力的支持和控制:一、监测参数和目标:1.地表沉降监测地表沉降是深基坑开挖的一种常见影响,因此需要进行实时监测,以掌握沉降速度和变化趋势。

监测目标是确保地表沉降量控制在可接受的范围内,避免对周边建筑和基础设施造成损害。

2.周边建筑物倾斜监测3.地下水位监测4.地面周边土体应力监测二、监测方法和技术:1.地表沉降监测可以采用全站仪、GNSS定位仪等设备对基坑周边地表进行定位测量,通过测量点与基准点的位置变化,计算出地表沉降量。

监测频率可根据施工进展和工况的变化进行调整,以保证监测的及时性和准确性。

2.周边建筑物倾斜监测可以采用倾斜仪、自动水平仪等设备对周边建筑物进行倾斜监测,通过监测倾斜角度和倾斜方向的变化,判断建筑物是否发生倾斜。

监测频率也可根据施工进展和工况的变化进行调整。

3.地下水位监测可以采用水位计、压力传感器等设备对基坑周边的井点和监测孔进行水位监测,及时获取地下水位的变化情况。

监测频率可根据施工进展和工况的变化进行调整。

4.地面周边土体应力监测可以采用应变计、标准屈光仪等设备对周边土体进行应力监测,通过监测应变值和变形分布,判断土体的力学性质和稳定状态。

监测频率可根据施工进展和工况的变化进行调整。

三、监测数据处理与分析:1.监测数据的实时处理和分析监测系统应能够实时采集、处理和分析监测数据,并及时生成监测报告和预警信息。

监测数据的处理和分析应该由专业的技术人员进行,以确保数据的准确性和可靠性。

2.监测数据的比对分析监测数据应与设计值、历史数据进行比对分析,判断开挖过程中是否存在异常情况,并及时采取相应措施进行调整。

比对分析结果可用于优化施工方案和风险预警。

3.监测数据的可视化展示监测数据应以图形、表格等形式进行可视化展示,使监测人员和管理人员能够直观地了解监测结果,并及时做出决策。

深基坑监测工程施工方案

深基坑监测工程施工方案

深基坑监测工程施工方案一、引言深基坑工程是指在建设中需要挖掘深度超过一定限度的地下工程。

由于深基坑施工对周围环境和土地稳定性造成较大影响,因此在施工过程中需要进行全面的监测和控制,以确保工程安全顺利进行。

本文将针对深基坑监测工程的施工方案进行详细介绍。

二、监测方案2.1 监测内容•地表位移监测•地下水位监测•周边建筑物变化监测•地基变位监测2.2 监测设备•测斜仪•水准仪•沉降仪•压力计2.3 监测频率•地表位移:每日监测•地下水位:每周监测•建筑物变化:每月监测•地基变位:每季度监测三、监测方案实施3.1 规划布点根据深基坑的具体位置和周边环境,确定监测设备的布点位置,并进行标记。

3.2 安装监测设备由专业技术人员安装监测设备,确保设备连接正确、稳定。

3.3 数据采集与传输监测设备将采集到的数据传输至监测中心,实现实时监测和数据记录。

3.4 数据分析与报告监测数据进行专业分析,生成监测报告,并根据监测结果调整施工方案。

四、应急预案4.1 突发情况处理一旦发现异常情况,立即启动应急预案,停止施工并通知相关部门。

4.2 紧急措施根据具体情况采取必要的紧急措施,保障工程安全和周边环境稳定。

五、施工总结深基坑监测工程在施工过程中必须严格按照监测方案执行,确保监测数据准确可靠。

只有做好监测工作,才能及时发现问题并采取相应措施,保障深基坑工程的安全顺利进行。

以上是深基坑监测工程施工方案的基本内容,希望对相关工程的实施提供一定的参考和指导。

深基坑工程监测方案

深基坑工程监测方案

深基坑工程监测方案1.监测对象深基坑工程监测的对象主要包括基坑边坡、土体位移、地下水位和地下管道等。

其中,基坑边坡是工程安全的重要因素,需要通过监测来及时掌握其变形情况。

土体位移是判断工程变形和稳定性的重要指标,需要通过监测来评估土体的变形和沉降情况。

地下水位的变化对基坑工程施工和周围建筑物稳定性有直接的影响,需要通过监测来掌握地下水位的变化情况。

地下管道是工程施工过程中需保护的重要设施,需要通过监测来确保其安全。

2.监测方法深基坑工程监测可采用传统的测量方法以及现代化的无线监测系统相结合的方式。

传统测量方法包括全站仪测量、水准测量和位移传感器测量等。

全站仪测量可以实时获取基坑边坡的变形情况;水准测量可以用于监测基坑周围土体的沉降情况;位移传感器测量可以用于监测地下管道的位移情况。

无线监测系统可以实时监测深基坑工程的各种参数,包括土壤应力、地下水位和渗流等。

3.监测措施为确保监测工作能够顺利进行,需要采取一系列措施保障监测设备的正常运行。

首先,选用高质量和可靠性的监测设备,包括高精度的全站仪、精密的水准仪和稳定的位移传感器。

其次,合理布置监测点位,根据深基坑的具体情况和设计要求,确定监测点位的布置位置和数量。

同时,保障监测设备的日常维护和保养工作,定期校准设备并检查设备的工作状态。

最后,及时收集并分析监测数据,建立完整的监测数据库,通过数据分析和模型验证,及时评估工程的安全性和稳定性,并采取相应的措施进行调整和改进。

综上所述,深基坑工程监测方案包括监测对象、监测方法和监测措施三个方面。

通过合理选择监测对象、采用适当的监测方法和实施有效的监测措施,可以确保深基坑工程的安全和稳定,并为深基坑工程的设计和施工提供可靠的数据支持。

深基坑监测方案范文

深基坑监测方案范文

深基坑监测方案范文深基坑是指在建设高层建筑或地下结构时,需要进行深度挖掘并进行边坡支护的工程。

由于挖掘深度大、周围环境复杂,深基坑监测方案的制定及实施对确保施工安全和环境保护至关重要。

以下是一个深基坑监测方案的范文,供参考:一、项目背景和目标深基坑位于xx市中心,总建筑面积为xxx平方米,深度约为xx米。

在施工过程中,需要进行边坡支护、地下水位控制等工作,以确保施工安全和地下水环境不受影响。

本监测方案的目标是全面监测施工期间的基坑变形、地下水位变化等数据,并及时发现和解决潜在问题,确保工程安全顺利进行。

二、监测内容及方法1.基坑变形监测:使用自动全站仪对基坑周边进行定期监测,记录基坑变形情况,包括水平位移、垂直位移、沉降等数据。

2.边坡支护监测:对边坡支护结构进行监测,包括支撑桩、预应力锚杆等的应力和变形情况。

使用应力应变计、变形计等设备进行监测。

3.地下水位监测:在基坑周边埋设多个地下水位监测井,监测地下水位的变化情况。

使用水位计等设备进行监测。

4.地下水质监测:在基坑周边及附近居民区域设置多个地下水质监测点,监测地下水的化学成分和污染物含量。

使用水样采集仪器进行采样分析。

5.周边建筑物振动监测:对周边建筑物进行振动监测,以确保施工过程中对周边环境的影响。

三、监测频率及数据处理1.基坑变形监测:每周进行一次监测,连续监测至基坑施工完成。

数据通过软件处理,生成变形曲线和变形速率等分析结果,并根据阈值设定预警机制。

2.边坡支护监测:每天进行一次监测,连续监测至支撑结构拆除。

数据通过软件处理,生成应力变化曲线和变形曲线,分析结构的安全性。

3.地下水位监测:每天记录一次地下水位数据,连续监测至基坑回填完成。

数据通过软件处理,生成地下水位变化曲线和水位变化趋势分析。

4.地下水质监测:每月进行一次采样分析,连续监测至基坑回填完成。

数据通过实验室分析,生成地下水质的变化情况和趋势分析。

5.周边建筑物振动监测:施工期间持续进行监测,每次施工前后对周边建筑物进行振动监测,记录振动速度、振动加速度等数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXXXXXXXXXXX项目深基坑工程监测方案编制:审核:审定:目录第一章、工程概况 (1)1.项目概况 (1)2.周边环境 (2)3.场地工程地质条件 (2)4.场地水文地质条件 (4)第二章、监测思路 (5)1.监测目的 (5)2.监测依据 (5)3.本项目重点、难点分析及解决措施 (6)第三章、监测技术方案 (7)1.监测项目 (7)2.监测点的布设 (8)3.监测分项技术要求 (9)3.1目测巡视 (9)3.2水平位移监测 (10)3.3竖向位移监测 (10)3.4深层水平位移监测 (11)3.5支撑轴力监测 (12)3.6支护桩内力监测 (13)3.7分层沉降观测 (13)3.8土压力监测 (14)3.9地下水位监测 (14)4.监测仪器 (15)5.监测频率及预警办法 (16)5.1监测频率 (16)5.2监测预警办法 (17)5.3监测进度安排及异常情况下的监测措施 (20)6.监测数据处理与信息反馈 (22)6.1监测成果 (22)6.2监测报告及其编制 (23)6.3监测工作响应流程 (23)第四章、监测工作的组织与项目管理 (24)1.监测机构的设置 (24)2.主要监测人员配备 (25)3.拟建立的组织机构框图 (25)4.质量保证体系框图 (26)第五章、监测应急措施 (27)1.应急组织结构及职责 (27)2.主要风险控制措施 (28)3.应急措施 (29)4.特殊气候应急管理 (30)第六章、附件 (31)监测点布置图 (31)监测所用表格 (31)第一章、工程概况1.项目概况XXXXXXXXXXXXX项目地上有20F购物中心1栋、20F办公楼1栋,24F SOHO(公寓)1栋,5F购物中心楼1栋。

地下为3F地下室及地下车库设备用房组成,深约17.10m,为整体地下室。

该项目总建筑面积405600 m2,其中地上建筑面积215000 m2,地下建筑面积190600 m2。

本拟建工程重要性等级为一级,场地复杂程度等级为二级,地基复杂程度等级为二级,岩土工程勘察等级为甲级,建筑物结构安全等级为一级,基坑重要性等级为一级。

2.周边环境拟建场地位于XXXXXXXXX。

基坑东侧:基坑边线距用地红线7.65m,用地红线外为XXXX路,距XXXXXXX路上正在施工的立交桥约28.22m。

基坑南侧:基坑边线距用地红线4.31m。

基坑西侧:基坑边线距用地红线4.18m。

基坑北侧:用地红线外为XXXX大道道路和轻轨一号线,基坑边线距道路内线7.31m,距轻轨36.23m。

基坑周边环境详情参见“基坑监测布点平面示意图”,基坑周边管线详情参见“基坑周边管线图”。

3.场地工程地质条件(一)、场区地理位置及地形地貌:该项目场区地貌单元属长江左岸冲积一级阶地,场区经拆迁回填整平,现地势较为平坦,地面高程在23.02~24.82m之间,整个场地四周略高,中部偏低。

(二)、场区岩土地层结构及分布:根据野外钻探、原位测试及室内土工试验成果综合分析,按其成因、结构特征及强度将场地内土层划分为4层组9个亚层。

各岩土层的顶板埋深、顶板标高、厚度、空间分布、岩土特征、工程性质详见工程地质剖面图及表2。

24.场地水文地质条件场地地下水类型主要为上层滞水、孔隙承压水及基岩裂隙水。

上层滞水赋存于①层杂填土中,接受大气降水和地表积水垂直及侧向的渗透补给,水位及水量随大气降水的影响而波动。

孔隙承压水主要赋存于场地③-1层粉细砂及③-2层砾砂含卵石层,②-1、②-2、②-3层为相对隔水层,但②-2层下含有粉土、粉砂,呈稍密状,颗粒松散,渗透性较强,且与下部砂土联通,与砂土构成统一的承压含水层,在渗透水流作用下易产生流土、流砂。

与长江有紧密的水力联系,并受其调节和控制。

④层为基岩裂隙水赋存于下伏基岩裂隙中,水量亦小,埋深大,主要来源于基岩上砂土层的承压含水层补给。

基岩裂隙水对基坑开挖影响较小,对钻孔桩施工有影响。

勘察期间测得上层滞水水位埋深 1.20~3.50m之间,相当于标高20.52~22.27m。

根据抽水试验测得静止承压水水位在6.95 m,相当于标高17.35m左右。

根据区域水文资料表明,武汉地区长江一级阶地砂土层中的孔隙承压水水头高度年变化幅度在 3.0~5.0m之间。

孔隙承压水历史最高水位为22.0m。

该场地地下水对混凝土结构、钢筋混凝土结构中的钢筋具微腐蚀性。

依据武汉地区建筑工程经验及本场地水质分析资料综合判定,土对建筑材料具微腐蚀性。

第二章、监测思路1.监测目的(1)促进XXXXXX项目基坑工程施工的系统化、规范化和信息化,最大限度地规避风险,避免人员伤亡和环境损害,降低工程经济和工期损失,为项目建设提供安全保障服务。

(2)在基坑施工期间对工程自身关键部位及周边环境实施监测,为业主提供及时、可靠的信息用以评定基坑施工对周边环境的影响,并对可能发生的危机及结构安全的隐患或事故提供及时、准确地预报,让有关各方做出反应、避免事故的发生。

(3)为建设管理单位对工程建设风险管理提供支持,通过安全监测、安全巡视,较全面地掌握各工点的施工安全控制程度,对施工过程实施全面监控和有控制管理。

(4)作为一种技术管理手段,通过规范监测工作,更好地为监理、设计、施工提供参考依据,促进信息化施工水平。

(5)作为独立的监测方,其监测数据具有社会公证性,在出现工程影响纠纷、工程风险及环境破坏时其监测数据和分析资料可成为处理风险事务和工程安全事故的重要参考依据。

(6)通过第三方监测的开展积累工程监测资料和经验,为今后的同类工程设计提供类比依据。

2.监测依据①.《工程测量规范》(GB50026-2007);②.《建筑地基基础设计规范》(GB50007-2011);③.《建筑变形测量规范》(JGJ8-2016);④.《建筑地基基础工程施工质量验收规范》(GB50202-2018);⑤.《建筑基坑工程监测技术规范》(GB50497-2009)⑥.XXXXXX项目基坑工程设计文件及设计方和业主方的其他要求。

3.本项目重点、难点分析及解决措施在本项目中的基坑深度约为15m,面积将近7万平方米。

体量巨大。

其主要重点和难点体现在:1.基坑体量大,深度大,周边的可参照类似工程少。

2.周边环境复杂,北侧为有精密变形控制要求的轻轨1号线;东侧为正在施工的XXXX高架桥,基坑周边密布管线,且燃气管、高压水管等变形控制要求极高的管线均有分布。

基坑外围建筑均属老旧建筑,结构稳定性不佳,不均匀沉降控制要求高,甚至部分已属危房。

3.基坑开挖工艺新:支护结构为桩加横撑结构,盆式开挖后支护结构搭接主体塔楼结构提供额外横向支撑。

该设计思路应用较少,可参考经验较少。

支护结构变形规律难以掌握。

通过上述分析可以预见基坑施工的难度及风险。

因此,加强基坑监测,对施工各个阶段基坑支护及周边环境的变形进行充分的数据采集、分析,及时为现场施工提供数据支撑,实现基坑的动态施工,才能尽可能的保证施工的科安全性和科学性。

具体措施如下:1.周密计划:设计单位对基坑支护结构及施工步骤进行充分计算和分析,根据计算及分析结果结合现场实际情况进行监测设计。

对于难以实施或者难以达到设计要求的内容,以及可能出现的困难和意外进行尽可能的充分估计,制定补救措施及计划;2.严格实施:对于技术指标,按照最严格规定制定,对于执行流程,我司制定严格的三级风险管理流程制定执行计划,分级审核。

3.精密分析:内部组建专家团队,利用我司多年经验和强大的技术后盾,当基坑变形异常时可及时调用专家团队进行分析并总结对策,为施工的安全保驾护航。

第三章、监测技术方案1.监测项目根据基坑支护设计的要求及本工程的特点,结合众多深基坑监测的经验,确定本基坑工程监测项目如下:(1)、目测巡视;(2)、支护结构顶水平位移观测;(3)、支护结构深层水平位移观测;(4)、支护桩结构内力监测;(5)、立柱竖向及水平位移观测;(6)、支撑内力监测;(7)、周边道路沉降观测;(8)、周边建筑水平位移及垂直位移观测;(9)、轻轨及高架桥墩水平位移与垂直位移观测;(10)、给水管道沉降位移观测;(11)、天然气管沉降位移观测;(12)、分层沉降观测;(13)、水位监测;(14)、土体深层水平位移观测(支护桩测斜管失效用此项代替);(15)、挡墙侧向土压力监测(支护桩钢筋计失效用此项代替)。

2.监测点的布设基坑监测的布点原则是:全面监测、重点防范。

在本项目中工程监测点的布置要能反映监测对象的实际状态及其变化趋势的内力及变形关键特征点上,满足监控要求。

同时工程监测点的布置不妨碍监测对象的正常工作,并减少对施工作业的不利影响。

监测标志应稳固、明显、结构合理,监测点的位置应避开障碍物,便于观测;监测点埋设以后要建立醒目标志,以便施工人员随时保护。

根据设计要求,本次监测的布点原则和暂定数量如下:(1)基坑支护结构水平位移观测点布点原则为冠梁腰线均布,东北角和西南角重点观测,当前暂定数量为32个;(2)基坑支护结构深层水平位移观测点布点原则为根据支护结构不同受力形式具有充分代表性,目前暂定为24个;(3)基坑支护桩内力观测点布点原则为根据支护结构不同受力形式具有充分代表性,目前暂定为24个;(4)立柱竖向水平位移观测点目前暂定为49个;(5)支撑轴力观测点目前暂定为76个;(6)基坑周边道路沉降观测点目前暂定为67个;(7)基坑周边建筑水平位移及垂直位移观测点根据实际情况进行布设,目前暂定为104个;(8)轻轨及高架桥墩水平位移与垂直位移观测点目前暂定为26个;(9)给水管道沉降观测点目前暂定为36个;(10)天然气管道沉降观测点目前暂定为15个;(11)分层沉降观测点布点原则为接近基坑隔水帷幕2m范围左右,具体数量根据现场实际情况布设,目前暂定为9个;(12)地下水位监测点暂定32个;(13)土体侧向水平位移观测点作为支护结构深层水平位移点的补救措施,如果支护结构深层水平位移监测点失效,则用该项代替;(14)挡墙侧向土压力监测点作为支护结构内力监测点的补救措施,如果支护结构内力监测点失效,则用该项代替;(15)监测基准点为11个,按照现场情况布设。

以上监测点均在土方开挖前布置好,具体布点详见附件中“深基坑监测点平面位置图”。

3.监测分项技术要求3.1目测巡视此项工作应由有经验的工程师定期进行现场目测巡视检查,检查内容包括邻近建筑物及邻近地面有无新裂缝发生;原有裂缝有无扩大、延伸,断层有无错动发生;地表有无隆起或下陷;排水沟是否畅通、排水孔是否正常;是否有新的地下水露头,原有的渗水量和水质有无变化。

巡视检查可用眼看、手摸、脚踩等直观的方法,或辅以锤、钎、钢卷尺等简单工具进行。

有必要则进行摄像拍照等进行记录。

3.2水平位移监测①、水平位移观测主要采用后方交会法结合小角度线法进行观测,在基坑开挖前一周埋设,支护桩桩顶的水平位移观测点应沿基坑周边布置,周边中部、阳角处均应布点,监测点间距应小于20m;编号并悬挂相应的标识。

相关文档
最新文档