深基坑开挖施工中的动态监测方法
深基坑工程施工监测方案
![深基坑工程施工监测方案](https://img.taocdn.com/s3/m/382d61e332d4b14e852458fb770bf78a65293a86.png)
深基坑工程施工监测方案1施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm。
仪器及标尺在检验有效期内作业,并在作业期间举行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级二等仪器类型DS0.5视线长度30m前后视距差1.0m任一测站上前后距差0.5m视线高度>0.3m项目等级基、辅分划读数差基、辅分划所测检测间歇点高上下丝读数平均值高差之差差之差与中丝读数之差二等0.3 mm0.6 mm1 mm3.0 mm基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB-2009)履行。
2、本次监测可分为基坑工程主体监测和四周情况及地下管线监测,施工监测项目和内容有:监测项目支护布局水平位移支护结构沉降立柱桩沉降水位观测点地面沉降观测点周边建筑物沉降观测点符号WYCJLCJSWSMSC数目14148101036位置支护桩顶支护桩顶立柱桩顶或支撑梁顶基坑顶周边基坑顶周边地面基坑周边建筑物目的支护桩位移情况支护桩沉降情况立柱桩沉降情况监测地下水位情况监测周边地面的沉降监测周边建构物的沉降3、水位观测、钢筋应力等监测见第三方监测方案。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/18d11cb1aff8941ea76e58fafab069dc51224771.png)
深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。
本文将就深基坑施工监测方案进行探讨。
一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。
通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。
二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。
监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。
2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。
监测频次为每天、每班、每小时,并及时记录监测数据。
3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。
监测频次为每天、每周,并记录监测数据。
同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。
4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。
经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。
5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。
监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。
三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。
2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。
报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。
四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。
浅谈深基坑工程监测意义与方法
![浅谈深基坑工程监测意义与方法](https://img.taocdn.com/s3/m/8c20c10217fc700abb68a98271fe910ef12dae4a.png)
浅谈深基坑工程监测意义与方法随着城市建设的发展,基坑开挖深度从最初的5~7m发展到目前最深的已达20m之多。
基坑开挖过程会引起基坑周围地层的移动,是一个典型的地下空间问题。
基坑开挖在土体性质、荷载效应、施工环境等综合影响下会引发地下土层、施工环境、邻近建筑物、地下管线、地下设施的变化。
因此对深基坑工程进行监测是必不可少的施工环节,它能够对施工起到重要的指导作用并减少施工风险。
本文对深基坑监测的意义与方法进行阐述。
标签:深基坑;意义与方法;动态监测;信息化管理;一、深基坑工程监测的意义深基坑工程除了进行常规项目监测外还要对基坑周边环境进行监测,预警并防范过大位移、变形与工程事故的发生,更为重要的是通过监测实现整个基坑工程的信息化施工,并及时洞察基坑工程在开挖过程中的稳定性及其变形规律,为后续工程建设提供借鉴,因此深基坑工程监测的意义主要有如下四方面:(1)在基坑施工期间确保基坑围护结构和基底不产生过大的位移和变形,并动态监控基坑开挖过程中的整体稳定性,验证复杂基坑全断面稳定分析和变形计算结果的可靠性。
(2)对基坑开挖影响范围内因基坑开挖诱发的桩基变位进行监测,并结合理论分析和类似工程经验分析和验证桩基对临近基坑变形的敏感程度。
(3)实现信息化施工和管理,根据监测数据及时通报施工中出现的问题以便采取相应的措施;同时利用理论和数值反分析工具,结合具体的施工工况及观测数据预测预报下一步开挖和降水引起的围护结构位移、变形及地面沉降,用监测数据和反分析相结合来指导施工以优化确定下一工况的施工工艺和技术参数,从技术上防患于未然。
(4)将现场测量结果用于信息化反馈优化设计,使设计达到优质安全、经济合理、施工快捷的目的。
二、深基坑工程监测的内容及方法1、监测内容深基坑工程监测的内容主要有以下几个方面:地下管线、地下设施、地面道路和建筑物的沉降、位移;圍护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位移;围护桩、水平支撑的应力变化;基坑外侧的土体侧向位移(土体测斜);坑外地下土层的分层沉降;基坑内、外的地下水位监测;地下土体中的土压力和孔隙水压力;基坑内坑底回弹监测。
基坑工程监测内容及方法介绍
![基坑工程监测内容及方法介绍](https://img.taocdn.com/s3/m/b7d3213dcd7931b765ce0508763231126edb7787.png)
基坑工程监测内容及方法介绍【XXX】本文由XXX老师精心收编整理,同学们定要好好复!基坑工程监测内容及方法介绍基坑工程监测内容及方法介绍基坑支护设计目前还没有成熟的方法可以计算基坑周围的土体变化,而基坑支护结构在基坑开挖过程中若发生破坏后果非常严重,因此在施工过程中通过对基坑的变形观测指导基坑开挖和支护,对基坑的安全施工有重要意义。
1基坑施工监测的内容及特点1.1基坑支护监测的内容有1.1.1水平位移监测,目的是监测基坑边壁的水平变形量、变形速率信息1.1.2竖向位移监测,目的是监测基坑围护墙顶、墙后地表与立柱的竖向位移信息1.1.3深层水平位移监测,目的是监测围护墙体或基坑周围土体的深层水平位移信息1.1.4倾斜监测,目的是监测建筑物倾斜度、倾斜方向和倾斜速率信息1.1.5裂缝监测,目的是监测裂缝的位置、走向、长度、宽度及变化程度此外还有支护结构内力监测、土压力监测、孔隙水压力监测、地下水位监测、锚杆拉力监测1.2基坑施工监测的特点1.2.1时效性基坑监测是配合降水和开挖过程,有鲜明的时间性,测【XXX】本文由XXX老师精心收编整理,同学们定要好好复!量结果是动态变化的,因此深基坑施工中监测需随时进行,通常是1次/d,在测量对象变化快的关键时期,可能每天需进行数次。
基坑监测的时效性要求对应的方法和设备具有采集数据快、全天候工作的能力,甚至适应夜晚或大雾天气等严酷的环境条件。
1.2.2高精度在施工中,基坑变形速率可能在0.1mm/d以下,要测这样的变形精度,常用测量方法和仪器部不能胜任,因此基坑施工中的测量通常采用特殊的高精度仪器。
1.2.3等精度基坑施工中的监测通常只需求测得相对变化值,而不要求丈量绝对值。
例如,通俗丈量要求将修建物在地面定位,这是一个绝对量坐标及高程的丈量,而在基坑边壁变形丈量中,只需求测定边壁相对于原来基准位置的位移即可,而边壁原来的位置(坐标及高程)可能完全不需要知道。
由于这个鲜明的特点,使得深基坑施工监测有其自身规律。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/f28671e4294ac850ad02de80d4d8d15abe2300d7.png)
深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。
该方案包括监测目标、监测内容、监测方法和监测频率等方面。
通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。
1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。
具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。
1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。
1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。
1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。
2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。
具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。
2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。
2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。
2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。
3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。
具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。
3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。
建筑工程项目深基坑工程监测措施
![建筑工程项目深基坑工程监测措施](https://img.taocdn.com/s3/m/d5218ca96394dd88d0d233d4b14e852459fb3965.png)
建筑工程项目深基坑工程监测措施摘要:建筑工程项目深基坑监测技术对于整个项目的顺利开展和后期使用安全起着重要的决定作用。
本文对建筑工程项目深基坑工程监测措施进行了探讨。
关键词:建筑工程;深基坑工程;监测措施引言在建筑工程项目开展过程中,基坑施工作为比较基础的内容,由于施工较为专业,工作量大,施工周期长,施工中的不稳定性因素较多,基坑施工面临着较大的风险。
为了降低基坑施工风险,维护现场和施工人员的生命安全,给后续施工创建一个良好的环境,除了要合理选择支护技术,还需完善基坑监测方案,提高基坑监测技术水平,进而可以全面掌握基坑施工中的变化情况、支护结构承载性能、地下水位变化、周边建构筑受到的影响,并以此指导施工活动进行和施工管理工作开展,尽可能消除基坑支护施工的所有安全隐患,实现有效的风险管理,确保施工安全。
1建筑工程项目深基坑工程监测的必要性1.1深基坑施工的风险性首先,要分析深基坑施工的特点,由于深基坑施工位于基底标高和基础平面以下,受地下地质和水文条件的影响,深基坑施工具有明显的区域性,不同地区的地下土层结构不同,水位及其变化也有差异,且当前大部分建筑工程的深基坑开挖工程量较大,越向下,面对的岩土也愈加丰富,涉及的岩土区范围也比较大。
其次具有综合性,由于深度加大,对土方开挖、基坑支护、排水降水等专业施工的要求更高,各专业需要保持高度的协调性,同时在施工设计中,也需综合考虑岩土工程、测量工程、排水工程等多方面的规范,需要合理融会贯通才能制定科学的深基坑施工及监测方案。
最后其不稳定特征也较为突出,因为深基坑在施工过程中面临的风险因素较多,地下水位上升、土体压力增加会增加施工风险,影响施工正常开展。
此外,在开挖过程中,由于基坑四周土体产生向基坑内的位移,作为临时结构的支护体系面对的压力会加大,很有可能会失稳造成坍塌事故,也有可能造成附近地面不均匀沉降,进而降低建构物的安全性。
因此深基坑工程是一项较为危险的工作,要想保证整个工程的安全性与可靠性,必须考虑如何基于事实来制定完善的防范措施来降低深基坑工程施工风险,而这就涉及到下文继续介绍的深基坑监测技术。
「整理」深基坑监测的6种方法
![「整理」深基坑监测的6种方法](https://img.taocdn.com/s3/m/321801c0185f312b3169a45177232f60ddcce74a.png)
「整理」深基坑监测的6种方法深基坑坑主要监测项目包括:地表及管线沉降变形监测;相邻建筑物沉降、倾斜及裂缝发展观测;支护结构倾斜及位移监测;支护结构应力监测;支护结构沉降监测;支撑轴力及应力监测;地基隆起监测;水位监测及水土压力监测等。
具体施工中应根据设计图纸要求,结合工程实际情况委托具有专业资质的第三方监测机构进行监测。
施工前编制专项监测方案,并报总监理工程师审批,监测时按审批的方案进行布点,实施监测,并及时进行监测数据的提交。
一、地表沉降监测a.测点布置:基点埋设在沉降影响范围以外的稳定区域内,基点应埋设在视野开阔的地方,以利于观测。
施工时至少埋设两个基点,方便互相校核;基点的埋设要牢固可靠。
施工开始前,将基点和附近水准点联测以取得原始高程。
地表沉降点根据施工现场的情况布置在基坑周边。
b.监测工具:精密水准仪,铟钢尺。
c.监测频率:基坑开挖过程中1次/d,如遇紧急情况可加密监测。
二、建筑物沉降与倾斜监测a.测点布置:建筑物沉降观测点埋设时先在建筑物的基础或墙上钻孔,然后将预埋件放入,孔与测点四周空隙用水泥砂浆填实。
测点基本布设在被测建筑物的角点上,测点的埋设高度应方便观测,同时测点应采取保护措施,避免在施工和使用期间受到破坏。
每幢建筑物上一般布置2~4个观测点,特别重要的建筑物布置6个测点。
b.监测工具:精密水准仪,铟钢尺。
c.监测频率:基坑开挖过程中1次/d,如遇紧急情况可加密监测。
三、支护结构倾斜顶部位移监测a.测点布置:围护结构施工时进行,将Pvc测斜管逐节绑扎在围护墙体钢筋骨架上,管间用套管连接,接头用自攻螺丝拧紧,并用防水胶带密封。
混凝土浇筑时注意对测斜管进行保护,测斜管水平向间距不大于25m。
b.监测工具:测斜仪,Pvc测斜管。
c.监测频率:基坑开挖时,1次/d;主体结构施工时,1次/2~3d。
四、下水位监测a.测点布置:测点埋设采用地质钻钻孔,孔深根据要求而定(保证能测出施工期产生的水位变化),基坑外沿基坑周边布设,基坑内利用降水井和减压井进行观测。
深基坑施工中的土方加固与监测方法
![深基坑施工中的土方加固与监测方法](https://img.taocdn.com/s3/m/4a5349b1f80f76c66137ee06eff9aef8941e4898.png)
深基坑施工中的土方加固与监测方法深基坑施工是城市建设中常见的工程项目,它为高层建筑、地铁站点、地下市场等提供了必要的地基支撑。
然而,在施工过程中,土方加固和监测是保障基坑施工安全与质量的重要环节。
本文将从土方加固和监测两个方面探讨深基坑施工中的相关方法。
一、土方加固方法深基坑的土方加固是指在基坑开挖过程中,采取一系列措施保持土方的稳定性。
其中,最常见的方法是使用支护结构,如钢支撑、混凝土墙壁等。
钢支撑是一种常用的临时支撑结构,它由钢板桩、支撑梁和拉杆组成。
在施工过程中,钢板桩首先依次打入土层中,并使用支撑梁和拉杆固定在一起,形成一个稳定的结构。
这种方法适用于土质稳定的场地,能够有效抵抗土壤压力,保护基坑的稳定性。
除了钢支撑,混凝土墙壁也是常用的土方加固方法。
混凝土墙壁是通过浇筑混凝土形成的一道墙体,用于防止土方坍塌和保持基坑的稳定。
这种方法适用于基坑边界较为固定的地区,能够提供更好的支撑力,确保基坑顺利开挖。
二、土方监测方法土方监测是深基坑施工中必不可少的环节,它能够及时了解土方的变形情况,并采取相应的措施避免潜在的安全隐患。
土方监测的方法多种多样,常见的有沉降观测、倾斜观测和应变观测。
沉降观测是通过地面上设置的水准点来测量土方的沉降变形。
在施工过程中,可以通过定期测量水准点的高程变化来判断土方的变形情况。
如果发现土方沉降过快或过大,就需要及时采取相应的措施,如增加支撑结构或进行加固处理。
倾斜观测是通过在土方上设置的倾斜仪来测量土方的倾斜程度。
倾斜仪能够感应土方的倾斜变化,并通过传感器将数据传输到监测系统中。
工程师可以通过分析倾斜数据,判断土方的变形状态,以便及时采取相应的补救措施。
应变观测是通过在土方中设置的应变计来测量土方的应变变化。
应变计主要用于测量土方的变形程度与应变应力的关系,能够提供更为直观的信息。
工程师可以根据应变计的数据,判断土方的变形状态,并针对性地进行监测和加固。
三、土方加固与监测方法的选择在实际的深基坑施工中,选择合适的土方加固与监测方法是非常重要的。
深基坑施工监测技术
![深基坑施工监测技术](https://img.taocdn.com/s3/m/1bb01dd3e109581b6bd97f19227916888586b960.png)
一、深基坑施工监测技术(一)技术内容基坑工程监测是指通过对基坑控制参数进行一定期间内的量值及变化进行监测,并根据监测数据评估判断或预测基坑安全状态,为安全控制措施提供技术依据。
监测内容一般包括支护结构的内力和位移、基坑底部及周边土体的位移、周边建筑物的位移、周边管线和设施的位移及地下水状况等。
监测系统一般包括传感器、数据采集传输系统、数据库、状态分析评估与预测软件等。
通过在工程支护(围护)结构上布设位移监测点,进行定期或实时监测,根据变形值判定是否需要采取相应措施,消除影响,避免进一步变形发生的危险。
监测方法可分为基准线法和坐标法。
在水平位移监测点旁布设围护结构的沉降监测点,布点要求间隔15~25m 布设一个监测点,利用高程监测的方法对围护结构顶部进行沉降监测。
基坑围护结构沿垂直方向水平位移的监测,用测斜仪由下至上测量预先埋设在墙体内测斜管的变形情况,以了解基坑开挖施工过程中基坑支护结构在各个深度上的水平位移情况,用以了解和推算围护体变形。
临近建筑物沉降监测,利用高程监测的方法来了解临近建筑物的沉降,从而了解其是否会引起不均匀沉降。
在施工现场沉降影响范围之外,布设 3 个基准点为该工程临近建筑物沉降监测的基准点。
临近建筑物沉降监测的监测方法、使用仪器、监测精度同建筑物主体沉降监测。
(二)技术指标(1)变形报警值。
水平位移报警值,按一级安全等级考虑,最大水平位移≤0.14%H;按二级安全等级考虑,最大水平位移≤0.3%H。
(2)地面沉降量报警值。
按一级安全等级考虑,最大沉降量≤0.1%H;按二级安全等级考虑,最大沉降量≤0.2%H。
(3)监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。
若有监测项目的数据超过报警指标,应从累计变化量与日变量两方面考虑。
(三)适用范围用于深基坑钻、挖孔灌注桩、地连墙、重力坝等围(支)护结构的变形监测。
(四)工程案例深圳中航广场工程、上海万达商业中心等。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/6a6bf3c2760bf78a6529647d27284b73f24236d8.png)
深基坑施工监测方案深基坑工程是由于场地有限、建筑要求或地下空间的需要等条件引起的工程形式。
深基坑施工属于地下施工,在施工期间,受力环境、土体变形、地下水位的变化等因素均会对施工造成影响。
因此,在深基坑施工中,需要进行一定的监测和管控措施,以降低施工风险。
本文将就深基坑施工监测方案进行探讨。
一、监测对象深基坑施工中,需要进行多项监测。
其中,监测对象主要包括:周边建筑物、挡土墙、支撑结构、地下水位、土体变形等。
周边建筑物:深基坑施工过程中,支护结构的载荷可能会对周边建筑物的承载力产生影响,因此需要采用不同的监测方法进行测量,以保证周边建筑物的安全性。
例如采用水平变形测量技术,追踪建筑物的水平变形情况;采用应力应变测量技术,监测建筑物的应变情况等。
挡土墙:挡土墙是深基坑施工的关键部分,其破坏会对施工造成影响。
因此,需对挡土墙进行一定的监测措施,例如采用水平变形测量、挡土墙内部应力应变测量等技术,确保挡土墙的安全性。
支撑结构:深基坑施工中,支撑结构起着桥梁的作用,因此其安全性至关重要。
支撑结构的监测需要兼顾不同监测技术,例如采用应力应变测量、变形测量等技术综合考虑,以确保支撑结构的安全性。
地下水位:地下水位是深基坑施工中需要重点关注的监测对象,它的变化可能会对施工造成直接影响。
因此,需要对地下水位进行实时监测,并及时调整支撑结构的支撑力度,以保障施工安全。
地下水位的监测通常采用液位计、电测和潜孔测压等技术。
土体变形:土体变形是深基坑施工过程中无法避免的问题。
其合理监测和处理,能够及时报警,有效避免施工风险的发生。
土体变形的监测通常采用变形监测技术,如支撑结构内测点、土壤应变测点等。
二、监测方法深基坑施工监测方法主要分为静态监测和动态监测两类。
静态监测:静态监测是指在施工期间或施工前后采用有限数目的测量点,通过周期性监测来评估基坑工程在整个施工周期内的受力环境和形变情况。
静态监测主要包括水平变形监测、变形监测和应力应变监测等。
深基坑施工中自动化监测技术
![深基坑施工中自动化监测技术](https://img.taocdn.com/s3/m/6ab620d80875f46527d3240c844769eae009a309.png)
深基坑施工中自动化监测技术摘要:自动化监测是指借助固定点的空间相对位移,判断监测对象变形状况,并对可能发生的塌方危险实施数字化预测。
将其应用在深基坑施工中,不仅可以优化施工方案,还能掌握基坑周边沉降变化,了解基坑施工对周边环境产生的影响。
关键词:自动化监测技术;基坑监测;应用分析引言基坑支护结构和重要建(构)筑物自动监测系统的实施,有利于施工单位和安监部门随时快速掌握基坑工程的技术指标,可以弥补传统监测的诸多技术和管理缺陷。
采用定站、增加观测频率的方法,利用软件平台整合数据,对锚索的水平位移、周边道路及地表沉降、支撑轴向力、锚索应力、深层水平位移、地下水位、周边建筑物沉降等进行全天候24小时动态监测。
1.基坑检测技术概述在建筑事业不断发展的当下,基坑开挖的施工深度在不断加深,从之前的5~7m已经发展到现在的20m。
由于施工中的土体性质、地下环境、荷载条件等都具有复杂性,因此在施工过程中,要对土体性状、地下环境、设施变化、邻近建筑物等进行有效的监测,来保证施工的安全性。
在对一些环境要求严格、大中型复杂项目进行施工的过程中,从以往的工作经验中往往难以找到相应的借鉴参考,这就需要通过现场监测来进行施工。
(1)要了解基坑的设计强度就要以数据监测为基础,这样还能为降低工程成本提供参考;(2)对地下管线、地下土层、地下设施,以及对地面建筑的影响程度等施工环境进行了解;(3)可以及时发现险情并进行预报,以便采取及时的安全补救措施。
2.基坑施工监测对象2.1基坑支护结构内力信息在建筑⼯程施⼯时,如未及时解决基坑施⼯环节技术难题,基坑结构稳定性将受到影响。
当基坑结构出现形变现象时,还会诱发严重安全事故。
基坑监测对象众多,作为重点构成之⼯,支护结构内力监测对于结构形变控制起到的作用不可忽视。
为强化监测结果精确程度,应在基坑开挖阶段将应力计或应变计等监测设备设置在指定位置,完成后续施⼯环节中基坑表面及内部结构应力变化特征收集。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/bb9ed2faf021dd36a32d7375a417866fb84ac0ae.png)
深基坑施工监测方案1. 简介基坑工程在城市建设中起到了至关重要的作用,然而,由于基坑施工涉及到深部土层的开挖和支护,存在着一定的风险。
为了保证基坑施工的安全和顺利进行,需要进行相应的监测工作。
本文档将介绍一种常用的深基坑施工监测方案,旨在帮助工程师和监理人员确保基坑施工的安全性和可控性。
2. 监测内容深基坑施工监测需要对以下几个方面进行监测:2.1 土体变形监测土体变形是深基坑施工中最主要的影响因素之一。
监测土体的变形情况可以帮助工程师了解土体的稳定性和变形趋势,从而采取相应的支护措施。
常用的土体变形监测方法包括测量地表沉降、倾斜监测和裂缝宽度测量等。
2.2 岩土应力监测基坑周围土体和岩石受到的应力变化会对基坑施工产生影响。
监测岩土体的应力变化可以及时发现存在的安全隐患,采取相应措施进行处理。
常用的岩土应力监测方法包括地下水位监测、土压力监测和围护结构变形监测等。
2.3 基坑支护结构监测基坑支护结构的稳定性直接关系到基坑的施工安全。
监测支护结构的变形和应力变化可以帮助工程师及时了解支护结构的工作状态,从而及时采取修补和加固措施。
常用的支护结构监测方法包括支撑轴力监测、水平支撑位移测量和地下定向应力测量等。
3. 监测方案3.1 土体变形监测方案•测量地表沉降:安装相应的沉降监测仪器,每隔一定时间进行测量,记录地表沉降数据,并绘制沉降曲线图。
•倾斜监测:通过安装倾斜测量仪器,监测倾斜点的倾斜角度变化,并绘制倾斜曲线图。
•裂缝宽度测量:在基坑周围的建筑物和地面上设置钢尺,定期测量裂缝的宽度变化情况,并记录数据。
3.2 岩土应力监测方案•地下水位监测:在基坑周围钻取钻孔,安装地下水位监测孔,并进行定期测量,记录地下水位变化情况。
•土压力监测:通过安装土压力监测仪器,在基坑周围土体中进行应力测量,并记录土压力变化情况。
•围护结构变形监测:在基坑围护结构上设置应变测量器,监测围护结构的变形情况,并记录数据。
浅议基坑开挖施工中的动态监测方法
![浅议基坑开挖施工中的动态监测方法](https://img.taocdn.com/s3/m/53e3b500763231126edb1130.png)
的环境保 护 问题 已经成 为基坑支护 中诸多 问题 的重 中之重 。因此 深基 坑工 程施 工 的好 坏 ,直接 影响 到基 坑工 程 的造价 和安 全 , 同时 ,保
护邻近建 筑 ( 管道 )的安全并保证其 正常使用 具有重 大的经济 效益 或
和社会效益。
且 测 量控 制 点要 安全 ,其位 置 不要 设在 变 形 、位移 区内 。( 测 点 其
3 2围护 结 构 、被 围 护 土 体 的 侧 向 位 移 . 围护 结构和 被围护土 体的侧 向位 移监 测使用 的仪器是测斜 仪。测
斜仪是一种可以精确地测量沿铅垂方 向土层或围护结构 内部水平位移的 工程 测量 仪器 ,可 以用来 测量 单 向位 移 ,也 可 以测 量 双 向位 移 ,再 由两个方 向的位移 求 出其矢 量和,得到位移 的最大值 和方 向。本工程 采用加拿大 R e T S o k e t公司制造 的测斜仪 ,精度 0 5 m . m ;测斜 管采用 中 7 0高精 度 P c专用测斜 管;单位测量深度 为 0 5 V . m。 3 2 1测斜 管的埋设 .. ( 1)围护 桩 内的测 斜 管在 吊放 钢筋 笼之 前 ,就绑 扎在 钢筋 上 ,
内用 粘 土 密 封 。
随钢筋 笼一起放 入桩孔 内:土体 内的测斜 管就在预 定的测斜管 埋设位 置钻 孔 。根据 基坑 的开挖 总深度 ,确 定测斜 管 孔深 。 即假定基 底标 高 以下某 一位置 处 围护 结构后 的土体侧 向位移为零 ,并 以此作 为侧 向
位移的基准 。 ( 2)安装 测斜 管时 ,随 时检查其 内部 的一对 导槽 ,使其 始终 分 别与坑壁 走 向垂 直或平行 。测斜管顶 部和 底部都 要装 上盖子 ,防止砂 浆 、 泥 浆 及 其 他杂 物 入 内 。 ( 3)测斜 管固 定完 毕后 ,用 清水 将测斜 管 内冲洗 干净 ,将探 头 模型 放入 测斜 管 内 ,沿导 槽上 下滑 行一遍 ,以检 查导槽 是否 畅通无
深基坑施工中的监测与控制技术
![深基坑施工中的监测与控制技术](https://img.taocdn.com/s3/m/f78ac687fc0a79563c1ec5da50e2524de518d0d4.png)
深基坑施工中的监测与控制技术深基坑施工是指在建筑工程中对于较深的地下空间进行开挖和处理的过程。
这类工程施工过程中,监测与控制技术的应用至关重要,它可以确保施工过程的安全性、有效性及符合规范要求。
本文将探讨深基坑施工中常见的监测与控制技术。
首先,深基坑施工中的地下水位的监测与控制是至关重要的。
施工过程中,地下水的涌入会对基坑周围的土体稳定性产生影响。
因此,通过地下水位的监测,可以及时了解地下水位的变化情况,并采取相应的措施进行控制。
在实际施工中,常用的地下水位监测方法包括井点法和压力计法。
井点法是通过钻孔开设井点,在多个孔深分布稳定的情况下,通过测量井点的水位来判断基坑周围地下水位的变化。
压力计法则是通过安装压力计在基坑周围的土体中测量地下水位的变化。
其次,基坑周围土体的水平位移监测与控制也是十分重要的。
土体的水平位移变化会直接影响到周边的建筑结构和地下管线的安全。
通过监测土体的水平位移可以及时预警并采取措施进行调整。
目前,常用的土体水平位移监测方法包括全站仪法、发光纤维传感器法和应变计法。
全站仪法通过设置监测点,在不同时间点进行测量,通过计算位移量来判断土体的水平位移情况。
发光纤维传感器法则通过设置发光纤维在土体中进行监测,当土体发生水平位移时,通过光纤的变化来判断土体位移情况。
应变计法则是通过安装应变计在土体中测量土体的应变情况,从而得知土体的水平位移变化。
此外,深基坑施工中的地下空间变形的监测与控制也具有重要意义。
地下空间变形不仅会对施工工程的安全产生影响,也会影响到周边的建筑和地下管线的稳定性。
因此,及时监测地下空间的变形情况,可以提前预警并采取相应措施进行调整。
目前,常用的地下空间变形监测方法包括全站仪法、测斜仪法和GPS(全球定位系统)法。
全站仪法通过设置监测点,在不同时间点进行测量,通过计算变形量来判断地下空间的变形情况。
测斜仪法则是通过安装测斜仪在地下空间中进行监测,当地下空间发生变形时,通过测斜仪的变化来判断地下空间的变形情况。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/d2e6215e2379168884868762caaedd3383c4b5d6.png)
深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中常见的一种特殊施工方式,涉及到土方开挖、支护、回填等工序。
由于基坑施工对周围环境和结构的安全性有重要影响,因此需要进行监测,及时掌握变形和位移情况,保障施工的安全性和顺利进行。
本方案旨在针对深基坑施工监测的要求和方法,提供合理可行的监测方案。
二、监测内容1. 土壤和地下水的监测:通过测量土壤中土压力、水压力以及地下水位,来了解土壤和地下水的变化情况,评估施工对周围土体和地下水的影响。
2. 支撑结构的监测:监测支撑结构的变形和应力,包括支撑桩、钢支撑和锚杆等,以确保其稳定性和安全性。
3. 建筑物和地下设施的监测:对附近建筑物和地下设施进行监测,避免施工对其产生不可逆影响。
三、监测方法1. 土壤和地下水监测方法:1.1 土压力监测:采用应变计或者测斜仪测量土体中的应变,将其转换为土压力,实时监测土壤的变化情况。
1.2 水压力监测:通过水压力计或者水位计等设备,测量地下水位的变化情况,进而了解地下水对施工的影响。
1.3 地下水位监测:利用水位计等设备,监测地下水位的高度,以评估地下水对基坑的影响。
2. 支撑结构监测方法:2.1 支撑桩监测:采用应变计、倾斜仪等设备监测支撑桩的变形和应力情况,实时掌握其稳定性。
2.2 钢支撑监测:利用应变计、位移传感器等设备,测量钢支撑的变形和应力,确保其安全可靠。
2.3 锚杆监测:通过测量锚杆的应变和位移,了解锚杆的受力状况,防止其因施工造成破坏。
3. 建筑物和地下设施监测方法:3.1 建筑物沉降监测:利用沉降仪或者GNSS测量仪等设备,监测附近建筑物的竖向沉降情况,及时采取措施避免超限。
3.2 地下管线和设施监测:通过地下雷达、红外线相机等设备,了解地下管线和设施的位置和变动情况,避免施工对其造成损害。
四、监测方案的实施和数据处理1. 实施方案:根据深基坑的具体情况,确定监测点的布设位置和数量,选择合适的监测设备和方法,并编制详细的监测计划和方案。
“基坑”专项监测方案详细
![“基坑”专项监测方案详细](https://img.taocdn.com/s3/m/bff812237c1cfad6195fa7e3.png)
“基坑”专项监测方案详细因挖深基坑工程涉及范围广,其技术复杂,事故也是频繁出现,所以在施工过程中要进行监测。
以便于我们及时制定应急措施,保证基坑开挖及结构施工安全。
其基坑监测方案如下。
一、水平位移监测:1.水平监测点的布设:土建施工基坑形状大多数为长方形和不规则基坑,为确保按照《建筑物变形测量规程》的二级精度进行水平位移观测视线长度≤300m,在基坑周边相对稳定的区域内布设2-4个工作基点,因基坑拐角处变形最小,工作基点墩位置一般布置在基坑拐角处;根据设计确定的支护结构桩(墙)顶水平位移点的位置和数量,在基坑支护结构的冠粱顶上布设观测点,观测点采用埋设观测墩的形式;在建立好工作基点墩后,将仪器架设在工作基点墩上,沿基坑边布设观测墩,观测点位置必须选择在通视处,要避开基坑边的安全栏杆等影响视线的物体。
一般情况下观测点距离基坑300㎜比较合适。
2.水平位移检测方法,主要有以下五点:①基坑水平位移监测可采用小角度法和极坐标法进行水平位移观测。
对工作基点的稳定性宜采用前方交会、导线测量和后方交会法观测。
②在基坑变形监测中,对于基坑的位移变化量,利用极坐标法进行基坑水平位移监测,一般选择基坑长边为X轴,垂直基坑长边为Y轴。
③小角度法主要用于基坑水平位移变形点的观测。
小角度法必须设置观测墩,采用强制对中方式。
④前方交会观测法,尽量选择较远的稳固目标作为定向点,测站点与定向点之间的距离要求一般不小于交会边的长度,观测点应埋设在适合不同方向观测的位置。
⑤导线测量法主要用于基坑周边建筑物、构筑物密集,对工作基点稳定性检查用前方交会法和后方交会法都难以实现的情况下,通过导线测定工作基点的稳定性。
二、沉降监测:1.沉降监测点布设:在基坑外相对稳定且不受施工影响的地点埋设基点3个,利用这3个基点相互检核其稳定性;支撑立柱沉降监测点设置:在支撑立柱的顶部焊接符合要求的钢制加工件;周边建(构)筑物沉降监测点设置:在建筑物或构筑物的拐角处,离地面20㎝,且避开雨水管、窗台线、电路开关等有碍设标与观测的障碍物,并应视立尺需要离开墙(柱)面一定距离;周边土体沉降监测点:沉降观测点应埋设原状土层中,加设保护装置,沉降观测点稳定后,方可进行初始观测和一般观测。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/685013d5988fcc22bcd126fff705cc1755275fe0.png)
深基坑施工监测方案1. 引言深基坑施工是在城市建设过程中常见的一项工程,其施工期间可能会对周围土层、建筑物以及地下管线等造成一定的影响。
为了确保施工安全和保护周围环境,施工监测变得尤为重要。
本文将介绍深基坑施工监测的方案,包括监测目标、监测内容、监测方法以及监测频率等方面的内容。
2. 监测目标深基坑施工监测的主要目标是在施工期间及时掌握施工工程所产生的变形、沉降、位移等情况,以及对周围环境的影响,从而保证工程的施工安全和周围环境的保护。
3. 监测内容深基坑施工监测的内容包括但不限于以下几个方面:3.1 地表沉降地表沉降是深基坑施工中常见的问题,通常通过在施工周围设置水平测网进行监测。
监测点应均匀分布在周围区域,并根据施工进度及时调整监测点的位置。
3.2 结构变形深基坑施工对周围建筑物的结构产生一定的影响,因此需要对建筑物的变形情况进行监测。
监测点通常设置在建筑物的重要结构部位,如墙体、柱子等。
结构变形监测可以通过安装应变计、测斜仪、位移传感器等设备进行。
3.3 周围地下管线监测深基坑施工需要对周围的地下管线进行监测,特别是对于各种管线的位移情况需要及时掌握。
监测方法可以使用测斜仪、位移传感器等设备进行。
4. 监测方法深基坑施工监测可以结合传统的现场监测方法和现代的无线监测技术进行。
具体的监测方法包括但不限于以下几种:4.1 传统监测方法传统的监测方法通常包括现场测量和监测设备的安装。
现场测量通常使用水平仪、经纬仪、测距仪等设备进行,可以得到地表沉降、建筑物变形等数据。
监测设备的安装包括应变计、测斜仪、位移传感器等,需要专业的技术人员进行。
4.2 无线监测技术现代的无线监测技术可以大大提高监测的效率和准确性。
通过使用无线传感器网络,可以实现远程监测和数据传输,减少了人力和物力的投入。
无线监测技术可以实时监测变形情况,并通过数据分析提供预警和决策支持。
5. 监测频率深基坑施工监测的频率应根据工程的特点和监测目标来确定。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/81d7d6ac541810a6f524ccbff121dd36a22dc471.png)
深基坑施工监测方案
为了确保深基坑施工的安全和质量,必须采用可行的监测方案。
深
基坑施工监测方案是一种科学、有效的施工管理方法,包括监测目标、监测位置、监测范围、监测方法等方面的具体安排。
本文将介绍深基
坑施工监测方案的具体内容。
1. 监测目标
深基坑施工监测目标是对基坑周围的地下环境进行监测,旨在确保
施工期间和施工完成后相关建筑物和地下管线的稳定性。
具体监测目
标包括地下水位、基坑变形、建筑物沉降、周围结构的损伤等。
2. 监测位置
监测位置应该在基坑的四周及周边建筑物和地下管线,以监测监测
目标涉及的范围为主。
监测位置的选取应该具有代表性,并且应该能
够反映出所监测对象的变化趋势和变化量,比如监测孔的安装位置等。
3. 监测范围
监测范围应该包括设计基坑周围的地下环境,具体包括基坑内外的
地下水位、地表沉降和周边建筑物的变形。
监测范围可以通过现场勘
察和文献资料分析等方式来确定。
4. 监测方法
监测方法应该根据实际情况来确定,包括实测法、观测法、统计法、数学模型法等等。
其中最常用的是实测法和观测法。
实测法是在监测
点上安装相应的仪器,测量实际的物理量。
观测法是将监测目标的变化通过观测取得,比如地面沉降的观测通过地面标志物和水准仪器等来进行。
综上所述,深基坑施工监测方案需要根据实际情况来制定,并且需进行全面的监测范围的规划和精细化的监测点选定。
同时,监测方案的实施应该符合施工进度和经济效益的要求,以保证施工的顺利进行和项目的成功交付。
深基坑施工监测方案
![深基坑施工监测方案](https://img.taocdn.com/s3/m/65e9b423a66e58fafab069dc5022aaea998f411f.png)
深基坑施工监测方案1. 简介深基坑施工是指在建筑工程中,为了满足特定的建设需求而挖掘较深的土方体,常常用于地下停车场、地铁站等工程。
由于深基坑的施工过程中存在一定的风险和安全隐患,因此需要制定相应的监测方案,以确保施工的安全和稳定。
2. 监测目标深基坑施工监测的主要目标是对基坑边界土层的变形和支护结构的变化进行实时监测,以及对施工过程中可能出现的地下水位变化进行监测。
通过监测数据的分析和处理,可以及时掌握施工过程中的变形和变化情况,提前采取相应的措施,确保施工的安全性和稳定性。
3. 监测方法3.1 地表测量法地表测量法是最常用的监测方法之一,该方法通过使用全站仪或者自动水准仪进行测量,对基坑周边地表的沉降和变形情况进行监测。
通过定期测量并比对测量结果,可以及时发现地表下陷和倾斜等问题,从而采取相应的补救措施。
3.2 支护结构监测法深基坑的施工中常常采用支护结构,如钢支撑、混凝土墙等,用于稳定挖掘的土方体。
支护结构监测法主要通过在支护结构上安装压力应力计、位移传感器等监测设备,实时监测支护结构的受力变化和变形情况。
通过对监测数据的分析,可以确定支护结构的稳定性,并及时采取措施加固或修复。
3.3 地下水位监测法地下水位的变化对于深基坑施工来说具有重要意义,因为地下水的变化可能导致土层的液化和基坑的失稳。
地下水位监测一般使用浮标式或压力式水位计进行监测,通过实时监测地下水位的变化,可以及时采取抽水或加固等措施,以确保施工过程中的安全。
4. 数据处理与分析深基坑施工监测数据量大、频率高,需要进行有效的数据处理和分析,以获取有价值的信息。
数据处理和分析的方法包括数据计算、数据插值、数据挖掘等,通过这些方法可以得出土层变形的趋势和规律,提前预测可能发生的问题,并及时采取相应的措施。
5. 安全措施与应急预案深基坑施工监测方案中还应包含相关的安全措施和应急预案,以应对可能发生的意外情况。
如在施工过程中,如果发现土层变形超出安全值,或者支护结构出现破损等情况,应立即采取紧急措施,确保施工现场的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑开挖施工中的动态监测方法
鉴于深基坑的复杂性和不确定性,理论计算还难以全面准确地反映工程进行中的各种变化,故在理论分析指
导下有目的地进行工程监测十分必要。
利用其反馈的信息和数据,一方面可及时采取技术措施防止发生重大工
程事故,另一方面亦可为完善计算理论提供依据。
1、工程概况
大石站位于广州市番禺区北组团中心区规划的新光大道下。
车站呈一字型南北走向。
车站总长279.444m ,基坑标准段宽19.7m ,北端屏蔽线换乘区宽度为38.64m ,开挖深度平均为13.8m. 北端布置屏蔽线,车站呈丁字形换乘,总体为明挖地下两层车站。
标准段结构形式为钢筋混凝土双层双跨结构。
车站主体围护结构采用钻孔灌注桩,直径为1200mm,间距1350mm,桩长18m〜25m.桩间止水采用
①600mm单管旋喷桩,深入不透水层200kN 预应力,第二、三道支撑间距
1.0m.内支撑米用二道①600钢管支撑,第一支撑间距 5.6〜6.5m,施加
2.8〜
3.5m,分别施加600kN及350kN预应力。
2、监测项目
基坑开挖过程中,围护结构位移、内力、支撑轴力等都有变化,采用多项监测手段,其结果可以互相验证。
监测项目及方法见表 1.监测频率为:基坑开挖过程中每天一次,主体结构施工时3天一次。
3、监测方式与方法
3.1地面沉降、桩顶水平位移
沉降观测使用仪器是精密水准仪和铟合金水准尺。
桩顶水平位移使用全站仪。
这些都是常用的测量仪器。
在这里要注意的是,要使用相同的仪器,在相同的位置上,由同一观测者按同一方案施测。
而且测量控制点要安全,其位置不要设在变形、位移区内。
3.2围护结构、被围护土体的侧向位移
围护结构和被围护土体的侧向位移监测使用的仪器是测斜仪。
测斜仪是一种可以精确地测量沿铅垂方向土层或围护结构内部水平位移的工程测量仪器,可以用来测量单向位移,也可以测量双向位移,再由两个方向的位移求出其矢量和,得到位移的最大值和方向。
本工程
采用加拿大RockTest 公司制造的测斜仪,精度
0.5mm;
测斜管采用①70高精度PVC专用测斜管,单位测量深度为0.5m。
(1)围护桩内的测斜管在吊放钢筋笼之前,就绑扎在钢筋上,随钢筋笼一起放入桩孔内;土体内的测斜管就在预定的测斜管埋设位置钻孔。
根据基坑的开挖总深度,确定测斜管孔深。
即假定基底标高以下某一位置处围护结构后的土体侧向位移为零,并以此作为侧向位移的基准。
(2)安装测斜管时,随时检查其内部的一对导槽,使其始终分别与坑壁走向垂直或平行。
测斜管顶部和底部都要装上盖子,防止砂浆、泥浆及其他杂物入内。
(3)测斜管固定完毕后,用清水将测斜管内冲洗干净,将探头模型放入测斜管内,沿导槽上下滑行一遍,以检查导槽是否畅通无阻,滚轮是否有滑出导槽的现象。
由于测斜仪的探头十分昂贵,在未确认测斜管导槽畅通时,不允许放入探头。
(4)测量测斜管管口坐标及高程,做出醒目标志,以利保护管口。
现场测量前务必按孔位布置图编制完整的钻孔列表,以与测量结果对应。
(1)连接探头和测读仪。
当连接测读仪的电缆和探头时,要使用原装扳手将螺母接上。
检查密封装置、电
池充电情况(电压)及仪器是否能正常读数。
当测斜仪电压不足时必须立即充电,以免损伤仪器。
(2)将探头插入测斜管,使滚轮卡在导槽上,缓慢下至孔底以上0.5m 处。
注意不要把探头降到套管的底
部,以免损伤探头。
测量自下而上地沿导槽全长每隔0.5m 测读一次。
为提高测量结果的可靠度,每一测量步骤中均需一定的时间延迟,以确保读数系统与环境温度及其他条件平稳(稳定的特征是读数不再变化)。
若对测量结果有怀疑可重测,重测的结果将覆盖相应的数据。
(3)测量完毕后,将探头旋转180°,插入同一对导槽,按以上方法重复测量,前后两次测量时的各测点应在同一位置上;在这种情况下,两次测量同一测点的读数绝对值之差应小于10%,且符号相反,否则应重测本
组数据。
3.3围护结构的内力、支撑轴力测量
此两项的监测选用国产GJJ型振弦式钢筋计和DKY—51 —2型振弦读数仪
振弦式钢筋计的工作原理是:当钢筋计受轴力时,引起弹性钢弦的张拉变化,改变钢弦的振动频率,通过
频率仪测得钢弦的频率变化即可测出钢筋所受作用力的大小,换算而得混凝土结构或钢支撑所受的力。