方差分析与回归分析.pdf

合集下载

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。

假设检验-方差分析及回归分析

假设检验-方差分析及回归分析
0

1.645 时,拒绝 H0。
率有显著提高,此时犯(第一类)错误的 5% 。 概率不会超过
若取 0.005 , 查表得
z 0.005 2.57 , 仍有 z 3.125 2.57 , 所以在显著性水平 0.005 下
也拒绝 H0,从而可断定犯错误的概率 不会超过 0.5% 。
( n1 1) s ( n2 1) s , n1 n2 2
2 1 2 2
若 t t ( n1 n 2 2) ,则拒绝 H0
2
右边检验
H 0 : 1 2 0 , H 1 : 1 2 0
若 t t ( n1 n 2 2 ) ,则拒绝 H0
第八章 假设检验
第九章 方差分析及回归分析
第八章 假设检验
§1 假设检验
§2 正态总体均值的假设检验
§3 正态总体方差的假设检验
§5 分布拟合检验
§1 假设检验 实际推断原理 概率很小的事件在一
次试验中实际上可认为是不会发生的。本章 的内容,一是已知总体的分布类型,而对包 含的未知参数作某些假设,二是未知总体的 分布类型,而对总体的分布作出假设。 所谓假设检验就是提出假设后,根据实 际推断原理作出接受还是拒绝的判断。
2
均未知。 2 2 2 2 H0 : 1 2 , H1 : 1 2
s 检验统计量 F , s
若 F F ( n1 1, n 2 1)
2
2 1 2 2
或 F F1 ( n1 1, n 2 1) ,
2
则拒绝 H0。

2 2
F1 ( n1 1, n2 1) F F ( n1 1, n2 1) ,

第九章方差分析及回归分析 第2讲精品PPT课件

第九章方差分析及回归分析 第2讲精品PPT课件

x1, x2, , xn
因此干脆不把X看成随机变量,而将它当作 普通的变量。X的变化将使Y发生相应的变 化,但它们之间的变化是不确定的。由于Y 是随机变量 ,当X取得任一个可能的值x时, Y都相应地服从一定的概率分布。
10
设进行 n 次独立试验,测得试验数据如下表:
xபைடு நூலகம்
x1
x2
xn
y
y1
y2
yn
我们的问题是,如何根据这组观察值,用 “最佳”的形式来表达变量Y与x的相关关系?
比较合理的想法就是,取Xx时随机变量
Y的数学期望EY Xx 作为Xx时Y的估计值。
11
设Y的数学期望EY存在,其值随X的取值
而定,即Y的数学期望是x的函数。将这一函数
记为yx 或x,xEY Xx称为Y关于x
的回归函数。 为 此 , 我 们 就 将 讨 论 Y 与 x的 相 关 关 系 的 问 题
转 换 为 讨 论 E Y x与 x的 函 数 关 系 了 。
由一个或一组非随机变量来估计或预测某 一个随机变量的观察值时所建立的数学模 型及所进行的统计分析称为回归分析
7
如果这个模型是线性的就称为线性回归分析 这种方法是处理变量间相关关系的有力工具,是
数理统计工作中一种常用的方法。它不仅告诉人 们怎样建立变量间的数学表达式,即经验公式, 而且还利用概率统计知识进行分析讨论,判断出 所建立的经验公式的有效性,从而可以进行预测 或估计。 本章主要介绍如何建立经验公式。
14
温度x(oc) 100 110 120 130 140 150 160 170 180 190 得率(%) 45 51 54 61 66 70 74 78 85 89
得率与温度关系的散点图 100 90 80 70 60 50 40

项目八假设检验回归分析与方差分析

项目八假设检验回归分析与方差分析

项目八 假设检验、回归分析与方差分析实验2 回归分析实验目的 学习利用Mathematica 求解一元线性回归问题. 学会正确使用命令线性回归Regress, 并从输出表中读懂线性回归模型中各参数的估计, 回归方程, 线性假设的显著性检验结果, 因变量Y 在预察点0x 的预测区间等.基本命令1.调用线性回归软件包的命令<<Statistics\LinearRegression.m 输入并执行调用线性回归软件包的命令<<Statistics\LinearRegression.m或调用整个统计软件包的命令<<Statistics`2.线性回归的命令Regress一元和多元线性回归的命令都是Regress. 其格式是Regress[数据, 回归函数的简略形式, 自变量,RegressionReport(回归报告)->{选项1,选项2,选项3,…}]注: 回归报告中包含BestFit(最佳拟合,即回归函数), ParameterCITable(参数的置信区间表), PredictedResponse(因变量的预测值), SinglePredictionCITable(因变量的预测区间), FitResiduals(拟合的残差), SummaryReport(总结性报告)等.3.抹平“集合的集合”的命令Flatten命令Flatten[A]将集合的集合A 抹平为只有一个层次的集合. 例如, 输入Flatten[{{1,2,3},{1,{3}}}]则输出{1,2,3,1,3}.4.非线性拟合的命令NonlinearFit 使用的基本格式为NonlinearFit [数据, 拟合函数, (拟合函数中的)变量集, (拟合函数中的)参数, 选项] 注: 拟合函数中既有变量又有参数, 变量的个数要与数据的形式相应. 参数集中往往需 要给出各参数的初值. 选项的内容主要是指定拟合算法、迭代次数和精度.实验举例例2.1 (教材 例2.1) 某建材实验室做陶粒混凝土实验室中, 考察每立方米)(3m 混凝土的水泥用量(kg)对混凝土抗压强度)/(2cm kg 的影响, 测得下列数据:7.894.866.822.804.771.742602502402302202103.711.686.646.613.589.56200190180170160150yx y x 抗压强度水泥用量抗压强度水泥用量(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 设2250=x kg, 求y 的预测值及置信水平为0.95的预测区间.先输入数据:aa = {{150,56.9},{160,58.3},{170,61.6},{180,64.6},{190,68.1},{200,71.3},{210,74.1},{220,77.4},{230,80.2},{240,82.6},{250,86.4},{260,89.7}};(1) 作出数据表的散点图. 输入ListPlot[aa,PlotRange->{{140,270},{50,90}}]则输出图2.1.图2.1(2) 作一元回归分析, 输入Regress[aa,{1,x},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}]则输出{BestFit->10.2829+0.303986x, ParameterCITable->Estimate SE CI 1 10.2829 0.850375 {8.388111,12.1776}, x 0.303986 0.00409058 {0.294872,0.3131} ParameterTable->Esimate SE Tstat PValue 110.28290.85037512.09222.71852710-⨯,x 0.303986 0.00409058 74.3137 4.884981510-⨯ Rsquared->0.998193,AdjustedRSquared->0.998012, EstimatedVariance->0.0407025,ANOV A Table->DF SumOfSq MeanSq Fratio PValue Model1 1321.43 1321.435522.524.773961510-⨯Error10 2.39280.23928Total 11 1323.82现对上述回归分析报告说明如下:BestFit(最优拟合)-> 10.2829+0.303986x 表示一元回归方程为x y 303986.02829.10+=;ParameterCITable(参数置信区间表)中: Estimate 这一列表示回归函数中参数a , b 的点估计为aˆ=10.2829 (第一行), b ˆ= 0.303986 (第二行); SE 这一列的第一行表示估计量a ˆ的标准差为0.850375, 第二行表示估计量bˆ的标准差为0.00409058; CI 这一列分别表示a ˆ的置信水平为0.95的置信区间是(8.388111,12.1776), bˆ的置信水平为0.95的置信区间是 (0.294872,0.3131).ParameterTable(参数表)中前两列的意义同参数置信区间表; Tstat 与Pvalue 这两列的第一行表示作假设检验(t 检验):0:,0:10≠=a H a H 时, T 统计量的观察值为12.0922, 检验统计量的P 值为2.71852710-⨯, 这个P 值非常小, 检验结果强烈地否定0:0=a H , 接受0:1≠a H ; 第二行表示作假设检验(t 检验): ,0:0=b H 0:1≠b H 时T 统计量的观察值为74.3137, 检验统计量的P 值为 4.884981510-⨯, 这个P 值也非常小, 检验结果强烈地否定,0:0=b H 接受0:1≠b H .Rsquared->0.998193, 表示.998193.0)()(2==总平方和回归平方和SST SSR R 它说明y 的变化有99.8%来自x 的变化; AdjustedRSquared->0.998012, 表示修正后的=2~R 0.998012.EstimatedVariance->0.0407025, 表示线性模型),0(~,2σεεN bx a y ++=中方差2σ的估计为0.0407025.ANOV A Table(回归方差分析表)中的DF 这一列为自由度: Model(一元线性回归模型)的自由度为1, Error(残差)的自由度为,102=-n Total(总的)自由度为.111=-nSumOfSq 这一列为平方和: 回归平方和=SSR 1321.43, 残差平方和=SSE 2.3928,总的平方和=+=SSE SSR SST 1323.82;MeanSq 这一列是平方和的平均值, 由SumOfSq 这一列除以对应的DF 得到, 即.23928.02,43.13211=-===n SSEMSE SSR MSR FRatio 这一列为统计量MSEMSRF =的值, 即.52.5522=F 最后一列表示统计量F 的P 值非常接近于0. 因此在作模型参数)(b =β的假设检验(F 检验):0:;0:10≠=ββH H 时, 强烈地否定0:0=βH , 即模型的参数向量.0≠β因此回归效果 非常显著.(3) 在命令RegressionReport 的选项中增加RegressionReport->{SinglePredictionCITable}就可以得到在变量x 的观察点处的y 的预测值和预测区间. 虽然0.14=x 不是观察点, 但是可以用线性插值的方法得到近似的置信区间. 输入aa=Sort[aa]; (*对数据aa 按照水泥用量x 的大小进行排序*)regress2=Regress[aa,{1,x},x,RegressionReport->{SinglePredictionCITable}](*对数据aa 作线性回归, 回归报告输出y 值的预测区间*)执行后输出{SinglePredictionCITable-> Observed PredictedSE CI56.9 55.8808 0.55663 {54.6405,57.121} 58.3 58.92060.541391 {57.7143,60.1269} 61.6 61.9605 0.528883 {60.7821,63.1389} 64.6 65.00030.519305 {63.8433,66.1574} 68.1 68.0402 0.51282 {66.8976,69.1828} 71.3 71.0801 0.509547 {69.9447,72.2154}} 74.1 74.1199 0.509547 {72.9846,75.2553} 77.4 77.1598 0.51282 {76.0172,78.3024} 80.2 80.1997 0.519305 {79.0426,81.3567} 82.6 83.2395 0.528883 {82.0611,84.4179} 86.4 86.2794 0.541391 {85.0731,87.4857} 89.7 89.3192 0.55663 {88.079,90.5595}上表中第一列是观察到的y 的值, 第二列是y 的预测值, 第三列是标准差, 第四列是相应的预测区间(置信度为0.95). 从上表可见在)4.77(220==y x 时, y 的预测值为77.1598, 置信度为0.95的预测区间为(76.0172,75.2553), 在)2.80(230==y x 时, y 的预测值为80.1997, 置信度为0.95的预测区间为{79.0426,81.3567}. 利用线性回归方程, 可算得=0x 225时, y 的预测值为78.68, 置信度为0.95的预测区间为(77.546, 79.814).利用上述插值思想, 可以进一步作出预测区间的图形. 先输入调用图软件包命令<<Graphics`执行后再输入{observed2,predicted2,se2,ci2}=Transpose[(SinglePredictionCITable/.regress2)[[1]]];(*取出上面输出表中的四组数据, 分别记作observed2,predicted2,se2,ci2*) xva12=Map[First,aa];(*取出数据aa 中的第一列, 即数据中x 的值, 记作xva12*) Predicted3=Transpose[{xva12,predicted2}];(*把x 的值xva12与相应的预测值predicted2配成数对, 它们应该在一条回 归直线上*)lowerCI2=Transpose[{xva12,Map[First,ci2]}];(*Map[First,ci2]取出预测区间的第一个值, 即置信下限. x 的值xva12与相应 的置信下限配成数对*)upperCI2=Transpose[{xva12,Map[Last,ci2]}];(*Map[Last,ci2]取出预测区间的第二个值, 即置信上限. x 的值xva12与相应的置信上限配成数对*)MultipleListPlot[aa,Predicted3,lowerCI2,upperCI2,PlotJoined->{False,True,True,True},SymbolShape->{PlotSymbol[Diamond],None,None, None}, PlotStyle->{Automatic,Automatic,Dashing[{0.04,0.04}], Dashing[{0.04,0.04}]}](*把原始数据aa 和上面命令得到的三组数对predicted3,lowerCI2,upperCI2 用多重散点图命令MultipleListPlot 在同一个坐标中画出来. 图形中数据 aa 的散点图不用线段连接起来, 其余的三组散点图用线段连接起来, 而 且最后两组数据的散点图用虚线连接.*)则输出图2.2.图2.2从图形中可以看到, 由Y 的预测值连接起来的实线就是回归直线. 钻石形的点是原始数 据. 虚线构成预测区间.多元线性回归例2.2 (教材 例2.2) 一种合金在某种添加剂的不同浓度下, 各做三次试验, 得到数据如下表:8.323.327.298.277.288.301.306.321.313.274.297.312.318.292.250.300.250.200.150.10Yx 抗压强度浓度(1) 作散点图;(2) 以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 其中2210,,,σb b b 与x 无关;(3) 求回归方程,ˆˆˆˆ2210x b x b b y ++=并作回归分析. 先输入数据bb={{10.0,25.2},{10.0,27.3},{10.0,28.7},{15.0,29.8},{15.0,31.1},{15.0,27.8},{20.0,31.2},{20.0,32.6}, {20.0,29.7},{25.0,31.7},{25.0,30.1},{25.0,32.3}, {30.0,29.4},{30.0,30.8},{30.0,32.8}};(1) 作散点图, 输入ListPlot[bb,PlotRange->{{5,32},{23,33}},AxesOrigin->{8,24}]则输出图2.3.图2.3(2) 作二元线性回归, 输入Regress[bb,{1,x,x^2},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}](*对数据bb 作回归分析, 回归函数为,2210x b x b b ++用{1,x,x^2}表示, 自变量为x, 参数0b ,1b ,2b 的置信水平为0.95的置信区间)执行后得到输出的结果:{bestFit->19.0333+1.00857x-0.020381x 2, ParameterCITable->Estimate SE CI119.0333 3.27755{11.8922,26.1745} x 1.00857 0.356431{0.231975,1.78517}x 2 -0.0203810.00881488{-0.0395869,-0.00117497}ParameterTable->Estimate SE Tstat PValue 119.03333.277555.807180.0000837856x 1.00857 0.356431 2.82964 0.0151859 x 2 -0.0203810.00881488-2.312110.0393258Rsquared->0.614021,AdjustedRSquared->0.549692, EstimatedVariance->2.03968,ANOV A Table->DF SumOfSqMeanSq Fratio PValue Mode1 2 38.937119.4686 9.54490.00330658Error 12 24.47622.03968Total14 63.4133从输出结果可见: 回归方程为,020381.000857.10333.192x x Y -+=.020381.0ˆ,00857.1ˆ,0333.19ˆ210-===b b b 它们的置信水平为0.95的置信区间分别是 (11.8922,26.1745),(0.231975,1.78517),(-0.0395869,-0.00117497).假设检验的结果是: 在显著性水平为0.95时它们都不等于零. 模型),0(~,22210σεεN x b x b b Y +++=中,2σ的估计为2.03968. 对模型参数T b b ),(21=β是否等于零的检验结果是: .0≠β因此回归效果显著.非线性回归例2.3 下面的数据来自对某种遗传特征的研究结果, 一共有2723对数据, 把它们分成8类后归纳为下表.36.1937.1991.2079.2115.2342.257.2908.3887654321917461203246071021579y x 遗传性指标分类变量频率研究者通过散点图认为y 和x 符合指数关系:,c ae y bx += 其中c b a ,,是参数. 求参数c b a ,,的最小二乘估计.因为y 和x 的关系不是能用Fit 命令拟合的线性关系, 也不能转换为线性回归模型. 因此考虑用(1)多元微积分的方法求c b a ,,的最小二乘估计; (2)非线性拟合命令NonlinearFit 求c b a ,,的最小二乘估计.(1) 微积分方法 输入Off[Genera1::spe11] Off[Genera1::spe111] Clear[x,y,a,b,c]dataset={{579,1,38.08},{1021,2,29.70},{607,3,25.42},{324,4,23.15},{120,5,21.79},{46,6,20.91},{17,7,19.37},{9,8,19.36}}; (*输入数据集*) y[x_]:=a Exp[b x]+c (*定义函数关系*)下面一组命令先定义了曲线c ae y bx +=与2723个数据点的垂直方向的距离平方和, 记为).,,(c b a g 再求),,(c b a g 对c b a ,,的偏导数,,,cgb g a g ∂∂∂∂∂∂分别记为.,,gc gb ga 用FindRoot 命令解三个偏导数等于零组成的方程组(求解c b a ,,). 其结果就是所要求的c b a ,,的最小二乘估计. 输入Clear[a,b,c,f,fa,fb,fc]g[a_,b_,c_]:=Sum[dataset[[i,1]]*(dataset[[i,3]]-a*Exp[dataset[[i,2]]*b]-c)^2,{i,1,Length[dataset]}] ga[a_,b_,c_]=D[g[a,b,c],a]; gb[a_,b_,c_]=D[g[a,b,c],b]; gc[a_,b_,c_]=D[g[a,b,c],c]; Clear[a,b,c]oursolution=FindRoot[{ga[a,b,c]==0,gb[a,b,c]==0,gc[a,b,c]==0},{a,40.},{b,-1.},{c,20.}](* 40是a 的初值, -1是b 的初值, 20是c 的初值*)则输出{a->33.2221,b->-0.626855,c->20.2913} 再输入yhat[x_]=y[x]/.oursolution则输出20.2913+33.2221x e 626855.0这就是y 和x 的最佳拟合关系. 输入以下命令可以得到拟合函数和数据点的图形:p1=Plot[yhat[x],{x,0,12},PlotRange->{15,55},DisplayFunction->Identity]; pts=Table[{dataset[[i,2]],dataset[[i,3]]},{i,1,Length[dataset]}]; p2=ListPlot[pts,PlotStyle->PointSize[.01],DisplayFunction->Identity]; Show[p1,p2,DisplayFunction->$DisplayFunction];则输出图2.4.图2.4(2) 直接用非线性拟合命令NonlinearFit 方法 输入data2=Flatten[Table[Table[{dataset[[j,2]],dataset[[j, 3]]},{i,dataset[[j,1]]}],{j,1,Length[dataset]}],1]; (*把数据集恢复成2723个数对的形式*)<<Statistics`w=NonlinearFit[data2,a*Exp[b*x]+c,{x},{{a,40},{b,-1},{c,20}}]则输出x e 626855.02221.332913.20-+这个结果与(1)的结果完全相同. 这里同样要注意的是参数c b a ,,必须选择合适的初值.如果要评价回归效果, 则只要求出2723个数据的残差平方和.)ˆ(2∑-i i yy 输入 yest=Table[yhat[dataset[[i,2]]],{i,1, Length[dataset]}];yact=Table[dataset[[i,3]],{i,1,Length[dataset]}]; wts=Table[dataset[[i,1]],{i,1,Length[dataset]}]; sse=wts.(yact-yest)^2 (*作点乘运算*)则输出59.9664即2723个数据的残差平方和是59.9664. 再求出2723个数据的总的相对误差的平方和.]ˆ/)ˆ[(2∑-i i i y yy 输入 sse2=wts.((yact-yest)^2/yest) (*作点乘运算)则输出2.74075由此可见, 回归效果是显著的.实验习题1.某乡镇企业的产品年销售额x 与所获纯利润y 从1984年的数据(单位:百万元)如下表3.225.207.174.157.135.117.94.83.84.65.43.349.328.294.241.214.176.147.104.95.71.69493929190898887868584y x 纯利润销售额年度 试求y 对x 的经验回归直线方程, 并作回归分析.2.在钢线碳含量对于电阻的效应的研究中, 得到以下数据268.236.2221191815/95.080.070.055.040.030.010.0%/Ωμy x 电阻碳含量试求y 对x 的经验回归直线方程, 并作简单回归分析.(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 求0.14=x 时y 的置信水平为0.95的预测区间.4.下面给出了某种产品每件平均单价Y (单位:元)与批量x (单位:件)之间的关系的一组数 据18.120.121.124.126.130.140.148.155.165.170.181.1908075706560504035302520y x(i)作散点图. (ii)以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 求回归方程,ˆˆˆˆ2210x b x b b Y ++=并作简单回归分析.]。

方差分析与回归分析

方差分析与回归分析
有因素A是显著的,即浓度不同对产量有显著性影响,而温度
以及浓度和温度的交互作用对产量无显著性影响,也就是说为
了提高产量必须控制好浓度。
2 、双因素无重复试验的方差分析 在双因素试验中,对每一对水平组合只做一次试验,即不 重复实验,得到
上一页 下一页 返回
上一页 下一页 返回
总平方和 误差平方和
例9.3 某化工企业为了提高产量,选了三种不同浓度、四种不同 温度做试验。在同一浓度与温度组合下各做两次试验,其数据如
下表所示,在显著性水平α=0.05下不同浓度和不同温度以及它们
间的交叉作用对产量有无显著性影响?
B A
A1 A2 A3
B1
14,10 9,7 5,11
B2
11,11 10,8 13,14
检验温度对该化工产品的得率是否有显著影响。
解: 计算各个水平下的样本均值,得
上一页 下一页 返回
计算 ST=106.4, SA=68.4, SE =38.0
单因素试验的方差分析表:
方差来源 平方和 自由度 F值 临界值
显著性
因素A 误差
总计
68.4 4 38.0 10
106.4 14
4.5 F0.05(4,10)=3.48 ※ 4.5 F0.01(4,10)=5.99
变量Y服从正态分布
,即Y的概率密度为
其中
,而 是不依赖于x的常数。
上一页 下一页 返回
在n次独立试验中得到观测值(x1,y1),(x2,y2),… (xn,yn),利用极大似然估计法估计未知参数a1, a2,… ak,时,
有似然函数
似然函数L取得极大值,上式指数中的平方和
取最小值。
即为了使观测值(xi , yi)(i=1,2,…,n)出现的可能性最大,应当选 择参数a1,a2,…,ak,使得观测值yi与相应的函数值

方差分析与回归

方差分析与回归

方差分析的应用场景
总结词
方差分析适用于处理多组数据,当需要比较不同组之间的均值差异时,可以使用方差分析。
详细描述
方差分析广泛应用于各种领域,如社会科学、医学、经济学等。例如,在心理学中,研究者可以使用方差分析比 较不同年龄段的人在智力测试中的得分差异;在医学研究中,方差分析可以用于比较不同药物治疗对患者的疗效。
数据降维
通过回归分析找出影响因变量的关键因素, 从而降低数据的维度。
回归分析的优缺点
优点
能够找出自变量和因变量之间的关系,并建立数学模型进行预测;能够处理多个自变量和因变量之间 的关系;能够量化自变量对因变量的影响程度。
缺点
假设数据符合线性关系,对于非线性关系的数据拟合效果可能不佳;对于异常值和离群点敏感,容易 影响模型的稳定性;对于共线性问题处理不够理想,可能导致模型失真。
它通过选择合适的数学模型和参数, 使因变量的预测值与实际值之间的误 差最小化,从而得到最佳的预测结果 。
回归分析的应用场景
预测模型
利用已知的自变量数据来预测因变量的未来 值,如销售预测、股票价格预测等。
因素分析
研究自变量对因变量的影响程度,如研究广 告投入对销售额的影响程度。
分类问题
将因变量进行分类,如根据多个特征将客户 进行分类。
3
指导实践
分析结果可以为实际工作提供指导,例如在市场 营销中预测销售量、在医学中预测疾病发病率等。
方差分析与回归的未来发展
算法改进
多变量分析
随着计算能力的提升,未来会有更高效的 算法出现,提高分析的准确性和速度。
目前许多方差与回归分析集中在二元或三 元关系上,未来会有更多研究关注多变量 之间的关系。
回归分析实例

概率论课件_高教版_第八章_方差分析与回归分析

概率论课件_高教版_第八章_方差分析与回归分析

MS A 168.00 F 20.56 MS e 8.17
查附表在f1=3,f2=12时, F0.05=3.49,F0.01=5.95 实得 F> F0.01或 P<0.01,说明药剂处理有统计意义。
四、单因素方差分析模型参数的估计 当方差分析结果为否定原假设时,就需要估计模型的有 关参数 ,下面就讨论方差分析模型参数的估计。 单因素方差分析的模型 为 xij i ij i 1,2, , r 2 ~ N ( 0 , ), 且相互独立 j 1,2, , m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指标 的作用; ij为随机因素对试验指标 值的影响。需要估计的 参数 有 , i , 2。不难证明这些参数的 极大似然估计量为: 1 r m 1 m 1 r m ˆ i xij ˆ xij xij rm i 1 j 1 m j rm i 1 j 1 1 r m 1 2 2 ˆ ˆ) ( xij SSe rm i 1 j 1 rm
Tr
T

xr
x
其中xij是因素A第i水平下第j次重复试验结果 , m r m r T T Ti xij xi T xij Ti x . m rm j 1 i 1 j 1 i 1
单因素方差分析的统计模型
试验数据xij满足 xij i ij i 1,2,, r 2 ~ N ( 0 , ),且相互独立 j 1,2,, m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指 标的作用 ; ij为随机因素对试验指标 值的影响。
鸡重/g-1000
60 80 1 2 12 9 28
Ti

线性回归分析和方差分析报告

线性回归分析和方差分析报告

线性回归分析和方差分析报告信计12 徐文豪 2110902039本报告以教材第二章课后习题2.4和第三章课后习题3.6为主体,给出对应的解答、sas 代码和结果分析。

2.4 某公司管理人员为了了解某化妆品在一个城市的月销售量Y (单位:箱)与该城市中适合使用该化妆品的人数1X (单位:前人)以及他们人均月收入2X (单位:元)之间的关系,在某个月中对15个城市做了调查,得上述各量的观测值如下表所示:162 274 2450 120 180 3254 223 375 3802 131 205 2838 67 86 2347 169 265 3782 81 98 3008 192 330 2450 116 195 2137 55 53 2560 252 430 4020 232 372 4427 144 236 2660 103 157 2088 212 370 2605假设Y 与1X ,2X 之间满足线性回归关系01122i i i i y x x βββε=+++,1,2,,15i = 其中(1,2,15)i i ε=独立通分布于2(0,)N σ。

(1)求回归系数012,,βββ的最小二乘估计和误差方差2σ的估计,写出回归方程并对回归系数作解释。

解:首先将数据导入sas ,sas 语句如下:data sale;input y x1 x2; cards ;162 274 2450 120 180 3254 223 375 3802 131 205 2838 67 86 2347 169 265 3782 81 98 3008 192 330 2450 116 195 2137 55 53 2560 252 430 4020 232 372 4427 144 236 2660 103 157 2088 212 370 2605 ; run ;然后调用reg 过程,sas 语句如下:proc reg data =sale; model y=x1 x2; run ;运行结果如下:由此得到012,,βββ的最小二乘估计分别为3.45261,0.496,0.0092,2 4.7403σ=,回归方程为123.452610.4960.0092y x x =++1β显示当人均月收入固定时,使用化妆品的人数上升一人,月销售量增加0.496个单位;2β显示当使用化妆品的人数固定时,人均月收入增加一元,月销售量增加0.0092个单位。

第八章 方差分析与回归分析

第八章 方差分析与回归分析

第八章 方差分析与回归分析§8.1 方差分析8.1.1 问题的提出举例说明概念因子和水平。

因子:对研究对象产生影响的因素。

水平:因子所处的状态。

8.1.2 单因子方差分析的统计模型在研究中只考察一个因子则称为单因子试验,其中,记因子为A ,设其有r 个水平,记为r A A ,,1 ,在每一水平下考察的指标可以看成一个总体,现有r 个水平,故有r 个总体,假定:(1)每一总体均为正态总体,记为r i N i i ,,2,1),,(2;(2)各总体的方差相同,记222221 r ;(3)从每一总体中抽取的样本是相互独立的,即所有的试验结果ij y 都相互独立。

这些假定都可以用统计方法进行验证。

首先比较各水平下的均值是否相同,即要对如下的一个假设进行检验,不全相等r rH H ,,,::211210在不会引起误解的前提下,1H 通常可以省略不写。

若0H 成立,则称因子A 不显著,否则,称因子A 显著。

对如上的假设进行检验,需要从每一水平下的总体抽取样本,设从第i 个水平下的总体获得m 个试验结果(各个水平下相同),记ij y 表示第i 个总体的第j 次重复试验结果。

共得如下m r 个试验结果:m j r i y ij ,,1,,,1,其中r 为水平数,m 为重复数,i 为水平编号,j 为重复编号。

在水平i A 下的试验结果ij y 与该水平下的指标均值i 一般总是有差距的,记i ij ij y ,ij 称为随机误差,于是有ij i ij y上式称为试验结果ij y 的数据结构式。

把三个假定用于数据结构式就可以写出单因子方差分析的统计模型:),0(,,1,,,1,2 N m j r i y ij ij i ij 相互独立,且都服从诸为了能更好地描述数据,常引入总均值和效应的概念:总均值:诸i 的平均 ri i r r 11 ;称第i 水平下的均值i 与总均值 的差i i a ,r i ,,1为因子A 的第i 水平的主效应,简称为i A 的效应。

方差分析和回归分析的区别与联系

方差分析和回归分析的区别与联系

一、方差分析和回归分析的区别与联系?(以双变量为例)联系:1、概念上的相似性回归分析是为了分析变量间的因果关系,研究自变量X取不同值时,因变量平均值Y的变化。

运用回归分析方法,可以从变量的总偏差平方和中分解出已被自变量解释掉的误差(解释掉误差)和未被解释掉的误差(剩余误差);方差分析是为了分析或检验总体间的均值是否有所不同。

通过对样本中自变量X取不同值时所对应的因变量Y均值的比较,推论到总体变量间是否存在关系。

运用方差分析,也可以从变量的总离差平方和中分解出已被自变量解释掉的误差和未被自变量解释掉的误差。

因此两种分析在概念上所具有的相似性是显而易见的。

2、统计分析步骤的相似性回归分析在确定自变量X是否为因变量Y的影响因素时,从分析步骤上先对X和Y进行相关分析,然后建立变量间的回归模型。

最后再进行参数的统计显着性检验或对回归模型的统计显着性进行检验。

方差分析在确定X是否是Y的影响因素时,是先从样本所的数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行显着性检验。

二者在分析步骤上也具有相似性。

3、假设条件具有一定的相似性回归分析有五个基本假定,分别是:自变量可以是随机变量也可以是非随机变量;X与Y 之间存在的非确定性的相关关系,要求Y的所有子总体,其方差都相等;子总体均值在一是统计独立的,即Y1的数值不影响Y2的数值,各Y值之间都没有条直线上;随机变量Yi关系;Y值的每一个子总体都满足正态分布。

方差分析的基本假定有:等方差性(总体中自变量的每一取值所对应因变量Y的分布都具i的分布为正态分布。

有相同方差);Yi二者在假设条件上存在着相同。

4、在总离差平方和中的分解形式和逻辑上的相似性回归分析中,TSS=RSS+RSSR,而在方差分析中,TSS=RSS+BSS。

二者均是以已解释掉的误差与未被解释掉的误差之和为总离差平方和。

5、确定影响因素上的相似性为简化分析起见,我们假设只有一个自变量X影响因变量Y。

第八章方差分析与回归分析(1)

第八章方差分析与回归分析(1)

第⼋章⽅差分析与回归分析(1)第⼋章⽅差分析与回归分析习题8.1 P3801、在⼀个单因⼦试验中,因⼦A 有三个⽔平,每个⽔平下各重复4次,具体数据如下:试计算误差平⽅和e S 、因⼦A 的平⽅和A 、总平⽅和T ,并指出它们各⾃的⾃由度.2、在⼀个单因⼦试验中,因⼦A 有四个⽔平,每个⽔平下各重复的次数分别为5,7,6,8。

那么误差平⽅和、A 的平⽅和及总平⽅和的⾃由度各是多少?5、⽤4种安眠药在兔⼦⾝上进⾏试验,特选24只健康的兔⼦,随机把它们均分为4组,每组各服⼀种安眠药,安眠时间如下所⽰:在显著⽔平α=习题8.2 P3873、有7种⼈造纤维,每种抽4根测其强度,得每种纤维的平均强度及标准差如下:(1)试问七种纤维强度间有⽆显著性差异(0.05α=)(2)若七种纤维的强度间⽆显著性差异,则给出平均强度的置信⽔平为0.95的置信区间;若各种纤维的强度间有显著差异,请进⼀步在0.05α=下进⾏多重⽐较,并指出那种纤维的平均强度最⼤,同时该种纤维平均强度的置信⽔平为0.95的置信区间。

习题8.3 P3942、在安眠药试验中(见习题8.1.5)中已求得到四个样本⽅差:222212340.02,0.08,0.036,0.1307s s s s ====请⽤Hartley 检验在显著⽔平0.05α=下考察四个总体⽅差是否彼此相等。

习题8.4 P4111、假设回归直线过原点,即⼀元线性回归模型为,1,2,...i i i y x i n βε=+=()()20,,i i E Var εεσ==诸观测值相互独⽴。

(1)写出2,βσ的最⼩⼆乘估计;(2)对给定的0x ,其对应的因变量均值的估计为0y ,求()0Var y 。

3、在回归分析计算中,常对数据进⾏变换1212,,1,...i i i i y c x cy x i n d d --=== 其中()()121122,,0,0c c d d d d >>是适当选取的常数。

第九章方差分析及回归分析

第九章方差分析及回归分析
的点估计及均值差的置信水平为0.95的置信 区间。
解:2 SE /(n r) 0.000016
1 x1 0.242, 2 x2 0.256, 3 x3 0.262 x 0.253
1 x1 x 0.011, 2 x2 x 0.003
2019/11/8
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
0.255
0.259
0.245
0.254
0.267
0.243
0.261
SE ( X i1 X1)2
( X is X s )2
i 1
i 1
nj
(Xij X j )2 / 2 ~ 2 (nj 1)
i1
由 2分布的可加性知
s
SE / 2 ~ 2 ( (nj 1)) j 1
SE / 2 ~ 2(n s)
因F0.05(2,12) 3.89 32.92,
故在水平0.05下拒绝H0 , 认为各台机器生产的 薄板厚度有显著差异。
2019/11/8
23
(五)未知参数的估计
不管H0是否为真,ˆ 2

SE nr

2的无偏估计。
拒绝还是接受H0,需要作出两总体N (i , 2)和N (k , 2),
( Xij Xi.)( Xi. X )
i1 j1
i1

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析方差分析(Analysis of Variance,缩写为ANOVA)与回归分析(Regression Analysis)是统计学中常用的两种数据分析方法。

它们在不同领域的研究中有着重要的应用,用于探究变量之间的关系以及预测、解释和验证数据。

一、方差分析方差分析是一种用于比较两个或多个样本均值是否差异显著的统计方法。

它通过计算各组之间的离散程度来揭示变量之间的关系。

方差分析常用于实验设计和实验结果的分析,可以帮助研究人员确定各因素的影响程度。

在方差分析中,我们首先将数据进行分组,然后计算每个组的方差。

通过比较各组之间的方差,我们可以判断其是否有显著差异。

方差分析根据研究设计的不同,可以分为单因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量(因素)的情况,而多因素方差分析则适用于多个自变量(因素)的情况。

方差分析的结果一般通过计算F值来判断各组之间的差异是否显著。

如果F值大于临界值,则可以拒绝原假设,认为各组之间存在显著差异。

反之,如果F值小于临界值,则无法拒绝原假设,即各组均值没有显著差异。

二、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它根据自变量(独立变量)与因变量(依赖变量)之间的相关性,建立一个预测模型来预测或解释因变量的变化。

在回归分析中,我们首先收集自变量和因变量的数据,然后通过建立数学模型来描述它们之间的关系。

常用的回归模型包括线性回归、多项式回归、逻辑回归等。

通过回归分析,我们可以估计自变量对于因变量的影响程度,并根据模型进行预测和解释。

在回归分析中,我们通常使用R方(R-squared)来衡量模型的拟合程度。

R方的取值范围在0到1之间,越接近1表示模型的拟合效果越好。

此外,回归分析还可以通过计算标准误差、系数显著性、残差分析等指标来评估模型的质量。

结论方差分析与回归分析是统计学中常用的两种数据分析方法。

方差分析适用于比较多个样本均值的差异性,而回归分析用于研究变量之间的关系和预测。

方差分析与回归分析

方差分析与回归分析

不同行业被投诉次数的散点图
行业
1. 随机误差
▪ 因素的同一水平(总体)下,样本各观察值之间的差异 ▪ 比如,同一行业下不同企业被投诉次数是不同的 ▪ 这种差异可以看成是随机因素的影响,
2. 系统误差
▪ 因素的不同水平(不同总体)下,各观察值之间的差异 ▪ 比如,不同行业之间的被投诉次数之间的差异
▪ 这种差异可能是由于抽样的随机性所造成的,也可
a.画散点图
较强的线性正相关关系
b. 求r
• 样本容量n=14,查教材附录540页《相关系数 检验表》,当显著性水平为1%时,r0.01=0.661。 显然,样本相关系数r> r0.01 ,因此线性回归效果 显著,认为抗拉强度y与含碳量x之间存在高度显 著的正相关关系。
c.求抗拉强度y关于含碳量x 的线性回归方程
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
非线性回归
• 在许多实际问题中,变量之间并不一定是 变量的关系,而是某种非线性相关关系, 称为一元非线性回归。许多有价值的非线 性回归方程,可以利用适当的变换,转换 为线性回归方程,例如,倒数变换、半对 数变换、双对数变换、多项式变换等;然 后再利用线性回归分析的最小二乘法进行 估计和检验。
k
ni
k
k
xij x 2 ni xi x 2
ni
xij x 2
i1 j1
i1
i1 j1
SST = SSA + SSE
▪ 前例的计算结果:
4164.608696=1456.608696+2708
关系强度的测量
1. 拒绝原假设表明因素(自变量)与观测值之间有

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法

第七章 方差分析与回归分析

第七章 方差分析与回归分析

Se
2
~ 2 (n r),还可证明,在 H0 为真时
SA
2
~
2 (r 1) ,且与 Se 相互独立.
因而,由 F 分布的构造可知,在 H0 为真时,(21)
式给出的检验统计量 F ~ F(r 1, n r) ,当取 c F1 (r 1, n r)
便有 P(F c} ,故得拒绝域为 W {F F1 (r 1 n r)}.
i 个总体获得容量为 mi 叫的样本yi1, yi2 ,, yimi , i 1,2,, r
各样本间还是相互独立的.这些样本可以通过试验或某种
观察获得.为方便起见,本章对样本及其观察值都用同一
符号 y 加下标表示,其含义可从上下文理解.
在 Ai 水平下获得的 yij 与 i 不会总是一致的,记
A 的各水平间无显著差异,简称因子 A不显著;
反之,当 H0 不真时,各i 不全相同,这时称因子 A 的各水平间有显著差异,简称因子 A显著.图(1)
示意了这两种说法的含义.
(a)A 不显著
图(1)
(b)A 显著
定义1 用于检验假设(1)式的统计方法称为方差分 析法,其实质是检验若干个具有相同方差的正态总体的 均值是否相等的一种统计方法.在所考察的因子仅有一 个的场合,称为单因子方差分析. 为检验假设(1)式需要从每一总体中抽取样本.设从第
二、单因子方差分析的统计模型
在例1中所考察的因子只有一个,称其为单因子试验.
通常在单因子试验中,设因子 A有 r 个水平A1, A2,, Ar ,
在每一水平下考察的指标可以看成一个总体,现有 r 个
水平,故有 r 个总体,并假定:
(1)每一总体均服从正态分布; (2)每一总体的方差相同; (3)从每一总体中抽取的样本相互独立.

方差分析及回归分析ppt60页课件

方差分析及回归分析ppt60页课件
单因素试验的方差分析
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2

As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档