回归分析和方差分析.ppt

合集下载

方差分析、主成分分析、相关与回归分析

方差分析、主成分分析、相关与回归分析

• 2 确定主成分个数
(1定)值累(计一贡般献采率用:7当0%前以k上个)主表时示成前,分k个则的主保累成留分计累前贡信计k息献个提。取率主了达成原到分始变某。量一多特少的
(2)特征根:一般选取特征根≥1的主成分。
注意的问题
1.首先应当认识到主成分分析方法适用于变量之间存在较强相 关性的数据,如果原始数据相关性较弱,运用主成分分析后不 能起到很好的降维作用,即所得的各个主成分浓缩原始变量信 息的能力差别不大。一般认为当原始数据大部分变量的相关系 数都小于0.3时,运用主成分分析不会取得很好的效果。
.825
.435
.002
.079
-.342
-.083
ENGLISH.074
.276
-.197
Extraction Method: Principal Component Analysis.
(1)根a据. 上6 c述omp计on算ent机s 输ext出rac结te果d.判断选择哪几个主成分(即原始的6个变量要降维
回归分析
(一)一元回归方程:
y=β0+β1x β0为常数项;β1为y对x回归系数,即:x每变动一个单位所 引起的y的平均变动
(二)一元回归分析的步骤
利用样本数据建立回归方程 回归方程的拟和优度检验 回归方程的显著性检验(t检验和F检验) 残差分析 预测
思考
对100名学生的数学、物理、化学、语文、历史、英语成绩的数据进行主成分分 析,得到如下SPSS输出:
同颜色点的表示 • (5)选择标记变量(label case by): 散点图上
可带有标记变量的值(如:省份名称)
计算相关系数
• (1)作用:
以精确的相关系数(r)体现两个变量间的线性关系程度. r:[-1,+1]; r=1:完全正相关; r=-1:完全负相关; r=0:

《线性回归与协方差》课件

《线性回归与协方差》课件
协方差矩阵
描述数据点之间的协方差关系, 即各变量之间的相关程度。
协方差在回归分析中的作用
01
02
03
预测精度
协方差矩阵用于估计回归 模型的参数,从而提高预 测精度。
模型评估
通过比较实际值与预测值 的协方差,可以评估模型 的拟合效果。
变量选择
协方差矩阵可以帮助确定 哪些变量对回归模型的影 响最大,从而进行变量选 择。
最小二乘法的推导
最小二乘法的推导过程
通过最小化残差平方和,利用数学方 法(如导数)求解最佳参数值。
正规方程法
迭代法
通过迭代算法逐步逼近最小二乘解, 常用的迭代方法有高斯-牛顿法和雅可 比法。
通过正规方程组求解参数值,得到最 小二乘解。
最小二乘法的应用
线性回归分析
最小二乘法广泛应用于线性回 归分析,通过最小化残差平方 和来估计最佳线性模型的参数

时间序列分析
在时间序列分析中,最小二乘 法用于估计最佳的预测模型, 如ARIMA模型。
经济计量学
在经济计量学中,最小二乘法 用于估计经济模型的参数,如 多元线性回归模型。
其他领域
除了以上领域,最小二乘法还 广泛应用于其他领域,如生物 统计学、医学统计、地理信息
系统等。
03
CATALOGUE
协方差介绍
ቤተ መጻሕፍቲ ባይዱ
利用协方差分析股票市场的实例
总结词
协方差矩阵
01
02
详细描述
通过分析股票市场的历史数据,计算各股票 之间的协方差矩阵,了解各股票之间的相关 性。
总结词
投资组合优化
03
总结词
市场趋势分析
05
06
04

方差分析与回归分析

方差分析与回归分析
有因素A是显著的,即浓度不同对产量有显著性影响,而温度
以及浓度和温度的交互作用对产量无显著性影响,也就是说为
了提高产量必须控制好浓度。
2 、双因素无重复试验的方差分析 在双因素试验中,对每一对水平组合只做一次试验,即不 重复实验,得到
上一页 下一页 返回
上一页 下一页 返回
总平方和 误差平方和
例9.3 某化工企业为了提高产量,选了三种不同浓度、四种不同 温度做试验。在同一浓度与温度组合下各做两次试验,其数据如
下表所示,在显著性水平α=0.05下不同浓度和不同温度以及它们
间的交叉作用对产量有无显著性影响?
B A
A1 A2 A3
B1
14,10 9,7 5,11
B2
11,11 10,8 13,14
检验温度对该化工产品的得率是否有显著影响。
解: 计算各个水平下的样本均值,得
上一页 下一页 返回
计算 ST=106.4, SA=68.4, SE =38.0
单因素试验的方差分析表:
方差来源 平方和 自由度 F值 临界值
显著性
因素A 误差
总计
68.4 4 38.0 10
106.4 14
4.5 F0.05(4,10)=3.48 ※ 4.5 F0.01(4,10)=5.99
变量Y服从正态分布
,即Y的概率密度为
其中
,而 是不依赖于x的常数。
上一页 下一页 返回
在n次独立试验中得到观测值(x1,y1),(x2,y2),… (xn,yn),利用极大似然估计法估计未知参数a1, a2,… ak,时,
有似然函数
似然函数L取得极大值,上式指数中的平方和
取最小值。
即为了使观测值(xi , yi)(i=1,2,…,n)出现的可能性最大,应当选 择参数a1,a2,…,ak,使得观测值yi与相应的函数值

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。

它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。

本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。

一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。

它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。

在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量的情况。

例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。

双因素方差分析适用于有两个自变量的情况。

例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。

多因素方差分析适用于有多个自变量的情况。

例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。

方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。

通过与临界F值比较,可以确定差异是否显著。

方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。

二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。

它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。

回归分析分为简单线性回归和多元线性回归两种类型。

简单线性回归适用于只有一个自变量和一个因变量的情况。

例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。

多元线性回归适用于有多个自变量和一个因变量的情况。

方差分析和回归分析

方差分析和回归分析

方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。

它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。

本文将对方差分析和回归分析进行介绍和比较。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。

方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。

方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。

方差分析可以分为单因素方差分析和多因素方差分析。

单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。

多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。

方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。

通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。

二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。

回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。

回归分析可用于预测、解释和探索自变量与因变量之间的关系。

回归分析可以分为线性回归和非线性回归。

线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。

非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。

回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。

回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。

三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。

主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。

2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。

方差分析回归分析

方差分析回归分析

案例二:不同地区教育水平的方差分析
总结词
通过比较不同地区的教育水平,了解各 地区教育发展的差异,为政府制定教育 政策提供科学依据。
VS
详细描述
收集不同地区的教育水平数据,包括学校 数量、教师质量、学生成绩等。利用方差 分析方法,分析各地区教育水平是否存在 显著差异,并探究影响教育水平的因素。 根据分析结果,提出针对性的教育政策建 议,促进教育公平和发展。
应用范围
方差分析主要应用于实验设计、质量控制等领域,而回归 分析则广泛应用于预测、建模和决策等领域。
04
方差分析的实际应用案例
案例一:不同品牌电视销量的方差分析
总结词
通过对比不同品牌电视的销量,分析品牌、型号、价格等因素对销量的影响,有助于企业了解市场需 求和竞争态势。
详细描述
选取市场上不同品牌、型号、价格的电视,收集其销量数据。利用方差分析方法,分析各品牌电视销 量是否存在显著差异,并进一步探究价格、功能等变量对销量的影响。根据分析结果,为企业制定营 销策略提供依据。
05
回归分析的实际应用案例
案例一:预测股票价格与成交量的回归分析
总结词
股票价格与成交量之间存在一定的相 关性,通过回归分析可以预测股票价 格的走势。
详细描述
通过收集历史股票数据,分析股票价 格与成交量之间的相关性,建立回归 模型。利用该模型,可以预测未来股 票价格的走势,为投资者提供决策依 据。
详细描述
方差分析在许多领域都有广泛的应用,如心理学、社会科学、生物统计学和经济学等。它可以用于比较不同组数 据的均值差异,探索因子对因变量的影响,以及处理分类变量和连续变量的关系。通过方差分析,研究者可以更 好地理解数据结构和关系,为进一步的数据分析和解释提供依据。

回归分析与协方差分析

回归分析与协方差分析
Y0的观测值y0的点预测是无偏的。
⑵ 当x=x0时,用适合不等式P{Y0∈(G,H)}≥ 1-α的统计量G和H所确定的随机区间(G,H) 预测Y0的取值范围称为区间预测,而(G,H)称 为Y0的1-α预测区间。 若Y0与样本中的各Yi相互独立,则根据 Z=Y0-(a+bx0)服从正态分布,E(Z)=0, 2 1 ( x0 x ) 2 D( Z ) (1 ), n l xx SSE 及 2 ~ 2 ( n 2), Z与SSE相互独立,
r
l xy
,r
2
l
2 xy
,
当F≥F1-α(1,n-2)或|r|≥rα(n-2)时应该放 弃原假设H0,式中的 F1 (1, n 2) r ( n 2) F1 (1, n 2) ( n 2)
可由r检验用表中查出。
r
2
因此,r常常用来表示x与Y的线性关系在x 与Y的全部关系中所占的百分比,又称为x 与Y的观测值的决定系数。
2 i
i
yi ;
(2)计算l xx , l xy , l yy ;
(3)计算b和a,写出一元线性回归方程。
与上述a和b相对应的Q的数值又记作SSE, 称为剩余平方和。
ˆ和 Y ˆ 看作是统计量, 将a、b和SSE以及 Y i 它们的表达式分别为 n
a Y bx , b
( x
i 1
i
2 ˆ ˆ i 之间的偏差 ( y i y i ) 是y i 与y i 1
n
通过回归已经达到了最小值,称为剩余平 方和,记作SSE。
n i 1
2 ˆ 而 ( y i y ) 表示n个ˆ y i 与y之间的差异,
ˆ i 所造成的, 是将x i 代入回归方程得到 y 称为回归平方和,记作SSR。

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

线性回归分析与方差分析.ppt

线性回归分析与方差分析.ppt
下面说明这一检验的方法.
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,

~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析方差分析与回归分析是统计学中常用的两种分析方法,用来研究变量之间的关系和影响。

本文将分别介绍方差分析和回归分析的基本原理、应用场景以及相关注意事项。

**方差分析**方差分析(ANOVA)是一种用来比较两个或多个总体均值是否相等的统计方法。

它主要用于处理两个或多个组之间的变量差异性比较。

方差分析将总体方差分为组间方差和组内方差,通过比较组间方差与组内方差的大小来判断组间均值是否存在显著差异。

方差分析的应用场景包括但不限于医学研究、实验设计、市场调研等领域。

通过方差分析,研究者可以判断不同组之间是否存在显著差异,从而得出结论或制定决策。

在进行方差分析时,需要注意一些问题。

首先,要确保各组数据符合方差分析的假设,如正态性和方差齐性。

其次,要选择适当的方差分析方法,如单因素方差分析、多因素方差分析等。

最后,要正确解读方差分析结果,避免误解导致错误结论。

**回归分析**回归分析是一种用来研究自变量与因变量之间关系的统计方法。

通过构建回归方程,可以预测因变量在给定自变量条件下的取值。

回归分析主要包括线性回归和非线性回归两种方法,用于描述自变量与因变量之间的相关性和影响程度。

回归分析的应用领域广泛,包括经济学、社会学、医学等。

通过回归分析,研究者可以探究变量之间的复杂关系,找出影响因变量的主要因素,并进行预测和控制。

在进行回归分析时,需要考虑一些重要问题。

首先,要选择适当的回归模型,如线性回归、多元回归等。

其次,要检验回归方程的拟合度和显著性,确保模型的准确性和可靠性。

最后,要谨慎解释回归系数和预测结果,避免过度解读和误导性结论。

综上所述,方差分析与回归分析是统计学中常用的两种分析方法,分别用于比较组间差异和探究变量关系。

通过正确应用这两种方法,可以帮助研究者得出准确的结论和有效的决策,推动学术研究和实践应用的发展。

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析方差分析(Analysis of Variance,缩写为ANOVA)与回归分析(Regression Analysis)是统计学中常用的两种数据分析方法。

它们在不同领域的研究中有着重要的应用,用于探究变量之间的关系以及预测、解释和验证数据。

一、方差分析方差分析是一种用于比较两个或多个样本均值是否差异显著的统计方法。

它通过计算各组之间的离散程度来揭示变量之间的关系。

方差分析常用于实验设计和实验结果的分析,可以帮助研究人员确定各因素的影响程度。

在方差分析中,我们首先将数据进行分组,然后计算每个组的方差。

通过比较各组之间的方差,我们可以判断其是否有显著差异。

方差分析根据研究设计的不同,可以分为单因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量(因素)的情况,而多因素方差分析则适用于多个自变量(因素)的情况。

方差分析的结果一般通过计算F值来判断各组之间的差异是否显著。

如果F值大于临界值,则可以拒绝原假设,认为各组之间存在显著差异。

反之,如果F值小于临界值,则无法拒绝原假设,即各组均值没有显著差异。

二、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它根据自变量(独立变量)与因变量(依赖变量)之间的相关性,建立一个预测模型来预测或解释因变量的变化。

在回归分析中,我们首先收集自变量和因变量的数据,然后通过建立数学模型来描述它们之间的关系。

常用的回归模型包括线性回归、多项式回归、逻辑回归等。

通过回归分析,我们可以估计自变量对于因变量的影响程度,并根据模型进行预测和解释。

在回归分析中,我们通常使用R方(R-squared)来衡量模型的拟合程度。

R方的取值范围在0到1之间,越接近1表示模型的拟合效果越好。

此外,回归分析还可以通过计算标准误差、系数显著性、残差分析等指标来评估模型的质量。

结论方差分析与回归分析是统计学中常用的两种数据分析方法。

方差分析适用于比较多个样本均值的差异性,而回归分析用于研究变量之间的关系和预测。

方差分析与回归分析

方差分析与回归分析

不同行业被投诉次数的散点图
行业
1. 随机误差
▪ 因素的同一水平(总体)下,样本各观察值之间的差异 ▪ 比如,同一行业下不同企业被投诉次数是不同的 ▪ 这种差异可以看成是随机因素的影响,
2. 系统误差
▪ 因素的不同水平(不同总体)下,各观察值之间的差异 ▪ 比如,不同行业之间的被投诉次数之间的差异
▪ 这种差异可能是由于抽样的随机性所造成的,也可
a.画散点图
较强的线性正相关关系
b. 求r
• 样本容量n=14,查教材附录540页《相关系数 检验表》,当显著性水平为1%时,r0.01=0.661。 显然,样本相关系数r> r0.01 ,因此线性回归效果 显著,认为抗拉强度y与含碳量x之间存在高度显 著的正相关关系。
c.求抗拉强度y关于含碳量x 的线性回归方程
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
非线性回归
• 在许多实际问题中,变量之间并不一定是 变量的关系,而是某种非线性相关关系, 称为一元非线性回归。许多有价值的非线 性回归方程,可以利用适当的变换,转换 为线性回归方程,例如,倒数变换、半对 数变换、双对数变换、多项式变换等;然 后再利用线性回归分析的最小二乘法进行 估计和检验。
k
ni
k
k
xij x 2 ni xi x 2
ni
xij x 2
i1 j1
i1
i1 j1
SST = SSA + SSE
▪ 前例的计算结果:
4164.608696=1456.608696+2708
关系强度的测量
1. 拒绝原假设表明因素(自变量)与观测值之间有

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法

方差分析及回归分析ppt60页课件

方差分析及回归分析ppt60页课件
单因素试验的方差分析
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2

As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
(2)对回归模型作显著性检验; (3)当x=x0时对Y的取值作预测,即对Y作区间 估计.
二、 参数a、b、 2 的估计
现在我们用最小二乘法来估计模型(1)中的
未知参数a,b.
n
n
记 Q Q(a,b)
2 i
( yi a bxi )2
i 1
i 1
称Q(a, b)为偏差平方和
最小二乘法就是选择a,b的估计 aˆ, bˆ,使得
Q(a, b)为最小(图9-2)
图9-2
为了求Q(a, b)的最小值,分别求Q关于a, b的偏导数,并令它们等于零:
a
Q(a,
b)
b
Q(a,
b)
n
i 1 n
i 1
( yi ( yi
a a
bxi )(2) bxi )(2xi )
0
0
经整理后得到
na
n
xi b
n
bi
i1
i 1
n i 1
xi a n i1
xi2 b
n i 1
xi yi
式(2)称为正规方程组.
(2)
由正 规方程组解得
n
( xi x)( yi y)
bˆ i1 n
(xi x) 2
i 1
aˆ y bˆx
其中
x
1 n
n i1
xi ,
y
1 n
n i1
yi
用最小二乘法求出的估计 aˆ 、bˆ 分别称为a、b的最
函数关系,事实上,即使不同的厂家投入了相同 的广告费,其销售额也不会是完全相同的。影响 销售额的因素是多种多样的,除了广告投入的影 响,还与厂家产品的特色、定价、销售渠道、售 后服务以及其他一些偶然因素有关。
画出散点图如图9-1所示.从图中可以看出,随
着广告投入费x的增加,销售额Y基本上也呈上升
趋势,图中的点大致分布在一条向右上方延伸的
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+
500
* *L
400 300
*
*
*
*
200
100
o
* **
20
40
60
80
100 120
这就是所谓的 一元线性回归模型
对于具有相关关系的变量,虽然不能找到他们之间 的确定表达式,但是通过大量的观测数据,可以发 现他们之间存在一定的统计规律,
数理统计中研究变量之间相关关系的一种有效方法 就是回归分析。
一、 一元线性回归模型
假定我们要考虑自变量x与因变量Y之间的相关关系 假设x为可以控制或可以精确观察的变量,即x为普 通的变量。由于自变量x给定后,因变量Y并不能确 定,从而Y是一个与x有关的随机变量
小二乘估计
此时,拟合直线为 yˆ aˆ bˆx y bˆ(x x)
下面再用矩法求 2的估计
由于
2
D
E
2
由矩估计法,可用
E
2 估计
1
n
n i1
2 i
而i yi a bxi ,a、b分别由 aˆ、bˆ代入

2可用
ˆ 2
1 n
n
( yi
i1
aˆ bˆxi )2
作估计
对于估计量 aˆ、bˆ、ˆ 2 的分布,有:
定理1
(1)
n
2 x12
aˆБайду номын сангаас
~
N
a,
n
i 1
n (xi x)2
i 1
(2)

~
N
b,
n
2
(xi x)2
i1
(3)
n 2
ˆ
2
~
2 (n
2)
(4) ˆ 2分别与 aˆ、bˆ独立。
例2 在例1中可分别求出a、b、 2的估计值为:
bˆ 0.323
aˆ 4.37
ˆ 2 4.064
x
图9-1
一般地,假设x与Y之间的相关关系可表示为
Y a bx (1)
其中:a, b为未知常数
为随机误差且 ~ N (0, 2 ) 2 未知,
x与Y的这种关系称为一元线性回归模型
y=a+bx称为回归直线 b称为回归系数
此时 Y ~ N(a bx, 2 )
对于(x, Y)的样本(x1,y1),…,(xn,yn)有:
例如,农作物的单位面积产量与施肥量之间有 密切的关系,但是不能由施肥量精确知道单位面积 产量,这是因为单位面积产量还受到许多其他因素 及一些无法控制的随机因素的影响。
又如,人的身高与体重之间存在一种关系,一般来 说,人身高越高,体重越大,
但同样高度的人,体重却往往不同。这种变量之间 的不确定性关系称之为相关关系。
我们对于可控制变量x取定一组不完全相同的值 x1,…,xn,作n次独立试验,得到n对观测结果:
(x1,y1) ,(x2,y2),…,(xn, yn)
其中yi是x=xi时随机变量Y的观测结果.将n对观测结 果(xi,yi)(i=1,…,n)在直角坐标系中进行描点, 这种描点图称为散点图.散点图可以帮助我们精略 地看出Y与x之间的某种关系.
故经验回归直线为:
Y=4.37+0.323x
三、线性回归的显著性检验
在实际问题中,事先我们并不能断定Y与x确有线
性关系,Y=a+bx+ 只是一种假设.
当然,这个假设不是没有根据的,我们可以通过 专业知识和散点图来作出粗略判断. 但在求出经验回归方程后,还需对这种线性回归 方程同实际观测数据拟合的效果进行检验.
例1 对某广告公司为了研究某一类产品的广告费x用 与其销售额Y之间的关系,对多个厂家进行调查, 获得如下数据
厂家 1 广告费 6 销售额 31
23 456789 10 21 40 62 62 90 100 120 58 124 220 299 190 320 406 380
广告费与销售额之间不可能存在一个明确的
yi a bxi i i 1,, n
i ~ N (0, 2 )
1,
,
相互独立
n
如果由样本得到式(1)中,a, b的估计值 aˆ, bˆ ,
则称 yˆ aˆ bˆx为拟合直线或经验回归直线,它 可作为回归直线的估计
一元线性回归主要解决下列一些问题:
(1)利用样本对未知参数a、b、 2进行估计;
相关文档
最新文档